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ABSTRACT

Attention is a key part of the transformer architecture. It is a sequence-to-sequence
mapping that transforms each sequence element into a weighted sum of values.
The weights are typically obtained as the softmax of dot products between keys and
queries. Recent work has explored alternatives to softmax attention in transformers,
such as ReLU and sigmoid activations. In this work, we revisit sigmoid attention
and conduct an in-depth theoretical and empirical analysis. Theoretically, we prove
that transformers with sigmoid attention are universal function approximators and
benefit from improved regularity compared to softmax attention. Through detailed
empirical analysis, we identify stabilization of large initial attention norms during
the early stages of training as a crucial factor for the successful training of models
with sigmoid attention, outperforming prior attempts. We also introduce FLASH-
SIGMOID, a hardware-aware and memory-efficient implementation of sigmoid
attention yielding a 17% inference kernel speed-up over FLASHATTENTION2 on
H100 GPUs 1. Experiments across language, vision, and speech show that properly
normalized sigmoid attention matches the strong performance of softmax attention
on a wide range of domains and scales, which previous attempts at sigmoid atten-
tion were unable to fully achieve. Our work unifies prior art and establishes best
practices for sigmoid attention as a drop-in softmax replacement in transformers.

1 INTRODUCTION

The success of modern machine learning can be largely attributed to the attention mechanism
(Bahdanau et al., 2015; Vaswani et al., 2017). Attention uses a sequence-to-sequence (seq-to-seq)
map to build context-aware token representations. Classically, attention relies on the softmax function
(SoftmaxAttn) to recover token representations as data-dependent convex combinations of values.

Despite its widespread use and effectiveness, softmax in SoftmaxAttn is not without limitations.
For instance, the softmax function can sometimes lead to a concentration of attention on just a few
features (Yang et al., 2018; Ganea et al., 2019), potentially neglecting other informative aspects of
the input data. Moreover, applying SoftmaxAttn requires performing a row-wise reduction along
the length of the input sequence, which in the case of efficient attention kernels (Dao et al., 2022;
Dao, 2023), slows down computations. In this work, we relax this constraint by substituting the
row-wise softmax operation with an element-wise sigmoid nonlinearity. We highlight that the central
problem with naïve sigmoid attention (SigmoidAttn) is that of large initial attention norms and
propose solutions to alleviate it. Our contributions are as follows:

(1) We prove SigmoidAttn is a universal function approximator on seq-to-seq tasks (Sec. 3.1).
(2) We analyze SigmoidAttn’s regularity and provide its worst-case Jacobian bound (Sec. 3.2).
(3) We extend FLASHATTENTION2 (Dao et al., 2022; Dao, 2023) with the sigmoid kernel, reducing

kernel inference wall-clock time by up to 17% and real world inference by up to 8% (Sec. 4).
(4) We show that SigmoidAttn matches SoftmaxAttn in various tasks and domains (Sec. 5).

2 SIGMOID ATTENTION

Let X ∈ Rn×d be the input sequence of n vectors, where each vector has dimension d. We define
three learnable weight matrices Wq ∈ Rd×dqk , Wk ∈ Rd×dqk , and Wv ∈ Rd×dv , which are used to

1Code is available at ANONYMOUS_URL
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compute the queries Q ∈ Rn×dqk , keys K ∈ Rn×dqk , and values V ∈ Rn×dv as follows:

Q = XWq, K = XWk, and V = XWv. (1)

Self-attention (Bahdanau et al., 2015; Vaswani et al., 2017) can be compactly written as

SoftmaxAttn(X) = Softmax(QKT /
√
dqk)V , (2)

where the Softmax function normalizes each row of the input matrix. We replace the Softmax with

SigmoidAttn(X) = σ(QKT /
√
dqk)V ,

with σ : u 7→ sigmoid(u+ b) := (1 + e−(u+b))−1.
(3)

Here, σ is applied element-wise to the input matrix in (3). The activation function σ has a hyper-
parameter b ∈ R. In App. E, we discuss an intuitive way to choose the order-optimal bias term,
resulting in b = − log(n). This choice of b allows us to make sense of SigmoidAttn for any sequence
length. Indeed, letting (y1, . . . ,yn) = SigmoidAttn(X) be the output sequence, we have

yi =
n∑

j=1

exp(⟨Wqxi,Wkxj⟩)
exp(⟨Wqxi,Wkxj⟩) + n

Wvxj −−−−−→
n→+∞

∫
exp(⟨Wqxi,Wkx⟩)Wvxdµ(x), (4)

where µ = 1
n

∑n
j=1 δxj

is the empirical measure corresponding to X . Notably, (4) still makes sense
in the infinite length limit, where the measure µ is not a sum of Diracs. Wortsman et al. (2023a) do
not use a bias, and propose a n−1 normalization for various attention activations, such as sigmoid and
ReLU, but leave the reason as an open question. Our variable bias has a similar effect in the large n
limit, and we posit that recovering a finite output limit as n increases is the why it works in practice.

A multi-head version of (3) is obtained by combining the outputs of several SigmoidAttn, as follows:

[SigmoidAttn1(X), . . . ,SigmoidAttnh(X)]Wo, (5)

for a learnable output weight matrix Wo ∈ Rhdv×d, where h denotes the number of heads.

3 THEORETICAL PROPERTIES OF SIGMOID ATTENTION

We analyze SigmoidAttn, with two objectives: (1) showing that a transformer architecture remains a
universal function approximator when SigmoidAttn replaces SoftmaxAttn, and (2) recovering a
measure of regularity of SigmoidAttn by computing its Lipschitz constant.

3.1 ARE TRANSFORMERS WITH SIGMOID ATTENTION UNIVERSAL APPROXIMATORS?

Yun et al. (2020) demonstrate that classical transformers can approximate continuous sequence-
to-sequence functions to arbitrary precision, a property known as the Universal Approximation
Property (UAP). UAP is highly desirable as it provides proof of an architecture’s generalizability
and representation capability. As SigmoidAttn modifies the transformer architecture, it is crucial to
theoretically guarantee that this modification does not impact the representation capability and that
UAP is retained. We provide this guarantee with the following theorem.
Theorem 3.1 (UAP for SigmoidAttn). We denote with T h,dv,r

σ the class of transformer networks
obtainable by combining an arbitrary number of SigmoidAttn layers (each of h heads of dimension
dv) followed by FFN layers of hidden dimension r. For any given continuous, permutation-equivariant
function f : Ω ⊂ Rn×d → Rn×d with compact support Ω, and for any arbitrarily small error ε,
there exists a transformer network g ∈ T 4,1,4

σ such that
(∫

Ω

∥f(X)− g(X)∥ppdX
)
≤ ε, for 1 ≤ p <∞. (6)

Theorem 3.1 is the exact counterpart of (Yun et al., 2020, Thm. 2), which shows UAP for classical
transformers. Our proof largely follows the same path, an outline of the original proof provided
in App. C. Here, we present an overview of the main adaptations required to prove Thm. 3.1 for
SigmoidAttn, with further details in App. C.1 and C.2.
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Sigmoid Attention layers can implement contextual mappings: A key step in proving Thm. 3.1 is
showing that, even with SigmoidAttn, a sequence of transformer blocks can implement a Contextual
Mapping (Yun et al., 2020, Def. 3.1). A contextual mapping characterizes a function that maps each
input sequence element to an output uniquely dependent on the whole sequence. This property allows
a transformer to capture and store global context within each token, even if each layer only performs
pairwise comparisons. Subsequent layers can then use this global information to map individual
tokens to the correct output, ultimately approximating any arbitrary sequence-to-sequence function.

In Yun et al. (2020), the contextual mapping is assembled by modifying individual transformer blocks:
each block is tuned to react to a specific input token. By stacking a sequence of these blocks, a
transformer can be turned into an accumulator, mapping a given input token sequence to a unique
global index. This outcome is achieved via a selective shift layer (Yun et al., 2020, App. B.5):

Ψ(X; b, b′)i,1 :=

{
maxk Xk,1 −mink Xk,1 if b <Xi,1 < b′

0 otherwise,
(7)

and can be approximated using classic attention. Although SigmoidAttn cannot directly approxi-
mate (7), our accumulator definition relies on an equivalent selective shift operation:

Ψσ(X; b, b′)i,1 :=

{∑
k:Xk,1>b′ Xk,1 if b <Xi,1 < b′

0 otherwise,
(8)

which can be approximated by SigmoidAttn (described in App. C.1). In App. C.2.4, we show that (8)
shares similar properties with (7), allowing us to use the original proof framework in Yun et al. (2020)
and demonstrate that UAP holds in our case as well.

Our proof is largely equivalent to that in Yun et al. (2020), with two relevant differences: to
approximate (8), we require SigmoidAttn with at least four heads and shifts included in both
query and key definitions. In contrast, SoftmaxAttn requires at least two heads to approximate (7),
with shifts only in the query definition. However, this is primarily a theoretical requirement for the
proof and does not affect performance. Notably, the total number of parameters required by both
architectures for the approximation follows the same tight scaling of Yun et al. (2020).

3.2 REGULARITY OF SIGMOID ATTENTION

As with any layer in a neural network, the regularity of SigmoidAttn is important to study, as it gives
insights into the robustness of the corresponding network and the ease of optimizing it. The most
standard way to quantify the regularity of a layer function ϕ is to compute its Lipschitz constant over a
set X , that is a constant C > 0 such that for all X,Y ∈ X , it holds ∥ϕ(X)−ϕ(Y )∥ ≤ C∥X−Y ∥,
where ∥ · ∥ is the standard Frobenius norm. The local Lipschitz constant is the spectral norm of the
Jacobian of ϕ at X . The two are related: the Lipschitz constant of ϕ over X is the greatest local
Lipschitz constant for all X ∈ X . We turn to the theorem giving the regularity of SigmoidAttn:
Theorem 3.2. Define A = {⟨WqxiWkxj⟩|, i, j ∈ {1, . . . , n}} ⊂ R the set of attention weights,
and the scaled activation norms σ∞ = n × supu∈A |σ(u)| and σ′

∞ = n × supu∈A |σ′(u)|. Then,
the Jacobian of SigmoidAttn at X = (x1, . . . ,xn) has a spectral norm of at most:

∥Wv∥2
(
σ∞ + 2σ′

∞∥W T
q Wk∥2

(
1

n

n∑

i=1

∥xi∥22

))
. (9)

The proof is found in App. D. In SigmoidAttn, if we assume that the attention weights
⟨Wqxi,Wkxj⟩ are all bounded by a constant µ — this is true, e.g., if the activations are bounded
— we get σ∞ ≤ exp(µ) and σ′

∞ ≤ exp(µ) thanks to the choice of b = − log(n). The bound in
Thm. 3.2 depends only on the average squared-norm of the input sequence xi, while classical results
for the study of attention all rely on the largest value of ∥xi∥22 (Kim et al., 2021; Castin et al., 2023).
This is another consequence of the simplicity of sigmoid attention and is due to the removal of the
normalizing constant in SoftmaxAttn. Our result implies that if all xi are within a ball of radius R
then the Lipschitz constant of SigmoidAttn grows at most like R2, but it is stronger since we can
apply this to unbounded distributions xi; it matters only that the second moment is bounded. This
result contrasts sharply with the bounds obtained for SoftmaxAttn: Castin et al. (2023, Thm. 3.4.)
show that there exists a sequence X = (x1, . . . ,xn) with ∥xi∥2 ≤ R for all i such that the spectral

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

norm of the Jacobian of Attn at X is at least cR2 exp(cR2) for some constant c > 0. On the other
hand, our bound scales in R2: this means that the local Lipschitz constant of SigmoidAttn is much
lower than the worst local Lipschitz constant of SoftmaxAttn. Note that this result does not inform
us of the practical average case Lipschitz constant, which is likely to be much lower for both Softmax
and Sigmoid attention. Upper bounds on the Lipschitz constant of SigmoidAttn are of particular
interest to study the dynamics of attention, as done, e.g., in (Geshkovski et al., 2024; 2023)

3.3 COMPUTATIONAL COMPLEXITY OF SIGMOID AND SOFTMAX.

Table 1: Forward floating operations per token per attention head. nctx and dhead are the context length
and head dimension respectively. ∆ measures the compute difference between sigmoid and softmax.
c accounts for causal (c = (nctx + 1)/2nctx ∼ 1/2), or standard (c = 1) attention. Typical values
from the 1B LLM results are nctx = 2048, dhead = 64. Sigmoid and softmax share the same number
of floating operations (softmax: max-subtraction (2), exponentiation, summation, division; Sigmoid:
bias-add, sign-flip, exponentiation, addition, division). Remaining differences are due implementation
details, and are subleading (∼ 1%) compared to other attention operations like computing attention
logits L (shown below). This analysis precludes hardware aware improvements (Section 4).

L = QKT Softmax (L) σ (L+ b) ∆

Expression 2 c nctx dhead 5 c nctx 5 c nctx 0

4 FLASHSIGMOID: HARDWARE-AWARE IMPLEMENTATION
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(a) Inference mode kernels on H100.
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(b) Training mode kernels on H100.

Figure 1: Average kernel speed-up for FLASHSIGMOID over FLASHATTENTION2 for sequence
lengths 64–78k. Inference is 17.39% faster for self-attention and 18.76% for causal attention.
Training is 6.53% faster for self-attention and 9.46% for causal attention.

Memory speed has not kept pace with recent gains in computation speed (Choquette, 2023; Jouppi
et al., 2017; Hannun et al., 2023). Consequently, attention computations on modern architectures have
been IO-bound by memory accesses (Ivanov et al., 2021). FLASHATTENTION (Dao et al., 2022) and
FLASHATTENTION2 (Dao, 2023) address these shortcomings by optimizing GPU memory hierarchy
utilization to accelerate attention computations. Motivated by the speed boost provided by these
approaches, we develop FLASHSIGMOID, a hardware-aware implementation of SigmoidAttn. Like
previous works, FLASHSIGMOID employs three core ideas:

Tiling: Divide and Conquer Approach to Attention: Similar to FLASHATTENTION and
FLASHATTENTION2, FLASHSIGMOID processes input parts in parallel to compute attention outputs
in blocks, efficiently combining partial results to generate the final attention output.

Kernel Fusion: Like FLASHATTENTION and FLASHATTENTION2, FLASHSIGMOID implements
the computational steps of both forward and backward passes of SigmoidAttn as single GPU kernels,
minimizing memory accesses and improving memory efficiency by avoiding materialization of
intermediate activations on High-Bandwidth Memory (HBM).

4
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Activation Recomputation: The backward pass of sigmoid attention requires the sigmoid acti-
vation matrix, which, if materialized on GPU HBM, results in slower implementation and memory
inefficiencies. FLASHSIGMOID addresses this by retaining only query, key, and value tensors for
re-computation of the sigmoid activation matrix during the backward pass. Despite increased FLOPs,
this approach proves faster in wall-clock time as well as more memory-efficient than the alterantive
approach of materializing and retaining the attention matrix.

The forward and backward pass algorithms of FLASHSIGMOID can be found in App. F.1. Here, we
highlight key differences between FLASHSIGMOID and FLASHATTENTION/FLASHATTENTION2.
The point-wise nature of SigmoidAttn results in a faster and more memory-efficient implementation
by removing the need to compute the softmax normalization and materialize it to HBM. A reduction
in the number of kernel dispatches also speeds up FLASHSIGMOID. Further, FLASHSIGMOID does
not require accumulation and tracking of intermediate variables (row-sum and maximum of blocks)
in the forward and backward passes which saves computation cost and reduces register pressure. We
use sigmoid (x) = 0.5 · (1 + tanh (0.5 · x)) to optimize the sigmoid computation on GPU. The speed
up in FLASHSIGMOID compared to FLASHATTENTION arises from optimizing hardware bottlenecks;
theoretically, SigmoidAttn is slower than SoftmaxAttn (Sec. 3.3).

To measure the performance improvements of FLASHSIGMOID, we compare the timings of the
kernels in its forward and backward passes against those of FLASHATTENTION2. The details of this
benchmarking on H100 and A100 GPUs can be found in App. F.2. Measuring GPU computation time,
we observe a 17.39% speed-up during inference and a 6.53% speed-up during training for attention
over randomly initialized data on H100 GPU (Fig. 1). In practice, these gains may be affected by
other bottlenecks, such as movement of tensors between CPU or GPU memory, computations in other
layers, and communication overhead in distributed training and inference. However, we demonstrate
that FLASHSIGMOID speeds up training by ∼4% and inference by ∼8% in a realistic end-to-end
setup. The details of wall-clock time improvements with FLASHSIGMOID are in App. F.3. We also
note that practical machine learning workflows are dominated by inference rather than training.

5 EXPERIMENTS
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Figure 2: Train losses comparing SigmoidAttn with SoftmaxAttn.

To empirically validate SigmoidAttn, we evaluate across several domains: supervised image classi-
fication using vision transformers (Dosovitskiy et al., 2021), self-supervised image representation
learning with SimCLR (Chen et al., 2020; Zhai et al., 2023a), Bootstrap Your Own Latent (BYOL)
(Grill et al., 2020; Busbridge et al., 2023) and Masked AutoEncoders (MAE) (He et al., 2022)
as well as automatic speech recognition (ASR) (Synnaeve et al., 2020; Gulati et al., 2020b) and
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auto-regressive language modeling (LM) (Brown et al., 2020). We also validate sequence length
generalization on TED-LIUM v3 (Hernandez et al., 2018) for ASR and in small scale synthetic exper-
iments in App. G.5.4. Across all these domains and algorithms, we demonstrate that SigmoidAttn
matches the performance of SoftmaxAttn (Fig. 2 and 22), wh ile offering training and inference
speed-ups as highlighted in Sec. 4. Empirically we make the following observations:

(1) SigmoidAttn is effective for vision tasks without a bias (except MAE), but relies on Layer-
Scale (Touvron et al., 2021) to match the performance of the baseline SoftmaxAttn (Fig. 10-a)
in a hyper-parameter free manner.2 All results presented for SoftmaxAttn also fairly add
LayerScale unless specified.

(2) LM and ASR are sensitive to the initial norm ||σ(QKT /
√
dqk)V ||. Modulation is required

via (a) relative positional embeddings like ALiBi (Press et al., 2022), which reduces the initial
attention norm by shifting logit mass near zero under SigmoidAttn, (b) appropriate initialization
of b to achieve the same effect – enabling usage of any positional embedding, (c) using hybrid-
norm (Appendices G.3.3, G.4 and G.6) at the expense of an extra normalization layer.

5.1 ABLATIONS

Figure 3: SigmoidAttn with SinCos. Figure 4: SigmoidAttn with RoPE.

Figure 5: SigmoidAttn with ALiBi. Figure 6: SigmoidAttn with RoPE, b = −10.

We begin with ablations to dissect the benefits of each of our introduced components. To gain intuition
about SigmoidAttn, we developed a research-friendly auto-regressive (AR) LM training framework

2Appendix G.2.2 demonstrates that supervised vision tasks using SigmoidAttn without LayerScale can
match baseline SoftmaxAttn performance by relying on learnable scalar bias and temperature: {b, t} ∈ R.
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to measure all components of attention and validate the effects of LayerScale, LayerNorm applied to
Q and K (QK norm), different positional embedding techniques, and initialization values for b.

Mitigating Large Attention Norms We train a single layer AR transformer block (E=3072,
D_FF=12288) on the realnews split of C4 (Raffel et al., 2020). We train for 216 steps using a batch
size of 6 and max sequence length of 4096 using a single cycle cosine learning rate (LR) schedule
without weight decay. SigmoidAttn initially underperformed SoftmaxAttn when using absolute
sinusoidal (SinCos) (Fig. 3) or relative (Fig. 4) positional embeddings (PE), which we attribute
to high initial attention Frobenius norms, ∥σ(QKT /

√
d)V ∥. A corresponding evolution of the

attention distribution and sparsity can be seen in Appendix Fig. 32 and Fig. 33 on a synthetic task. To
address these larger attention norms, we propose: (a) using ALiBi (Press et al., 2022) whose relative
bias moves initial attention logit mass to the zero region under the sigmoid activation, producing
equivalent train negative log-likelihoods (Fig. 5); or (b) set the attention logit bias b to a negative
offset proportional to the sequence length, b ∝ − lnn (see App. G.1.2 for an ablation on b). This
enables the usage of other PE techniques like RoPE (Su et al., 2024) (Fig. 6).

Figure 7: Regularity analysis comparing SigmoidAttn vs. SoftmaxAttn (10× trials per n).
SoftmaxAttn theoretical bound is off scale and thus omitted.

Empirical Analysis of Attention Regularity To validate our theoretical analysis (Section 3.2), we
measure Jacobian norms of SigmoidAttn and SoftmaxAttn across sequence lengths (Figure 7). Us-
ing autograd, we compute exact Jacobian norms for both mechanisms, with and without HybridNorm
(Appendices G.3.3 and G.6), comparing them to theoretical bounds (SoftmaxAttn bound omitted
as it exceeds scale). Both variants show empirical norms (solid lines) well below their theoretical
bounds (dashed lines). With our proposed bias initialization (b = − ln(n)), SigmoidAttn achieves
lower norms than SoftmaxAttn in both settings, suggesting improved regularity. This aligns with its
strong task performance (Section 5). Additionally, HybridNorm (Figure 7, right) reduces norms for
both mechanisms compared to baseline (left), highlighting normalization’s role in attention stability
at longer sequences.

LayerScale To validate the need for LayerScale, we follow Wortsman et al. (2023b) to quantify the
impact on stability. All models are trained with RoPE with b ∝ − lnn, using AdamW (Loshchilov &
Hutter, 2017) on the realnews split of C4 with (β1, β2) = (0.9, 0.95), ϵ = 10−8, wd = 0, batch size
24, maximum token sequence length of 512 from the T5 tokenizer (Raffel et al., 2020), cosine LR
schedule of 214 steps including a linear warmup of 210 steps. Models have nheads = κ, nlayers = 2×κ,
dmodel = 64× κ and dfeed-forward = 256× κ for a scaling value κ ∈ {1, 2, 4, 8, 16} leading to models
with {2.2, 4.9, 15.0, 67.0, 440.0}M trainable non-embedding parameters. Following Wortsman et al.
(2023b), we sweep learning rates η ∈ {3 × 10−4, 1 × 10−3, 3 × 10−3, 1 × 10−2, 3 × 10−2, 1 ×
10−1, 3× 10−1}. LR sensitivity is defined as Eη∈[a,b] [min(ℓ(A(η)), ℓ0)− ℓ∗] where ℓ(A(η)) is the
loss achieved by the learning algorithm A with LR η, ℓ0 is the loss at initialization, and ℓ∗ is the loss
achieved by the best LR. LayerScale is initialized at 10−4. Unlike vision tasks, where LayerScale
improves performance (Fig. 10-a), in LM, we observe that SoftmaxAttn slightly benefits from
LayerScale, while the performance of SigmoidAttn remains largely unaffected.

Stability with QK Norm To explore the stability of SoftmaxAttn vs. SigmoidAttn we repeat the
analysis of Wortsman et al. (2023b), as described in the LayerScale analysis, to investigate the impact
of QK norm (Dehghani et al., 2023). For language modeling, both SigmoidAttn and SoftmaxAttn
exhibit sensitivity to learning rate changes without QK norm. However, incorporating QK norm
significantly stabilizes performance (Fig. 9). In vision tasks, SigmoidAttn demonstrates robustness
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Figure 8: LR sensitivity LayerScale ablation.
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Figure 9: LR sensitivity QK norm ablation.
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Figure 10: ImageNet1k ViT-B/16 classification. (a) SigmoidAttn is robust without QK norm (+Lay-
erScale, -QKNorm). Removing LayerScale reduces accuracy by 1.0% (-LayerScale, +/-QKNorm).
n−α normalization (Wortsman et al., 2023a) underperforms without LayerScale. (b) SigmoidAttn
multi-query attention (MQA) (Shazeer, 2019) with one head matches multi-head attention (MHA).
(c) Sigmoid with LayerScale and QK norm performs comparably to other activations, except TanH.
ReLU2 (Hua et al., 2022) underperforms without LayerScale and QK norm.

with and without QK norm (Fig. 10-a) and without the need for n−α normalization from Wortsman
et al. (2023a).3

Multi-query attention (MQA) In Fig. 10-b we explore MQA (Shazeer, 2019) for vision using
only one head for {K,V }. We find that both SigmoidAttn and SoftmaxAttn perform equally well
with or without multiple heads even at the small scale of ViT-B/16.

Activation Function Ablations As in Wortsman et al. (2023a), various activation functions,
when combined with LayerScale and QK norm, perform equally well for vision tasks (Fig. 10-c).
However, for sequence-critical tasks like ASR, activation functions such as ReLU pose instabilities
and underperform. In the same figure, we also compare to the ReLU2 proposal from Hua et al. (2022)
and find that it underperforms without LayerScale and QK norm.

5.2 SUPERVISED IMAGE CLASSIFICATION

Vision transformers (Dosovitskiy et al., 2021) extend transformers (Vaswani et al., 2017) to treat
K × K image grids as disparate tokens. All tokens are refined through sequential layers of self-
attention, pooled using a CLS token or global average pooling layer, and optimized using the negative
log likelihood, ln p(y|x). We train ViT-B/16 models using R224×224×3 images for 300 epochs
using the recipe provided in App. G.2.4. We use the same set of training hyper-parameters for both
SoftmaxAttn and SigmoidAttn, changing only the activation function between trials. The train
negative log-likelihood is reported in Fig. 2 and the test top-1% is reported in Fig. 22. We find that
SigmoidAttn matches both the training dynamics and the evaluation performance of SoftmaxAttn.

3We ablate multiplicative sequence length scaling in more detail in App. G.1.1.
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Table 2: Word error rate (%) on LibriSpeech test sets and TED-LIUM v3 (Hernandez et al., 2018)
(“TED”, joint validation and test sets split according to duration) for transformer (255M params) with
either SoftmaxAttn or SigmoidAttn (LayerScale and QK norm are used with b = − log n) trained
on LibriSpeech 960h data (mean duration is 10-15s). Hyper-parameters are in App. G.4.

ATTN PE TEST-CLEAN TEST-OTHER TED 0-10S TED 10-20S TED 20-30S TED 30S+

SOFTMAX

CAPE

2.3 5.7 12.4 10.5 11.9 9.1
SIGMOID 2.4 5.5 12.4 10.3 12.3 9.7

- QK NORM UNSTABLE, GRADIENT NORM AND LOSS SPIKES
- LAYERSCALE 2.5 6.1 13.6 11.5 13.4 8.9

SIGMOID (b = −10, LEARNABLE) 2.3 5.5 12.1 10.5 13.0 9.3
SIGMOID (b = −5 IN Q, LEARNABLE) 2.3 5.4 12.2 10.8 12.4 9.9

- QK NORM UNSTABLE, GRADIENT NORM AND LOSS SPIKES

SOFTMAX

ROPE

2.2 5.5 12.7 10.6 12.8 9.5
SIGMOID 2.3 5.4 12.3 10.1 12.3 8.6
SIGMOID (b = −10, LEARNABLE) 2.2 5.2 12.4 10.5 12.3 21.8

+ α = 1 2.7 6.6 14.1 12.0 14.5 14.9
SIGMOID (b = −5 IN Q, LEARNABLE) UNSTABLE, GRADIENT NORM AND LOSS SPIKES

SOFTMAX

ALIBI

2.2 5.4 12.3 10.7 12.1 8.6
SIGMOID 2.3 5.1 12.3 10.5 12.6 9.1
SIGMOID (b = −10, LEARNABLE) 2.2 5.2 12.4 10.4 11.7 9.1

+ α = 1 2.6 6.6 13.9 11.9 14.2 8.6
SIGMOID (b = −5 IN Q, LEARNABLE) 2.2 5.2 12.1 10.4 12.0 8.2

5.3 SELF-SUPERVISED IMAGE REPRESENTATION LEARNING

Self-supervised representation learning (SSL) exploits vast quantities of unlabeled data to learn
semantic representations based on inductive biases such as augmentation invariance (SimCLR Chen
et al. (2020), BYOL (Grill et al., 2020)) or reconstruction from compressed representations (MAE (He
et al., 2022)). We employ vision transformer training recipes from Zhai et al. (2023a) and Busbridge
et al. (2023) (App. G.2.4) for SimCLR and BYOL. As with supervised learning, we use the same set
of training hyper-parameters for both SoftmaxAttn and SigmoidAttn, changing only the activation
function between trials. Figure 2 reports the train losses, and Fig. 22 highlights the linear probe
and finetuned test top-1%. Despite the diverse training objectives in SSL, SigmoidAttn matches
SoftmaxAttn while improving training and inference throughput (Sec. 4).

5.4 AUTOMATIC SPEECH RECOGNITION (ASR)

We benchmark ASR using LibriSpeech data (Panayotov et al., 2015) on 100h and 960h settings
of paired speech and text transcriptions. Our PyTorch implementations of encoder-based vanilla
transformer (Synnaeve et al., 2020) and conformer (Gulati et al., 2020a) are trained with Connectionist
Temporal Classification (CTC) (Graves et al., 2006) w/ BF16 mixed precision, w/o QK norm and w/o
LayerScale. After extensively tuning SoftmaxAttn baselines, we switch to SigmoidAttn per (3)
without any other changes. We investigate the effects of post/pre-LayerNorm, model depth, optimizer
type, small data regime, and connection to local attention, with details in App. G.4.

Our main findings are: i) CAPE (Likhomanenko et al., 2021) PE is the most unstable for
SigmoidAttn; ii) post-LayerNorm models with SoftmaxAttn are hard to match with stable
SigmoidAttn; iii) w/o QK norm SigmoidAttn is unstable and significant spikes happen in both
gradient norms and training loss; iv) LayerScale is needed for generalization; v) learnable bias
b = −10 gives no loss and gradient norms spikes while matching the SoftmaxAttn (which does not
benefit from the improved throughput of FLASHSIGMOID); vi) adding a learnable bias, b = −5, to Q
instead of the attention logits also solves the initial large attention norms for CAPE and ALiBi but
not for RoPE; vii) b = − log n gives rare (2-5 times) marginal gradient norms spikes with smooth
loss while matching SoftmaxAttn.

Table 2 shows the main result for pre-LayerNorm transformers with CAPE, RoPE, and ALiBi, where
SigmoidAttn uses LayerScale, QK norm, b = − log n, and no sequence normalization. The bias is
ablated with learnable bias (one per layer) in attention or Q with or without sequence normalization.
SigmoidAttn is stabilized with bias while matching SoftmaxAttn, and b = − log n works well. In
most cases, bias allows generalization to longer sequences without sequence normalization, except
for RoPE where it helps for longer sequences but hurts overall performance.
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Table 3: 1B LLM English evaluation. More detailed ablations in Appendix G.3.3.

MODEL
SEQ.
LEN.

ARC
EASY

ARC
CHAL.

HELLA-
SWAG

PIQA SCIQ
WINO-

GRANDE
LAMBADA
OPENAI

TRIVIAQA
(1-SHOT)

WEBQS
(1-SHOT) AVG STEP

TIME (S)

SOFTMAX (ALIBI) 2K 62.2 26.8 42.4 59.0 72.3 88.1 58.4 19.9 15.4 49.4 0.38
SIGMOID (ALIBI) 2K 62.8 28.8 42.5 59.7 70.3 88.6 59.7 19.1 13.8 49.5 0.34

SOFTMAX (ROPE) 4K 63.3 29.3 43.3 58.1 71.3 86.9 58.8 20.4 15.6 49.7 0.84
SOFTMAX (ALIBI) 4K 62.6 27.7 42.4 58.6 71.1 88.2 58.6 18.9 14.7 49.2 0.84
SIGMOID (ALIBI) 4K 60.5 27.3 41.3 57.8 70.5 87.0 57.6 18.9 12.6 48.2 0.67

SOFT H-NORM (ALIBI) 4K 61.7 26.8 43.4 59.4 70.6 88.6 60.8 20.5 12.9 49.4 -
SIGM. H-NORM (ALIBI) 4K 63.5 28.1 43.5 60.7 70.8 88.9 59.0 20.9 16.0 50.2 -

5.5 AUTOREGRESSIVE LARGE LANGUAGE MODELING

Initial iterations at 85M scale served as a proxy for larger-scale training. Key findings: i) Attention
bias (or hybrid-norm (Appendix G.3.3)) is essential for stability. While learnable, setting b = − log(n)
(n = max training sequence length of 4096) is effective and faster. ii) RoPE is more challenging to
stabilize; iii) the final setting exhibits smooth loss curves, but still shows gradient norm fluctuations
when not using hybrid-norm. We then turn our attention to validating SigmoidAttn at scale.

We train a 1B language model using the Llama2 (Touvron et al., 2023) recipe with ALiBi instead
of RoPE positional embedding, and the RedPajama (Computer, 2023) dataset (see App. G.3). At
sequence length 4096, SigmoidAttn achieves a 1.23× step-time improvement over SoftmaxAttn in
JAX without FLASHATTENTION (Tab. 3). All LLMs are trained using the ANONYMOUS framework,
which includes the recipe and SigmoidAttn implementation.4

SoftmaxAttn and SigmoidAttn have matching train and validation NLL at 85M (Fig. 27) and at 1B
scale when using 2048 sequence length (Fig. 2). However, a slight disparity is observed at 1B scale
when using 4096 sequence length, which we are able to address using hybrid-norm (Appendices G.3.3
and G.6) at the cost of an additional normalization layer (more details in App. G.3).

6 RELATED WORK

Recent studies in supervised image classification (Wightman et al., 2021) and self-supervised learning
(SSL), including approaches like SigLIP (Zhai et al., 2023b), are shifting large-scale machine learning
training from output conditional categorical distributions, traditionally parameterized by softmax
functions, to richer pointwise Bernoulli conditionals parameterized by sigmoid functions. In this
study, our focus shifts to refining the model’s internal mechanics, specifically by substituting the
softmax component of the attention mechanism with a pointwise sigmoid function.

Previous work has explored the replacing softmax with the ReLU activation in both practical (Shen
et al., 2023; Hron et al., 2020) and theoretical settings (Bai et al., 2023; Fu et al., 2023). Other
works explores using the ReLU2 activation (Hua et al., 2022), exploring purely linear attention
(Katharopoulos et al., 2020; Lu et al., 2021; Koohpayegani & Pirsiavash, 2024) or cosine-similarity
based attention (Luo et al., 2018; Liu et al., 2022). Our work builds upon these explorations,
particularly Wortsman et al. (2023a), which replaces softmax with various activation functions scaled
by n−α, where n corresponds to the sequence length and α, a hyper-parameter. However, we find
that their formulation does not match expected performance without proper b initialization and the
use of LayerScale (Fig. 10-a, App. G.1.1).

7 CONCLUSION

In this work, we present a comprehensive theoretical and empirical study of sigmoid attention as an
alternative to softmax attention in transformers. We prove that transformers with sigmoid attention are
universal function approximators with improved regularity, and identify LayerScale and prevention
of large initial attention norms as key factors for successful training. We introduce FLASHSIGMOID,
a memory-efficient variant providing a 17% inference kernel speed-up. Extensive experiments across
language, vision, and speech demonstrate that properly normalized sigmoid attention matches softmax
attention performance on various tasks and scales. Our findings establish sigmoid attention as a viable
alternative, unifying prior work and establishing best practices for its application in transformers.

4ANONYMOUS_URL
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A LIMITATIONS

While our work demonstrates that SigmoidAttn can serve as a viable drop-in replacement for
SoftmaxAttn in many domains and scales, there are a few key limitations to note:

(1) In large-scale (1B parameter, 4096 context length) language modeling, we observed some
gradient norm spikes and a slight performance gap between SigmoidAttn and SoftmaxAttn
(Table 3). While runs at smaller context lengths (1B parameter, n=2048) were stable and
matched SoftmaxAttn performance, we required the use of hybrid-norm to stabilize n=4096
sequence length models. Further research is needed to fully close the performance gap and
ensure training stability for very large language models using SigmoidAttn.

(2) Our theoretical analysis proves that transformers with SigmoidAttn are universal function
approximators and have improved regularity compared to SoftmaxAttn. However, the
bounds we derive, while tighter than those for SoftmaxAttn, may not be maximally tight.
There could be room for further theoretical refinements.

(3) We focused our empirical evaluation on standard benchmarks in language, vision, and speech
domains. Performance on more niche or emerging applications remains to be validated.

(4) In automatic speech recognition experiments, we observed that SigmoidAttn can be sen-
sitive to the choice of positional embeddings and may require careful initialization of the
attention bias term to ensure stable training. Specifically, we found that the CAPE positional
embedding was the most unstable for SigmoidAttn. Further work is needed to develop ro-
bust initialization schemes that work well across different positional embeddings. Moreover
we found that w/o QK norm or with post-LayerNorm SigmoidAttn is unstable and can
underperforms SoftmaxAttn, thus further investigation is needed.

(5) FLASHSIGMOID demonstrates promising inference and training speed-ups by exploiting
SigmoidAttn’s simpler kernel structure compared to SoftmaxAttn. However, realizing
these gains at scale in distributed training setups may require additional engineering to
optimize communication bottlenecks.

Despite these limitations, we believe this work establishes a strong foundation for SigmoidAttn,
unifying prior art and demonstrating its potential as a drop-in SoftmaxAttn replacement. We hope
our theoretical grounding and empirical results motivate further research into this simple yet effective
architectural variation.

B BROADER IMPACT

The development of efficient and theoretically grounded attention mechanisms has the potential
for significant positive impact across a range of applications. By establishing SigmoidAttn as a
viable alternative to SoftmaxAttn, our work expands the toolkit of architectural choices available to
researchers and practitioners. Positive impacts of this work may include:

(1) Improved computational efficiency: FLASHSIGMOID’s faster kernel implementation could
lead to more efficient training and inference for attention-based models, reducing energy con-
sumption and enabling deployment on resource-constrained devices. This could democratize
access to powerful models.

(2) Theoretical understanding: Our universal approximation results and tighter bounds on the
regularity of SigmoidAttn contribute to a deeper theoretical understanding of this key
component. A stronger theoretical foundation can guide principled model design and
architectural search.

(3) Application-specific benefits: Across language, vision, and speech domains, SigmoidAttn’s
performance could translate into improved user experiences, such as more natural language
interactions, enhanced image understanding, and robust speech recognition. These advance-
ments could have positive societal impacts, such as improved accessibility tools and more
effective educational technologies.

However, as with any foundational machine learning advance, there are also risks of negative impacts
that must be considered and mitigated:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(1) Fairness and bias considerations: As with any machine learning model, it is important
to carefully evaluate SigmoidAttn based models for fairness and potential biases when
applied to sensitive use cases. The unique properties of SigmoidAttn may have unexpected
interactions with data biases. Researchers and practitioners should follow best practices for
auditing and mitigating unwanted biases to ensure equitable outcomes.

(2) Environmental impact: While FLASHSIGMOID is more computationally efficient than
FLASHATTENTION, the overall trend of scaling up attention-based models has significant
energy costs. Further efficiency improvements and the use of renewable energy sources are
important to mitigate environmental harms.

We believe that the benefits of SigmoidAttn outweigh the risks, but it is crucial for the research
community to actively consider and address these potential negative impacts. By doing so, we can
work towards a future where the efficiency and expressivity of SigmoidAttn are used for societal
benefit.

C UNIVERSAL APPROXIMATION PROPERTY FOR SIGMOID ATTENTION

This section is dedicated to the proof for the Universal Approximation Property for attention equipped
with sigmoid nonlinearity. The proof follows closely the one provided in Yun et al. (2020, Sec. 3),
of which we inherit much of the notation, and we encourage the interested reader to refer to the
original source for a more comprehensive understanding of its details. Here we first provide context
by outlining the main steps in the original proof, before proceeding to adapt its key components to
the SigmoidAttn case.

The proof aims at showing that a transformer network can approximate to arbitrary accuracy any
continuous, permutation-equivariant function with compact support. The proof is constructive in
nature, in that it explicitly defines the architecture (and particularly, the sequence of self-attention
and feed-forward layers) that can approximate a given target function. To do so, it proceeds in steps
(see Yun et al. (2020, Sec. 3.2)):

(1) prove that any continuous function with compact support can be approximated to arbitrary
accuracy by a piecewise constant function

(2) prove that an aptly-constructed modified transformer network, (where the softmax nonlin-
earity is substituted with a hardmax nonlinearity), can exactly represent such piecewise
constant function. This step is further divided into three sub-steps (see Yun et al. (2020,
Sec. 4)):

(a) prove that a series of feed-forward layers can quantize any input to a specific discretiza-
tion grid in the compact domain

(b) prove that a series of self-attention layers can implement a contextual mapping (see
Yun et al. (2020, Def. 3.1))

(c) prove that a series of feed-forward layers can map the output of the contextual mapping
to the desired output of the target piecewise-constant approximation

(3) prove that a (classical) transformer network can approximate such modified transformer
network to arbitrary accuracy

Fortunately, some of the steps outlined above do not rely on a specific nonlinear function being used
within the attention mechanism, and can be directly reused in our proof, virtually unchanged. Notice
however that Steps (2-b) and (3) are directly impacted by modifications to the attention layer, and
hence require adaptation in our case. This is the focus of the next sections.

C.1 PROOF OF STEP (3): SIGMOID TRANSFORMERS CAN APPROXIMATE MODIFIED SIGMOID
TRANSFORMERS

In Yun et al. (2020), to implement contextual mappings, the authors rely on a modified version of
transformers, for the sake of simplifying the analysis. In their modified version, the (row-wise)
softmax operation is substituted with a (row-wise) hardmax operation. This substitution is valid
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because a classical transformer can still be made arbitrarily close to such modified transformer, in
light of the fact that

softmax(λX)
λ→∞−−−−→ hardmax(X). (10)

In our proof, we follow a similar strategy to define our modified sigmoid transformer (and in particular,
its self-attention mechanism). We have that

σ(λX)
λ→∞−−−−→ H(X), (11)

where σ(x) = (1 + e−x)−1 is the (elementwise) sigmoid function, while

H(x) =





1 x > 0
1
2 x = 0

0 x < 0

(12)

denotes the (elementwise) Heaviside step function. This allows us to define our modified sigmoid
self-attention layer, as follows.
Definition C.1 (Modified sigmoid self-attention layer). Given an input X ∈ Rd×n, the action of
a modified sigmoid self-attention layer with shifts and a single one-dimensional head is defined as
X 7→X + ψ(X; q, bq,k, bk,v,o), where

ψ(X; q, bq,k, bk,v,o) = o
(
vTX

)
H
((

qTX − bTq
)T (

kTX − bTk
))

(13)

with q,k,v ∈ Rd representing the query, key, and value vectors, bq, bk ∈ Rn the corresponding
query and key bias vectors, while o ∈ Rd denotes the output vector.

Analogously to (10), (11) guarantees that sigmoid attention can approximate modified sigmoid
attention by simply increasing the magnitude of its inner parameters.

Here and in the following, the length of the input sequence is denoted as n, while d represents the
dimensionality of the tokens. Notice that we are considering the input tensor X ∈ Rd×n, (as opposed
to ∈ Rn×d) to better align out notation with the one used in Yun et al. (2020).

C.2 PROOF OF STEP (2-B): MODIFIED SIGMOID TRANSFORMERS CAN IMPLEMENT
CONTEXTUAL MAPPINGS

The core of the proof consists in showing how, by opportunely combining the operations in (13),
one can build an architecture capable of implementing a contextual mapping. For completeness, we
report next the definition of such a map (see also Yun et al. (2020, Def. 3.1)).
Definition C.2 (Contextual mapping). A map q : L→ Rn from a finite set L ⊂ Rd×n is said to be a
contextual mapping if both the following conditions hold:

(i) qi(X) ̸= qj(X), ∀i ̸= j and ∀X ∈ L

(ii) qi(X) ̸= qj(X
′), ∀i, j and ∀X,X ′ ∈ L, with X ̸= X ′

where qi(X) denotes the i-th component of q(X).

Namely, a contextual mapping is such that it transforms each token in an input sequence to a value
depending uniquely on the whole sequence. By satisfying this property, we can ensure that any
element of the quantization of the input domain (achieved by Step (2-a)) can be mapped to a unique
identifying value (depending on the whole input) via a sequence of modified sigmoid self-attention
layers. It is then up to the MLP (in Step (2-c)) to correctly map this value to the corresponding output
value in the piece-wise constant approximation.

In particular, after defining a uniform discretization (characterized by the parameter δ) of the unitary
hypercube [0, 1]d ⊂ Rd, namely

Gδ := {g : gi ∈ {0, δ, 2δ, . . . , 1− δ}, ∀i = 1 . . . d}, (14)

we consider as input a tensor X (composed of columns X = [xi]
n
i=1) such that

X ∈ L := {X : xi ∈ Gδ ∀i = 1 . . . n, and xi ̸= xj ∀i ̸= j} ⊂ Rd×n, (15)
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that is, a 2D tensor whose columns are element of the discretization Gδ , and that all differ from each
other (at least for one element). We want to build a contextual mapping acting on L, by stacking
layers parameterized according to Def. C.1. In App. C.2.1 we define the basic building blocks of our
architecture; in App. C.2.2 we describe how to stack them, and the effect the architecture has on a
given input; finally, in App. C.2.4 we prove that this architecture indeed implements a contextual
mapping.

C.2.1 BASIC BUILDING BLOCKS OF CONTEXTUAL MAPPING

The strategy we follow to assemble a contextual mapping consists in sequentially looking at each
column of the input, progressively updating and storing information regarding its content in a uniquely
identifiable manner, and finally broadcasting this information back to every element in the sequence.
The difficulty lies in the fact that each of these updates must be carried on while relying solely on
applications of the modified SigmoidAttn layer in Def. C.1. In the following, we describe how we
can tweak its parameters to achieve exactly this.

From d-dimensional quantized vectors to scalars As a first simplification, we can get rid of the
d-dimension in the X tensor by mapping each of its columns to a corresponding identifying scalar,
uniquely defined by the specific column components. This step is also performed in Yun et al. (2020,
App. B.5), and can be achieved rather straightforwardly, by defining

v ≡ q ≡ k ≡ u := [1, δ−1, δ−2, . . . , δ−d+1]T . (16)

Notice in fact that, since each column xi belongs to Gδ, it can equivalently be written in the form
xi = δ · [id0,i, id1,i, . . . , idd−1,i]

T , where idj,i ∈ {0, 1, 2, . . . , δ−1 − 1} represents the (indexed)
coordinate of the discretization along the j-th dimension. Scalar-multiplying X by u in (16), then,
turns this tuple of indices into a single one, in a bijective fashion5.

This allows us to equivalently consider a single vector uTX ∈ Rn, rather than the whole tensor
X ∈ Rd×n in the remainder of our analysis. Analogously, choosing o ≡ e0 := [1, 0, . . . , 0]T in (13)
constraints the effect of the layer application to impact only the first row of the tensor: the goal is then
to store in this row the result of the target contextual mapping q in Def. C.2. To slim our notation, in
the following we often refer to uTX as the vector l ∈ Rn, with components li.

In light of the simplification above, we can rewrite (13) more compactly, as follows:

ψ(X; q = k = v ≡ u,o ≡ e0; bq, bk) = e0l
TH ((l− bq)⊗ (l− bk)) (17)

Notice that, since the elements of both X and u are always non-negative, so are those of l, too.
Moreover, since we are interested in permutation-equivariant functions with respect to the columns of
X , without loss of generality we can consider the elements of l = uTX to be ordered: 0 ≤ li < lj ,
∀i < j.

Selective shift operation for sigmoid attention Since we aim to recover a contextual map by
sequentially updating the elements of l, we proceed by designing a modification of (17) which affects
only a certain selected element at a time. This is were our second simplification comes into play,
and this time it pertains the roles of the bias vectors bq and bk. Since l ≥ 0, these vectors have the
effect of tweaking the sign of the inner arguments of the Heaviside function in (17), hence directly
impacting when its application outputs 0 or 1. By aptly selecting the values of bk and bq, then, we
can explicitly decide when a specific layer triggers an update, which elements are affected by the
update, and what elements to consider to compute the update itself.

More in detail, take bq = 1bq and bv = 1bv, for some scalars bq, bv, and with 1 being the all-one
vector. Plugging this into (17), we have

ψ̃(X; bq, bk) := ψ(X; q = k = v ≡ u,o ≡ e0, bq = 1bq, bk = 1bk)

= e0l
TH ((l− 1bq)⊗ (l− 1bk)) = e0

{∑
i:li<bv

li if lj < bk∑
i:li>bv

li if lj > bk
;

(18)

5For example, consider d = 3 and the column defined as xi = [3δ, 10δ, 2δ]T , that is, the column identified
by the triplet of indices [3, 10, 2]. Multiplying by u would then give the scalar uTxi = (3 + 10N + 2N2)δ,
where N = δ−1, which is uniquely identified by the single index (3 + 10N + 2N2).
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notice how bq determines what elements of l compose the update (as it impacts the indices considered
in the sum), while bk defines the elements impacted by the update itself 6. If we opportunely
combine four modified sigmoid self-attention heads ψ̃(X; bq, bk), we recover, for a given index
i = 0 . . . δ−d − 1,

Ψ(i)(X) :=X +
1

2
c




ψ̃
(
X; bq = 0, bk =

(
i− 1

2

)
δ
)

−ψ̃
(
X; bq = 0, bk =

(
i+ 1

2

)
δ
)

−ψ̃
(
X; bq = bk =

(
i+ 1

2

)
δ
)

+ψ̃
(
X; bq =

(
i+ 1

2

)
, bk =

(
i− 1

2

)
δ
)




=X +
1

2
ce0l

T




H
(
l⊗
(
l−
(
i− 1

2

)
δ
))

−H
(
l⊗
(
l−
(
i+ 1

2

)
δ
))

−H
((
l−
(
i+ 1

2

)
δ
)
⊗
(
l−
(
i+ 1

2

)
δ
))

+H
((
l−
(
i+ 1

2

)
δ
)
⊗
(
l−
(
i− 1

2

)
δ
))




=⇒Ψ
(i)
1,j(X) = X1,j + c

{∑
k:lk>iδ lk if lj = iδ

0 otherwise

=⇒Ψ
(i)
k>1,j(X) = Xk,j ,

(22)

where c ≡ c(δ, d, n) is a multiplicative constant which will be chosen later.

The operator assembled in (22) defines the basic layer of the architecture that we use in our proof.
Notice Ψ(i)(X) has the effect of modifying only the column xj which has index lj = uTxj = iδ
(if at all present in the input X). This layer covers a similar role to the selective shift operation
introduced in Yun et al. (2020, App. B.5), but it has been adapted to account for the presence of a
sigmoid nonlinearity: notice this required us to use 4-headed attention, while in Yun et al. (2020) a
2-headed version is sufficient.

C.2.2 RESULT OF APPLYING A SEQUENCE OF SELECTIVE SHIFTS

Ultimately we want to show how, by stacking a sequence of selective shift layers (22) for increasing
i = 0 . . . δ−d− 1 and one additional global shift, we can build an architecture capable of representing

6 This can be better seen by considering independently the effects of the two parameters bk, bq on the
modified sigmoid attention matrix H ((l− 1bq)⊗ (l− 1bk)). We have in fact, with bq = 0,

lj < bk lj > bk

H (l⊗ (l− 1bk)) =

 0 · · · 0 1 · · · 1
...

. . .
...

...
. . .

...
0 · · · 0 1 · · · 1

 .
(19)

This shows how, by modifying bk, one can decide which columns will receive an update: namely, all those with
index lj > bk. By combining two such operators with bk =

(
i− 1

2

)
δ and bk =

(
i+ 1

2

)
δ, we then recover

lj = iδ

H
(
l⊗
(
l− 1

(
i− 1

2

)
δ
))

−H
(
l⊗
(
l− 1

(
i+ 1

2

)
δ
)) =

 0 · · · 0 1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 1 0 · · · 0

 ,
(20)

which allows us to limit the update to only one specific column: the one with index lj = iδ.
The parameter bq acts analogously, but varies the output of the Heaviside function as we move down the rows,

rather than the columns. The same operator as in (20), but with bq =
(
i+ 1

2

)
δ gives us in fact:

lj = iδ

H
((
l− 1

(
i+ 1

2

)
δ
)
⊗
(
l− 1

(
i− 1

2

)
δ
))

−H
((
l− 1

(
i+ 1

2

)
δ
)
⊗
(
l− 1

(
i+ 1

2

)
δ
)) =



0 · · · 0 −1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 −1 0 · · · 0
0 · · · 0 1 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 1 0 · · · 0


lj < iδ

lj > iδ

. (21)

Finally, (22) can be recovered by combining (20) and (21): this has the effect of removing the −1’s in (21).
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a contextual mapping. As a preliminary step, in this section we provide an explicit formula for the
result of applying such an architecture. Once again, we are proceeding analogously to Yun et al.
(2020, App. B.5.1).

After the first selective shift application Consider a quantized input sequence X ∈ L as defined in
(15), with its columns ordered according to their scalar indices l = uTX . The sequence of selective
shift layers Ψ(0),Ψ(1), . . . initially has no effect on the input itself, and it leaves it unchanged until we
hit the layer corresponding to the index of the first column in the input, Ψ(̂i), where l1 = uTx1 = îδ.
At this point, following (22), the first column of the input is modified into

x1 7→ Ψ
(̂i)
|,1(X) = x1 + ce0

∑

k:lk>l1

lk = x1 + ce0

(
n∑

k=1

lk − l1
)

(23)

while the other columns are still left untouched. In the following, we compactly refer to the quantities∑n
k=1 lk − li as si:

s = [s1, s2, . . . , sn]
T :=

[
n∑

k=1

lk − l1,
n∑

k=1

lk − l2, . . . ,
n∑

k=1

lk − ln
]T

. (24)

According to (23), the index l1 of column x1 is then analogously mapped to

l1 = uTx1 7→ l̃1 := uTΨ
(̂i)
|,1(X) = uTx1 + cs1 = l1 + cs1. (25)

Notice that, by choosing c > 1, we can ensure

c > 1 =⇒ l̃1 > ��l1 +

n∑

k=1

lk −��l1 >

n∑

k=1

> li ∀i, (26)

and particularly l̃1 > l2, implying that at the next (effective) application of the selective shift operation,
this term, too, will contribute to the update.

Subsequent selective shift applications Following similar considerations, the next effective update
will be applied by the layer Ψ(̂i) with l2 = uTx2 = îδ. At this point, the second column index is
updated as follows:

l2 = uTx2 7→ l̃2 :=uTΨ
(̂i)
|,2(X) = uTx2 + c

( ∑

k:lk>l2

lk + l̃1

)

=l2 + c

(
n∑

k=1

lk − l2 −��l1 +��l1 + cs1

)
= l2 + cs2 + c2s1

(27)

where l̃1 is also included in light of (26), and we used the definitions (24) and (25). Continuing to
apply Ψ(i)(X), for increasing i, and unrolling the recursion, we recover

l̃3 = l3 + c

(
n∑

k=1

lk − l1 − l2 − l3 + l̃1 + l̃2

)
= l3 + cs3 + c2(s2 + s1) + c3s1

l̃4 = l4 + c

(
n∑

k=1

lk − l1 − l2 − l3 − l4 + l̃1 + l̃2 + l̃3

)

= l4 + cs4 + c2(s3 + s2 + s1) + c3(s2 + 2s1) + c4s1

l̃5 = l5 + c

(
n∑

k=1

lk − l1 − l2 − l3 − l4 − l5 + l̃1 + l̃2 + l̃3 + l̃4

)

= l5 + cs5 + c2(s4 + s3 + s2 + s1) + c3(s3 + 2s2 + 3s1) + c4(s2 + 3s1) + c5s1

...

(28)
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which eventually allows us to write the general formula 7

l̃j := lj + csj +

j−2∑

i=0

ci+2

j−2∑

k=i

(
k

i

)
sk−i+1, j = 1 . . . n. (29)

C.2.3 RESULT OF APPLYING ONE LAST Global Shift LAYER

After the last selective shift layer, the original input X has been mapped to a modified one X̃ whereby
each column x̃j is characterized by the index l̃j = uT x̃j given in (29). Remember our goal is to
recover a contextual mapping, but notice that these l̃j indices are not uniquely defined by the input8;
in other words, they do not satisfy property (2) in Def. C.2. The only exception to this is the last
index l̃n, as (loosely speaking) it has “seen” all the previous updates - and indeed in App. C.2.4 we
prove this rigorously, under some assumption on the yet-undefined coefficient c(δ, d, n).

A straightforward way to recover a one-to-one mapping for the whole sequence, then, is to update
every index l̃j via a quantity directly depending on l̃n. This is precisely what the last global shift
layer Ψ̄(X) aims to accomplish. This last layer is also defined starting from the simplified modified
sigmoid attention (18), by picking bk = 0 and bq =

(
c(δ, d, n)n + 1

2

)
δ: if, for any input, we can

guarantee that
l̃j ≤ c(δ, d, n)nδ j < n and l̃n > c(δ, d, n)nδ, (30)

then the application of the global shift layer would result in9:

Ψ̄(X̃) :=X̃ + cn+1ψ̃

(
X̃; bq =

(
cn +

1

2

)
δ, bk = 0

)

=⇒Ψ̄1,j(X̃) = X̃1,j + cn+1 l̃n

=⇒Ψ̄k>1,j(X̃) = X̃k,j .

(32)

The global shift (32) is the last layer we need to define our candidate contextual mapping. Collecting
the results from this section together, our architecture is defined by sequentially composing the
selective shift layers with the global shift one,

Ψ(X) := Ψ̄ ◦Ψ(δ−d−1) ◦ · · · ◦Ψ(2) ◦Ψ(1)(X). (33)
After being scalar-multiplied by u, this results in a sequence

q(X) := uTΨ(X) = l̃+ cn+11l̃n (34)
which we aim to prove is a contextual mapping. This is shown in the next section.

7From (28), we can notice that, for a given l̃k, the coefficients a(k)
i,j appearing in front of the various sk−i for

each of the cj terms, are first given by a list of ones, a(k)
i,1 = 1, then a list of increasing numbers a(k)

i,2 = i =⇒
a
(k)
−,2 = cumsum(a

(k)
−,1), then a list of triangular numbers a(k)

i,3 = i(i+ 1)/2 =⇒ a
(k)
−,3 = cumsum(a

(k)
−,2), and

so on: a(k)
−,j = cumsum(a

(k)
−,j−1). The result of iterated applications of cumsum, starting from an all-one vector,

can be compactly described via the binomial coefficient: we have in fact

ai,j = [cumsumj([1, 1, . . . ])]i =

(
i+ j − 2

j − 1

)
.

The actual formula (29) can be recovered after a few algebraic steps, by rearranging the summation indices.
8To convince ourselves of this, it suffices to look at the formula for (25): two sequences with different

elements l ̸= l′, but such that l1 = l′1 and s1 = s′1 (that is, with
∑n

i=1 li =
∑n

i=1 l
′
i) would map to the same

l̃1 = l̃′1.
9As in footnote 6, this is also better seen by considering the resulting modified sigmoid attention matrix.

With bk = 0 and bq =
(
c(δ, d, n)n + 1

2

)
δ, in fact, if condition (30) is verified, this matrix is given by

H
((

l̃− 1
(
cn + 1

2

)
δ
)
⊗ l̃
)

=


0 · · · 0
...

. . .
...

0 · · · 0
1 · · · 1

 l̃j , j < n

l̃n

. (31)
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C.2.4 A SEQUENCE OF SELECTIVE SHIFTS FOLLOWED BY A GLOBAL SHIFT PRODUCES A
CONTEXTUAL MAPPING

To complete the proof, it remains to show that the recovered sequence (34) represents a contextual
mapping and, in particular, that it is (i) one-to-one in L, and that (ii) all of its elements are distinct for
different inputs. To do so, we need a few preparatory lemmas. The first few are needed to show that
each of the basic components of (34) is indeed a one-to-one map.
Lemma C.3. The map l 7→ s in (24) is one-to-one.

Proof. The target map can be compactly represented as a linear operator S:

l 7→ s := 1

n∑

k=1

lk − l = (1⊗ 1− I)l =: Sl (35)

which is invertible10, denoting that l 7→ s is bijective.

Lemma C.4. The map l 7→ l̃n in (29) is one-to-one, under the condition

c(δ, d, n) > (n− 1)(δ−d − 1)

(
n− 1⌈
n−1
2

⌉
)
. (36)

Proof. Consider two vectors of column indices l, l′ differing for at least one element. We have by
definition (29) that

l̃n − l̃′n = (ln − l′n) + c(sn − s′n) +
n−2∑

i=0

ci+2
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1) (37)

By absurd, assume l̃n − l̃′n = 0 even though ∃i : li ̸= l′i. We have then that it must hold

(l′n − ln) = c(sn − s′n) +
n−2∑

i=0

ci+2
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

= c

(
(sn − s′n) +

n−2∑

i=0

ci+1
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

) (38)

Notice that, for c(δ, d, n) large enough, the right-hand side does not have enough granularity to
counter the left-hand side: in fact, since ln ∈ {0, δ, 2δ, . . . , δ−d+1 − δ}, the left-hand side can attain
values

l′n − ln ∈ {0,±δ,±2δ, . . . ,±(δ−d+1 − δ)} (39)
while the former, in light of the presence of the c(δ, d, n) factor, can only attain values ∈
{0,±cδ,±2cδ, . . . }. Picking c > δ−d − 1, then, ensures that equality between the two sides
of (38) can only be achieved if they are both 0. In this case, we need to impose

c(s′n − sn) =
n−2∑

i=0

ci+1
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

⇐⇒ s′n − sn = c

(
n−2∑

i=0

ci
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)
.

(40)

Similarly, notice that11, ∀i,

|si − s′i| =
∣∣∣∣∣

n∑

k=1

(lk − l′k)− (li − l′i)
∣∣∣∣∣ =

∣∣∣∣∣∣

n∑

k=1,k ̸=i

(lk − l′k)

∣∣∣∣∣∣
< (n− 1)(δ−d+1 − δ), (41)

10Indeed its inverse can be explicitly recovered by directly applying Sherman-Morrison formula.
11This is a direct consequence of the definition of operator S in (35): since it has 1’s everywhere but on its

diagonal, its ∞-norm is simply n− 1.
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implying that s′n − sn ∈ {0,±δ,±2δ, . . . ,±(n − 1)(δ−d − 1)δ}. Again, by picking c(δ, d, n) >
(n− 1)(δ−d − 1) we ensure that the right-hand side does not have enough granularity, and hence

c(δ, d, n) > (n− 1)(δ−d − 1) =⇒ s′n − sn = 0, (42)
implying

c

(
n−2∑

i=0

ci
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)
= 0

⇐⇒
n−2∑

k=0

(
k

0

)
(s′k+1 − sk+1) = c

(
n−2∑

i=1

ci−1
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)

⇐⇒
n−2∑

k=0

(s′k+1 − sk+1) = c

(
n−2∑

i=1

ci−1
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)
.

(43)

Following a similar reasoning as the one applied above shows us that picking

c(δ, d, n) > (n− 1)2(δ−d − 1) =⇒
n−2∑

k=0

(sk+1 − s′k+1) = 0, (44)

and requires us to satisfy

c

(
n−2∑

i=1

ci−1
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)
= 0

⇐⇒
n−2∑

k=1

(
k

1

)
(s′k − sk) = c

(
n−2∑

i=2

ci−2
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)

⇐⇒
n−2∑

k=1

k(s′k − sk) = c

(
n−2∑

i=2

ci−2
n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−i+1)

)
.

(45)

Once again, then, by choosing

c(δ, d, n) >
(n− 2)(n− 1)2

2
(δ−d − 1) =⇒

n−2∑

k=1

k(sk − s′k) = 0. (46)

This reasoning can be repeated recursively: at each step i of the recursion, by imposing a stricter
and stricter bound on c(δ, d, n) we gain more and more conditions that the quantity s′ − s needs to
satisfy:

c(δ, d, n) > (n− 1)(δ−d − 1)

n−2∑

k=i

(
k

i

)
=⇒

n−2∑

k=i

(
k

i

)
(sk−i+1 − s′k−1+1) = 0. (47)

Notice that, every time we increase i = 0 . . . n− 2, these conditions involve one less term sk−i+1 −
s′k−i+1, k = i . . . n− 2: if we were to collect all these conditions within a single linear system, the
system would have an upper-triangular structure, and hence be non-singular. This implies that for the
set of n independent conditions on s − s′ to hold (we have n − 1 in (47), plus one more in (42)),
the only possibility is that s ≡ s′. Because of Lemma C.3, though, this also implies l ≡ l′: we have
finally reached a contradiction, and proven that indeed l 7→ l̃n is one-to-one, under an opportune
condition on c(δ, d, n). Such condition can be promptly recovered12 by (47):

max
i=0...n−2

n−2∑

k=i

(
k

i

)
= max

i=0...n−2

(
n− 1

i+ 1

)
=

(
n− 1⌈
n−1
2

⌉
)
. (48)

Substituting this in (47), we recover that it suffices to impose

c(δ, d, n) > (n− 1)(δ−d − 1)

(
n− 1⌈
n−1
2

⌉
)
. (49)

12This is a consequence of some useful properties of the binomial coefficient, namely the Hockey stick identity
Jones (1994), and the symmetry of

(
k
i

)
with respect to i.
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The next few lemmas are needed to bound the elements in the l̃j sequence, which in turn are used to
prove property (ii) in Def. C.2.

Lemma C.5. l̃j in (29) is an increasing sequence.

Proof. This can be proven directly: we have in fact, by definition (29),

l̃j > l̃j−1 ⇐⇒ lj + csj +

j−2∑

i=0

ci+2

j−2∑

k=i

(
k

i

)
sk−i+1

> lj−1 + csj−1 +

j−3∑

i=0

ci+2

j−3∑

k=i

(
k

i

)
sk−i+1

combine sums ⇐⇒ (lj − lj−1)(1− c) +
j−2∑

i=0

ci+2

(
j − 2

i

)
sj−1−i > 0

(
j−2
i

)
≥ 1, ci+2 ≥ c2 ⇐= (lj − lj−1)(1− c) + c2

j−2∑

i=0

sj−1−i > 0

(24) ⇐⇒ (lj − lj−1)(1− c) + c2
j−2∑

i=0

(
n∑

k=1

lk − lj−1−i

)
> 0

⇐⇒ (lj − lj−1)(1− c) + c2

(
(j − 1)

n∑

k=1

lk −
j−1∑

k=1

lk

)
> 0

⇐⇒ (1− c)lj + (c− 1)lj−1 + c2(j − 2)

n∑

k=1

lk + c2
n∑

k=j

lk > 0

⇐⇒ (c2 − c+ 1)lj + (c− 1)lj−1 + c2(j − 2)

n∑

k=1

lk + c2
n∑

k=j+1

lk > 0

(50)

Already with c > 1, all the coefficients are positive (and at least one is non-zero), implying that the
condition above is always satisfied and that indeed l̃j is an increasing sequence.

Lemma C.6. Under constraint (36), each term l̃j , j > 1 in (29) is bounded from below by

l̃j > cjδ,

and each term l̃j , 1 < j < n is bounded from above by

l̃j < cj+1δ.

Proof. We start by proving the lower bound. By definition (29), we have

l̃j = lj + csj +

j−2∑

i=0

ci+2

j−2∑

k=i

(
k

i

)
sk−i+1 = lj + csj + cjs1 +

j−3∑

i=0

ci+2

j−2∑

k=i

(
k

i

)
sk−i+1. (51)

Since by assumption lj is an ordered sequence without repetitions, for j > 1 we necessarily have
lj > l1 ≥ 0, and hence lj ≥ δ. All the other terms in (51) are non-negative, so we can safely claim
that

l̃j ≥ δ + cjδ > cjδ ∀j > 1, (52)

which confirms the lower bound.
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For the upper bound, we start again from the definition of l̃j :

l̃j = lj + csj +

j−2∑

i=0

ci+2

j−2∑

k=i

(
k

i

)
sk−i+1

< (δ−d − 1)δ + c(n− 1)(δ−d − 1)δ + s1

j−2∑

i=0

ci+2

(
j − 1

i+ 1

)

≤ (n− 1)(δ−d − 1)

(
j − 1⌈
j−1
2

⌉
)
δ

j∑

i=0

ci = (n− 1)(δ−d − 1)

(
j − 1⌈
j−1
2

⌉
)
δ
1− cj+1

1− c ,

(53)

where we used relationship (48) and collected all c terms within the sum. Notice that, for a given
a > 1 we have that

1− cj+1

1− c ≤ acj , (54)

provided that c ≥ a
a−1 . In fact,

1− cj+1

1− c ≤ acj ⇐⇒ 1− cj+1 − acj + acj+1

1− c ≤ 0

⇐= 1

a− 1
+

(
c− a

a− 1

)
cj ≥ 0 ⇐= 1

a− 1
≥ 0

(55)

which is always satisfied. After substituting (54) in (53), this allows us to write

l̃j < a(n− 1)(δ−d − 1)

(
j − 1⌈
j−1
2

⌉
)
δcj . (56)

To prove that l̃j < δcj+1, then, it remains to show that

c ≥ a(n− 1)(δ−d − 1)

(
j − 1⌈
j−1
2

⌉
)

∀1 < j < n. (57)

Substituting condition (36) in the inequality above, we are left with proving
(
n− 1⌈
n−1
2

⌉
)
≥ max

j=2...n−1
a

(
j − 1⌈
j−1
2

⌉
)

= a

(
n− 2⌈
n−2
2

⌉
)
. (58)

The outcome depends on the parity of n. For n odd, we have
(
n− 1⌈
n−1
2

⌉
)
≥ a

(
n− 2⌈
n−2
2

⌉
)

⇐⇒ 2
n− 1

n− 1
≥ a, (59)

to satisfy which it suffices to pick a = 2. This requires having c ≥ a
a−1 = 2, which is automatically

satisfied. For n even, on the other hand, the binomial coefficients simplify to
(
n− 1⌈
n−1
2

⌉
)
≥ a

(
n− 2⌈
n−2
2

⌉
)

⇐⇒ 2
n− 1

n
≥ a. (60)

To satisfy this, we need to pick a = 2n−1
n , which requires c ≥ a

a−1 = 2n−1
n−2 ; however, this too is

automatically satisfied by (36) provided n ≥ 4. This completes the proof.

Lemma C.7. Under the constraint (36), condition (30) holds.

Proof. We remind that condition (30) is necessary for the correct “functioning” of the global shift
layer, and it composes of two parts. The first part requires that l̃j < cnδ ∀j < n. Thanks to
Lemma C.5, it suffices to show that l̃n−1 < cnδ, but this is already granted by the upper bound in
Lemma C.6. Analogously, for the second part, we need to show that l̃n > cnδ: for this too we can
use the lower bound in Lemma C.6.

We finally have all the ingredients to prove the main theorem of this section:
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Theorem C.8. The map in (34), given by

X 7→ q(X) = uTΨ(X)

represents a contextual mapping.

Proof. As defined in Def. C.2, a contextual mapping must satisfy two conditions. The first one is that

qi(X) ̸= qj(X), ∀i ̸= j and ∀X ∈ L. (61)

This is directly proven by considering Lemma C.5: since l̃j is a (strictly) increasing sequence, all
its elements are already distinct. The action of the last global shift layer merely translates all these
elements by a same quantity, but they remain distinct nonetheless.

The second condition for a contextual mapping is given by

qi(X) ̸= qj(X
′), ∀i, j and ∀X,X ′ ∈ L, with X ̸= X ′. (62)

We prove that this holds for (34) by directly considering the difference between two components i, j
for different inputs:

qi(X)− qj(X ′) = l̃i − l̃′j + cn+1
(
l̃n − l̃′n

)
= 0 ⇐⇒ l̃i − l̃′j = cn+1

(
l̃′n − l̃n

)
. (63)

Notice that, due to Lemma C.4, we have l̃n− l̃′n ̸= 0 and particularly, |l̃n− l̃′n| ≥ δ. On the other hand,
in light of the bounds in Lemma C.6, we have that the left-hand side |l̃j − l̃i| < cnδ. Consequently,
the two sides can never cancel each other out, and the proof is complete.

D LIPSCHITZNESS OF SIGMOID ATTENTION

In the following, we report the proof for the recovering the Lipschitzness constant associated with
SigmoidAttn, as stated in Thm. 3.2.

Letting A = WT
q Wk, and calling σij = σ(⟨Wqxi,Wkxj⟩) and σ′

ij = σ′(⟨Wqxi,Wkxj⟩), we find
that the Jacobian of ϕ in the direction (δ1, . . . , δn) for the sample xi is given by:

Jaci =




n∑

j=1

σ′
ijxjx

T
j A

T


 δi +

n∑

j=1

(
σ′
ijxjx

T
i A+ σijIp

)
δj , (64)

We see that this Jacobian is the sum of two terms. To control its norm, we can control each norm
individually.

The first term,
(∑n

j=1 σ
′
ijxjx

T
j A

T
)
δi is of the form Uiδi with Ui a matrix. Its squared-norm is

therefore:
n∑

i=1

∥Uiδi∥2 ≤ max
i
∥Ui∥22∥δ∥F . (65)

Hence, its squared spectral norm is bounded by maxi ∥Ui∥22.

We now let σ′
∞ be a bound on n× |σ′|; We have:

∥Ui∥2 ≤
n∑

j=1

∥σ′
ijxjx

⊤
j A∥2 (66)

≤ σ′
∞∥A∥2

1

n

n∑

j=1

∥xj∥2 (67)

≤ σ′
∞∥A∥2E[∥xj∥2]. (68)

We see that if the points xi have norm ≤ R, then the Jacobian grows at most like R2, because it is
“quadratic” in x. However, we see that the quadratic term is likely to be mitigated by the σ′(aij) term
that goes to 0 if aij is large.
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The second term,
∑n

j=1

(
σ′
ijxjx

T
i A+ σijIp

)
δj , is the sum of two terms. Here, too, we use the

triangular inequality to control their norm individually. We get:

∥
n∑

j=1

σijδj∥2 = ∥δTσi∥2 (69)

≤ ∥δ∥2F ∥σi∥2, (70)

where σi ∈ Rp is the i-th column of σij , and δ ∈ Rn×p. and by summing, letting σ∞ an upper bound
on n× |σ(x)|:

n∑

i=1

∥
n∑

j=1

σijδj∥2 ≤ σ2
∞∥δ∥2F . (71)

So that σ∞ upper bounds the spectral norm of the last term.

For the final term,
∑n

j=1 σ
′
ijxjx

T
i Aδj , define δ̂ = δAT . We get:
n∑

j=1

σ′
ijxjx

T
i Aδj =

n∑

j=1

σ′
ij⟨xi, δ̂j⟩xj . (72)

Hence, letting M the matrix of entries Mij = σ′
ij⟨xi, δ̂j⟩, we see that the previous term is simply

xTMT
i , so that we get the upper bound on the norm of the term:

n∑

i=1

∥xTMT
i ∥2 ≤ ∥x∥2F ∥M∥2F (73)

and ∥M∥2F =
∑

ij(σ
′
ij)

2⟨xi, δ̂j⟩2 ≤ 1
n2σ

′
∞∥x∥2F ∥A∥22∥δ∥2F , giving overall:

√√√√
n∑

i=1

∥xTMT
i ∥2 ≤ σ′

∞∥A∥2E[∥xj∥2]∥δ∥F . (74)

Notice how this quantity matches the one in (68).

Finally, summing all together gives:

∥Jac∥2 ≤ 2σ′
∞∥A∥2E[∥xj∥2] + σ∞, (75)

which completes the proof.

Remark: The previous upper bound might not be tight. Indeed, intuitively, if the xi are large, then the
term σ′

ij should be exponentially small (provided, of course, thatWqxi andWkxj are not orthogonal),
which would even remove the dependency on the variance in the sigmoid attention.

E THE BIAS TERM OF SIGMOID ATTENTION

One of the differences between SigmoidAttn and SoftmaxAttn is the normalization constant. In
SigmoidAttn, one way to emulate the effect of a normalization constant (which links all the elements
of the input together and defines a distribution over them), is to include a bias term in the definition
as proposed in (3).

For an input vector z ∈ Rn, the output of the sigmoid with bias b is

σb(z)i :=
exp(zi)

exp(zi) + exp(−b)
Contrary to the softmax, this output cannot always sum to one because there is no normalization. We
therefore seek a value for b that approximately normalizes σb(z), i.e., such that

∑n
i=1 σ

b(z)i ≃ 1.
We have
Proposition E.1. Let z ∈ Rn, and take m,M ∈ R such that for all i, it holds m ≤ zi ≤M . Then,
the equation

∑n
i=1 σ

b(z)i = 1 with variable b has a single solution b∗ with

− log(n− 1)−M ≤ b∗ ≤ − log(n− 1)−m .
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Proof. The function ϕ : b → ∑n
i=1 σ

b(z)i is smooth and monotonically increasing, and we have
ϕ(− log(n− 1)−M) ≤ 1 and ϕ(− log(n− 1)−m) ≥ 1. This shows the existence of b∗ as well as
the advertised bound on b∗.

This suggests using a b of the order of − log(n); in practice we use b = − log(n).

We can also look for a bias term b, which helps to approximate the softmax function by the sigmoid
function.

We assume that softmax provides us with the true distribution p⋆, where p⋆i = ezi

ezi+
∑

j ̸=i e
zj . The

goal is to find the bias term b such that sigmoid function with weights over all elements denoted
by p, where pi = σb(z)i, approximates p⋆. Note that, as mentioned before, p is not necessarily a
distribution, i.e.

∑n
i=1 pi is not always equal to one.

In technical terms, we aim to estimate the normalizing factor Z =
∑n

i=1 e
zi . The existing approaches

for estimating Z is compute-expensive for high dimensions and requires resampling methods. Also,
the optimal value of b would depend on the exact values of z, which is unknown beforehand.
Therefore, we propose a more intuitive way to estimate the order of bias but possibly with larger
disparity. To distribute the independent masses in SigmoidAttn, we assume that each element has
uniform weight for the model apriori, which means that none of the elements of the input vector z has
any known importance over the others. In the simplest case when softmax is a uniform distribution,
we ideally want to have the same order of values for sigmoid as of softmax, which should be 1

n .
Therefore, we can write down the following:

∀i pi =
1

1 + e−(zi+b)
≃ 1

n
= p⋆i (76)

Ideally, we would like to have 1 + e−(zi+b) ≃ n. Requiring that p = p∗ in the case where all the zi
are 0 gives exp(−b) = n− 1, i.e. b ≃ − log(n) for large n. In the case that all the zi are bounded,
|zi| ≤ M < ∞ for some constant M , then b ≃ −(M + log(n)) ≈ −max{M, log(n)}. However,
in most cases we do not know M . When the sequence length n is large enough, the constant M
loses its importance while in short sequence length, it impacts distributing the weights over elements
more. To resolve this issue, we assume that zi are sampled from a standard Gaussian distribution, i.e.
zi ∼ N (0, σ2) where σ = 1. Note that this assumption comes from the fact that zi in our problem is
one of the elements of QKT /

√
dqk, which is the sum of dqk random variables. Using Central Limit

Theorem, we can assume that zi is sampled from a Gaussian distribution. The idea is to estimate M ,
such that with high probability, |zi| ≤M , i.e. P (|zi| > M) ≤ ϵ for a desired ϵ. Therefore, we have

P (|zi| > M) = P
(
|zi| >

M

σ
σ

)
≤ 1

(Mσ )2
=

σ2

M2
≤ ϵ, (77)

where the inequality is resulted from Chebychev’s inequality. Setting σ = 1, we have M ≃
√
1/ϵ.

Therefore, the order-optimal value would be b ≃ −max{
√
1/ϵ, log(n)}, and for long sequence

length, b ≃ − log(n). For example, if we want 90% accuracy in our estimation, M ≈ 3σ = 3,
which means b ≃ −max{3, log(n)}. Note that this approximation also follows the intuition that as
n grows, we expect the SigmoidAttn without bias term overestimate the mass on each point, so we
need to normalize the mass according to n at each point as well.

On another side, one may be more interested in the gradients of p⋆ and p with respect to zi to behave
similarly. We show that b ≃ − log(n) is still a good choice in this scenario. Let us derive the
derivative of SigmoidAttn and SoftmaxAttn with respect to the input. We note that for any i, both
functions can be written as ezi

ezi+Z−i
where Z−i is the share of normalization factor except element i

of z. For SoftmaxAttn, Z−i =
∑

j ̸=i e
zj and for SigmoidAttn, Z−i = e−b. Now, we have

∂

∂zi

ezi

ezi +Z−i
=

eziZ−i

(ezi +Z−i)
2 . (78)

Therefore, we have the following
∂p⋆i
∂zi

= p⋆i (1− p⋆i ) (79)

∂pi
∂zi

= pi(1− pi). (80)
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We can see that if pi ≃ p⋆i , then ∂pi

∂zi
≃ ∂p⋆

i

∂zi
. So, the previous choice of bias term b ≃ − log(n)

approximates the order of gradients as well. In fact, this is the only valid choice even though we have
a quadratic term.

∂pi
∂zi
≃ ∂p⋆i
∂zi

⇐⇒ p⋆i (1− p⋆i ) = pi(1− pi) (81)

⇐⇒ (pi − p⋆i ) (pi − (1− p⋆i )) = 0. (82)

Which means either pi ≃ p⋆i or pi ≃ 1− p⋆i . The first one provides us with b ≃ − log(n) while the
second one cannot happen since the nominator of pi is dependent on zi while the nominator of 1− p⋆i
is independent of zi.

F DETAILS OF FLASHSIGMOID

This appendix provides details of the FLASHSIGMOID algorithm. We begin by discussing the
implementation details of FLASHSIGMOID, which we build as an extension of FLASHATTENTION2,
followed by a benchmark of the performance of the involved kernels. We show that the kernels
of FLASHSIGMOID provide a considerable performance boost in model inference over those of
FLASHATTENTION2 and a modest performance boost for model training. Further, we demonstrate
that the kernel speed boosts also reflect in a considerable performance gain in realistic end-to-end
experiments, with an example of training vision transformers (Dosovitskiy et al., 2021) on the
ImageNet dataset (Deng et al., 2009). Finally, we also provide kernel benchmarking details of
FLASHSIGMOID implementation by taking into account ALiBi slopes (Press et al., 2022), which is
one of the important components of SigmoidAttn as seen in the main text of the paper.

F.1 DETAILS OF FLASHSIGMOID ALGORITHM

Softmax vs. Sigmoid Attention: In this subsection, we discuss the implementation details of
FLASHSIGMOID algorithm, which is a hardware-aware implementation of SigmoidAttn approach.
We begin with the expressions of the forward and backward passes of softmax and sigmoid attention
mechanisms. Let Q, K, and V represent the query, key, and value tensors. Then, the desired
forward and backward pass expressions are reported in Tab. 4. The application of sigmoid and

SOFTMAX SIGMOID

FORWARD BACKWARD FORWARD BACKWARD

S =
Q ·K⊤
√
d

dV = P⊤ · dO S =
Q ·K⊤
√
d

dV = P⊤ · dO
P = SOFTMAX (S) dP = dO · V ⊤ P = σ (S) dP = dO · V ⊤

O = P · V dS = P ⊙ (dP − ROWSUM (dO ⊙O)) O = P · V dS = P ⊙ (1− P )⊙ dP

dQ =
√
d · dS ·K dQ =

√
d · dS ·K

dK =
√
d · dS⊤ ·Q dK =

√
d · dS⊤ ·Q

Table 4: Description of the forward and backward passes of softmax and sigmoid attention. With ⊙,
we denote Hadamard (element-wise) multiplication.

softmax activation functions, as highlighted in orange color in Tab. 4, is the only implementation
difference in the forward passes. Similarly, the expressions for the gradients of the preactivation
(dS), as highlighted in purple color in the table above, is the only implementation difference in the
backward passes. In light of this, we implement the FLASHSIGMOID algorithm as an extension
of the FLASHATTENTION2 (Dao, 2023) algorithm, which is a highly optimized hardware-aware
implementation of SoftmaxAttn.

Flash Attention in Brief: As pointed at in the main text, the FLASHATTENTION (Dao et al.,
2022) and FLASHATTENTION2 (Dao, 2023) algorithms provide hardware-aware implementations of
exact attention mechanism by optimizing for bottlenecks of modern accelerators (Choquette et al.,
2021; Choquette, 2023). These GPUs possess massive amounts (e.g., ∼ 80GB) of High-Bandwidth
Memory (HBM), which stores large tensors but is slow in moving the data to the accelerators. On
the other hand, they have smaller amounts (e.g., ∼ 20 MB) of SRAM, which is often more than an
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Algorithm 1 FLASHSIGMOID Forward Pass

1: procedure FORWARD( Q,K,V , Br, Bc ):
2: """
3: inputs: Matrices Q,K,V ∈ Rn×d are on HBM of the GPU.
4: inputs: Integers Br and Bc are the block size for queries and key-values respectively.
5:
6: outputs: Matrix O ∈ Rn×d on HBM of the GPU.
7: # No need to output logsumexp vector L ∈ Rn on HBM.
8: """
9: Divide Q into Tr := ⌈ n

Br
⌉ blocks: Q1, · · · ,QTr

with Qi ∈ RBr×d.
10: Divide K into Tc := ⌈ n

Bc
⌉ blocks: K1, · · · ,KTc with Ki ∈ RBc×d.

11: Divide V into Tc blocks: V1, · · · ,VTc
with Vi ∈ RBc×d.

12: Divide O into Tr blocks: O1, · · · ,OTr
with Oi ∈ RBr×d.

13: for i = 1, · · · , Tr do
14: Load block Qi from HBM to SRAM of the GPU.
15: On chip, initialize Oi with zeros: Oi ← 0Br×d.
16: # No allocation of either row-sum ℓi ∈ RBr or row-max mi ∈ RBr on chip.
17: for j = 1 · · ·Tc do
18: Load blocks Kj ,Vj from HBM to SRAM of the GPU.
19: On chip, evaluate pre-activations: Sij ← Qi ·K⊤

j /
√
d ∈ RBr×Bc .

20: On chip, evaluate sigmoid attention: Pij ← σ (Sij).
21: On chip, update output block: Oi ← Oi + Pij · Vj .
22: # No need to update and track ℓi and mi vectors.
23: end for
24: Store Oi from chip to HBM as the i−th block of O matrix.
25: # No post-processing of Oi or Li blocks on chip.
26: # No movement of Li block from chip to HBM.
27: end for
28: return matrix O.
29: end procedure

order magnitude faster for carrying out actual computations using the registers/tensor cores of the
GPU. This trade-off between memory size and computation speed across hierarchies results in the
attention mechanism computation being bottlenecked by memory accesses between the HBM and the
SRAM (Ivanov et al., 2021). Consequently, flash algorithms optimize for memory accesses across
the hierarchy of GPU memory types in order to accelerate computation of attention mechanism and
its gradients. FLASHSIGMOID is no exception to this approach.

Algorithm 1 describes the forward pass and Alg. 2 describes the backward pass of the FLASHSIGMOID
algorithm. We highlight in orange color the steps in the forward pass of FLASHSIGMOID that differ
from those in FLASHATTENTION2 by virtue of sigmoid activation. Similarly, we highlight in purple
color the differences in the backward pass. Finally, we highlight in blue color the salient points of
FLASHSIGMOID that further help minimize bottlenecking factors on modern accelerators.

Fewer Tensor Allocations, Fewer Memory Accesses, Fast-Tanh: In FLASHATTENTION and
FLASHATTENTION2, the attention mechanism is computed by splitting the attention matrix into
blocks. Since softmax activation requires a row-wise reduction to compute its normalization factor
(i.e., the denominator), one needs to properly compute and track such factor across blocks. Moreover,
in FLASHATTENTION this normalization factor is stored after being computed in the forward pass, to
have it easily accessible to further speed-up the backward pass. By contrast, substituting sigmoid
to softmax eliminates the need to allocate and move across the GPU memory hierarchy the tensors
related to the normalization factor (i.e., moving the logsumexp tensor L ∈ Rn on HBM in the
forward and backward passes). In addition, applying softmax in a stable manner requires tracking the
row-max variable mi on chip, which instead is not needed for sigmoid activation. This further helps
reducing some on-chip operations and lowering register pressure in FLASHSIGMOID.

Moving on to the backward pass (described in Alg. 2), FLASHATTENTION2 requires computing
rowsum (dO ⊙O), which is needed to backpropagate the gradients of softmax attention outputs
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Algorithm 2 FLASHSIGMOID Backward Pass

1: procedure BACKWARD( Q,K,V ,dO, Br, Bc ):
2: """
3: inputs: Matrices Q,K,V ,dO ∈ Rn×d are on HBM of the GPU.
4: inputs: Integers Br and Bc are the block size for queries and key-values respectively.
5: # No need of logsumexp vector L ∈ Rn to be saved for the backward pass.
6:
7: outputs: Matrices dQ,dK,dV ∈ Rn×d on HBM of the GPU.
8: """
9: Divide Q into Tr := ⌈ n

Br
⌉ blocks: Q1, · · · ,QTr with Qi ∈ RBr×d.

10: Divide K into Tc := ⌈ n
Bc
⌉ blocks: K1, · · · ,KTc

with Ki ∈ RBc×d.
11: Divide V into Tc blocks: V1, · · · ,VTc

with Vi ∈ RBc×d.
12: Divide O into Tr blocks: O1, · · · ,OTr

with Vi ∈ RBr×d.
13: Divide dO into Tr := ⌈ n

Br
⌉ blocks: dO1, · · · ,dOTr

with dOi ∈ RBr×d.
14: Allocate dQ on HBM and divide into Tr blocks: dQ1, · · · ,dQTr with dQi ∈ RBr×d.
15: Allocate dK on HBM and divide into Tc blocks: dK1, · · · ,dKTc with dKi ∈ RBc×d.
16: Allocate dV on HBM and divide into Tc blocks: dV1, · · · ,dVTc

with dVi ∈ RBc×d.
17: # No need to compute rowsum (dO ⊙O) as sigmoid and its gradients are pointwise.
18: for j = 1, · · · , Tc do
19: Load blocks Kj ,Vj from HBM to SRAM of the GPU.
20: On chip, initialize dKj ,dVj with zeros: dKj ← 0Bc×d;dVj ← 0Bc×d.
21: for i = 1 · · ·Tr do
22: Load blocks Qi,dOi,dQi from HBM to SRAM of the GPU.
23: # No need of movement of blocks rowsum (dO ⊙O)i and logsumexp Li.
24: On chip, evaluate pre-activations: Sij ← Qi ·K⊤

j /
√
d ∈ RBr×Bc .

25: On chip, evaluate sigmoid attention: Pij ← σ (Sij).
26: On chip, update gradient of values: dVi ← dVi + P⊤

ij · dOj .
27: On chip, compute gradients of attention matrix: dPij ← dOi · V ⊤

i ∈ RBr×Bc .
28: On chip, compute gradients of pre-activations: dSij ← Pij ⊙ (1− Pij)⊙ dPij .
29: Load query gradient block dQi from HBM to SRAM, and then on to chip.
30: Update query gradient block on chip: dQi ← dQi +

√
d · dSij ·Kj .

31: Store query gradient block dQi from chip back to HBM.
32: On chip, update key gradient block: dKj ← dKj +

√
d · dS⊤

ij ·Qi.
33: end for
34: Store dKj ,dVj from chip to HBM as the j−th blocks of dK,dV matrices respectively.
35: end for
36: return matrices dQ,dK,dV .
37: end procedure

to the preactivations. However, since sigmoid activation is applied element-wise, its gradients also
backpropagate across sigmoid element-wise, eliminating the need of the row-sum variable and the
movement of its blocks across the memory hierarchy. Another optimization of FLASHATTENTION and
FLASHATTENTION2 consists of partially re-computing the forward pass of attention mechanism in
the backward pass to avoid bottlenecks and speed-up the implementation. To keep the backward pass
implementation fast, they require the logsumexp variable to be available and transferred between HBM
and SRAM in the backward pass. FLASHSIGMOID, being an element-wise activation, eliminates
the need of this variable from the backward pass, and consequently, from the entire algorithm.
Finally, a major component in our implementation is the usage of GPU-based implementation of
the tanh activation. Sigmoid activation is related to Tanh activation via the following relation:
σ (x) = 0.5 · (1 + tanh (0.5 · x)). We utilize the fast GPU-implementation of Tanh activation, which
trades off some precision for better speed, in order to compute sigmoid activation in both the forward
and the backward pass. This provides a considerable speed-boost in both the forward and backward
passes of FLASHSIGMOID, while maintaining parity in performance with a naïve implementation of
sigmoid attention. Based on these points of modification, we extend FLASHATTENTION2 to obtain
FLASHSIGMOID, a hardware-aware implementation of SigmoidAttn.
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F.2 BENCHMARKING OF FLASHSIGMOID KERNELS

Benchmarking Setup: Having seen the details of the FLASHSIGMOID algorithm, we next consider
the benchmarking of its kernels. For this, we create a small model in PyTorch (Paszke et al., 2019)
that inputs query, key, and value tensors (all of shape [batch, tokens, heads, features]) and passes
these through a number of attention layers. Mimicking the design of vision transformers (ViTB-
16/224) (Dosovitskiy et al., 2021), we set the number of heads and per-head features as 12 and 64,
respectively. We set a batch size of 32, and consider a 10-layer architecture. Then, for the number of
tokens sampled from a wide range of [64, 78k], we compute the forward and backward passes of this
model. For these computations, we measure the kernel GPU time using PyTorch’s profiler. We carry
out our experiments on both H100 (Choquette, 2023) and A100 (Choquette et al., 2021) GPUs.
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(a) Inference mode kernels on H100.
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(b) Training mode kernels on H100.

Figure 11: On average, for sequence lengths between [64, 78k], the inference mode kernel of
FLASHSIGMOID is 17.39% faster than FLASHATTENTION2 for self-attention and 18.76% for causal
attention. The training mode kernels of FLASHSIGMOID are 6.53% faster than FLASHATTENTION2
for self-attention and 9.46% for causal attention. Note that inference involves only the forward pass
of the model and training involves both the forward and the backward pass of the model.
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(a) Inference mode kernels on A100.
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(b) Training mode kernels on A100.

Figure 12: On average, for sequence lengths between [64, 78k], the inference mode kernel of
FLASHSIGMOID is 14.33% faster than FLASHATTENTION2 for self-attention and 16.92% for causal
attention. The training mode kernels of FLASHSIGMOID are 6.02% faster than FLASHATTENTION2
for self-attention and 5.27% for causal attention. Note that inference involves only the forward pass
of the model and training involves both the forward and the backward pass of the model.

Results: Figures 11 and 12 show the GPU time comparisons of kernels in inference mode and
training mode of FLASHSIGMOID and FLASHATTENTION2 respectively. We observe that we obtain
a large average speed-boost for inference and a modest average speed-boost for training. Note that
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the speed-ups in all the subsequent figures are obtained by averaging the performances for tokens
sampled in the range of [64, 78k].

Details of Individual Kernels: Next, we also show the performance of individual flash kernels of
FLASHSIGMOID and FLASHATTENTION2. Note that inference mode involves only the forward pas
of the model, while training mode involves both the forward and the backward pass of the model. The
forward pass of both these approaches involves one kernel, which we term flash_fwd_kernel, and the
backward pass of both these approaches is made up of three kernels, which we term bwd_dq_dk_dv,
bwd_dot_do_o, and bwd_convert_dq. In code, the real names of these kernels are as follows.

fwd := flash_fwd_kernel
bwd_dq_dk_dv := flash_bwd_dq_dk_dv_loop_seqk_parallel_kernel
bwd_dot_do_o := flash_bwd_dot_do_o_kernel

bwd_convert_dq := flash_bwd_convert_dq_kernel

(83)

Here, we first provide a brief description of the tasks performed by each of these kernels; for a detailed
explanation, we refer the reader to FLASHATTENTION2 (Dao, 2023) paper and code. The fwd kernel
computes the full forward pass of the model as shown in Tab. 4. The bulk of computations of the
backward pass happen in the bwd_dq_dk_dv kernel, which performs re-computation of attention
matrix and reduction of key and value gradient tensors (dK, dV ). Again, the exact steps carried out
in the backward pass can be checked from Tab. 4. The bwd_convert_dq kernel performs the reduction
of query gradient tensor (dQ). Finally, note that the bwd_dot_do_o kernel in FLASHATTENTION2
performs the task of computing the rowsum(dO⊙O) tensor along with clearing of the accumulators
of query gradients (dQ). Although FLASHSIGMOID does not require this row-sum tensor, the
clearing of accumulators of query gradients is still needed. For this reason, bwd_dot_do_o kernel
also appears in the profiling of FLASHSIGMOID.

Performance of Individual Kernels: Figures 13 and 14 show the performance comparison of
each flash kernel in FLASHSIGMOID with the corresponding kernel in FLASHATTENTION2 when
tested on an H100 GPU and an A100 GPU respectively. We observe that on both the H100 and
A100 GPU architectures, the fwd kernel of FLASHSIGMOID is significantly faster than that of
FLASHATTENTION2 and the bwd_dq_dk_dv kernel of FLASHSIGMOID has a modest average speed
boost over FLASHATTENTION2. The bwd_dot_do_o kernel in FLASHSIGMOID is significantly faster
on A100 GPUs. Note that even though the bwd_dot_do_o kernel of FLASHSIGMOID appears to be
slower on average on H100 GPUs, the kernel time of bwd_dot_do_o (∼ 5ms) is negligible compared
to that of the main bwd_dq_dk_dv kernel (∼ 5000ms). Thus, the combined backward pass kernel in
FLASHSIGMOID time does not suffer from this slowdown. Finally, note that for bwd_convert_dq,
FLASHSIGMOID and FLASHATTENTION2 have identical performance. This is expected, since the
task of this kernel is to reduce the gradient of the queries dQ, which is a common step in both the
approaches and is not modified in FLASHSIGMOID.
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Figure 13: FLASHSIGMOID and FLASHATTENTION2 kernel comparison on H100 GPUs.

F.3 SPEED BOOSTS OF FLASHSIGMOID IN REALISTIC SETTINGS

In this section, we demonstrate how the performance boosts measured in App. F.2 for the individual
kernels of FLASHSIGMOID contributes to speeding-up realistic runs with end-to-end training.
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Figure 14: FLASHSIGMOID and FLASHATTENTION2 kernel comparison on A100 GPUs.

Setup: As a target experiment, we consider training a vision transformer (Dosovitskiy et al., 2021)
on the ImageNet dataset (Deng et al., 2009). We create two vision transformer model variants– one
with FLASHATTENTION2 attention and the other with FLASHSIGMOID attention. We carry out the
training of these models with a distributed data-parallel (DDP) setup using PyTorch (Paszke et al.,
2019). We perform two sets of experiments– i. the first performs DDP training on four nodes of
H100 GPUs with eight GPUs per node and EFA/RDMA interconnect for the nodes, and ii. the second
performs DDP training on four nodes of A100 GPUs with eight GPUs per node. In each set of
experiments, we use three different image sizes (64× 64, 90× 90, and 100× 100), along with patch
size of 1 to result in different number of tokens for the underlying attention mechanism in the vision
transformer model (64× 64 = 4096, 90× 90 = 8100, and 100× 100 = 10000 tokens). For each
of these configurations, we select batch sizes so that the GPU memory utilization would be greater
than 80%. These considerations are in order to minimize, if not eliminate, other confounders that
can unfairly affect estimation speed-ups in realistic runs. For instance, a low GPU utilization would
lead to a larger number of updates, which in turn would incur unnecessary delays, variations, and
slow-downs due to across-nodes communications.

Results: The results of the runs on H100 nodes and A100 nodes are shown in Tab. 5 and 6 respectively.
There, we show how the kernel GPU times for forward and backward passes vary according to the
number of tokens considered, and include the wall-clock time of the end-to-end runs as explained
above. We observe that the kernel speed-up reflects significantly in the speed-up of inference of the
models (during testing) and modestly in the training of the models. We observe ∼ 8% speed-up in
wall-clock time of inference and ∼ 4% speed-up in wall-clock time of training.

TOKENS
KERNEL GPU TIME COMPARISON FULL RUN WALL-CLOCK TIME COMPARISON

KERNELS FLASHATTENTION2 (MS) FLASHSIGMOID (MS) MODE FLASHATTENTION2 (S) FLASHSIGMOID (S)

4096 FWD 4.98±0.01 4.17±0.01 (−16.31%) INFERENCE 11.17±0.18 10.68±0.18 (−4.42%)

FWD + BWD 19.58±0.06 18.12±0.04 (−7.45%) TRAINING 1563.39±1.30 1521.68±2.27 (−2.67%)

8100 FWD 20.46±0.05 16.73±0.05 (−18.22%) INFERENCE 28.21±0.18 25.93±0.17 (−8.06%)

FWD + BWD 77.63±0.13 72.70±0.12 (−6.35%) TRAINING 4282.75±2.14 4129.25±4.14 (−3.58%)

10000 FWD 31.17±0.07 25.49±0.05 (−18.20%) INFERENCE 38.71±0.19 35.37±0.17 (−8.62%)

FWD + BWD 117.53±0.13 109.87±0.12 (−6.52%) TRAINING 5990.72±2.21 5751.43±5.77 (−3.99%)

Table 5: FLASHSIGMOID vs. FLASHATTENTION2 on H100 nodes. The kernel GPU time for both
the approaches is reported in milliseconds and wall-clock times is reported in seconds per epoch.

Connection of Wall-Clock Time Speed-Up and Kernel Speed-Up: From Tab. 5 and 6, it is clear
that the speed-up in kernels is larger than that in the wall-clock times of the full runs. In fact, the
speed-up in kernels is the upper bound for the speed-up that we would see in wall-clock times. To see
why, let us denote by τsm and τσ the total kernel GPU time for softmax attention and sigmoid attention
respectively. Then, the kernel speed-up is given by skernel := 1− τσ

τsm
. However, in a full run, the total

wall clock time also incorporates the time required to load data, time taken by other layers of the
underlying models, time required to communicate gradients and other data across GPUs and across
nodes, and so on. For our corresponding sigmoid and softmax runs, these extra factors are designed
to add, upon expectation, in the same extra time τ . Thus, the wall-clock time speed-up of a full run

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

TOKENS
KERNEL GPU TIME COMPARISON FULL RUN WALL-CLOCK TIME COMPARISON

KERNELS FLASHATTENTION2 (MS) FLASHSIGMOID (MS) MODE FLASHATTENTION2 (S) FLASHSIGMOID (S)

4096 FWD 8.32±0.02 7.84±0.03 (−5.79%) INFERENCE 19.05±0.22 18.74±0.19 (−1.65%)

FWD + BWD 31.81±0.08 31.11±0.08 (−2.19%) TRAINING 2795.03±2.35 2769.44±5.10 (−0.92%)

8100 FWD 33.65±0.09 27.92±0.07 (−17.04%) INFERENCE 47.35±0.20 44.05±0.17 (−6.96%)

FWD + BWD 128.18±0.13 119.04±0.12 (−7.13%) TRAINING 7519.64±4.21 7254.84±12.64 (−3.52%)

10000 FWD 51.17±0.07 42.49±0.06 (−16.96%) INFERENCE 64.61±0.32 59.55±0.18 (−7.82%)

FWD + BWD 194.54±0.14 180.59±0.15 (−7.17%) TRAINING 10455.64±8.85 10052.04±18.87 (−3.86%)

Table 6: FLASHSIGMOID vs. FLASHATTENTION2 on A100 nodes. The kernel GPU time for both
the approaches is reported in milliseconds and wall-clock times is reported in seconds per epoch.

with end-to-end training is swall-clock := 1− τσ+τ
τsm+τ . Since we have faster sigmoid kernels, we have

τσ < τsm, which in turn shows that swall-clock = 1− τσ+τ
τsm+τ < 1− τσ

τsm
= skernel. This explains the speed

boost trends in kernel time versus full run wall-clock time for each setting in Tab. 5 and 6. However,
in particular, if a model performs attention mechanism over large number of tokens, the attention
mechanism, and hence the corresponding kernel time, starts to dominate the other computations in the
network. In that case, we see that the wall-clock time speed-boost is closer to the kernel speed-boost.
Mathematically, if τσ, τsm >> τ , we have: τσ + τ ≈ τσ, τsm + τ ≈ τsm. Thus, skernel ≈ swall-clock,
thereby making swall-clock/skernel → 1.
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(a) Inference mode kernels on H100.
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(b) Training mode kernels on H100.

Figure 15: On average, for sequence lengths between [64, 78k], the inference mode kernel of
FLASHSIGMOID is 17.04% faster than FLASHATTENTION2 for self-attention and 10.87% for causal
attention. The training mode kernels of FLASHSIGMOID are 8.91% faster than FLASHATTENTION2
for self-attention and 4.72% for causal attention. Note that inference involves only the forward pass
of the model and training involves both the forward and the backward pass of the model.

Significance of Wall-Clock Speed-Up of Inference: Although FLASHSIGMOID provides only
modest gains during training, the speed-up in inference is significant (> 15% for underlying kernels
and 5 − 10% during inference of full runs). We posit that this speed-up in inference is extremely
critical as well. Contemporary large-scale models, once trained, spend a huge portion of the rest their
lifetime in inference mode (OpenAI, 2023). Thus, significant performance boosts in inference mode
have immense potential for saving resources in deployment of large models for inference.

F.4 FLASHSIGMOID WITH ALIBI

It is evident from the main text of the paper that improved positional embeddings, like ALiBi (Press
et al., 2022), can be crucial for certain tasks and data modalities. Thus, we also provide a FLASH-
SIGMOID implementation that incorporates ALiBi. We compare the FLASHSIGMOID with ALiBi
implementation with the FLASHATTENTION2 with ALiBi implementation (Dao, 2023). Figures 15
and 16 show the kernel GPU time for the forward and backward pass kernels of FLASHSIGMOID
with ALiBi implementation versus FLASHATTENTION2 with ALiBi implementation. Again, we
observe that FLASHSIGMOID kernels for inference have significant speed-up in wall-clock time over
those in FLASHATTENTION2 and the kernels for training also have modest wall-clock improvements.
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(a) Inference mode kernels on A100.
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(b) Training mode kernels on A100.

Figure 16: On average, for sequence lengths between [64, 78k], the inference mode kernel of
FLASHSIGMOID is 12.28% faster than FLASHATTENTION2 for self-attention and 5.30% for causal
attention. The training mode kernels of FLASHSIGMOID are 14.64% faster than FLASHATTENTION2
for self-attention and 6.80% for causal attention. Note that inference involves only the forward pass
of the model and training involves both the forward and the backward pass of the model.

F.5 DIRECTIONS FOR FUTURE WORK ON FLASHSIGMOID

In this section, we discussed FLASHSIGMOID, a hardware-aware implementation of the SigmoidAttn
algorithm. Then, we demonstrated via kernel benchmarking and realistic setting runs that FLASH-
SIGMOID provides significant gains in inference as well as modest gains in training of models with
attention mechanism. In this subsection we further discuss additional avenues for improving the
implementation of FLASHSIGMOID, and point out some interesting directions for future work.

Optimization of Block Shapes for Different Input and GPU Settings: As stated before, our
FLASHSIGMOID implementation builds on FLASHATTENTION2 by adding functionality for forward
and backward pass of sigmoid attention in place of the standard softmax attention. In particular,
for all FLASHSIGMOID results discussed so far, we inherit directly from FLASHATTENTION2 the
details of optimal block shapes, grid shapes, and other kernel launch parameters, and keep them
unchanged in our implementation. For instance, this is the case for the block sizes Br, Bc in Alg. 1
and 2, which are identical in FLASHATTENTION2 and FLASHSIGMOID. This choice is dictated by
the need to ensure a fair comparison between the two implementations, and allows us to demonstrate
the speed-up of sigmoid attention by minimizing confounders associated with parallel computations
on different GPU architectures for different input shapes.

Although FLASHSIGMOID kernels lead to speed-ups in inference and training for both H100 and
A100 GPUs, we observe that the kernel timing speed-ups on A100 are not uniform across sequence
lengths: for a small subset of these, our kernel provides significantly lower speed-up compared to the
overall trend for other sequence lengths. Ideally, the implementation of attention mechanisms should
not assume any information on the token count in input, and it is then desirable to have uniform speed-
ups across all input lengths. Here, we show that this is achievable by simply updating the block shape
information in FLASHSIGMOID to values that are different than those in FLASHATTENTION2. The
implementation of FLASHATTENTION2 is templated according to block shapes, grid shapes, and other
kernel launch parameters. Note that FLASHATTENTION2 provides various tailored implementations,
optimized for different input shapes (e.g., different ranges of feature dimension per head), input
types (e.g., causal attention vs. self-attention, ALiBi vs. no ALiBi in attention, etc.), and GPU types
(e.g., A100 vs. H100 via checking shared memory size on GPUs). This is achieved by opportunely
selecting the kernel template parameters defining block shapes, grid shapes, and other kernel launch
parameters for parallel computation on GPUs. In our case, we create a variant of FLASHSIGMOID,
denoted by FLASHSIGMOID†, where we update the block sizes for query and key tensors from
(Br, Bc) = (128, 128) of FLASHSIGMOID to (Br, Bc) = (128, 64) of FLASHSIGMOID† only for
our input setting (template with features per head being 64).

Experimentation and Results: For this variant, we perform kernel benchmarking as described
in App. F.2, and report the corresponding results in Fig. 17. Comparing the plots for kernel timing
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(a) Inference mode kernels on A100.
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(b) Training mode kernels on A100.

Figure 17: On average, for sequence lengths between [64, 78k], the inference mode kernel of
FLASHSIGMOID† is 14.82% faster than FLASHATTENTION2 for self-attention and 18.02% for causal
attention. The training mode kernels of FLASHSIGMOID† are 6.18% faster than FLASHATTENTION2
for self-attention and 5.76% for causal attention. Note that inference involves only the forward pass
of the model and training involves both the forward and the backward pass of the model.

with FLASHSIGMOID plots from Fig. 12, we observe that FLASHSIGMOID† not only provides a more
uniform inference and training kernel speed-up on all sequence lengths, but also improves the average
of these speed-ups across all lengths. To further bolster our observations, Tab. 7 shows the inference
mode and training mode kernel speed-ups for a subset of sequence lengths under consideration. This
experiment indicates that it is possible to obtain higher and more uniform speed-ups in kernel timings
across a wide range of tokens by investigating optimal block shape, grid shape, and other kernel
launch parameters for each input setting and GPU type. We leave this optimization for future work.

TOKENS
KERNEL GPU TIME COMPARISON

KERNELS FLASHATTENTION2 (MS) FLASHSIGMOID (MS) FLASHSIGMOID† (MS)

4096 FWD 8.32±0.02 7.84±0.03 (−5.79%) 7.26±0.02 (−13.21%)

FWD + BWD 31.81±0.08 31.11±0.08 (−2.19%) 30.62±0.09 (−4.03%)

8100 FWD 33.65±0.09 27.92±0.07 (−17.04%) 28.54±0.07 (−15.50%)

FWD + BWD 128.18±0.13 119.04±0.12 (−7.13%) 119.85±0.13 (−6.81%)

10000 FWD 51.17±0.07 42.49±0.06 (−16.96%) 43.53±0.09 (−15.32%)

FWD + BWD 194.54±0.14 180.59±0.15 (−7.17%) 181.97±0.17 (−6.87%)

16384 FWD 134.19±0.12 125.43±0.10 (−6.53%) 116.75±0.10 (−13.40%)

FWD + BWD 494.65±0.28 482.08±0.23 (−2.54%) 474.52±0.28 (−4.48%)

Table 7: FLASHATTENTION2 vs. FLASHSIGMOID vs. FLASHSIGMOID† on A100 nodes. The kernel
GPU time for all three approaches are reported in milliseconds. We observe that FLASHSIGMOID†

provides better and more uniform speed-ups across all example tokens.

G EXPERIMENTS

G.1 EXTRA ABLATIONS

G.1.1 THE EFFECT OF MULTIPLICATIVE SEQUENCE LENGTH NORMALIZATION

Wortsman et al. (2023a) notes that models trained with sigmoid or ReLU attention require scaling
by the sequence length, n−ασ(QKT /

√
dqk)V . We ablate this by comparing the scaled solution to

the one we propose in App. E. We also generalize the variant proposed in (Wortsman et al., 2023a)
to variadic sequence lengths such that it works with auto-regressive (AR) training, for example for
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Figure 18: b = − lnn. Figure 19: n−1 normalization. Figure 20: n−0.5

normalization.

n = 3: 


1 1 1
0.5−α 0.5−α 1
0.33−α 0.33−α 0.33−α




︸ ︷︷ ︸
n−α

⊙
[
1 0 0
1 1 0
1 1 1

]

︸ ︷︷ ︸
Causal Mask M

⊙ σ(QKT /
√
dqk)V . (84)

We repeat the experiment from Fig. 5, using ALiBi positional embeddings for all trials. We apply
α = {1, 0.5} AR normalization proposed in (84). While there is an observable difference in terms
of the attention norm, ∥σ(QKT /

√
dqk)V ∥, we find that the train NLL is slightly worse for both

normalized variants (Fig. 19 and 20) in comparison to the b = − lnn variant in Fig. 18.

G.1.2 ATTENTION BIAS STABILITY ABLATION

To validate the stabilizing effects of attention bias we repeat the experiment from Fig. 8 and 9, keeping
all of the same hyper-parameters, while enabling QK norm and LayerScale (initialized at 10−4). We
train with a range of constant bias offsets, b ∈ {−15,−10,−6,−4,−1} and visualize the results
below in Fig. 21. We observe a systematic increase in stability (and lower SigmoidAttn NLL) for
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Figure 21: Attention bias ablation.

values less than −1 up till −10, after which the −15 plot shows an over-regularizing effect with
decreased performance.

G.2 VISION

G.2.1 TEST IMAGENET1K TOP-1%

Fig. 22 reports the test linear probe results for the ViT-B/16 BYOL (Grill et al., 2020; Busbridge
et al., 2023), ViT-B/16 SimCLR (Chen et al., 2020; Zhai et al., 2023a) and the finetuned performance
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Figure 22: ImageNet1k test top-1% for SoftmaxAttn vs. SigmoidAttn using models from Fig. 2.

for the ViT-L/16 MAE (He et al., 2022) and the test top-1% results for for ViT-B/16 supervised model
(Dosovitskiy et al., 2021). Across these wide range of SSL and supervised learning tasks, trained
with contrastive (SimCLR), EMA distillation (BYOL) and reconstructive objectives (MAE), we find
that SigmoidAttn not only matches the training dynamics (Fig. 2), but also the linear probe and
finetuned performance of the baseline SoftmaxAttn.
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Figure 23: A competitive SigmoidAttn
ViT-B/16 model can be learned with-
out LayerScale or QK norm using a
large initial learnable scalar tempera-
ture t = 10 and bias b = −10 (sim-
ilar to SigLIP (Zhai et al., 2023b)):
σ(et[QKT /

√
dqk] + b)V , {b, t} ∈ R.

This regularizes the model, as it must
move the temperature to a learnable
regime. The t = 10, b = −10 curve
makes no progress in train NLL or test
top-1 for∼25 epochs (near max LR), but
ultimately outperforms baselines.

While Fig. 23 demonstrates the possibility of learning SigmoidAttn without LayerScale, it involves
task specific tuning of {t, b}. We also explored gating attention from learning (through a simple
multiply by zero) for ∼25 epochs and were able to match the t = 10, b = −10 training curves from
above. However, we opted for the LayerScale method due to its simplicity.

G.2.3 SIGMOID ATTENTION VS. ATTENTION RELAXATIONS
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Figure 24: Supervised ViT-B/16 ImageNet1k
classification. We contrast SigmoidAttn and
SoftmaxAttn against (a) linear attention with
no activation: QKT /

√
dqk and (b) fast atten-

tion via positive orthogonal random features,
used in Performer (Choromanski et al., 2021).
SigmoidAttn, like SoftmaxAttn, differs from
attention relaxations like Performer which uses
low-rank representations of the attention ma-
trix. SigmoidAttn maintains performance parity
with SoftmaxAttn, while outperforming other
efficient attention variants.
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G.2.4 HYPER-PARAMETERS

Table 8: SigmoidAttn SimCLR and BYOL ViT-B/16 hyperparameters.

Parameter SimCLR BYOL

Attention bias None None
LayerScale Init 10−4 10−4

QK Norm Yes Yes
Pos Embed SinCos Learnable

Freeze Patcher Yes No
Weight init MocoV3 (Chen et al., 2021) trunc_normal(.02)
Normalization LayerNorm LayerNorm
LR schedule Single Cycle Cosine Single Cycle Cosine
LR warmup 10 Epochs 40 Epochs
Min LR 1× 10−6 1× 10−6

Training duration 300 Epochs 600 Epochs
Optimizer AdamW AdamW
Optimizer scaling rule Linear Linear
Base Adam (β1, β2) (0.9, 0.95) (0.9, 0.95)
Base LR 2× 10−4 1× 10−4

Base batch size 256 256
Total batch size 4096 4096
Base teacher momentum - 0.996
Weight decay 0.1 0.3
Weight decay skip bias Yes Yes
Numerical precision bf16 bf16
Stochastic depth 0.0 0.2
Augmentation stack SimCLR (Chen et al., 2020) DINO multicrop (Caron et al., 2021)
Color Jitter Scaling 0.5 (Chen et al., 2021) 1.0

Table 9: SigmoidAttn Supervised ViT-B/16 and MAE ViT-L/16 hyperparameters.

Parameter Supervised MAE

Attention bias None b = − lnn
LayerScale Init 10−4 10−4

QK Norm Yes Yes
Pos Embed Learnable Learnable

Architecture ViT-B/16 ViT-L/16
Mask Ratio - 0.75
Freeze Patcher No No
Weight init trunc_normal(.02) trunc_normal(.02)
Normalization LayerNorm LayerNorm
LR schedule Single Cycle Cosine Single Cycle Cosine
LR warmup 20 Epochs 40 Epochs
Min LR 1× 10−6 0.0
Training duration 300 Epochs 400 Epochs
Optimizer AdamW AdamW
Optimizer scaling rule Linear Linear
Base Adam (β1, β2) (0.9, 0.95) (0.9, 0.95)
Base LR 1× 10−4 1.5× 10−4

Base batch size 256 256
Total batch size 4096 4096
Weight decay 0.3 0.05
Weight decay skip bias Yes Yes
Numerical precision bf16 bf16
Stochastic depth 0.28 0.0
Augmentation stack RandAug (Cubuk et al., 2020) RRC + HFLIP

G.3 LANGUAGE MODEL

G.3.1 HYPER-PARAMETERS

Tab. 10 shows the hyper-parameters for the final comparison. MuP-simple (Wortsman et al., 2023b)
is used, where the peak learning rate is set to 1e-2. Weight decay is decoupled, following Loshchilov
& Hutter (2017). In addition, to confirm that applying QK-Norm does not hurt the baseline, we show
training parity with and without QK-Norm in Fig. 25.
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Table 10: Training details for the Llama-style 1B LM training.

Parameter Value

Params 1B
Context Length 2048
Total Tokens 300B
Batch size 4M tokens
LR Schedule Cosine
LR Warmup Steps 5000
Peak LR 1e-2
Final LR 10% of peak
Optimizer AdamW
Optimizer momentum 0.9, 0.95
Weight decay 1e-4
Gradient clipping 1.0
Position encoding ALiBi
Q/K Norm Applied
Norm type RMSNorm (Zhang & Sennrich, 2019)
Norm structure Pre-norm
Num layers 24
Num heads 32
Hidden dim 2048
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Figure 25: 1B SoftmaxAttn LLM training
with and without QK Norm, converging to the

same loss.
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Figure 26: 85M and 1B LLM training using
SigmoidAttn (n = 4096). Smooth training

loss curves, but gradient norm shows spikes.
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Figure 27: 85M training using SigmoidAttn
and SoftmaxAttn (n = 4096). Training loss

matches.
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Figure 28: 1B training using SigmoidAttn (n
= 4096). Higher sequence length with a larger
model shows a slightly different loss curve.

G.3.2 GRADIENT NORM

While a SigmoidAttn based LM using aforementation hyper-parameters has a smooth loss curve,
we do see more gradient norm fluctuations. See Fig. 26, where spikes larger than 0.5 are not visible
in the SoftmaxAttn equivalent.
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Table 11: Different norm structure ablations for SigmoidAttn with 1B language-modeling.

MODEL
SEQ.
LEN.

ATTN.
BIAS

POS.
ENCOD. NORM

ARC
EASY

ARC
CHALL.

HELLA-
SWAG

PIQA SCIQ
WINO-

GRANDE
LAMBADA
OPENAI

TRIVIAQA
(1-SHOT)

WEBQS
(1-SHOT) AVG

SOFT. 2K NO ALIBI PRE 62.2 26.8 42.4 59.0 72.3 88.1 58.4 19.9 15.4 49.4
SOFT. 2K NO ROPE PRE 64.5 30.4 43.9 61.0 71.9 88.7 59.3 21.1 15.0 50.6
SIGM. 2K YES ALIBI PRE 62.8 28.8 42.5 59.7 70.3 88.6 59.7 19.1 13.8 49.5
SIGM. 2K YES ROPE PRE 62.2 26.9 41.4 57.9 71.1 87.8 57.3 17.3 12.8 48.3
SIGM. 2K NO ROPE PRE 59.3 26.5 39.4 55.1 69.4 88.2 59.2 11.7 7.5 46.0

SOFT. 2K NO ALIBI HYBRID 64.9 30.5 43.3 61.9 71.6 88.4 60.9 23.6 12.8 50.9
SIGM. 2K YES ALIBI HYBRID 60.5 26.9 42.2 59.2 70.8 89.6 57.9 17.7 13.4 48.7
SIGM. 2K NO ALIBI HYBRID 62.8 28.2 42.0 59.1 70.3 88.7 59.8 18.6 15.1 49.4

SOFT. 4K NO ROPE PRE 63.3 29.3 43.3 58.1 71.3 86.9 58.8 20.4 15.6 49.7
SOFT. 4K NO ALIBI PRE 62.6 27.7 42.4 58.6 71.1 88.2 58.6 18.9 14.7 49.2
SIGM. 4K YES ALIBI PRE 60.5 27.3 41.3 57.8 70.5 87.0 57.6 18.9 12.6 48.2

SOFT. 4K NO ROPE HYBRID 64.1 27.2 43.3 61.4 71.2 88.5 60.0 21.4 15.3 50.3
SOFT. 4K NO ALIBI HYBRID 61.7 26.8 43.4 59.4 70.6 88.6 60.8 20.5 12.9 49.4
SIGM. 4K NO ROPE HYBRID 63.3 27.1 43.4 61.3 70.4 88.2 57.5 20.5 14.8 49.6
SIGM. 4K YES ALIBI HYBRID 63.5 28.1 43.5 60.7 70.8 88.9 59.0 20.9 16.0 50.2
SIGM. 4K NO ALIBI HYBRID 62.4 28.9 43.5 60.8 71.3 89.6 59.2 20.2 14.3 50.0

G.3.3 NORM STRUCTURE

Due to the slight performance difference observed at 4096 context length when using SigmoidAttn
versus SoftmaxAttn, and marginally lower downstream results, we evaluated various norm struc-
tures to address potential instabilities (see Tab. 11). Some of these structures replace the required
attention bias (in this case, column ’Attn. Bias’ is ’No’). All use QK-norm with RMSNorm
(Zhang & Sennrich, 2019), without LayerScale. We examined pre-norm and hybrid-norm (where
we do both pre-norm and normalization of the output of the attention layer following Xiong et al.
(2020)): norm(σ(QKT /

√
dqk)V ). Post-norm, which normalizes the combined residual data stream,

norm(x+σ(QKT /
√
dqk)V ), is omitted from our analysis as it did not train stably for SigmoidAttn.

G.4 AUTOMATIC SPEECH RECOGNITION

G.4.1 TRAINING DETAILS

All acoustic models are fed 80 channel log-mel filterbanks with a 25ms sliding window strided by
10ms.

The transformer-based encoder model has 255M parameters: 1D convolution of kernel 7 and stride 3
followed by CAPE positional embedding if it is used and 36 transformer blocks with pre-LayerNorm,
an embedding dimension of 768, 4 heads, 3072 units in the MLP layers. The model is trained with
CTC loss and a character vocabulary, including apostrophe (‘). In additional experiments, we vary
the depth to 12 and 24 layers, and change pre-LayerNorm to post-LayerNorm.

We implemented our own conformer-based encoder model, also trained with a CTC loss and a
character vocabulary. The conformer model has 104M parameters and consists of 1D convolution of
kernel 7 and stride 3 followed by 16 conformer blocks with an embedding dimension of 512, 4 heads,
2048 units in the MLP layers. Variational noise is not used and RoPE is used as a relative positional
embedding instead of relative sinusoidal positional embedding.

For all models, SpecAugment (Park et al., 2019) is used for augmentation with 2 frequency masks
(max width 30) and 10 time masks (max width 50, ratio 0.1). All models are trained with dynamic
batching and mixed precision with BF16. Models are trained with different configurations of
optimizers and hyperparameters to have diverse coverage of use-cases. We first optimize every
configuration for SoftmaxAttn and then change only attention to the introduced configuration
of SigmoidAttn while all other parameters are kept the same. Detailed configurations are shown
in Table 12. We train models until the greedy WER stops improving on the validation sets (dev-clean,
dev-other) and report final test sets (test-clean, test-other) greedy WER without integration of any
external language model.
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Table 12: Training details for the ASR models on LibriSpeech 100h (LS-100) and LibriSpeech 960h
(LS-960) for transformers and conformers.

Parameter Transformer LS-960 Conformer LS-960 Transformer LS-100 Transformer LS-100

Params 255M 104M 255M / 170M / 85M 255M
LayerNorm pre pre + post pre post
Dropout 0.1 0.1 0.3 0.3
Layer drop 0.1 0.0 0.3 0.3
Training steps 400k 400k 400k 500k
Batch size 3.56h 4.44h 1.1h 1.1h
LR schedule step-wise step-wise step-wise step-wise
SpecAugment start 0k 10k 0k 0k
LR Warmup Steps 64k 10k 64k 64k
Peak LR 1e-3 2e-3 0.1 0.03
LR start decay 250k 250k 200k 330k
LR decay step 50k 50k 30k 50k
Optimizer AdamW AdamW Adagrad Adagrad
Optimizer momentum 0.9, 0.999 0.9, 0.98 - -
Weight decay 1e-6 1e-6 0 0
Gradient clipping 1.0 0.5 1.0 1.0
Position encoding CAPE / ALiBi / RoPE RoPE CAPE CAPE / ALiBi / RoPE
Q/K Norm SoftmaxAttn Not Applied Not Applied Not Applied Not Applied
Q/K Norm SigmoidAttn Applied Applied Not Applied Applied
Num layers 36 16 36 / 24 / 12 36
Num heads 4 4 4 4

Table 13: Word error rate (%) on LibriSpeech dev/test sets and TED-LIUM v3 (Hernandez et al.,
2018) (“TED”, joint validation and test sets with split according to audio duration) for pre-LayerNorm
transformer (255M / 170M / 85M params) with CAPE and with either SoftmaxAttn or SigmoidAttn
(w/ LayerScale, w/o QK norm, w/ b = − log n) trained on LibriSpeech 100h data (average duration
is 10-15s). Hyper-parameters can be found in Table 12.

ATTN # LAYERS DEV-CLEAN TEST-CLEAN DEV-OTHER TEST-OTHER TED 0-10S TED 10-20S TED 20-30S TED 30S+

SOFTMAX 36 6.7 7.1 20.0 20.4 26.4 22.4 23.3 21.8
SIGMOID 36 7.0 7.3 20.3 20.5 26.2 23.4 23.6 21.8
b = 0 36 6.8 7.1 19.8 20.3

SOFTMAX 24 6.4 6.8 20.2 20.5 25.4 22.1 23.3 21.8
SIGMOID 24 7.1 7.3 21.0 21.3 26.6 23.3 24.0 22.0
b = 0 24 6.7 6.9 20.2 20.7

SOFTMAX 12 8.2 8.7 25.0 25.4 29.0 25.6 27.1 27.4
SIGMOID 12 8.3 8.7 24.8 25.2 29.0 25.7 26.3 25.5
b = 0 12 8.7 8.5 24.4 24.7

For the bias term b = − log n in SigmoidAttn, we do not use max sequence length as in language
model experiments. Instead, for every audio sample we use its own duration as a bias terms resulting
into non-trainable bias vector for the minibatch. For experiments with sequence normalization, we
also use not the max sequence length in the minibatch but rather the ground truth sample duration to
properly normalize encoder attention.

To evaluate behaviour for length generalization we use TED-LIUM v3 dataset Hernandez et al.
(2018) as its validation and test sets have longer audio duration than LibriSpeech: LibriSpeech has in
average 10-15s duration, while in TED-LIUM there are audio longer than 30s (the max duration of
LibriSpeech). To perform evaluation on TED-LIUM v3, we combine together validation and test sets
of TED-LIUM v3 (we don’t use them for training and hyper-parameters search and just perform final
evaluation) and split them into 4 datasets according to the duration: 0-10s, 10-20s, 20-30s, and 30s+.

For positional embeddings we use not only CAPE, but change it to AliBi or RoPE. As ALiBi
was originally introduced for the decoder only models and there is no official adoption of it yet13

for the encoder models (without causal masking), we follow the best practices found in https:
//iclr-blogposts.github.io/2024/blog/alibi-mlm/ of nonsymmetric ALiBi with
different slopes instead of symmetric version used by (Lee et al., 2022).

13See discussion in https://github.com/ofirpress/attention_with_linear_biases/
issues/5.
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Table 14: Word error rate (%) on LibriSpeech dev/test sets for post-LayerNorm transformer (255M)
with either SoftmaxAttn (w/o QK norm) or SigmoidAttn (by default w/ LayerScale, w/ QK norm,
w/ b = − log n) trained on LibriSpeech 100h data. Hyper-parameters can be found in Table 12.

ATTN PE DEV-CLEAN TEST-CLEAN DEV-OTHER TEST-OTHER

SOFTMAX CAPE 6.4 6.5 18.4 18.2
+ QK NORM 6.1 6.3 18.2 18.1

SIGMOID 8.0 8.4 22.7 22.7
- QK NORM 7.5 7.9 22.1 27.6
- LAYERSCALE UNSTABLE, GRADIENT NORM AND LOSS SPIKES
- QK NORM - LAYERSCALE 6.5 6.9 19.9 20.1

SIGMOID (b = −10, LEARNABLE) 8.7 9.4 23.5 24.0

SOFTMAX ROPE 6.6 6.9 18.3 18.5
SIGMOID 6.8 7.1 20.8 20.8
SIGMOID (b = −10, LEARNABLE) 8.7 9.4 23.5 24.0

SOFTMAX ALIBI 6.4 6.9 18.3 18.3
SIGMOID 6.9 7.2 20.8 21.1
SIGMOID (b = −10, LEARNABLE) 6.8 7.1 20.4 20.5

Table 15: Word error rate (%) on LibriSpeech dev/test sets and TED-LIUM v3 (Hernandez et al.,
2018) (“TED”, joint validation and test sets with split according to audio duration) for conformer
(104M) with RoPE and with either SoftmaxAttn or SigmoidAttn (w/ LayerScale, w/ QK norm, w/
b = − log n) trained on LibriSpeech 960h data (average duration is 10-15s). Hyper-parameters can
be found in Table 12.

ATTN DEV-CLEAN TEST-CLEAN DEV-OTHER TEST-OTHER TED 0-10S TED 10-20S TED 20-30S TED 30S+

SOFTMAX 2.2 2.5 5.4 5.6 13.0 11.1 13.2 7.1
SIGMOID 2.3 2.5 5.6 5.8 13.5 10.8 13.3 10.2
SIGMOID (b = −10, LEARNABLE) 2.4 2.7 5.8 5.8 12.9 11.1 14.1 54.9

G.4.2 RESULTS AND ABLATIONS

Initial investigation on post-LayerNorm and pre-LayerNorm transformers on both LibriSpeech 100h
and 960h revealed that SigmoidAttn without any bias is unstable resulting in huge and frequent
gradient norm and training loss spikes throughout the training which in turn result in spikes of
validation and test WER, see Figure 29. Neither LayerScale nor QK norm were able to stabilize the
training, though we did not observe any model divergence.

Further experiments with bias term in the SigmoidAttn definition for post-LayerNorm transformers
on LibriSpeech 100h reveal that training is now stable (only few marginal spikes in gradient norm
occur, while train loss is smooth all the time). However, both LayerScale and QK norm restrict
model capacity thus not matching SoftmaxAttn. Moreover, some combination of them is needed
for the stable training, though w/o both of them we got the best performance for SigmoidAttn (still
behind SoftmaxAttn), see Table 14. We believe, further adaptation and deeper investigation is
needed for SigmoidAttn and post-LayerNorm, though recent advances in machine learning do not
use post-LayerNorm models due to high training instability even for SoftmaxAttn.

Switching to pre-LayerNorm transformers and varying the depth of the models lead to stable training
with SigmoidAttn and bias term b = − log n with few (2-5 times) spikes in the gradient norm and
smooth loss. In this case, SigmoidAttn matches results for SoftmaxAttn and they both generalize
to TED-LIUM data similarly, see Table 13. If the bias term is removed, SigmoidAttn can still match
SoftmaxAttn but large spikes in gradient norm and loss can occur.

Finally, we experiment with a conformer model, in Table 15. Again, we found that bias term
b = − log n stabilizes training. The learnable b = −10 works though we see significant gradient
norm spikes while the train loss remains smooth. Besides, b = − log n generalizes well to longer
sequences while learnable b = −10 fails to do so with RoPE for conformer. Overall, SigmoidAttn
is able to match SoftmaxAttn having stable training with b = − log n.

In experiments with different variants of bias term for SigmoidAttn, the bias b = − log n is found
to be the most stable (only few marginal gradient norm spikes are observed with the train loss
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Figure 29: ASR Transformer model (255M) training with post-LayerNorm (left) and pre-LayerNorm
(right) on LibriSpeech 960h with SigmoidAttn (w/ bias term, b = 0, w/o QK norm, w/ LayerScale)
or with SoftmaxAttn. Huge gradient norms and training loss spikes are observed for SigmoidAttn
which can result in worse final model performance hence models for SigmoidAttn are unstable.
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Figure 30: ASR Transformer model
(255M) training with pre-LayerNorm
on LibriSpeech 960h with SigmoidAttn
(w/ bias term, b = − log n, w/ QK norm,
w/ LayerScale) and different positional
embeddings CAPE, RoPE, ALiBi. The
bias b is able to stabilize SigmoidAttn
training: smooth training loss and only
marginal rare spikes in gradient norms
are observed.

being smooth) and it provides similar performance as SoftmaxAttn in most settings. The source of
instability is coming from the larger attention output norms (80k for CAPE, 40k for RoPE and 20k for
AliBi while being 200 for SoftmaxAttn). This happens due to high attention weight of every token
which can be biased towards zero with a bias term in SigmoidAttn definition. Preliminary results to
connect this to the local attention property needed at the beginning of the training for stable training
failed, as local attention did not converge well at all (it is deactivated after some initial training).
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Table 16: Word error rate (%) on LibriSpeech dev/test sets and TED-LIUM v3 (Hernandez et al., 2018)
(“TED”, joint validation and test sets split according to duration) for transformer (255M params) with
either SoftmaxAttn or SigmoidAttn (LayerScale and QK norm are used with b = − log n) trained
on LibriSpeech 960h data (mean duration is 10-15s). Hyper-parameters are in App. G.4. H-Norm
corresponds to hybrid-norm, no LS-Attn corresponds to removing the LayerScale from the attention
outputs, and no LS corresponds to removing the LayerScale from both the attention and MLP outputs.

ATTN PE DEV-CLEAN TEST-CLEAN DEV-OTHER TEST-OTHER TED 0-10S TED 10-20S TED 20-30S TED 30S+

SOFTMAX
CAPE

2.2 2.3 5.6 5.7 12.4 10.5 11.9 9.1
SIGMOID 2.2 2.4 5.2 5.5 12.4 10.3 12.3 9.7
SIGMOID, b = − log(maxbatch n) 2.1 2.3 5.2 5.3 12.2 10.6 12.0 9.3

SOFTMAX

ROPE

2.2 2.2 5.4 5.5 12.7 10.6 12.8 9.5
SIGMOID 2.0 2.3 5.2 5.4 12.3 10.1 12.3 8.6
SIGMOID, b = − log(maxbatch n) 2.1 2.3 5.0 5.1 12.3 10.1 12.1 10.4
SIGMOID (H-NORM), NO QK-NORM, NO LS-ATTN 2.1 2.2 5.0 5.0 11.8 10.2 12.3 10.8
SIGMOID (H-NORM), NO LS-ATTN 2.1 2.3 5.0 5.1 12.0 10.2 12.4 11.4
SIGMOID (H-NORM), NO QK-NORM, NO LS 2.2 2.3 5.6 5.6 13.2 10.9 13.5 11.5

SOFTMAX
ALIBI

2.1 2.2 5.3 5.4 12.3 10.7 12.1 8.6
SIGMOID 2.1 2.3 5.0 5.1 12.3 10.5 12.6 9.1
SIGMOID, b = − log(maxbatch n) 2.0 2.3 5.2 5.2 12.3 10.5 11.9 10.2

To fully benefit from the improved throughput of FLASHSIGMOID, for the bias term b = − log n
in SigmoidAttn, we experimented with configuration when the maximum audio duration in the
minibatch is used as n resulting into non-trainable bias scalar which changes between minibatches
as we use dynamic batching. Comparison between the bias vector with per sample own duration
normalization and the bias scalar as maximum duration in the minibatch is shown in Table 16: final
model performance is similar and stability is same (only 2-3 minor spikes in CAPE for gradient
norms are observed). Thus, per batch maximum audio duration can be used with b = − log n as the
final configuration.

We also experimented with hybrid-norm (see Table 16) to check if it is able to stabilize the attention
magnitudes as well as gradient norms. We did ablation with configuration similar to Table 16 with
the following changes: LayerScale after attention is replaced to LayerNorm, only RoPE is used for
positional embedding; we either keep or remove QK-norm and we either keep or remove LayerScale
in MLP part of transformer block.

First, for all variants we observe that training loss and gradient norms are smooth without any spikes
during training while we see abnormally large attention activations compared to all prior experiments.
Second, while we observe that QK-norm or its removal behave similarly, the LayerScale on top of
MLP output is necessary to get performance on par with SoftmaxAttn or with SigmoidAttn with
bias term.

G.5 SIMPLE EXPERIMENTS

G.5.1 K–SUMMATION PROBLEM DEFINITION

Here we look at a synthetic, simple task in order to investigate the behavior of softmax and sigmoid
attention activations. The problem chosen is to minimize the MSE loss of a Rn → R target function.
In the first half of each input are samples from a N (0, 1) distribution, and the second half is a k-hot
binary vector indicating which values in the first half to sum.

The results presented here are for the n = 40 problem with various values for k. Where a transformer
is used, the transformer is a single layer to aid visualization. In all cases (unless noted otherwise),
the optimizer is Adam with a constant learning rate of 0.001, and the training data is continuously
generated to preclude over-fitting.

A few examples for n = 10 (not drawn from N (0, 1)) are shown below. Inputs in the second half of
the input are show in orange only as a visual aid.

1 2 3 4 5 0 0 0 0 1 → 5
1 2 3 4 5 1 0 0 0 1 → 6
8 1 2 0 5 0 1 1 1 0 → 3
2 0 2 2 2 1 1 0 1 0 → 4
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G.5.2 COMPARISON TO SOFTMAX

In Figure 31, we see the performance of three architectures on the k-summation problem as k
increases. The sigmoid activated transformer has similar scaling to the softmax activation.

Figure 31: Final loss is shown after training convergence as k-summation problem complexity
increases. The ReLU MLP has two hidden layers (900, 300) for 307k parameters, while the
transformer has an embedding dimension of 120, 8 heads, and an MLP ratio of 4, giving 187k
parameters. The SigmoidAttn is applied after a learned offset initialized to -4, A+param(-4).

G.5.3 ATTENTION EVOLUTION

In Figures 32 and 33, forty samples are used to monitor the single head, single layer post-activation
attention matrix as training progresses. In Figure 32, the distribution of values is visualized over
time; note the sigmoid attention is more variable but reaches comparable values at convergence. The
main difference at convergence is that the sigmoid has fewer high magnitude values than softmax
indicating a more distributed attention.

Softmax Sigmoid

Figure 32: The post-activation attention evolves during training on the k = 1, n = 40 summation
problem. The model has one head to simplify the visualization. Forty repeated test samples are used.

In Figure 33, metrics on the post-activation attention matrices are used and show comparable behavior
in the first half of training. In the second half of training, the SigmoidAttn can be seen to reduce in
norm and in sparsity. (see following discussion of Figure 34 for further insights).

In Figure 34, we see post-activation attention values for eight samples at training progresses. The
most notable difference between the activations is, that by the end of training, the SigmoidAttn is
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Norm Hoyer Sparsity

Figure 33: Metrics on the post-activation attention evolve during training on the k = 1, n = 40
summation problem. The model has one head to simplify the visualization. Quartiles and mean from
40 repeated test samples are shown. On the right, the Hoyer Sparsity (Hurley & Rickard, 2009) is used

to measure the change in sparsity as training progresses: Hoyer :=
(√

n−
∑

j cj√∑
j c2j

)
(
√
n− 1)−1.

less sparse in the N (0, 1) self-attention in the upper-left quadrant. We can see that softmax tends to
produce sparser values (as it is designed to) while sigmoid controls the magnitude and location of
peak attention independently, leading to a less sparse attention at the end of training.

Figure 34: For 8 samples, the post-activation attentions is visualized as training progresses on the
k = 1, n = 40 summation problem. The model has one head to simplify the visualization. The
attention is shown in pairs for each sample with softmax attention is in black and sigmoid is in blue.
A 2× 2 block structure is evident in both cases, resulting from each halve of the input containing
different information.

G.5.4 PAIR REPEAT PROBLEM

We define a synthetic task of identifying if the first two symbols in a sequence repeat. The symbols,
si below come from a fixed vocabulary of size K, and the repeat location (when present) is uniformly
distributed in the sequence.

f(s0, s1, s2, ..., sN ) =

{
1, if ∃ n > 1 | (s0, s1) = (sn, sn+1),

0 otherwise
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A simple two layer transformer is trained on this problem. The model has an embedding dimension
of 160, MLP ratio of 4, QK norm, and layers with eight heads. The results for different model
architectures are shown in Figure Figure 35. The maximum input length is 22, K = 9, shorter lengths
are padding with value K, and the training set only contains lengths 14 and 15. A cosine learning
rate schedule with 5% linear warmup and a maximum learning rate of 1e-3 is used with the Adam
optimizer.

In this result, we see the sigmoid activation has higher data efficiency and similar fall-off in the out of
distribution cases. From shorter runs, we estimate that the softmax network would fit the training
with 4–5x more data. Our conjecture is that the two layer transformer more easily learns the pair
finding task with sigmoid because softmax is biased to focus on single values, though it is unclear
why multiple heads are not able to compensate for this proposed cause in the softmax case.

Figure 35: Validation accuracy for out of distribution sequence lengths is shows after 5M samples of
training; trained lengths are shown with vertical lines. Quartiles and means are shown from six trials.
The MLP has two hidden layers, ReLU activation, and a similar number of parameters. The sigmoid
transformer has a learned offset initialized to -4.

G.6 PRACTITIONER’S GUIDE

In Table 17 we summarize recommended settings for practitioners who aim to use SigmoidAttn for
training in their respective domains / learning scenarios. While each setting has fully enumerated
hyper-parameters listed in the Appendix, we highlight some sane SigmoidAttn choices below.

Table 17: Simplified recipe for different domains and tasks with Sigmoid Attention. S/C/A/R refers
to using any of SinCos, CAPE, ALiBi or RoPE positional encoding methods.

DOMAIN OBJECTIVE MODEL SIZE POS EMBED QK NORM LAYERSCALE SIGMOID BIAS NORM STRATEGY

VISION SUPERVISED 87M LEARNABLE YES YES NO PRE-NORM
BYOL 87M LEARNABLE YES YES NO PRE-NORM

SIMCLR 87M SINCOS YES YES NO PRE-NORM
MAE 304M LEARNABLE YES YES YES PRE-NORM

ASR SUPERVISED (CTC) 100M-250M S/C/A/R YES YES YES PRE-NORM
SUPERVISED (CTC) 100M-250M ROPE NO YES NO HYBRID-NORM

AR LANGUAGE NEXT-TOKEN (<=2K SEQ LEN) 1B ALIBI YES NO YES PRE-NORM
NEXT-TOKEN (<=2K SEQ LEN) 1B ALIBI YES NO NO HYBRID-NORM
NEXT-TOKEN (>2K SEQ LEN) 1B ALIBI YES NO NO HYBRID-NORM

Stabilizing larger models beyond sequence length 2048: We propose a non-learned scalar
bias to mitigate large attention norms with SigmoidAttn (Appendix E), but observe instabilities
at sequence length n = 4096 for autoregressive language modeling (Section 5.5). Hybrid-norm
(without learnable affine parameters) resolves these instabilities (Table 11). Hybrid-norm differs
from post-norm, which normalizes the combined residual data stream and attention block output.
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Post-norm Hybrid-norm
norm(x+ σ(QKT /

√
dqk)V ) x + norm(σ(QKT /

√
dqk)V )

Hybrid-norm is used in models such as Grok-1 (xai-org, 2024) and frameworks such as Praxis
(Google, 2024) under the normalization strategy "primer_hybrid". When both SoftmaxAttn and
SigmoidAttn use hybrid-norm, we observe similar kernel speedup times as highlighted in Section 4.
However, with LayerNorm (Lei Ba et al., 2016) only for SigmoidAttn, a token length of 10,000
is needed to achieve a performance gain of ∼ 5.04% for full self-attention and a token length of
1024 is needed to achieve a performance gain of 8.36% for causal self-attention on H100 GPUs.
For LayerNorm (with and without affine terms), we summarize approximate regimes for positive
throughput gains in Table 18.

ATTENTION TYPE
FLASHSIGMOID WITH LAYERNORM VERSUS FLASHATTENTION2 COMPARISON

A100 H100

AFFINE PROJECTION NO AFFINE PROJECTION AFFINE PROJECTION NO AFFINE PROJECTION

FULL 16384 (5.22% ↑) 12544 (5.08% ↑) 10000 (4.82% ↑) 10000 (5.04% ↑)

CAUSAL 12544 (4.18% ↑) 5184 (4.14% ↑) 2048 (7.65% ↑) 1024 (8.36% ↑)

Table 18: FLASHSIGMOID along with LayerNorm vs. FLASHATTENTION2 on A100 GPUs. Based
on benchmarking on a set of randomly sampled tokens from the range [64, 60000], we report the token
T ∗ after which FLASHSIGMOID with normalization consistently outperforms FLASHATTENTION2,
along with the total CUDA time speed-up averaged over subsequent tokens (T > T ∗).
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