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Abstract

Bayesian neural networks (BNNs) provide a formalism to quantify and calibrate
uncertainty in deep learning. Current inference approaches for BNNs often resort
to few-sample estimation for scalability, which can harm predictive performance,
while its alternatives tend to be computationally prohibitively expensive. We tackle
this challenge by revealing a previously unseen connection between inference on
BNNs and volume computation problems. With this observation, we introduce a
novel collapsed inference scheme that performs Bayesian model averaging using
collapsed samples. It improves over a Monte-Carlo sample by limiting sampling to
a subset of the network weights while pairing it with some closed-form conditional
distribution over the rest. A collapsed sample represents uncountably many models
drawn from the approximate posterior and thus yields higher sample efficiency.
Further, we show that the marginalization of a collapsed sample can be solved
analytically and efficiently despite the non-linearity of neural networks by leverag-
ing existing volume computation solvers. Our proposed use of collapsed samples
achieves a balance between scalability and accuracy. On various regression and
classification tasks, our collapsed Bayesian deep learning approach demonstrates
significant improvements over existing methods and sets a new state of the art in
terms of uncertainty estimation as well as predictive performance.

1 Introduction

Uncertainty estimation is crucial for decision making. Deep learning models, including those in safety-
critical domains, tend to estimate uncertainty poorly. To overcome this issue, Bayesian deep learning
obtains a posterior distribution over the model parameters hoping to improve predictions and provide
reliable uncertainty estimates. Among Bayesian inference procedures with neural networks, Bayesian
model averaging (BMA) is particularly compelling (Wasserman, 2000; Fragoso et al., 2018; Maddox
et al., 2019). However, computing BMAs is distinctly challenging since it involves marginalizing over
posterior parameters, which possess some unusual topological properties such as mode-connectivity
(Izmailov et al., 2021). We show that even with simple low-dimensional approximate parameter
posteriors as uniform distributions, doing BMA requires integrating over highly non-convex and
multi-modal distributions with discontinuities arising from non-linear activations (cf. Figure 1a).
Accurately approximating the BMA can achieve significant performance gains (Izmailov et al., 2021).
Existing methods mainly focus on general-purpose MCMC, which can fail to converge, or provides
inaccurate few-sample predictions (Kristiadi et al., 2022), because running longer sampling chains is
computationally expensive, and variational approaches that typically use a mean-field approximation
that ignores correlations induced by activations (Jospin et al., 2022).

In this work, we are interested in developing collapsed samplers, also known as cutset or Rao-
Blackwellised samplers for BMA. A collapsed sampler improves over classical particle-based methods
by limiting sampling to a subset of variables and further pairing each sample with a closed-form
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(a) p(y | x,w) being Gaussian. See Example 3.
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(b) p(y | x,w) being triangular. See Section 3.

Figure 1: The integral surface of (a) the expected prediction in BMA, and (b) our proposed ap-
proximation. Both are highly non-convex and multi-modal. The z-axis is the weighted prediction
y p(y | x,w) p(w | D). Integration of (a) does not admit a closed-form solution, yet integration
of (b) is a close approximation that can be solved exactly and efficiently by WMI solvers.

representation of a conditional distribution over the rest whose marginalization is often tractable.
Collapsed samplers are effective at variance reduction in graphical models (Koller & Friedman, 2009),
however no collapsed samplers are known for Bayesian deep learning. We believe that this is due
to the lack of a closed-form marginalization technique congruous with the non-linearity in deep
neural networks. Our aim is to overcome this issue and improve BMA estimation by incorporating
exact marginalization over (close approximate) conditional distributions into the inference scheme.
Nevertheless, scalability and efficiency are guaranteed by the sampling part of our proposed algorithm.

Marginalization is made possible by our observation that BMA reduces to weighted volume com-
putation. Certain classes of such problems can be solved exactly by so-called weighted model
integration (WMI) solvers (Belle et al., 2015a). By closely approximating BMA with WMI, these
solvers can provide accurate approximations to marginalization in BMA (cf. Figure 1b). With this
observation, we propose CIBER, a collapsed sampler that uses WMI for computing conditional
distributions. In the few-sample setting, CIBER delivers more accurate uncertainty estimates than the
gold-standard Hamiltonian Monte Carlo (HMC) method (cf. Figure 2). We further evaluate the effec-
tiveness of CIBER on regression and classification benchmarks and show significant improvements
over other Bayesian deep learning approaches in terms of both uncertainty estimation and accuracy.

2 Bayesian Model Averaging as Weighted Volume Computation

In Bayesian Neural Networks (BNN), given a neural network fw parameterized by weights w,
instead of doing inference with deterministic w that optimize objectives such as cross-entropy or
mean squared error, Bayesian learning infers a posterior p(w | D) over parameters w after observing
data D. During inference, this posterior distribution is then marginalized to produce final predictions.
This process is called Bayesian Model Averaging (BMA). It can be seen as learning an ensemble of
an infinite number of neural nets and aggregating their results. Formally, given input x, the posterior
predictive distribution and the expected prediction for a regression task are

p(y | x) =
∫

p(y | x,w) p(w | D) dw, and Ep(y|x)[y] =

∫
y p(y | x) dy. (1)

For classification, the (most likely) prediction is the class argmaxy p(y | x). BMA is intuitively
attractive because it can be risky to base inference on a single neural network model. The marginal-
ization in BMA gets around this issue by averaging over models according to a Bayesian posterior.

BMA requires approximations to compute posterior predictive distributions and expected predictions,
as the integrals in Equation 1 are intractable in general. Deriving efficient and accurate approximations
remains an active research topic (Izmailov et al., 2021). We approach this problem by observing
that the marginalization in BMA with ReLU neural networks can be cast as weighted volume
computation (WVC). Later we show that it can be generalized to any neural network when combined
with sampling. In WVC, various tools exist for solving certain WVC problem classes (Baldoni et al.,
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(b) CIBER with 10 collapsed samples
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Figure 2: Uncertainty estimates for regression. The red line is the ground truth. The dark blue
line shows the predictive mean. The shaded region is the 90% confidence interval of the predictive
distribution. For the same number of samples, (b) CIBER is closer than (a) small-sample HMC to (c)
a highly accurate but slow HMC with a large number of samples. See the Appendix for details.

2014; Kolb et al., 2019; Zeng et al., 2020c). This section reveals the connection between BMA and
WVC. It opens up a new perspective for developing BMA approximations by leveraging WVC tools.
Definition 1 (WVC). A weighted volume computation (WVC) problem is defined by a pair (�, ϕ)
where a region � is a conjunction of arithmetic constraints and weight ϕ : �→ R is an integrable
function assigning weights to elements in �. The task of WVC is to compute the integral

∫
� ϕ(x) dx.

2.1 A Warm-Up Example

Consider a simple yet relevant setting where the predictive distribution p(y | x,w) is a Dirac delta
distribution with zero mass everywhere except at fw(x), such that

∫
y p(y | x,w) dy = fw(x).

Example 2. Assume a model fw(x) = ReLU(w · x) with a uniform posterior over the parameter:
p(w | D) = 1

6 with w ∈ [−3, 3]. Let the input be x = 1. For parameter w ∈ [−3, 0], the model
fw always predicts 0, and otherwise (i.e., w ∈ (0, 3]), it predicts w. Thus, the expected prediction
(Equation 1) is Ep(y|x)[y] =

∫
�⊥

0 · 16 dw +
∫
�⊤

w · 16 dw. That is, a summation of two WVC
problems (�⊥, 0) and (�⊤, w/6) with �⊥ = (−3 ≤ w ≤ 0) and �⊤ = (0 ≤ w ≤ 3). The BMA
integral decomposes into WVC problems with different weights due to the ReLU activation.

These WVC problems have easy closed-form solutions. This is no longer the case in the following.
Example 3. Assume a model fw(x) and posterior distribution p(w | D) as in Example 2. Let the
predictive distribution p(y | x,w) be a Gaussian distribution pN (y; fw(x), 1) with mean fw(x)
and variance 1. Given input x = 1, the expected prediction (Equation 1) is

Ep(y|x=1)[y] =

∫
�⊥

y · pN (y | 0, 1) · 1
6
dy dw +

∫
�⊤

y · pN (y | w, 1) · 1
6
dy dw.

It is a summation of two WVC problems with �⊥ = (−3 ≤ w ≤ 0) ∧ (y ∈ R) and �⊤ = (0 ≤ w ≤
3) ∧ (y ∈ R), whose joint integral surface is shown in Figure 1a.

These WVC problems do not admit closed-form solutions since they involve truncated Gaussian
distributions. Moreover, Figure 1a shows that computing BMA, even in such a low-dimensional
parameter space, requires integration over non-convex and multi-modal functions.

2.2 General Reduction of BMA to WVC

Let model fw be a ReLU neural net. Denote the set of inputs to its ReLU activations byR = {ri}Ri=1,
where each ri is a linear combination of weights. For a given input x, the parameter space is
partitioned by whether each ReLU activation outputs zero or not. This gives the WVC reduction

p(y | x) =
∑

B∈{0,1}R

∫
�B

p(y | x,w) p(w | D) dw,

where B is a binary vector. The region �B is defined as ∧Ri=1ℓi where arithmetic constraint ℓi is
ri ≥ 0 if Bi = 1 and ri ≤ 0 otherwise. The expected prediction Ep(y|x)[y] is analogous but includes
an additional factor and variable of integration y in each WVC problem.

This general reduction, however, is undesirable since it amounts to a brute-force enumeration that
implies a complexity exponential in the number of ReLU activations. Moreover, not all WVC
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problems resulting from this reduction are amenable to existing solvers. We will therefore appeal
to a framework called weighted model integration (WMI) that allows for a compact representation
of these WVC problems, and a characterization of their tractability for WMI solvers (Kolb et al.,
2019). This inspires us to approximate BMA by first reducing it to WVC problems and further closely
approximating those with tractable WMI problems.

3 Approximating BMA by WMI

WMI is a modeling and inference framework that supports integration in the presence of logical
and arithmetic constraints (Belle et al., 2015a,b). Various WMI solvers have been proposed in
recent years (Kolb et al., 2019), ranging from general-purpose ones to others that assume some
problem structures to gain scalability. However, even with the reduction from BMA to WVC from the
previous section, WMI solvers are not directly applicable. Existing solvers have two main limitations:
(i) feasible regions need to be defined by Boolean combinations of linear arithmetic constraints,
and (ii) weight functions need to be polynomials. In this section, we show that these issues can be
bypassed using a motivating example of how to form a close approximation to BMA using WMI.

In WMI, the feasible region is defined by satisfiability modulo theories (SMT) constraints (Barrett
et al., 2010): an SMT formula is a (typically quantifier-free) expression containing both propositional
and theory literals connected with logical connectives; the theory literals are often restricted to linear
real arithmetic, where literals are of the form (cTX ≤ b) with variable X and constants cT and b.
Example 4. The ReLU model fw(x) of Example 2 can be encoded as an SMT formula (see box).

∆ReLU =

{
W · x > 0⇒ Z = W · x
W · x ≤ 0⇒ Z = 0

The curly bracket denotes logical conjunction, the
symbol⇒ is a logical implication, variable W is the
weight, and variable Z denotes the model output.

The encoding of ReLU neural networks into SMT formulas is explored in existing work to enable
verification of the behavior of neural networks and provide formal guarantees (Katz et al., 2017;
Huang et al., 2017; Sivaraman et al., 2020). We propose to use this encoding to define the feasible
region of WMI problems. Let x |= ∆ denote the satisfaction of an SMT formula ∆ by an assignment
x, and Jx |= ∆K be its corresponding indicator function. We formally introduce WMI next.
Definition 5. (WMI) Let X be a set of continuous random variables. A weighted model integration
problem is a pairM = (∆,Φ), where ∆ is an SMT formula over X and Φ is a set of per-literal
weights defined as Φ = {ϕℓ}ℓ∈L, where L is a set of SMT literals and each ϕℓ is a function defined
over variables in literal ℓ. The task of weighted model integration is to compute

WMI(∆,Φ) =

∫
x|=∆

∏
ℓ∈L

ϕℓ(x)
Jx|=ℓK dx.

That is, the task is to integrate over the weighted assignments of X that satisfy the SMT formula ∆.1

An approximation to the BMA of Example 3 can be achieved with WMI using the following four steps:

Step 1. Encoding model fw(x). This has been shown as the SMT formula ∆ReLU in Example 4.

Step 2. Encoding posterior distribution p(w | D). The uniform distribution p(w | D) = 1
6 with

w ∈ [−3, 3] can be encoded as a WMI problem pair (∆pos ,Φpos) as follows:

∆pos = −3 ≤W ≤ 3 Φpos =

{
ϕℓ(W ) =

1

6
with ℓ = true

}
Step 3. Approximate encoding of predictive distribution p(y | w, x). Recall that p(y | w, x) =
pN (y; fw(x), 1) is Gaussian, which cannot be handled by existing WMI solvers. To approximate it
with polynomial densities, we simply use a triangular distribution encoded as a WMI problem pair:

∆pred =

{
Y ≤ Z + α

Y ≥ Z − α
Φpred =

{
ϕℓ1(Y, Z) = 1−Y+Z

α with ℓ1 = Y ≥ Z

ϕℓ2(Y, Z) = 1+Y−Z
α with ℓ2 = Y < Z

}
1In the literature, WMI is defined on mixed discrete-continuous domains. Since we only work with WMI

problems over continuous variables, we ignore the discrete ones in the definition for succinctness.
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In this encoding, α is a constant that defines the shape of the tri-
angular distribution. It is obtained by minimizing the L2 distance
between a standard normal distribution and the symmetric triangular
distribution. We visualize this approximation in the right figure.

Step 4. Approximating BMA by calling WMI solvers. With the
above encodings, the predictive posterior p(y | x) (Equation 1) can be computed using two calls to a
WMI solver. For example, the uncertainty of a prediction y = 1 for input x = 1 is

p(y = 1 | x = 1) = WMI(∆ ∧ (Y = 1),Φ) / WMI(∆,Φ) = 0.164 / 1,

where ∆ = ∆ReLU ∧ ∆pos ∧ ∆pred and Φ = Φpos ∪ Φpred . Similarly, the expected prediction
Ep(y|x=1)[y] (Equation 1) can be computed using two calls to a WMI solver:

Ep(y|x=1)[y] = WMI(∆,Φ∗) / WMI(∆,Φ) = 0.752 / 1,

where Φ∗ = Φ∪{ϕℓ(Y ) = Y with ℓ = true}. The above formulations also work for unnormalized
distributions since the WMI in the denominator serves to compute the partition function.

We visualize the integral surface of the resulting approximate BMA problem in Figure 1b. It is very
close to the integral surface of the original BMA problem in Figure 1a. However, it can be exactly
integrated using existing WMI solvers while the original one does not admit such solutions. Next, we
show how this process can be generalized to a scalable and accurate approximation of BMA.

4 CIBER: Collapsed Inference for Bayesian Deep Learning via WMI

Given a BNN with a large number of weights, naively approximating it by WMI problems can lead to
computational issues, since it involves doing integration over polytopes in arbitrarily high dimensions
and this is known to be #P-hard (Valiant, 1979; De Loera et al., 2012; Zeng et al., 2020c). Further,
weights involved with non-ReLU activation might not be amenable to the WMI encoding. To tackle
these issues, we propose to use collapsed samples to combine the strengths from two worlds: the
scalability and flexibility from sampling and the accuracy from WMI solvers.
Definition 6. (Collapsed BMA) Let (Ws,Wc) be a partition of parameters W . A collapsed sample
is a tuple (ws, q), where ws is an assignment to the sampled parameters Ws and q is a representation
of the conditional posterior p(Wc | ws,D) over the collapsed parameter set Wc. Given collapsed
samples S, collapsed BMA estimates the predictive posterior and expected prediction as

p(y | x) ≈ 1

|S|
∑

(ws,q)∈S

[∫
p(y | x,w) q(wc) dwc

]
, and

Ep(y|x)[y] ≈
1

|S|
∑

(ws,q)∈S

[∫
y p(y | x,w) q(wc) dwc dy

]
.

(2)

The size of the collapsed set Wc determines the trade-off between scalability and accuracy. The
more parameters in the collapsed set, the more accurate the approximation to BMA is. The fewer
parameters in Wc, the more efficient the computations of the integrals are since the integration is
performed in a lower-dimensional space. Later in our experiments, we choose a subset of weights at
the last or second-to-last hidden layer of the neural networks to be the collapsed set. This choice is
known to be effective in capturing uncertainty as shown in Kristiadi et al. (2020); Snoek et al. (2015).

To develop an algorithm to compute collapsed BMA, we are faced with two main design choice
questions: (Q1) how to sample ws from the posterior? (Q2) what should be the representation of
the conditional posterior q such that the integrals in Equation 2 can be computed exactly? Next, we
provide our answers to these two questions that together give our proposed algorithm CIBER.

4.1 Approximation to Posteriors

For (Q1), we follow Maddox et al. (2019) and sample from the stochastic gradient descent (SGD)
trajectory after convergence and use the information contained in SGD trajectories to efficiently
approximate the posterior distribution over the parameters of the neural network, leveraging the
interpretation of SGD as approximate Bayesian inference (Mandt et al., 2017; Chen et al., 2020).
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Given a set of parameter samplesW from the SGD trajectory, the sample set is defined asWs =
{ws | w ∈ W}. For each assignment ws, an approximation q(Wc) to the conditional posterior
p(Wc | ws,D) is necessary since the posteriors induced by SGD trajectories are implicit. Next, we
discuss the choice of approximation to the conditional posterior that is amenable to WMI.

4.2 Encoding into WMI Problems

As shown in Section 3, if a BNN can be encoded as a WMI problem, the posterior predictive
distribution and the expected prediction, which involve marginalization over the parameter space,
can be computed exactly using WMI solvers. This inspires us to use the WMI framework as the
closed-form representation for the conditional posteriors of parameters. The main challenge is how
to approximate the integrand in Equation 2 using an SMT formula and a polynomial weight function
in order to obtain a WMI problem amenable to existing solvers.

For the conditional posterior approximation q(Wc), we choose it to be a uniform distribution
that can be encoded into a WMI problem asMpos = (∆pos ,Φpos) with the SMT formula being
∆pos = ∧i∈c (li ≤ Wi ≤ ui) and weights being Φpos = {ϕℓ(Wc) = 1 | ℓ = true}, where li and
ui are domain lower and upper bounds for the uniform distribution respectively. While seemingly
over-simplistic, this choice of approximation to the conditional posterior is sufficient to robustly
deliver surprisingly strong empirical performance as shown in Section 6. The intuition is that uniform
distributions are better than a few samples. We further illustrate this point by comparing the predictive
distributions of CIBER and HMC in a few-sample setting. Figure 2 shows that even with the same 10
samples drawn from the posterior distribution, since CIBER further approximates the 10 samples
with a uniform distribution, it yields a predictive distribution closer to the ground truth than HMC,
indicating that using a uniform distribution instead of a few samples forms a better approximation.

For the choice of predictive distribution p(y | x,w), we propose to use piecewise polynomial
densities. Common predictive distributions can be approximated by polynomials up to arbitrary
precision in theory by the Stone–Weierstrass theorem (De Branges, 1959). For regression, the de
facto choice is Gaussian and we propose to use triangular distribution as the approximation, i.e.,
p(y | x,w) = 1

r −
1
r2 |y − fw(x)|, with domain |y − fw(x)| ≤ r, and r := α

√
σ2(x) where

the constant α parameterizes the triangular distribution as described in Section 3. Here, σ2(x)
is the variance estimate, which can be a function of input x depending on whether the BNN is
homoscedastic or heteroscedastic. Then p(y | x,w) can be encoded into WMI as:

∆pred =

{
Y − fw(x) ≤ r

Y − fw(x) ≥ −r Φpred =

{
ϕℓ1(Y,Wc) =

1
r −

Y−fw(x)
r2 with ℓ1 = (Y > fw(x))

ϕℓ2(Y,Wc) =
1
r −

fw(x)−Y
r2 with ℓ2 = (fw(x) > Y )

}

Similar piecewise polynomial approximations are adopted for classification tasks when the predictive
distributions are induced by softmax functions. Those details are presented in the Appendix.

4.3 Exact Integration in Collapsed BMA

By encoding the collapsed BMA into WMI problems, we are ready to answer (Q2), i.e., how to
perform exact computation of the integrals shown in Equation 2.

Proposition 7. Let the SMT formula ∆ = ∆ReLU ∧ ∆pos ∧ ∆pred , and the set of weights Φ =
Φpos∪Φpred as defined in Section 4.2. Let the set of weights Φ∗ = Φ∪{ϕℓ(Y ) = Y with ℓ = true}.
The integrals in collapsed BMA (Equation 2) can be computed by WMI solvers as∫

p(y | x,w) q(wc) dwc = WMI(∆ ∧ (Y = y),Φ) / WMI(∆,Φ), and∫
y p(y | x,w) q(wc) dwc dy = WMI(∆,Φ∗) / WMI(∆,Φ).

With both questions (Q1) and (Q2) answered, we summarize our proposed algorithm CIBER in
Algorithm 1 in the Appendix. To quantitatively analyze how close the approximation delivered by
CIBER is to the ground-truth BMA, we consider the following experiments with closed-form BMA.
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Regression. We consider a Bayesian linear regression setting where exact sampling from the
posterior distribution is available. Both the likelihood and the weight posterior are Gaussian such
that the ground-truth posterior predictive distribution is Gaussian as well. With samples drawn
from the weight posterior, CIBER approximates the samples with a uniform distribution as posterior
p(w|D) and further approximates the likelihood with a triangular distribution such that the integral
p(y|x,D) =

∫
p(y|x,w)p(w|D) dw can be computed exactly by WMI.

We first evaluate the posterior predictive distribution estimated by CIBER and Monte Carlo (MC)
method, using the same five samples drawn from the weight posterior. Results averaged over 10 trials
are shown in Figure 3 where the estimations by CIBER are much closer to the ground truth posterior
predictive distribution than those by the MC method. Further, the averaged KL divergence between
the ground truth and CIBER is 0.069 while the one for MC estimations is 0.130, again indicating that
CIBER yields a better BMA approximation in the few-sample setting.

We further explore the question of how many samples the MC method needs to match the performance
of CIBER. The performances of both approaches are evaluated using KL divergence between the
ground-truth posterior distribution and the estimated one, averaged over 10 trials. The result is shown
in Figure 4 where the dashed green line shows the performance of CIBER with 50 samples and the
blue curve shows the performance of MC with an increasing number of samples. As expected, the
MC method yields lower KL divergence as the number of samples increases; however, it takes more
than 100 samples to match CIBER, indicating its low sample efficiency and that developing efficient
and effective inference algorithms such as CIBER for estimating BMA is a meaningful question.

Classification. For analyzing classification performance, Kristiadi et al. (2022) propose to compute
the integral I =

∫
σ(f∗)pN (f∗) df∗ with σ being the sigmoid function and f∗ = f(x∗;w) that

amounts to the posterior predictive distribution. We consider a simple case with f(x;w) = w · x
such that the ground-truth integral can be obtained. With a randomly chosen x, the ground-truth
integral is I = 0.823. The integral estimated by CIBER is IC = 0.826 while the MC estimate is
IMC = 0.732. That is, CIBER gives an estimate with a much lower error than the MC estimation
error, indicating that CIBER is able to deliver high-quality approximations in classification tasks.

5 Related Work

Bayesian Deep Learning. Bayesian inference over deep neural networks (MacKay, 1992) is
proposed to fix the issue that deep learning models give poor uncertainty estimations and suffer from
overconfidence (Nguyen et al., 2015; Hein et al., 2019; Meronen et al., 2023, 2021). Some methods
use samples from SGD trajectories to approximate the implicit true posteriors similar to us: Izmailov
et al. (2020) (SI) proposes to perform Bayesian inference in a subspace of the parameter space
spanned by a few vectors derived from principal component analysis (PCA+ESS(SI)) or variational
inference (PCA+VI(SI)); SWAG (Maddox et al., 2019) proposes to approximate the full parameter
space using an approximate Gaussian posterior whose mean and covariance are from a partial SGD
trajectory with a modified learning rate scheduler.

Some other approaches using approximate posteriors include MC Dropout (MCD) (Gal & Ghahra-
mani, 2015, 2016) which is one of the Bayesian dropout methods and recently, one of its modifications
called Variational Structured Dropout (VSD) (Nguyen et al., 2021) using variational inference is pro-
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Table 1: Average test log likelihood for the small UCI regression task.

BOSTON CONCRETE YACHT NAVAL ENERGY

CIBER (SECOND) -2.471 ± 0.140 -2.975 ± 0.102 -0.678 ± 0.301 7.276 ± 0.532 -0.716 ± 0.211
CIBER (LAST) -2.471 ± 0.140 -2.959 ± 0.109 -0.687 ± 0.301 7.482 ± 0.188 -0.716 ± 0.211
SWAG -2.761 ± 0.132 -3.013 ± 0.086 -0.404 ± 0.418 6.708 ± 0.105 -1.679 ± 1.488
PCA+ESS (SI) -2.719 ± 0.132 -3.007 ± 0.086 -0.225 ± 0.400 6.541 ± 0.095 -1.563 ± 1.243
PCA+VI (SI) -2.716 ± 0.133 -2.994 ± 0.095 -0.396 ± 0.419 6.708 ± 0.105 -1.715 ± 1.588
SGD -2.752 ± 0.132 -3.178 ± 0.198 -0.418 ± 0.426 6.567 ± 0.185 -1.736 ± 1.613
DVI -2.410 ± 0.020 -3.060 ± 0.010 -0.470 ± 0.030 6.290 ± 0.040 -1.010 ± 0.060
DGP -2.330 ± 0.060 -3.130 ± 0.030 -1.390 ± 0.140 3.600 ± 0.330 -1.320 ± 0.030
VI -2.430 ± 0.030 -3.040 ± 0.020 -1.680 ± 0.040 5.870 ± 0.290 -2.380 ± 0.020
MCD -2.400 ± 0.040 -2.970 ± 0.020 -1.380 ± 0.010 4.760 ± 0.010 -1.720 ± 0.010
VSD -2.350 ± 0.050 -2.970 ± 0.020 -1.140 ± 0.020 4.830 ± 0.010 -1.060 ± 0.010

posed. Other state-of-the-art approximate BNN inference methods including deterministic variational
inference (DVI) (Wu et al., 2019), deep Gaussian processes (DGP) (Bui et al., 2016) with Gaussian
process layers and variational inference (VI) (Kingma & Welling, 2013). Closely related to DGP is
the deep kernel process (Aitchison et al., 2021) that writes DGPs as deep Wishart processes.

WMI Solvers. WMI generalizes weighted model counting (WMC) Sang et al. (2005), a state-of-
the-art inference approach in many discrete probabilistic models, from discrete to mixed discrete-
continuous domains Belle et al. (2015a,b). Recent research on WMI includes its tractability (Zeng
et al., 2020c, 2021; Abboud et al., 2020) and the advancements in WMI solver development. Existing
exact WMI solvers for arbitrarily structured problems include DPLL-based search with numeri-
cal Belle et al. (2015a); Morettin et al. (2017, 2019) or symbolic integration de Salvo Braz et al.
(2016) and compilation-based algorithms Kolb et al. (2018); Zuidberg Dos Martires et al. (2019);
Derkinderen et al. (2020) that use extended algebraic decision diagrams (XADDs) (Sanner et al.,
2012) as a compilation target which is a powerful tool for inference on mixed domains (Sanner &
Abbasnejad, 2012; Zamani et al., 2012). Some exact WMI solvers aiming to improve efficiency for a
certain class of models are proposed such as SMI (Zeng & Van den Broeck, 2019) and MP-WMI (Zeng
et al., 2020a) which are greatly scalable for WMI problems that satisfy certain structural constraints.
Approximate solvers are also proposed including sampling-based ones (Zuidberg Dos Martires et al.,
2020) and relaxation-based ones (Zeng et al., 2020c,b). Recent WMI efforts converge in the pywmi
library (Kolb et al., 2019). The SMT formulas considered in this work can be seen as distributional
constraints on continuous domains. There is also plenty of work in neuro-symbolic AI exploring the
integration of discrete constraints into neural networks models including the architectures (Ahmed
et al., 2022b, 2023) and the loss (Xu et al., 2018; Ahmed et al., 2022c,a).

6 Experiments

We conduct experimental evaluations of our proposed approach CIBER 1 on regression and classi-
fication benchmarks and compare its performance on uncertainty estimation as well as prediction
accuracy with a wide range of baseline methods. More experimental details are presented in the
Appendix.

6.1 Regression on Small and Large UCI Datasets

We experiment on 5 small UCI datasets: boston, concrete, yacht, naval and energy. We follow the
setup of Izmailov et al. (2020) and use a fully connected network with a single hidden layer and 50
units with ReLU activations. We further experiment on 6 large UCI datasets: elevators, keggdirected,
keggundirected, pol, protein and skillcraft. We use a feedforward network with five hidden layers of
sizes [1000, 1000, 500, 50, 2] and ReLU activations on all datasets except skillcraft. For skillcraft, a
smaller architecture is adopted with four hidden layers of size [1000, 500, 50, 2]. All models have
two outputs for the prediction and the heteroscedastic variance respectively.

1Code and experiments are available at https://github.com/UCLA-StarAI/CIBER.
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Table 2: Average test log likelihood for the large UCI regression task.

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT POL

CIBER (SECOND) -0.378 ± 0.026 1.245 ± 0.090 1.125 ± 0.269 -0.720 ± 0.036 -1.003 ± 0.035 2.555 ± 0.115
CIBER (LAST) -0.371 ± 0.023 1.178 ± 0.088 0.964 ± 0.231 -0.720 ± 0.036 -1.001 ± 0.032 2.506 ± 0.150
SWAG -0.374 ± 0.021 1.080 ± 0.035 0.749 ± 0.029 -0.700 ± 0.051 -1.180 ± 0.033 1.533 ± 1.084
PCA+ESS (SI) -0.351 ± 0.030 1.074 ± 0.034 0.752 ± 0.025 -0.734 ± 0.063 -1.181 ± 0.033 -0.185 ± 2.779
PCA+VI (SI) -0.325 ± 0.019 1.085 ± 0.031 0.757 ± 0.028 -0.712 ± 0.057 -1.179 ± 0.033 1.764 ± 0.271
SGD -0.538 ± 0.108 1.012 ± 0.154 0.602 ± 0.224 -0.854 ± 0.085 -1.162 ± 0.032 1.073 ± 0.858
ORTHVGP -0.448 1.022 0.701 -0.914 — 0.159
NL -0.698 ± 0.039 0.935 ± 0.265 0.670 ± 0.038 -0.884 ± 0.025 -1.002 ± 0.050 -2.840 ± 0.226

Table 3: Average test performance for image classification tasks on CIFAR-10 and CIFAR-100.

METRIC NLL ACC ECE

DATASET CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

CIBER 0.1927 ± 0.0029 0.9193 ± 0.0027 93.64 ± 0.09 74.71 ± 0.18 0.0130 ± 0.0011 0.0168 ± 0.0025
SWAG 0.2503 ± 0.0081 1.2785 ± 0.0031 93.59 ± 0.14 73.85 ± 0.25 0.0391 ± 0.0020 0.1535 ± 0.0015
SGD 0.3285 ± 0.0139 1.7308 ± 0.0137 93.17 ± 0.14 73.15 ± 0.11 0.0483 ± 0.0022 0.1870 ± 0.0014
SWA 0.2621 ± 0.0104 1.2780 ± 0.0051 93.61 ± 0.11 74.30 ± 0.22 0.0408 ± 0.0019 0.1514 ± 0.0032
SGLD 0.2001 ± 0.0059 0.9699 ± 0.0057 93.55 ± 0.15 74.02 ± 0.30 0.0082 ± 0.0012 0.0424 ± 0.0029
KFAC 0.2252 ± 0.0032 1.1915 ± 0.0199 92.65 ± 0.20 72.38 ± 0.23 0.0094 ± 0.0005 0.0778 ± 0.0054

We run CIBER with two different ways of choosing the collapsed parameter set: CIBER (last) chooses
all the weights at the last layer to be the collapsed set; CIBER (second) chooses three out of all the
weights at the second-to-last layer to be the collapsed set. The heuristic we use for choosing the
weights is to look into the sampled weights from SGD trajectories to see which ones have the greatest
variance. The intuition is that a greater variance indicates that the weight is prone to have greater
uncertainty and thus one might want to perform a more accurate inference over it.

Baselines. We compare CIBER to the state-of-the-art approximate BNN inference methods. We
separate these methods into two categories: those sampling from SGD trajectories as approximate
posteriors, which includes SWAG (Maddox et al., 2019), PCA+ESS (SI) and PCA+VI (SI) (Izmailov
et al., 2020), vs. those who do not, which includes the SGD baseline, deterministic variational
inference (DVI) (Wu et al., 2019), Deep Gaussian Processes (DGP) (Bui et al., 2016), variational
inference (VI) (Kingma & Welling, 2013), MC Dropout (MCD) (Gal & Ghahramani, 2015, 2016),
and variational structured dropout (VSD) (Nguyen et al., 2021). These methods achieved state-
of-the-art performance on the small UCI datasets. We also compare to baselines Bayesian final
layers (NL) (Riquelme et al., 2018), deep kernel learning (DKL) (Wilson et al., 2016), orthogonally
decoupled variational GPs (OrthVGP) (Salimbeni et al., 2018) and Fastfood approximate kernels (FF)
(Yang et al., 2015), which have achieved state-of-the-art performance on the large UCI datasets.

Results. We present the test log likelihoods for small UCI datasets in Table 1 and those for large
UCI datasets in Table 2. In both tables, the first block summarizes SGD-trajectory sampling-based
approaches and the second summarizes the rest. Underlined results are the best among all and bold
results are the best among SGD-trajectory sampling-based approaches. From the results, our CIBER
has substantially better performance than all others on three out of the five small UCI datasets four
out of six large UCI datasets, with comparable performance on the rest, demonstrating that CIBER
provides accurate uncertainty estimation. We also present the test rooted-mean-squared error results
in Appendix, where CIBER outperforms all other SGD-trajectory sampling-based baselines on four
out of five small UCI datasets and four out of six large UCI datasets; it outperforms all baselines
on two small UCI datasets and one large UCI datasets and has comparable performance on the rest.
This further illustrates that exact marginalization over conditional approximate posteriors enabled by
WMI solvers achieves accurate estimation of the true BMA and boosts predictive performance.

6.2 Image Classification

CIFAR datasets. We experiment with two image datasets: CIFAR-10 and CIFAR-100 (Krizhevsky
et al., 2009) and evaluate the test performance using three metrics: 1) negative log likelihood (NLL)
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Table 4: Average test performance for image transfer learning tasks.

METRIC NLL ACC ECE

MODEL VGG-16 PRERESNET-164 VGG-16 PRERESNET-164 VGG-16 PRERESNET-164

CIBER 0.9869 ± 0.0102 0.9684 ± 0.0075 72.56 ± 0.23 75.70 ± 0.17 0.0925 ± 0.0028 0.0704 ± 0.0031
SWAG 1.3425 ± 0.0015 1.3842 ± 0.0122 72.30 ± 0.11 76.30 ± 0.06 0.1988 ± 0.0028 0.1668 ± 0.0006
SGD 1.6528 ± 0.0390 1.4790 ± 0.0000 72.42 ± 0.07 75.56 ± 0.00 0.2149 ± 0.0027 0.1758 ± 0.0000
SWA 1.3993 ± 0.0502 1.3552 ± 0.0000 71.92 ± 0.01 76.02 ± 0.00 0.2082 ± 0.0056 0.1739 ± 0.0000

that reflects the quality of both uncertainty estimation and prediction accuracy, 2) classification
accuracy (ACC), and 3) expected calibration errors (ECE) (Naeini et al., 2015) that show the difference
between predictive confidence and accuracy and should be close to zero for a well-calibrated approach.

We run CIBER by choosing the collapsed parameter set to be 10 weights and 100 weights at the last
layer of the neural network models for CIFAR-10 and CIFAR-100 respectively. The weights are
chosen using the same heuristic as the one for regression tasks, i.e., to choose the weights whose
samples from the SGD trajectories have large variances. We compare CIBER with strong baselines
including SWAG (Maddox et al., 2019) reproduced by their open-source implementation, standard
SGD, SWA (Izmailov et al., 2018), SGLD (Welling & Teh, 2011) and KFAC (Ritter et al., 2018).

Transfer from CIFAR-10 to STL-10. We further consider a transfer learning task using the model
trained on CIFAR-10 to be evaluated on dataset STL-10 (Coates et al., 2011). STL-10 shares nine
out of ten classes with the CIFAR-10 dataset but has a different image distribution. It is a common
benchmark in transfer learning to adapt models trained on CIFAR-10 to STL-10.

Results. We present the test classification performance on dataset CIFAR-10 and CIFAR-100 in
Table 3 and that of transfer learning in Table 4. The neural network models used in the classification
task are VGG-16 networks and the models used in the transfer learning task are VGG-16 and
PreResNet-164. More results using different network architectures are presented in the Appendix.
With the same number of samples as SWAG, CIBER outperforms SWAG and other baselines in most
evaluations and delivers comparable performance otherwise, demonstrating the effectiveness of using
collapsed samples in improving uncertainty estimation as well as classification performance.

7 Conclusions And Future Work

We reveal the connection between BMA, a way to perform Bayesian deep learning and WVC, which
inspires us to approximate BMA using the framework of WMI. To further make this approximation
scalable and flexible, we combine it with collapsed samples which gives our algorithm CIBER.
CIBER compares favorably to Bayesian deep learning baselines on regression and classification tasks.
A future direction would be to explore what other layers can be expressed as SMT formulas and thus
amenable to SMT encoding. Also, the current WMI solvers are limited to polynomial weights, and
thus the reduction to WMI problems is applicable to piecewise polynomial weights. This limitation
might be alleviated in the future by the development of new WMI solvers that allow various weight
function families.
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A Proofs

Proposition 7 Let the SMT formula ∆ = ∆ReLU ∧ ∆pos ∧ ∆pred , and the set of weights Φ =
Φpos∪Φpred as defined in Section 4.2. Let the set of weights Φ∗ = Φ∪{ϕℓ(Y ) = Y with ℓ = true}.
The integrals in collapsed BMA (Equation 2) can be computed by WMI solvers as∫

p(y | x,w) q(wc) dwc = WMI(∆ ∧ (Y = y),Φ) / WMI(∆,Φ), and∫
y p(y | x,w) q(wc) dwc dy = WMI(∆,Φ∗) / WMI(∆,Φ).

Proof. By construction, it holds that

p(y | x,w) ∝WMI(∆pred ∧ (Y = y),Φpred)

∝
∏

ℓ∈Lpred

ϕℓ(y,wc)
Jy,wc|=ℓK, with (y,wc) |= ∆pred ∧∆ReLU

q(wc) ∝WMI(∆pos ∧ (Wc = wc),Φpos)

∝
∏

ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK, with wc |= ∆pos

Thus, we have that the likelihood weighted by the approximate posterior would be

p(y | x,w) q(wc) ∝
∏

ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK with (y,wc) |= ∆ReLU ∧∆pred ∧∆pos ,

or equivalently,

p(y | x,w) q(wc) =

∏
ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK

WMI(∆,Φ)
, with (y,wc) |= ∆.

By integrating over the collapsed set Wc, it further holds that∫
p(y | x,w) q(wc) dwc

=

∫ ∏
ℓ∈Lpred∧Lpos

ϕℓ(y,wc)
Jy,wc|=ℓK dwc

WMI(∆,Φ)
, with (y,wc) |= ∆

=
WMI(∆ ∧ (Y = y),Φ)

WMI(∆,Φ)

which proves the first equation.

Similarly, we have that

y p(y | x,w) q(wc)

∝
∏

ℓ∈Lpred

y ϕℓ(y,wc)
Jy,wc|=ℓK

∏
ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK, with (y,wc) |= ∆

By integrating over the collapsed set Wc and prediction y, it holds that∫
y p(y | x,w) q(wc) dwc dy

=

∫
y

∏
ℓ∈Lpred

ϕℓ(y,wc)
Jy,wc|=ℓK ∏

ℓ∈Lpos

ϕℓ(wc)
Jwc|=ℓK dwc dy

WMI(∆,Φ)
, with (y,wc) |= ∆

=
WMI(∆,Φ∗)

WMI(∆,Φ)

which finishes our proof.
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Algorithm 1 CIBER
Input: input x, sampled weightsW , neural network model fw, prediction ground truth y∗

Ouput: predictions and likelihoods
1: Choose a partition (Ws,Wc) for network parameters
2: Derive approximate posterior q(wc) from sampled weights {wc | w ∈ W} // cf. Section 4.2
3: Encode posterior q(wc) into WMI problemMpos = (∆pos ,Φpos) // cf. Section 4.2
4: Y ← ∅, P ← ∅ // Initialization
5: for sample ws in {ws | w ∈ W} do
6: Encode neural network model fReLU parameterized by (ws,Wc) into an SMT formula ∆fw
7: Encode predictive p(Y | x,ws,Wc) into a WMI problemMpred = (∆pred ,Φpred)
8: SMT formula ∆← ∆ReLU ∧∆pos ∧∆pred

9: Weights Φ← Φpos ∪ Φpred

10: Weights Φ∗ ← Φ ∪ {ϕℓ(Y ) = Y with ℓ = true}
11: Add prediction y = WMI(∆,Φ∗)/WMI(∆,Φ) to prediction set Y // cf. Section 4.3
12: Add likelihood p = WMI(∆ ∧ (Y = y∗),Φ)/WMI(∆,Φ) to set P // cf. Section 4.3
13: return y = MEAN(Y), p(y∗ | x) = MEAN(P)

Table 5: Average test RMSE for the small UCI regression task.

BOSTON CONCRETE YACHT NAVAL ENERGY

CIBER (SECOND) 3.488 ± 1.123 4.880 ± 0.506 0.828 ± 0.241 0.000 ± 0.000 0.447 ± 0.081
CIBER (LAST) 3.478 ± 1.128 4.854 ± 0.503 0.752 ± 0.294 0.000 ± 0.000 0.447 ± 0.081
SWAG 3.517 ± 0.981 5.233 ± 0.417 0.973 ± 0.375 0.001 ± 0.000 1.594 ± 0.273
PCA+ESS (SI) 3.453 ± 0.953 5.194 ± 0.448 0.972 ± 0.375 0.001 ± 0.000 1.598 ± 0.274
PCA+VI (SI) 3.457 ± 0.951 5.142 ± 0.418 0.973 ± 0.375 0.001 ± 0.000 1.587 ± 0.272
SGD 3.504 ± 0.975 5.194 ± 0.446 0.973 ± 0.374 0.001 ± 0.000 1.602 ± 0.275
MCD 2.830 ± 0.170 4.930 ± 0.140 0.720 ± 0.050 0.000 ± 0.000 1.080 ± 0.030
VSD 2.640 ± 0.170 4.720 ± 0.110 0.690 ± 0.060 0.000 ± 0.000 0.470 ± 0.010

B Pseudo Code for CIBER

We summarize our proposed algorithm CIBER, Collapsed Inference Bayesian DEep LeaRning, for
regression tasks, in Algorithm 1. For the classification task, the algorithm is basically the same except
the encoding of the predictive of the distribution. Specifically, for a given class y, the predictive
distribution p(y | x,w) can be encoded into a WMI problem as shown below:

∆pred = fw(x) ≥ −d Φpred =

{
ϕℓ1(Wc) with ℓ1 = (fw(x) ≤ d)

ϕℓ2(Wc) = 1 with ℓ2 = (fw(x) > d)

}
where ϕℓ1 is a cubic polynomial that approximates the sigmoid function such that the posterior
predictive distribution p(y | x) can be solved by WMI solvers by p(y | x) = WMI(∆,Φ). Further,
the prediction of BMA for classification tasks is made by y∗ = argmaxy p(y | x).

C Additional Experiments

C.1 Toy Regression in Figure 2

We evaluate the predictive distributions obtained by our CIBER and HMC respectively, in a toy
dataset generated by sampling 10 input x uniformly distributed in the interval [−1,−0.5] and interval
[0.5, 1]. For each input x, the corresponding target y is computed from a cubic polynomial with
Gaussian noises. We apply to these data a Bayesian neural network which is a ReLU neural network
with two hidden layers, where both parameter priors and likelihood are Gaussian distributions. We
compare HMC and our CIBER in a few-sample setting which is common in most Bayesian deep
learning applications, with 10 samples from the posterior distribution. An estimation generated by
HMC with a sufficiently large number of samples of size 2, 000 is further presented as a ground truth.
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Table 6: Average test RMSE for the large UCI regression task.

ELEVATORS KEGGD KEGGU PROTEIN SKILLCRAFT POL

CIBER (SECOND) 0.088 ± 0.002 0.142 ± 0.074 0.115 ± 0.007 0.438 ± 0.009 0.251 ± 0.010 2.212 ± 0.230
CIBER (LAST) 0.088 ± 0.002 0.142 ± 0.072 0.118 ± 0.012 0.438 ± 0.009 0.251 ± 0.010 2.199 ± 0.182
SWAG 0.088 ± 0.001 0.129 ± 0.029 0.160 ± 0.043 0.415 ± 0.018 0.293 ± 0.015 3.110 ± 0.070
PCA+ESS (SI) 0.089 ± 0.002 0.129 ± 0.028 0.160 ± 0.043 0.425 ± 0.017 0.293 ± 0.015 3.755 ± 6.107
PCA+VI (SI) 0.088 ± 0.001 0.128 ± 0.028 0.160 ± 0.043 0.418 ± 0.021 0.293 ± 0.015 2.499 ± 0.684
SGD 0.103 ± 0.035 0.132 ± 0.017 0.186 ± 0.034 0.436 ± 0.011 0.288 ± 0.014 3.900 ± 6.003
NL 0.101 ± 0.002 0.134 ± 0.036 0.120 ± 0.003 0.447 ± 0.012 0.253 ± 0.011 4.380 ± 0.853
DKL 0.084 ± 0.020 0.100 ± 0.010 0.110 ± 0.000 0.460 ± 0.010 0.250 ± 0.000 6.617
ORTHVGP 0.095 0.120 0.117 0.461 — 4.300 ± 0.200
FF 0.089 ± 0.002 0.120 ± 0.000 0.120 ± 0.000 0.470 ± 0.010 0.250 ± 0.020 —

Table 7: Average test log likelihoods for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.1927 ± 0.0029 0.1352 ± 0.0014 0.1913 ± 0.0029 0.9193 ± 0.0027 0.8144 ± 0.0065 0.7930 ± 0.0065
SWAG 0.2503 ± 0.0081 0.1459 ± 0.0013 0.1076 ± 0.0009 1.2785 ± 0.0031 1.0703 ± 0.4861 0.6719 ± 0.0035
SGD 0.3285 ± 0.0139 0.1814 ± 0.0025 0.1294 ± 0.0022 1.7308 ± 0.0137 0.9465 ± 0.0191 0.7958 ± 0.0089
SWA 0.2621 ± 0.0104 0.1450 ± 0.0042 0.1075 ± 0.0004 1.2780 ± 0.0051 0.7370 ± 0.0265 0.6684 ± 0.0034
SGLD 0.2001 ± 0.0059 0.1418 ± 0.0005 0.1289 ± 0.0009 0.9699 ± 0.0057 0.6981 ± 0.0052 0.6780 ± 0.0022
KFAC 0.2252 ± 0.0032 0.1471 ± 0.0012 0.1210 ± 0.0020 1.1915 ± 0.0199 0.7881 ± 0.0025 0.7692 ± 0.0092

The results are shown in Figure 2. Even with the same 10 samples drawn from the posterior
distribution, since CIBER further approximates the 10 samples with a uniform distribution as q(w),
it yields a predictive distribution p(y | x) closer to the ground truth than HMC. The intuition behind
is that using a uniform distribution instead of a few samples forms a better approximation to the true
posterior since the uniform distribution in a collapsed sample represents uncountably many models.

C.2 Regression on Small and Large Datasets

Sampling from SGD Trajectories. During training, we use Gaussian log likelihood as the objective
for obtaining smooth gradients and use early stopping to prevent over-fitting. At convergence, we
start the sampling process by keeping running SGD and collecting the weights. At deployment time,
we approximate the Gaussian predictive distribution with the triangular distributions.

Hyperparameters. The hyperparameters including learning rates and weight decay are tuned by
performing a grid search to maximize the Gaussian log likelihood using a validation split.

Additional Results. Following the set-up of Izmailov et al. (2020), the test performance on small
UCI datasets are averaged over 20 trials and the test performance of large UCI datasets are averaged
over 10 trials. The test log likelihood results for small UCI datasets are unnormalized while those
for large UCI datasets are normalized. Besides the log likelihood results as shown in Section 6.1,
root-mean-squared-error (RMSE) results for small UCI datasets are further presented in Table 5 and
RMSE results for large UCI datasets are presented in Table 6.

C.3 Image Classification

Sampling from SGD Trajectories. All the network models are trained for 300 epochs using
SGD. We start the weight collection after epoch 160 with step size 5. We follow exactly the same
hyperparameters as Maddox et al. (2019) including learning rates and weight decay parameters.

Additional Results. Following the set-up of Maddox et al. (2019), we run experiments with VGG-16,
PreResNet-164 and WideResNet network models on both the image classification task and the transfer
learning task. For the image classification task on CIFAR datasets, we present the log likelihood
results in Table 7, the accuracy results in Table 8, and ECE results in Table 9. For the transfer
learning task from dataset CIFAR-10 to dataset STL-10, we present the results for model VGG-16
and PreResNet-164 in Table 4 and the results for model WideResNet in Table 10.
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Table 8: Average test accuracy for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 93.64 ± 0.09 95.95 ± 0.06 95.63 ± 0.16 74.71 ± 0.18 79.23 ± 0.25 81.25 ± 0.35
SWAG 93.59 ± 0.14 96.09 ± 0.08 96.38 ± 0.08 73.85 ± 0.25 73.02 ± 10.30 82.27 ± 0.07
SGD 93.17 ± 0.14 95.49 ± 0.06 96.41 ± 0.10 73.15 ± 0.11 78.50 ± 0.32 80.76 ± 0.29
SWA 93.61 ± 0.11 96.09 ± 0.08 96.46 ± 0.04 74.30 ± 0.22 80.19 ± 0.52 82.40 ± 0.16
SGLD 93.55 ± 0.15 95.55 ± 0.04 95.89 ± 0.02 74.02 ± 0.30 80.09 ± 0.05 80.94 ± 0.17
KFAC 92.65 ± 0.20 95.49 ± 0.06 96.17 ± 0.00 72.38 ± 0.23 78.51 ± 0.05 80.94 ± 0.41

Table 9: Average test ECE for image classification tasks on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100

MODEL VGG-16 PRERESNET-164 WIDERESNET VGG-16 PRERESNET-164 WIDERESNET

CIBER 0.0130 ± 0.0011 0.0250 ± 0.0005 0.0760 ± 0.0011 0.0168 ± 0.0025 0.1423 ± 0.0029 0.1650 ± 0.0046
SWAG 0.0391 ± 0.0020 0.0214 ± 0.0005 0.0096 ± 0.0006 0.1535 ± 0.0015 0.1031 ± 0.0471 0.0678 ± 0.0006
SGD 0.0483 ± 0.0022 0.0255 ± 0.0009 0.0166 ± 0.0007 0.1870 ± 0.0014 0.1012 ± 0.0009 0.0479 ± 0.0010
SWA 0.0408 ± 0.0019 0.0203 ± 0.0010 0.0087 ± 0.0002 0.1514 ± 0.0032 0.0700 ± 0.0056 0.0684 ± 0.0022
SGLD 0.0082 ± 0.0012 0.0251 ± 0.0012 0.0192 ± 0.0007 0.0424 ± 0.0029 0.0363 ± 0.0008 0.0296 ± 0.0008
KFAC 0.0094 ± 0.0005 0.0092 ± 0.0018 0.0060 ± 0.0003 0.0778 ± 0.0054 0.0158 ± 0.0014 0.0379 ± 0.0047

Table 10: Average test performance for image transfer learning tasks using WideResNet.

METRIC NLL ACC ECE

CIBER 0.8259 ± 0.0148 75.02 ± 0.31 0.0336 ± 0.0009
SWAG 1.0142 ± 0.0032 76.96 ± 0.08 0.1303 ± 0.0008
SGD 1.1308 ± 0.0000 76.75 ± 0.00 0.1561 ± 0.0000
SWA 1.0047 ± 0.0000 77.50 ± 0.00 0.1413 ± 0.0000
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