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Abstract

Training large language models (LLMs) requires substantial energy and produces
significant carbon emissions that are rarely visible to creators and users, due to a
lack of transparent data available. We compile reported and estimated carbon emis-
sions (kg CO2) for 13 state-of-the-art models (2018–2024) during their training
to reflect the environmental severity of these emissions. These carbon emissions
values are translated to human-friendly equivalences, trees required for absorption
and average per-capita footprints, as well as scaled comparisons across household,
commercial, and industrial contexts through our interactive demo. Our key take-
aways note a lack of transparency surrounding reported emissions during model
training. Furthermore, the amount of emissions in only training data is alarm-
ing, causing harm that cannot be mitigated quickly enough by the environment.
We position this work as a socio-technical contribution that bridges quantitative
emissions analysis with human-centered interpretation to advance sustainable and
transparent AI practice. By offering an accessible lens on sustainability, it promotes
more responsible engagement with generative AI in creative communities. Our
interactive demo is available at: https://neurips-c02-viz.vercel.app/.

1 Introduction

GenAI models have achieved remarkable capabilities in creating human-like text and images, but
these advances come with substantial energy costs that translate into large carbon emissions [23, 20].
Training state-of-the-art large language models (LLMs) often requires hundreds or thousands of GPUs
running for weeks, consuming vast amounts of electricity. For example, it is estimated that training
OpenAI’s GPT-3 (175 billion parameters) consumed about 1,287 MWh of electricity and resulted in
roughly 502 metric tons of CO2 emissions [20]. This single training run’s emissions is equivalent
to ≈ 20,080 trees’ annual absorption, and to ≈104 years of of an average human’s emissions. As
GenAI moves from research labs to widespread deployment, understanding and communicating its
environmental footprint becomes crucial for sustainable AI development.

Prior research in this area falls into two main strands, but both remain incomplete. The first set of
studies estimates the CO2 emissions of commercial and research LLMs, since such data are rarely
disclosed in technical reports. These estimates are necessarily indirect and rely on limited information
such as FLOPs, GPU hours, or hardware specifications, which introduces uncertainty. The second
strand highlights that even when emissions are reported, the sheer scale, often measured in metric tons
of CO2 equivalent, can appear abstract and detached from everyday experience. Although some work
proposes translating emissions into human-scale analogies (e.g., personal activities or familiar energy
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usage) to improve public understanding [23], this approach has not yet been systematically applied
to state-of-the-art generative models. This gap motivates our work: we compile and standardize
reported and estimated emissions for 13 leading models and reframe them through transparent,
human-centered visualizations.

In this work, we address this sustainability gap by compiling training emissions for state-of-the-art
models, sourced from technical reports where available or estimated otherwise, and presenting them
in accessible, human-scale equivalents. Our goal is to raise awareness in the research community
and the public about the environmental impact of model training and to encourage the adoption of
efficiency-oriented techniques. Our contributions are:

• We compile reported or estimated training emissions for 13 GenAI models and translate
them into human-friendly comparisons such as tree absorption [8] and per-capita footprints
[27].

• We provide an interactive demo that illustrates these comparisons, offering an accessible
perspective on the scale of emissions and their broader environmental consequences.

2 Related Work

Carbon Footprint of AI Models. Growing awareness of AI environmental impact has led to
numerous studies measuring the carbon footprint of model training. [25] sounded an early alarm by
showing that training a transformer-based NLP model with hyperparameter search emitted CO2 on the
order of hundreds of kilograms to tons, comparable to cross-country flights [6]. Subsequent analyses
by Patterson et al. [20] and others refined these estimates and identified key factors influencing
emissions: model size, training duration, hardware efficiency, energy grid carbon intensity, and data
center cooling overhead [6] [16]. For instance, training the 11-billion-parameter T5 model was
shown to consume less energy when using customized TPU hardware in a high-efficiency Google
data center, compared to GPUs in a standard facility [20] [13]. Such studies suggest that choice of
model architectures, processors, and training location can yield 100×–1000× differences in carbon
emissions for the same task [6]

In response to these challenges, the concept of Green AI has emerged, calling for energy efficiency
and carbon footprint to be treated as primary evaluation metrics alongside model accuracy [24] [20].
[24] advocated for reporting the computational cost of ML experiments and favoring approaches
that achieve comparable results with less resource consumption. Since then, the research community
has initiated various efforts to enable “greener” AI. Techniques such as model distillation, network
pruning, and sparsity have been shown to reduce training and inference costs significantly, sometimes
by 50–90% with minimal performance loss [12] [10]The emergence of more efficient model architec-
tures (e.g. transformer variants like the Switch Transformer) and hardware accelerators (TPUs, AI
chips) also contributes to cutting the energy per training operation [9]

Another positive development is the growing transparency from AI labs regarding energy use. Some
organizations now publish model cards with environmental impact metrics. For instance, some
organizations now publish model cards with environmental metrics, such as Meta’s model cards for
LLaMA-3 [18] and LLaMA-2 [17]. Tools like Experiment Impact Tracker [11] and CarbonTracker
[2] were developed to make it easier for researchers to log energy usage during training and estimate
emissions based on regional electricity carbon intensity. In this work, we compile reported and
estimated training emissions of state-of-the-art LLM families and reframe them through human-
friendly comparisons.

3 Methodology

Model Selection (2018–2024). We analyzed 13 prominent GenAI models, from early architectures
like BERT [5] and GPT-2 [21] to large-scale releases such as GPT-4 [19], the LLaMA family [26, 18],
and DeepSeek v3 [4], using reported or estimated training emissions.

Emission Data Collection For each model, we gathered available training emissions data from
published reports and prior sustainability analyses. Disclosed values (e.g., LLaMA-2 and LLaMA-3)
are marked as reported (R), while others are estimated (E). In the absence of official data, estimates
were derived from industry model cards containing FLOPs, GPU hours, or hardware specifications

2



[20, 1]. These known figures provided baselines for estimating comparable models using standardized
methods from prior Green AI studies. It is crucial to see that each approach introduces uncertainty:
FLOP-based estimates assume hardware efficiency; GPU-hour methods depend on utilization and
duration; scaling methods assume similar infrastructure and efficiency across generations. Based
on comparisons between reported and estimated values in earlier work [20], [16] [2], we estimate
an average uncertainty margin of ±25%, reflecting variability in datacenter efficiency, hardware
utilization, and regional carbon intensity. Together, these methods offer a reasonable approximation
of training emissions and their environmental impact.

To make emissions more interpretable, we translate raw CO2 values into two main equivalents:

Tree Absorption. We estimate the number of trees required to absorb the model’s emissions using
the standard assumption that one tree absorbs ≈ 25 kg of CO2 per year [8]. The formula is:

Trees Required =
Emissions (kg)

25

Human Equivalence. We compare model emissions to an average human’s yearly CO2 footprint,
taken as ≈ 4.8 tonnes (4800 kg) per year [27]. The equivalence is expressed as:

Human Years =
Emissions (kg)

4800

4 Results

Table 1: Training emissions of GenAI models (2018–2024), with equivalent impacts. Tree absorption
assumes 25kg CO2/year [8], and average per-capita footprint is 4,800kg/year [28]. R = reported,
E = estimated. Provenance: For each row, the Model column cites the original paper/card for
dataset/training context, while the CO2 (kg) column cites the source for the reported or estimated
emissions value used in our calculations.

Model Year CO2 (t) CO2 (kg) Type Trees (25 kg/yr) Human yrs (4,800 kg/yr)

BERT (base) [5] 2018 0.652 652 [7] E 26.1 trees ≈0.14 yrs (≈1.7 mo.)
BERT-Large [5] 2018 2.6 2,600 [1] E 104 trees ≈0.54 yrs (≈6.5 mo.)
GPT-2 (OpenAI) [21] 2019 0.735 735 [7] E 29.4 trees ≈0.15 yrs (≈1.8 mo.)
RoBERTa [15] 2019 5.5 5,500 [1] E 220 trees ≈1.15 yrs
GPT-3 (175B) [3] 2020 502 502,000 [20] E 20,080 trees ≈104.6 yrs
BLOOM (176B) [14] 2022 25 25,000 [20] E 1,000 trees ≈5.21 yrs
OPT (175B) [28] 2022 70 70,000 [20] E 2,800 trees ≈14.6 yrs
Gopher (280B) [22] 2022 352 352,000 [20] E 14,080 trees ≈73.3 yrs
GPT-4 (OpenAI) [19] 2023 5,184 5,184,000 [1] E 207,360 trees ≈1,080 yrs
LLaMA-2 (70B) [26] 2023 539 539,000 [17] R 21,560 trees ≈112.3 yrs
LLaMA-3.1 (405B) [18] 2024 8,930 8,930,000 [1] E 357,200 trees ≈1,860 yrs
LLaMA-3 (70B) [18] 2024 2,290 2,290,000 [18] R 91,600 trees ≈477 yrs
DeepSeek v3 [4] 2024 597 597,000 [1] E 23,880 trees ≈124 yrs

The results in Table 1 show an exponential rise in training emissions as model size increases. Early
models like BERT (2018) and GPT-2 (2019) produced under 1 tonne of CO2, while frontier models
such as GPT-4 and LLaMA-3.1 reached thousands of tonnes, requiring hundreds of thousands of trees
for absorption. Only LLaMA-2 and LLaMA-3 reported official emissions; all others rely on indirect
estimates [20, 1], underscoring the need for standardized reporting. Human-scale equivalents make
this tangible: GPT-4’s footprint equals ≈ 1,080 years of an average human’s emissions, LLaMA-3.1
≈ 1,850 years, while GPT-2 corresponds to less than two months. These sharp jumps reflect how
compute demands outpace linear scaling laws.

Emission Jumps. With the rise of each major AI model release, emissions have increased rapidly,
compounding over time. From 2019 to 2020, emissions jumped from 5.5 t (RoBERTa) to 502 t
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(a) Training emissions (t CO2).
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(b) Years required (4800 kg CO2/yr)
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Figure 1: Carbon Literacy Dashboard. Three aligned views of training emissions (2018–2024) for
13 GenAI models: (a) scientific units (t CO2), (b) human-scale impact (average human-years; 4.8 t
CO2/yr), and (c) ecological framing (trees needed; 25 kg CO2/yr). Values in (b,c) are derived from
(a) via: Human Years = Emissions (kg)

4800 and Trees = Emissions (kg)
25 . Using a log y-axis in (a) makes early

models visible while highlighting the sharp jumps (e.g., RoBERTa → GPT-3 → GPT-4).

(GPT-3), a 91× increase. From 2020 to 2023, they rose again to 5,184 t (GPT-4), nearly 10× higher
than GPT-3. Even within a single year, steep increases are visible: in 2022, emissions grew from
70 t for OPT to 352 t for Gopher, a 5× increase. This pattern reflects several factors, including
growing model size, larger datasets, and longer training runs on more powerful hardware. As models
expand in parameters and training data, they require longer time and power resources, driving higher
emissions. Since every new release grows in performance, carbon footprint rises sharply with each
generation.

Notably, BLOOM (176B) exhibits substantially lower training emissions than models of comparable
scale such as GPT-3 or OPT. This difference likely stems in training infrastructure: BLOOM was
trained on A100 GPUs within energy-efficient data centers powered partly by renewable energy. This
highlights how hardware choice and environmental safeguards can meaningfully reduce the carbon
footprint of large-scale model training.

5 Discussion

Environmental and Social Implications. Scaling GenAI carries significant environmental costs,
with training emissions of frontier models rivaling those of entire communities. LLaMA-3 alone
produced ≈ 2,290 t CO2, equivalent to ≈ 477 average human-years of emissions raising concerns
about the resulting environmental burden. These trends provide an outlook to the future of training
emissions requiring even more energy as newer and larger models are released. Without stronger
efficiency and mitigation, this trend will exacerbate climate risk. This provides an opportunity
for developers to develop sustainable training practices in terms of GPUs, FLOPs, and hardware.
However, this relies transparency from developers.

Transparency and Accountability. Of the 13 models reviewed, only LLaMA-2 and LLaMA-3
disclosed official emissions with remaining models requiring estimation from FLOPs, GPU hours, or
hardware specifications, highlighing the need for standardized emissions reporting. While companies
may be reluctant to disclose such data due to reputational risks, these figures remain crucial to identify
and promote sustainable AI practices. Initial steps towards mitigation and transparency are being
taken. Google and DeepMind operate carbon-neutral data centers and Hugging Face maintains an
open Green AI Dashboard to track model energy usage. Expanding these initiatives will be key to
ensuring accountability.

Assumptions and Limitations. Our estimates are approximations: tree absorption (25 kg CO2/year)
varies by species and region, and human per-capita footprints (4.8 tonnes) differ globally. We use
global averages for comparability, to make model emissions accessible despite inherent uncertainty.
Another limitation is the focus on solely training emissions. Inference and deployment, for example,
contribute substantially to total emissions and can often exceed training emissions.

Future Directions. Sustainable AI requires transparent reporting, efficiency-focused research, and
strong mitigation efforts from both developers and users, who can promote energy-efficient and
environmentally conscious practices. While our study only looks at training emissions, future work
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should also account for lifecycle emissions, including inference and deployment to get the full scope
of the effect of emissions.
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Justification: The abstract and introduction clearly state the contribution: compiling reported
and estimated emissions for 13 models (2018–2024), translating them into human-friendly
comparisons, and highlighting transparency gaps. The claims match the presented results.

3. Limitations
4. Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
Justification: The paper explicitly discusses assumptions (average tree absorption, global
per-capita averages) and limitations (incomplete reporting, reliance on estimates), framing
them as approximations.

5. Theory assumptions and proofs
6. Question: For each theoretical result, does the paper provide the full set of assumptions and

a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results or formal proofs; it is empirical
and descriptive.

7. Experimental result reproducibility
8. Question: Does the paper fully disclose all the information needed to reproduce the main ex-

perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All emission values are either cited from official sources or estimated using
documented methods (FLOPs, GPU hours, standardized formulas). Tables and formulas are
provided to allow reproducibility of calculations.

9. Open access to data and code
10. Question: Does the paper provide open access to the data and code, with sufficient instruc-

tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The interactive demo and dataset of compiled emissions are made available
online through an anonymized demo URL that is provided in the paper, enabling public
access to the data and results.

11. Experimental setting/details
12. Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The methodology section details model selection, emission data collection,
and equivalence calculations. No hyperparameters or training runs are involved since the
work is observational.

13. Experiment statistical significance
14. Question: Does the paper report error bars suitably and correctly defined or other appropriate

information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not present stochastic experiments requiring error bars or
confidence intervals. It is based on reported or estimated fixed values.

15. Experiments compute resources
16. Question: For each experiment, does the paper provide sufficient information on the com-

puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
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Justification: The paper does not involve new model training. It compiles previously
reported/estimated training emissions of existing models.

17. Code of ethics
18. Question: Does the research conducted in the paper conform, in every respect, with the

NeurIPS Code of Ethics

Answer: [Yes]

Justification: The work conforms to NeurIPS ethics guidelines, as it uses publicly available
reports and sustainability studies, cites all sources, and raises awareness of environmental
costs.

19. Broader impacts
20. Question: Does the paper discuss both potential positive societal impacts and negative

societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion covers both positive impacts (raising awareness, promoting sus-
tainability, informing creative practices) and negative aspects (large emissions, inequitable
distribution of burdens).

21. Safeguards
22. Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release high-risk models or datasets, only emissions
summaries and visualizations.

23. Licenses for existing assets
24. Question: Are the creators or original owners of assets (e.g., code, data, models), used in

the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing models, datasets, and reports are properly cited with their original
sources, licenses, or official technical reports (e.g., OpenAI, Meta, Stanford AI Index).

25. New assets
26. Question: Are new assets introduced in the paper well documented and is the documentation

provided alongside the assets?

Answer: [Yes]

Justification:

Justification: The paper introduces a compiled dataset and interactive demo of emissions,
with documentation describing data sources, calculation methods, and assumptions, along
with references for transparency and reproducibility.

27. Crowdsourcing and research with human subjects
28. For crowdsourcing experiments and research with human subjects, does the paper include

the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or human subject research.

29. Institutional review board (IRB) approvals
30. Question: Does the paper describe potential risks incurred by study participants, whether

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No human subject experiments are conducted.

31. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not part of the core methodology. Any LLM use was limited to
writing/editing support, not central to the scientific contribution.
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