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Abstract

Taxonomy Expansion, which models complex001
concepts and their relations, can be formulated002
as a set representation learning task. The gen-003
eralization of set, fuzzy set, incorporates uncer-004
tainty and measures the information within a005
semantic concept, making it suitable for con-006
cept modeling. Existing works usually model007
sets as vectors or geometric objects such as008
boxes, which are not closed under set opera-009
tions. In this work, we propose a sound and010
efficient formulation of set representation learn-011
ing based on its volume approximation as a012
fuzzy set. The resulting embedding framework,013
Fuzzy Set Embedding (FUSE), satisfies all set014
operations and compactly approximates the un-015
derlying fuzzy set, hence preserving informa-016
tion while being efficient to learn, relying on017
minimum neural architecture. We empirically018
demonstrate the power of FUSE on the task of019
taxonomy expansion, where FUSE achieves re-020
markable improvements up to 23% compared021
with existing baselines. Our work marks the022
first attempt to understand and efficiently com-023
pute the embeddings of fuzzy sets.024

1 Introduction025

Taxonomy is a crucial data structure for model-026

ing semantic concepts, hence of great importance027

for NLP (Lu et al., 2023; Xu et al., 2023; Yu028

et al., 2023). Concepts in a taxonomy can often029

be viewed as sets, the most fundamental object030

in mathematics, whose operations directly link to031

First Order Logic (FOL). For example, in a science032

taxonomy, “Biology” and “Computer Science” are033

semantic concepts, whose intersection results in034

a new concept “Bio-informatics”, and “Diffusion035

Model” and “GAN” belong to a coarser-grained036

concept, “Generative Model”. Usually, sets are037

seen as a fixed collection of objects. For example,038

the set N consists numbers {0, 1, · · · } by definition.039

However, in the context of semantic concepts, their040

meanings can change overtime and incorporate am- 041

biguity. For example, “beauty" is a concept that 042

has shifted meaning overtime, and “deep learning 043

models" can expand to have more elements with 044

more discoveries made by the community. This 045

underlying uncertainty and ambiguity are instead 046

captured by a fuzzy set (Zadeh, 1999, 1978), an 047

extension of classical sets. 048

A wide range of works have been developed for 049

set representation learning. Early efforts are made 050

to construct simple vector embeddings (Mikolov 051

et al., 2013; Pennington et al., 2014; Devlin et al., 052

2019; Vaswani et al., 2023; Radford et al., 2018) 053

based on similarity measures. To better model 054

complex relationships such as asymmetrical rela- 055

tionships between concepts, geometric embeddings 056

(Jiang et al., 2023; Hamilton et al., 2019; Ren et al., 057

2020; Ren and Leskovec, 2020) have been devel- 058

oped, which leverages the inherent geometric prop- 059

erties to model hierarchical relationships. However, 060

these methods cannot address all the set operations 061

including intersection, union, and complement. For 062

example, box embedding (Jiang et al., 2023; Ren 063

et al., 2020; Huang et al., 2023) doesn’t define 064

union and complement of boxes. Worse yet, ex- 065

isting geometric objects are not closed under set 066

operations: the union of two boxes is no necessar- 067

ily a box, which can compromise the consistency 068

of reasoning in the embedding space. 069

In this paper, we directly tackle the challenge of 070

fuzzy set representation learning for concept mod- 071

eling. Our objective is to use their volume to quan- 072

tify their information and their associated uncer- 073

tainty. However, learning powerful representations 074

for fuzzy sets is challenging. First, although ex- 075

tensive efforts have been made to incorporate deep 076

learning techniques into fuzzy set modeling (Chen 077

et al., 2022; Dasgupta et al., 2022b; Zhu et al., 078

2022), their training procedure could be expensive 079

when the universe of discourse is large. Second, 080

compared with geometric embeddings, which have 081
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clear definitions of volume, it is unclear how to082

model the volumes of fuzzy sets due to the intro-083

duction of uncertainty and their abstract nature.084

To tackle the previous challenges, we propose085

a principled and learnable model named Fuzzy Set086

Embedding (FUSE) for fuzzy set representation087

learning. The core of FUSE is to introduce a com-088

pact approximation of fuzzy sets and then prove089

that FUSE can arbitrarily approximate the original090

fuzzy sets under reasonable regularity conditions.091

FUSE avoids the computational burden of account-092

ing for all the elements in the space of discourse at093

once, while enjoying the properties of fuzzy logic,094

hence satisfying all set operations. We further in-095

troduce a rank-based loss and asymmetric relations096

to enhance set representation learning. To validate097

the effectiveness of our proposed FUSE, we eval-098

uate on taxonomy expansion task and show that099

FUSE can achieve the performance improvement100

up to 23% compared with state-of-the-art baselines,101

and we explore the effectiveness of our theoretical102

formulation through various ablation studies.103

Our main contributions can be summarized as104

follows: (a) We propose an embedding framework105

to model fuzzy sets and show that the embeddings106

satisfy all set operations and are closed under set107

operations. (b) We systematically construct this108

embedding as a proper approximation of fuzzy109

sets. (c) We demonstrate the effectiveness of this110

embedding framework on taxonomy expansion by111

comparing it against previous vector and geometry-112

based embedding methods.113

2 Related Work114

2.1 Taxonomy Expansion115

Taxonomy organizes concepts as a hierarchical116

graph, where nodes are concepts and edges denote117

“is-a” relationships between parent and child nodes.118

As new knowledge is emerging, taxonomy expan-119

sion seeks to expand existing taxonomy with new120

nodes, which is a fundamental task for many real-121

world applications such as information filtering and122

recommendation. Existing works have focused on123

using a lexical vector representation in the spirit of124

language modeling and word embedding (Chang125

et al., 2018; Snow et al., 2004; Mikolov et al., 2013;126

Pennington et al., 2014). More recently, geomet-127

ric embeddings such as box embedding has been128

used to better model the asymmetric relationship129

between parent and child nodes (Jiang et al., 2023).130

Compared to vector-based representations, they im-131

proved both the predictive performance and inter- 132

pretability of the learned embeddings. 133

2.2 Set Representation Learning 134

Set representation learning seeks to learn low- 135

dimensional representations of data with a notion 136

of volume and coverage. It is desirable when the 137

representations can capture the rich semantic infor- 138

mation and the complex relationships of data (Rossi 139

et al., 2020; Wang et al., 2021; Zhang et al., 2022; 140

Zhong et al., 2023). For example, language mod- 141

eling (Devlin et al., 2019; Vaswani et al., 2023; 142

Radford et al., 2018) has aimed to learn vectors 143

to represent combinatorically intractable combi- 144

nations of human languages. In this context, se- 145

mantic concepts can be viewed as sets. Recently, 146

geometry-based approaches (Ren et al., 2020; Das- 147

gupta et al., 2022b; Ren and Leskovec, 2020; Chen 148

et al., 2021) have further improved the efficiency 149

of the representations by enabling set operation 150

such as intersection, but they fail to cover all op- 151

erations and are not closed under them. Fuzzy set 152

theory has explicitly formulated a way to represent 153

the ambiguity of sets such as concepts in taxon- 154

omy construction, while automatically satisfying 155

all desired properties of sets (Chen et al., 2022; Zhu 156

et al., 2022). It is an extension to classical set the- 157

ory with extensive applications (van Krieken et al., 158

2022; Wagner and d’Avila Garcez, 2022; Liang 159

et al., 2023; Yu et al., 2022; Xu et al., 2022). For 160

example, (Michael Boratko and McCallum, 2022) 161

and (Dasgupta et al., 2022b) have explored the con- 162

nection between fuzzy sets and box embeddings to 163

model words. However, existing fuzzy set repre- 164

sentations lack a principled approach on what the 165

low-dimensional representation stands for, and can 166

be inefficient when the number of sets to model 167

increases. We propose a novel solution by identi- 168

fying the central characterization of a fuzzy set as 169

its volume and approximate it using a compact rep- 170

resentation, while yielding superior performance 171

on the set representation learning task of taxonomy 172

expansion. 173

3 Preliminary 174

3.1 Fuzzy Sets 175

In contrast to classical set theory, which assigns a 176

Boolean value to whether an element belongs to 177

a set, a fuzzy set (Zadeh, 1978) assigns a value 178

between 0 and 1 to denote a degree of member- 179

ship. For a universe of discourse U , a fuzzy set is 180
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mathematically defined as a tuple A = (U,mA),181

where A ⊆ U and mA : U → [0, 1] is its mem-182

bership function. For any element x ∈ U , mA(x)183

represents the degree of membership of element x184

in A. Fuzzy set models the uncertainty of mem-185

bership by encoding imprecision and ambiguity186

in concepts. As an example, it can be used to187

describe the compatibility between two concepts,188

such as “is-a" relationship. For example, for a con-189

cept “Kobe Bryant" and a set of entities {Basket-190

ball Player, Team Owner, Entrepreneur}, a fuzzy191

membership function can be represented as the set192

{1.0, 0.1, 0.9}, each signifying “Kobe Bryant"’s193

compatibility with each of the concepts in the set.194

Similar to standard sets, intersection, union, and195

complement between fuzzy sets are defined. Fuzzy196

set is related to fuzzy logic, which defines logi-197

cal operations over soft truth values and follows198

Gödel, product, or Łukasiewicz systems. For a de-199

tailed discussion of fuzzy logic systems, see (Chen200

et al., 2022). For language modeling, fuzzy sets201

can be used to model the ambiguity of the semantic202

meanings of words (Dasgupta et al., 2022a). In tax-203

onomy, fuzzy sets can be used to model concepts.204

3.2 Possibility Theory205

The membership function mA associated with a206

fuzzy set A is constructed based on the theory of207

possibility (Zadeh, 1999, 1978). In the formulation208

of (Zadeh, 1978), to reason about linguistic con-209

cepts such as “likely”, a fuzzy set can be endowed210

with a probability-possibility distribution:211

Definition 1 (Possibility-Probability Distribu-
tion). Let U be the universe of discourse, and
(U,F , P ) be a probability space, where F is the
sigma-algebra and P is the probability measure.
Let X be a fuzzy variable that can take any val-
ues x ∈ U , and let F be a fuzzy subset of U with
membership function mF , then the possibility of
probability of X with respect to F is:

πP,X =

∫
U
πXdP =

∫
U
mFdP.

This construct can be seen as the measurement212

of information and uncertainty in the fuzzy variable213

X , making it a desirable quantity to approximate214

when learning a low-dimensional embedding of a215

fuzzy set. In our Fuzzy Set Embedding, we gener-216

alize definition 1 in definition 4.217

4 Proposed Framework: FUSE 218

We now present Fuzzy Set Embedding (FUSE) 219

for learning set representations in a principled way. 220

4.1 Fuzzy Set Embedding 221

To construct a proper embedding for fuzzy sets, we 222

assume that the universe of discourse U admits a 223

finite partition, {Ui}di=1, such that U =
⋃d

i=1 Ui, 224

and Ui, Uj are disjoint if i ̸= j. For a formal 225

description of this assumption, see Appendix B. In 226

particular, this indicates that fuzzy set membership 227

function mA has an associated simple function: 228

Definition 2 (Simple Fuzzy Set). Let (U,F , ξ) be 229

a measure space and Let U =
⋃d

i=1 Ui be a finite 230

partition of the universe U , and let A ∈ F and mA 231

its membership function, then the Simple Fuzzy Set 232

associated with A is the tuple (U, µA), where: 233

µA(x) :=
d∑

i=1

1{x∈Ui}µ
(i)
A (x), ∀x ∈ U (1) 234

is the Simple Membership Function of A, where 235

1 is the indicator function and ∀x ∈ U,∀i ∈ 236

{1, · · · , d}: 237

µ
(i)
A (x) := sup

x∈Ui

mA(x). (2) 238

µA can be summarized in d values 239

µ
(1)
A , · · · , µ(d)A , each determined by the supremum 240

of mA in the corresponding partition. To facilitate 241

the standard application in deep learning, we for- 242

mulate an alternative representation in vector form 243

to distinguish it from the functional representation 244

denoted in Eqn. 1. 245

Definition 3 (Fuzzy Set Embedding). Let A = 246

(U, µA) be a simple fuzzy set defined on the mea- 247

sure space (U,F , ξ), where U =
⋃d

i=1 Ui, then its 248

corresponding Fuzzy Set Embedding (FUSE) is 249

the d-dimensional vector: 250

UA := [µ
(1)
A , · · · , µ(d)A ], (3) 251

Since we are reducing the reasoning space from 252

[0, 1]|U | to [0, 1]d, we need to examine the loss in- 253

curred by this reduction. To reason about it in 254

detail, we provide the following definition inspired 255

by (Zadeh, 1978; Nahmias, 1978) to quantify the 256

amount of information covered by the fuzzy sets 257

across the entire universe U . 258

Definition 4 (Simple Fuzzy Measure). Let U
be a compact universe of discourse and let A =
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Figure 1: Illustration of set operations under fuzzy set membership function for two sets A,B ∈ U . mA is the fuzzy
set membership function and µA the corresponding simple membership function (Definition 2). By using the fuzzy
set representation, all the set operations (intersection, union, complement) are well-defined (Gödel definition is
used for easier illustration), and after set operations, results are still fuzzy set. For illustration, here we partition the
universe U into 5 partitions {U1, · · · , U5}.

(U,mA) be a fuzzy subset of U . Let (U,F , ξ) be a
measure space defined on U , then the fuzzy mea-
sure of the fuzzy set (U,mA) is:

P(A) :=
∫
U
mAdξ.

Then a Simple Fuzzy Measure of a simple fuzzy
set A = (U, µA) is defined as:

Pµ(A) :=

∫
U
µAdξ.

Given a finite partition, furthermore:259

Pµ(A) =

d∑
i=1

∫
Ui

µ
(i)
A dξ =

d∑
i=1

µ
(i)
A ξ(Ui), (4)260

where ξ(Ui) corresponds to the measure of parti-261

tion set Ui. If ξ is a probability measure, then Def-262

inition 4 corresponds to Definition 1. In practice,263

we examine choices of different measures empir-264

ically in Section 5. In short, a simple fuzzy set265

A = (U, µA) approximates the fuzzy measure of266

the underlying fuzzy set (U,mA). We state this267

observation formally in theorem 1 and illustrates it268

in Figure 2(a).269

Theorem 1. Let U be a compact universe of dis-
course and (U,F , ξ) a measure space. Let A
be a fuzzy subset of U and mA its membership
function that’s measurable. Moreover, let µA be
its simple membership function, then ∀ϵ > 0,

∃δ > 0, d > 0 such that if dδ = ξ(U) and
||Ui|| := mini ξ(Ui) < δ, we have:

0 < Pµ(A)− P(A) < ϵ.

The fuzzy measure of a simple fuzzy set is an 270

upperbound for the fuzzy measure of its underly- 271

ing fuzzy set and converges to the possibility of 272

its underlying fuzzy set when the partition is suffi- 273

ciently fine-grained. With suitable assumption on 274

the function mA, we can further establish the rate 275

of convergence: 276

Corollary 2. Following the condition in definition 277

4, if in addition mA is Lipschitz-continuous or of 278

bounded variation, then the convergence rate in 1 279

is O(1/n), where n is the number of partitions. 280

4.2 Embedding-based Fuzzy Set Operators 281

FUSE combines set theory and measure theory and 282

provides a theoretically sound embedding. For an 283

entity x ∈ U , we treat it as a concept and asso- 284

ciate with it a fuzzy subset (U,mA), representing 285

its compatibility with other concepts. We can treat 286

every entity as a fuzzy set embedding, define set 287

operations in the language of set theory, and com- 288

pute them using vector operations. Suppose we 289

have two entities x, y ∈ U , and UA,UB ∈ [0, 1]d 290

are the two fuzzy set embeddings associated with 291

them, we can define following operations: 292

• Fuzzy Mapping: Every entity/element is a sin- 293

gleton set, and M maps an entity x ∈ U to its 294
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Figure 2: On the left plot (a), we illustrate when the
universe is a compact subset of R. Fuzzy measure P
is the Riemann Integral of mA on embedding space U
(the orange region), while the Simple Fuzzy Measure
Pµ is its upper Darboux sum (the yellow region). On
right plot (b), we demonstrate that for a fixed number
of partitions, different choices of partition size result in
different approximation of P: the bottom-right partition
has better approximation than the top-right partition,
since it results in less over-estimation.

associated fuzzy set embedding U{x} ∈ [0, 1]d.295

In the case of taxonomy expansion, the input is296

the word vector x ∈ Re obtained from a pre-297

trained language model like Bert (Devlin et al.,298

2019). To construct a map between the word vec-299

tor and its associated fuzzy set embedding, we300

use a neural networks f : Re → [0, 1]d:301

UA = M(A; θ) = σ(f(x; θ)) ∈ [0, 1]d, (5)302

where σ is a normalization constraint to make the303

embedding space compact, such as sigmoid, 0-1304

clamping, or Layernorm (Ba et al., 2016).305

We can futher define set operations by product306

logic. Other fuzzy systems, such as Gödel logic, is307

illustrated in Fig. 1.308

• Intersection: The intersection between the two309

fuzzy sets A ∩ B can be computed by element-310

wise product t-norm (Klement et al., 2013):311

UA∩B = UA ⊙ UB. (6)312

where ⊙ is element-wise multiplication.313

• Union: The union of two fuzzy sets A ∪B can314

be computed by element-wise product t-conorm:315

UA∪B = UA + UB − UA ⊙ UB. (7)316

• Complement: The complement of a fuzzy set A317

denoted as Ac can be computed as:318

UAc = 1− UA. (8)319

4.3 Taxonomy Expansion with FUSE 320

In this part, we use taxonomy expansion task to 321

showcase the advantages of representing concepts 322

with fuzzy set embeddings. 323

Membership Prediction with FUSE. After rep- 324

resenting a concept with fuzzy sets, the core task of 325

taxonomy expansion is to determine whether an el- 326

ement y belongs to a setA, and this is often used as 327

a score function in pair-based relationship in taxon- 328

omy expansion task (Jiang et al., 2023; Shen et al., 329

2020; Yu et al., 2020). Using our framework, for 330

some element y ∈ U , we can apply the entity map- 331

ping function M to find its fuzzy set embedding 332

U{y}. Then we can simply measure the degree of 333

membership of element y in some other fuzzy set 334

A by considering the fuzzy measure of the fuzzy 335

set embedding UA∩{y} = UA ⊙ U{y}, which we 336

denote as Pµ(A ∩ {y}) and compute it as: 337

Pµ(A ∩ {y}) =
d∑

i=1

(
U (i)
A U (i)

{y}

)
ξ(Ui). (9) 338

In training, we model the volume using global train- 339

able weights w = {w1, · · · , wd} with a normaliza- 340

tion transform to restrict the type of measure ξ. 341

Therefore, we approximate PA∩{y} and define the 342

standard score function: 343

ψ(y,A) =

d∑
i=1

µ
(i)
A∩{y}wi = (UA ⊙ U{y})

Tw.

(10)

344

and the corresponding ranking-based loss: 345

L(y,A) =− log σ (ψ(y,A)− γp)

− 1

k

k∑
i=1

log σ
(
γn − ψ(y′, A)

) (11) 346

where (y,A) are positive pairs and (y′, A) negative 347

pairs, and γp, γn are margins for positive and neg- 348

ative predictions. We use different margins since 349

by Theorem 1, fuzzy measure of the fuzzy set em- 350

bedding is an upperbound for the underlying fuzzy 351

set, so the result we obtain is overestimating the 352

actual fuzzy measure. We provide an ablation study 353

regarding choice of margin in section 5. 354

Incorporating Asymmetric Relation. As sig- 355

nified in (Jiang et al., 2023), membership predic- 356

tion in a taxonomy expansion task usually involves 357

asymmetric relations. For example, parent nodes 358

in a taxonomy usually strictly incorporate the con- 359

cept in the child nodes. Since the score function, 360
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Figure 3: The overview of FUSE used to model concepts in taxonomy. First the entities are converted into vectors
using Bert, then the main Fuzzy Map transforms the vector into a fuzzy set embedding. (a) Training: FUSE is
learned using both a volume-based intersection loss and a volume-based asymmetry loss. (b) Inference: use the
taxonomy probability score to check the degree of containment of a query in the anchor. Here e are entities, E are
their associated fuzzy sets, and U the fuzzy set embeddings.

which uses the intersection between two sets, is361

symmetric, here we propose another score function362

to signify this asymmetry. Suppose we have two363

entities ep, ec ⊆ U , such that ec is a child of ep.364

Let Ep, Ec be their associated fuzzy sets, then we365

can model this relationship by:366

P (ep|ec) =
Pµ(Ep ∩ Ec)

Pµ(Ec)
=

(UEp ⊙ UEc)
Tw

UEc

,

(12)

367

where we use the simple fuzzy measure for each set368

as its volume and use the ratio between the volume369

of Ep ∩Ec and the volume of Ec as the result. For370

a positive child-parent pair (ec, ep), the loss is:371

L+
p = (P (ep|ec)− 1)2, (13)372

whereas for a negative child-parent pair (ec, e′p):373

L−
p = (P (e′p|ec)− 0)2. (14)374

The main difference between Eqn. 10 and the case375

of box embedding in (Jiang et al., 2023) is that the376

volume of a fuzzy set embedding spans the entire377

universe U . We combine the pair-based ranking378

loss and the asymmetric child-parent pair loss:379

Ltaxo(ec, ep) = L(ec, ep) + λ(L+
p + L−

p ), (15)380

where λ is a hyper-parameter to control the strength381

of each loss.382

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

TAXI 16.7 N/A 44.7 13.0 N/A 32.9
HypeNet 16.7 23.7 55.8 15.4 22.6 50.7

Bert+MLP 11.1 21.5 47.9 11.5 15.7 43.6
TaxoExpan 11.1 32.3 54.8 27.8 44.8 57.6

STEAM 36.1 46.9 69.6 36.5 48.3 68.2
BoxTaxo 38.1 47.1 75.4 31.8 45.3 64.7

FUSE 42.3 58.3 77.6 39.9 52.9 73.4
FUSE (λ = 1.0) 43.1 53.3 74.3 43.5 56.6 77.5

Table 1: Results on taxonomy expansion compared to
existing methods. Here bold font refers to the best per-
formance results (compared to baseline) while underline
refers to the second-best performance result. The results
are reported as average over 5 runs. “N/A" is present
since MRR is not applicable to TAXI. FUSE is our
base model while FUSE (λ = 1.0) is the model with
balanced weights for intersection and asymmetric loss.

5 Experiments 383

Dataset: We use two public datasets (Environment, 384

Science) from SemEval-16 taxonomy construction 385

tasks. Following the training setup in (Jiang et al., 386

2023), we sample 20% of the leaf nodes as test set 387

and use the rest as training data. The performance 388

of taxonomy expansion task can be found in table 389

1, where the results are averaged over 5 runs to 390

reduce variance. 391

Metrics: We use three metrics, Accuracy (ACC), 392

Mean Reciprocal Rank (MRR), and Wu & Palmer 393

similarity (Wu&P) to measure the performance for 394
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the baseline models and FUSE.395

Baselines: The baseline comparison models are396

vector-based models like TAXI (Panchenko et al.,397

2016), HypeNet (Shwartz et al., 2016), Bert+MLP398

(Yu et al., 2020), TaxoExpan(Shen et al., 2020),399

STEAM (Yu et al., 2020), and geometry-based400

model like BoxTaxo (Jiang et al., 2023).401
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Figure 4: Trend of model performance with varying
number of partitions on the science dataset.

5.1 Does FUSE Benefit from More Partitions?402

Here we examine the impact of choice of number403

of partitions, since according to theorem 1, as d404

increases, we should expect better approximation405

to the underlying fuzzy set. In this experiment, we406

vary the number of partitions from 100 to 550, with407

increment of 50, and measure the performance of408

taxonomy expansion on both Science and Environ-409

ment datasets, averaged over 5 runs. The resulting410

trend on both datasets can be seen in Figure 4.411

In both cases, we can see a general upward trend412

on model’s average performance when the number413

of partitions goes up. This provides empirical sup-414

port for the theoretical result in theorem 1. The vari-415

ance of model performance tends to increase when416

the number of partitions goes up, which suggests417

that smaller learning rates and other normalization418

for optimization may be considered.419

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

FUSE-sigmoid 45.0 57.2 75.6 40.0 52.7 74.7
FUSE-softmax 7.3 17.3 51.9 21.3 32.0 65.2

FUSE-01 41.3 55.8 75.4 37.3 52.3 72.3
FUSE 42.3 58.3 77.6 39.9 52.9 73.4

Table 2: Results on taxonomy expansion compared
under different choices of normalization on volume
weights. This corresponds to different choices of mea-
sure space.

5.2 Does the Choice of Measure Affect Model420

Performance?421

As for the proposed new score function based on422

the volume of the fuzzy set in Eqn. 10, we study423

the impact of different choices of measure ξ. This424

corresponds to different choices of normalization 425

applied to the volume of each partition. If we fol- 426

low definition 1, then partition volumes follows a 427

probability distribution, indicating a softmax nor- 428

malization on the global weights. Otherwise, we 429

can choose to use sigmoid or 0-1 clamping. Results 430

over 5 runs for different choices of measures can 431

be found in table 2. We observe that the softmax 432

normalization, which enforces the volume weights 433

to follow a probability distribution, doesn’t work 434

well overall. This suggest that the construction we 435

proposed in definition 4 is more suitable than the 436

classical definition in 1. We also observe that using 437

a sigmoid normalization on the volume weights can 438

improve results. 439

5.3 Does Asymmetry Loss Help Taxonomy 440

Expansion Task? 441

In this ablation study, we examine the impact of 442

applying asymmetry losses, since set intersection 443

is a symmetric operation, whereas the membership 444

relation is asymmetric. The value of λ in Eqn. 12 445

controls how much should the asymmetry-based 446

loss affect the training (the greater the value of λ, 447

the greater the impact). The results, averaged over 448

5 runs is in figure 5. We can see a trend of per- 449

formance improvement on Science dataset and an 450

increase in performance for λ > 0 for the Environ- 451

ment dataset. This result validates the importance 452

of modeling asymmetric relations. 453

5.4 Does Wider Margin Affect Model 454

Performance? 455

In this ablation study, we examine the impact of 456

different margins on the learning performance, as 457

presented in Eqn. 11, since theoretically, our con- 458

struction of FUSE over-estimates the volume un- 459

der the fuzzy set. In figure 6, which presents the 460

average result over 5 runs. From the result, we 461

can see that having wider margin (in this case 462

γp = 0.6, γn = 0.4) does benefit the model per- 463

formance, supporting our hypothesis that FUSE 464

over-estimates the volume of a fuzzy set. 465
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Figure 5: Model performance with different strength of
asymmetry, lambda.
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Figure 6: Model performance with different choice of
margins.

5.5 Additional Experiment: Is there Synergy466

Between Different Modeling Choices?467

In this part, we examine the synergy between468

configurations across all the ablation studies per-469

formed. In this case we study the case where470

all the best configurations (λ = 0.5,∆γ = 0.2,471

sigmoid-normalization) are used. We call the re-472

sulting model FUSE-comb(ine) and report the per-473

formance averaged over 5 runs compared to other474

models in table 3. The result doesn’t immediate475

suggest that combining multiple best case scenarios476

would result in optimal performance. The strongest477

performance so far comes from setting λ = 0.5.478

Table 3: Results on FUSE-comb compared with each
individual best configurations

Dataset Environment Science
Metric ACC MRR Wu&P ACC MRR Wu&P

FUSE-sigmoid 45.0 57.2 75.6 40.0 52.7 74.7
FUSE (λ = 0.5) 46.2 58.4 77.7 42.8 55.1 76.3

FUSE (∆γ = 0.2) 38.5 53.2 74.9 41.4 54.6 75.5
FUSE-comb 41.1 53.0 76.4 42.4 54.3 76.7

5.6 Infer about Union and Complement Using479

Trained Embeddings480

In our taxonomy expansion experiment, the model481

is trained using only the volume-based intersection482

and asymmetry losses, without observing pairs of483

sets that are related by union or complements. In484

this case study we examine whether our embedding485

can generalize to these two operations.486

Infer about Set Union: For a parent entity ep in487

the taxonomy and its m child entities ec1 , · · · , ecm ,488

we examine the similarity of union of fuzzy set em-489

beddings of child entities with the fuzzy set embed-490

ding of the parent entity. That is, between U⋃m
i=1 Eci

491

and UEp . To this end, we use the trained fuzzy set492

embedding from the FUSE (λ = 1) model and ap-493

ply union operation in Eqn. 7 among all the child494

fuzzy set embeddings, then we rank the Euclidean495

distance between the obtained fuzzy set embedding496

(union of all child embeddings) against all the exist- 497

ing parent embeddings in the dataset. From 4, we 498

observe that fuzzy set embedding captures union 499

patterns. As an example from the Science dataset, 500

for child entities [“calculus of variations", “analy- 501

sis", “integral calculus"], with parent entity “calcu- 502

lus", the top-3 closest simple fuzzy set embedding 503

corresponds to entity “calculus", “analysis", “geo- 504

physics", and the model’s prediction is closest to 505

the correct parent. 506

Infer about Set Complement: In this case we 507

examine complement by the set operation A \B = 508

A ∩Bc. In particular, the fuzzy set for parent (de- 509

note it A) minus a child fuzzy set (denote it B) 510

should be similar to the union of the remaining 511

children fuzzy set. We follow the union, comple- 512

ment, and intersection operation to compute the 513

fuzzy set embedding in this case, and again we use 514

the embedding from FUSE (λ = 1) model. We 515

compute the Euclidean distance between A ∩ Bc 516

and all the existing child embeddings in the dataset. 517

Here we present MRR and accuracy result in table 518

4. In contrast to union, it seems that complement 519

doesn’t achieve a reasonable performance. This 520

may be due to the fact that the complement of a 521

fuzzy set is taken over the entire universe of dis- 522

course, rather than simply in the scope of all the 523

children entities. 524

Dataset Environment Science
Metric ACC MRR ACC MRR

Union Inference 81.3 85.3 85.4 89.5
Complement Inference 2.9 14.8 11.9 26.6

Table 4: Results on Union and Complement Inference
using FUSE trained only with intersection based loss

6 Conclusion 525

For taxonomy expansion, We propose a novel and 526

theoretically sound Fuzzy Set Embedding (FUSE) 527

to model concepts and relationship between con- 528

cepts that incorporate set operations (intersection, 529

union, complement). We show theoretically that 530

FUSE preserves the information of the fuzzy set 531

with sufficiently fine-grained partitions and demon- 532

strate empirically that it can outperform existing 533

vector-based and geometry-based embedding meth- 534

ods on taxonomy expansion. For future works, we 535

believe that expanding the taxonomy dataset with 536

more complicated combination of set operations, 537

such as First Order Logic (FOL), can further im- 538

prove the model performance. 539
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7 Limitations540

This work is the first attempt to use fuzzy set to541

model concepts in taxonomy expansion. To ex-542

amine only the effectiveness of fuzzy set repre-543

sentation, we only use simple neural architectures544

and use only the child-parent pairs. The full ca-545

pacity of FUSE should be further examined using546

datasets that contain First Order Logic (FOL) state-547

ments, since by construction, fuzzy sets should sat-548

isfy all the fuzzy logic axioms (Chen et al., 2022).549

This suggests future directions to expand taxonomy550

datasets with more complicated queries, and to han-551

dle more graph-structured data in social analysis552

and text mining (Ren and Leskovec, 2020; Ren553

et al., 2020; Chen et al., 2022; Zhu et al., 2022;554

Ju et al., 2023). Moreover, we can explore more555

explicit form of fuzzy membership function, such556

as a mixture of Gumbel boxes, to make the learning557

more concrete.558
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Symbol Description

A,B,C, · · · mathematical sets.
ec, ep, · · · entities in a taxonomy
Ec, Ep, · · · fuzzy sets associated with entities
U The universe of discourse,

the set of all concepts.
N+ The set of all positive integers.
(U,F , ξ) A measure space with universe U ,

sigma-algebra F and a measure ξ.
Ac The complement of a set.
A ∩B Intersection of two sets.
A ∪B Union of two sets.
(A,mA) a fuzzy set, where A ⊂ U,

mA : U → [0, 1].
mA The fuzzy membership function

associated with a fuzzy set.
(A,µA) a simple fuzzy set, where A ⊂ U,

µA : U → [0, 1].
µA The simple membership function

associated with a simple
fuzzy set (A,µA).

(µA,n) a sequence of simple membership
functions with monotonically
finer-grained partitions.

UA The fuzzy set embedding of (A,mA).
P(A) The fuzzy measure (volume)

of a fuzzy set under
some measure space (U,F , ξ).

Pµ(A) The simple fuzzy measure (volume)
of a fuzzy set embedding
under some measure space (U,F , ξ).

M Fuzzy mapping, which maps an input
element into its associated
Fuzzy Set Embedding.

P A probability measure
defined on the space of concepts.

Table 5: Table for all the symbols used in this paper

B Formal Statement of the Compactness 752

Assumption 753

Here we state the assumption regarding the uni- 754

verse of discourse formally: 755

Assumption 1. The universe of discourse U is 756

topologically compact and has an open cover. 757

Assumption 2. The universe of discourseU is mea- 758

surable and is associated with a measure space 759

(U,F , ξ), where F is the σ-algebra and ξ its asso- 760

ciated σ-finite measure. Moreover, ∀A ∈ F , the 761

fuzzy membership function mA : U → [0, 1] is 762

ξ-measurable. 763

C Proof of Main Results 764

In this part we provide the proof sketches of the 765

main results: 766

Lemma 1: Let U be the universe of discourse 767

and A a fuzzy subset of U with continuous member- 768

ship function mA, and let
(
µ
(t)
A

)
be a sequence of 769

simple membership functions of mA in Definition 770

2, such that {Ui}nt
i=1 is a refinement of {Ui}nt−1

i=1 771

(nt > nt−1), when t goes to infinity, then µ(t)A con- 772

verges to mA in the point-wise sense. 773

Proof. The proof takes 2 steps: 774

775

Claim 1: By construction, the sequence
(
µ
(t)
A

)
776

is a sequence of monotonic non-increasing function 777

and it is bounded below by the fuzzy membership 778

function mA. 779

Proof. The case where U is finite or countably infi- 780

nite is straightforward. For the case where car- 781

dinality of U is uncountable but U is compact, 782

we have the following: By definition 2, we have 783

that for i ∈ {1, · · · , d} and n ∈ N, ∀u ∈ Ui, 784

µ
(t)
A (u) = supu∈Ui

mA(u) ≥ mA(u). Hence on 785

the entire domain, µ(t)A (u) ≥ mA(u). So ∀t ∈ N+, 786

m
(t)
A is an upperbound for mA. Since nt > nt−1 787

indicates {Ui}nt
i=1 is a finer-grained partition than 788

{Ui}nt−1

i=1 , and the fact that supremum of a function 789

over finer grained partition is not greater than supre- 790

mum over coarse-grained partition (e.g., supre- 791

mum is monotonic w.r.t partitions), we have a non- 792

increasing sequence of functions. 793

Claim 2: The sequence of functions
(
µ
(t)
A

)
con- 794

verges to mA. 795
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Proof. Since the space U is compact, we can de-796

fine the space of function to be a compact Ba-797

nach space of functions f : U → [0, 1] and so798

mA is in the space. By the monotone conver-799

gence theorem (Folland, 1999) and by the fact800

that supremum over a singleton set {x} is simply801

supu∈{x}mA(u) = mA(x), we can conclude that802

convergence holds in the point-wise sense.803

804

Theorem 1: Let U be a compact universe of
discourse and (U,F , ξ) a measure space. Let A
be a fuzzy subset of U and mA its membership
function that’s measurable. Moreover, let µA be
its fuzzy set embedding membership function, then
∀ϵ > 0, ∃δ > 0, d > 0 such that if dδ = ξ(U) and
||Ui|| := mini ξ(Ui) < δ, we have:

0 < Pµ(A)− P(A) < ϵ.

Proof. By Lemma 1 and assumption that mA and805

hence all {µ(t)A } are ξ-measurable, we have a mono-806

tonic non-decreasing sequence of non-negative807

simple functions that converge point-wise to mA.808

Then by the Monotone Convergence Theorem of809

simple functions (Folland, 1999), we have that810 ∫
U mAdξ = limt→∞

∫
µ
(t)
A dξ. Moreover, since811

µ
(t)
A ≥ mA,∀n ∈ N+, we have that ∀ϵ > 0, ∃N ∈812

N, such that ∀t > N , Pµ(A) > P(A) < ϵ. This is813

equivalent to say (by virtue of construction of sim-814

ple functions in definition 2) that ∃δ > 0, d > 0,815

such that dδ = ξ(U) and ||Ui|| := mini ξ(Ui) < δ816

(or equivalently, the partition is sufficiently fine-817

grained), the conclusion holds.818

Here we also provide a proof sketch for the Eu-819

clidean case, where the universe U is mapped into820

a compact subspace U ⊂ Rd, and the fuzzy mea-821

sure is defined as a Riemann integral in Rd (the822

Euclidean volume), which is often the case for the823

embedding space. In this case, the following for-824

mulation of the theorem holds:825

Theorem 1 (Euclidean Case) Let Ω ⊂ Rd be
compact and let (A,mA) be a fuzzy set with mem-
bership function mA : U → [0, 1], and let Ω =⋃d

i=1 Ui be a partition and (A,µA) its associated
partition-level fuzzy set. Then if mA is Riemann-
integrable on Ω, then ∀ϵ > 0, ∃δ > 0, d > 0 such
that if dδ = Vol(Ω) and ||Ui|| := mini Vol(Ui) <
δ, we have that:

0 < Pµ(A)− P(A) < ϵ

that is, the possibility of a partition-level fuzzy set 826

is an upperbound for its underlying fuzzy set and it 827

converges to the possibility of its underlying fuzzy 828

set when the partition is sufficiently fine-grained. 829

Proof. The proof takes 3 main steps: Since Ω and 830

[0, 1] are both compact, we need to show that (a) 831

under a rectangular partitions in Rd, as partition 832

granularity increases, the possibility Pµ(A) mono- 833

tonically decreases and (b) the possibility Pµ(A) 834

is an upper bound of the possibility P(A). After 835

these two are shown, we can simply invoke the stan- 836

dard Monotone Convergence Theorem for compact 837

spaces and show that Pµ(A) converges to P(A) 838

(Folland, 1999; Wilkins, 2016). 839

Step 1: Show that Pµ(A) monotonically de- 840

creases under granular partition. This is equiv- 841

alent to show that the upper Darboux sum of a 842

d−dimensional Riemann integral monotonically 843

decreases as the partition get finer-grained. This 844

result is Lemma 6.4 in (Wilkins, 2016). 845

Step 2: Show that Pµ(A) ≥ P(A). This is equiv- 846

alent to say that d−dimensional upper Darboux 847

sum is an upperbound for its Darboux-Riemann in- 848

tegral. This result is Lemma 6.6 in (Wilkins, 2016). 849

Step 3: Show that Pµ(A) converges to P(A). 850

By step 1 and step 2, we can construct a sequence 851

of monotonically decreasing upper Darboux sums. 852

By the Riemann-integrability of the function mA 853

and the compactness of the set Ω, [0, 1], we can 854

conclude that by Monotone Convergence Theorem 855

(Folland, 1999), this conclusion holds. 856

Corollary 2 Following the condition in definition 857

4, if in addition mA is Lipschitz-continuous, then 858

the convergence rate in 1 is O(1/n). If mA instead 859

has bounded variation, then the convergence rate is 860

also O(1/n), where n is the number of partitions. 861

Proof. In our case we defined the simple fuzzy set 862

membership function as: 863

fn(x) =

n∑
i=1

sup f(x)1(x ∈ Ui) 864

where (fn)n∈N , f are measurable functions on the 865

space (U,F , µ) and 1 is the indicator function, and 866

we have U =
⋃n

i=1 Ui a partition of the universe. 867

To derive a bound for convergence rate, we need 868

to evaluate
∫
|fn − f |dµ =

∫
(fn − f)dµ, since 869

fn ≥ f . and we have the following result: 870
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∫
(fn − f)dµ =

n∑
i=1

sup f(x)1(x ∈ Ui)−
n∑

i=1

∫
Ui

fdµ871

=
n∑

i=1

∫
Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ872

Now suppose that f is Lipschitz continuous with873

constant L (a much stronger assumption), then we874

have that875

∀x ∈ Ui, | sup
x∈Ui

f(x)− f(x)| ≤ Lµ(Ui)876

Then we have877 ∫
(fn − f)dµ =

n∑
i=1

∫
Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ

≤
n∑

i=1

∫
Ui

Lµ(Ui)dµ =

n∑
i=1

Lµ(Ui)
2

878

without loss of generality, let {Ui} be an even879

partition and let µ(U) = 1, then we have that880

µ(Ui) ∝ O( 1n) and so µ(Ui)
2 ∝ O(1/n2). Hence881

Equation 6 decays with O(1/n) rate.882

Suppose that f has bounded total variation883

V (f) <∞, then we have that:884 ∫
(fn − fd)µ =

n∑
i=1

∫
Ui

(
sup
x∈Ui

f(x)− f(x)
)
dµ

≤
n∑

i=1

V (f)

n
µ(Ui)

885

Again, we have the conclusion that the error decays886

with O(1/n).887

888

D Details on Experiments889

D.1 Baselines890

For our taxonomy expansion task, we compare891

with existing methods that use vector embeddings892

or geometric embeddings. For vector embedding893

methods, we include also models that use advanced894

structures of taxonomy data. To summarize, the895

baselines we compare with are:896

• TAXI(Panchenko et al., 2016): This is a vector-897

based embedding model that relies heavily on898

hypernym and hyponym relations between enti-899

ties.900

• HypeNet(Shwartz et al., 2016): This is a vector- 901

based embedding model that leverages depen- 902

dency paths between entity pairs. 903

• Bert+MLP(Yu et al., 2020): This is a vector- 904

based embedding method that uses Bert (Devlin 905

et al., 2019) to generate entity embeddings. Bert 906

used in this model and in our own model is fine- 907

tuned with a smaller learning. 908

• TaxoExpan(Shen et al., 2020): This is a vector- 909

based embedding method leverages local ego- 910

graphs to model pair dependencies. It uses graph 911

neural networks (GNN). 912

• STEAM(Yu et al., 2020): This is a vector-based 913

embedding method that samples dependency 914

paths from taxonomy for better structured entity 915

embedding. 916

• BoxTaxo(Jiang et al., 2023): This is a geomet- 917

ric embedding method that uses box embedding 918

for entities in taxonomy. It is able to capture 919

asymmetric relationships between entities. 920

D.2 Evaluation Metrics 921

For evaluating the taxonomy expansion task, we 922

follow (Jiang et al., 2023). For the i-th query, de- 923

note ai the true anchor and âi the top-1 predicted 924

anchor and let N be the total number of test sam- 925

ples, then the three metrics we use are the follow- 926

ing: 927

• Accuracy (ACC): evaluates the prediction’s over-
all correctness

ACC =
1

N

N∑
i=1

I(âi = ai)

• Mean Reciprocal Rank (MRR): evaluate the
rank of the correct prediction in all predictions

MRR =
1

N

N∑
i=1

1

rank(ai)

• Wu & Palmer similarity (Wu& P) (Wu and
Palmer, 1994): measures the semantic similarity
between concepts in a taxonomy

Wu&P =
1

N

N∑
i=1

2× depth(LCA(âi, ai))
depth(âi) + depth(ai)

where LCA is the least common ancestor of two 928

inputs and depth is the depth in the taxonomy 929

tree. 930
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D.3 Implementation Detail for Base Model931

In figure 5 and 6, the base model Fuzzy Set Em-932

bedding (FUSE) is the configuration of model with933

un-normalized global weights corresponding to vol-934

umes of each partition. In later ablation studies,935

we examine the impact of normalization on the936

volumes, corresponding to a choice of different937

measure. The number of partition of FUSE on the938

science dataset is 500, while the number of parti-939

tion used on the environment dataset is 350. For940

training stability, we also normalize the fuzzy set941

embedding by their Euclidean norm before multi-942

plication with volume weights. In addition, to make943

a fair comparison against baselines, we use the944

same optimization setup as in (Jiang et al., 2023)945

and provide a version of FUSE (FUSE (λ = 1.0))946

with equal weights on intersection and asymmetry947

loss.948

E Scope and Limitation949

This work is the first attempt to use fuzzy set to950

model concepts in taxonomy expansion. To ex-951

amine only the effectiveness of fuzzy set repre-952

sentation, we only use simple neural architectures953

and use only the child-parent pairs. The full ca-954

pacity of FUSE should be further examined using955

datasets that contain First Order Logic (FOL) state-956

ments, since by construction, fuzzy sets should sat-957

isfy all the fuzzy logic axioms (Chen et al., 2022).958

This suggests future directions to expand taxonomy959

datasets with more complicated queries, and to han-960

dle more graph-structured data in social analysis961

and text mining (Ren and Leskovec, 2020; Ren962

et al., 2020; Chen et al., 2022; Zhu et al., 2022;963

Ju et al., 2023). Moreover, we can explore more964

explicit form of fuzzy membership function, such965

as a mixture of Gumbel boxes, to make the learning966

more concrete.967
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