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Abstract

A central challenge in humanoid robotic control is bridging the gap between sim-1

ulated and real-world physics to enhance robot learning. This gap often leads to2

execution failures due to discrepancies in dynamics, actuator behavior, and un-3

modeled perturbations. This gap manifests as nonlinear variations at the level of4

each individual motor, and becomes even more unpredictable when the humanoid5

interacts with objects of varying weights. To better align simulation and real-world6

physics for robot learning, we curate SimLifter, the first dataset specifically7

designed to bridge the sim-to-real gap, even under the increased variability in-8

troduced by diverse payload interactions. SimLifter contains 257,493 frames,9

and systematically captures multimodal signals—including joint positions, veloc-10

ities, torques, motor temperatures, and equivalent torques—across four standard11

payloads, three humanoid robots, and two actuation frequencies, covering both12

isolated joint movements and full upper-body coordination. We further introduce13

GAPONet, a novel reinforcement learning framework designed to enable robust14

policy transfer from simulation to the real world. Based on Unstacked Deep Op-15

erator Network (DeepONet) and Reinforcement Learning (RL), GAPONet es-16

timates the discrepancies between simulation and real-world executions of the17

same policy by learning a nonlinear operator over multiple force modalities. It18

also demonstrates strong extrapolative generalization to unseen robots and zero-19

shot actions. On previously unseen humanoid robots, GAPONet shows substan-20

tial gains in zero-shot motion tracking, improving accuracy across all joints by21

over 40% on average compared to PD control with default hyperparameters, and22

up to 50% under maximum payload. In the goal-directed object delivery task,23

GAPONet improves accuracy by 70% under maximum payload over direct target24

action execution.25

1 Introduction26

Policies trained in simulation benefit from GPU acceleration and parallelized sampling [11], al-27

lowing fast and scalable training in environments with approximated physical properties such as28

mass, friction, and damping. However, in real-world interactions, forces such as friction and iner-29

tia often diverge significantly from these idealized assumptions [18, 24]. Various mismatches give30

rise to the well-known sim-to-real gap—a discrepancy between simulated and actual physical be-31

havior—which becomes increasingly pronounced when humanoid robots interact with objects of32

varying mass. Crucially, this gap grows in a nonlinear and unpredictable manner, posing a seri-33

ous challenge for robust policy transfer [23]. Bridging this gap is therefore essential for advancing34

humanoid robot control and enabling reliable real-world deployment.35

To improve transferability, many current approaches begin with system identification to tune sim-36

ulation parameters [8, 2, 15], apply domain randomization during training [14, 18, 3], or inject37

noise into observation signals [7, 22, 13] (e.g., mass, velocity) to prevent policies from overfitting38
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Figure 1: The overall structure of SimLifter and GAPONet. (a) shows the data collection process of
SimLifter, where hierarchical motions are executed in both simulation and real-world platforms with stan-
dardized payloads to capture multi-modal paired data. (b) An overview of GAPONet, where the Branch Net
and Trunk Net encode the robot’s state and action, integrated with PPO for iterative learning.

to narrow distributions. Some also incorporate curriculum learning [10, 19] or progressively harder39

terrains to enhance policy robustness over time [16, 6]. While effective to some extent, these tech-40

niques require considerable manual tuning and domain expertise, making them labor-intensive and41

difficult to scale—especially for complex systems like humanoids.42

A parallel line of work attempts to model real-world physics by learning dynamics from real-world43

data, using either observed states [17, 21] or actions [5]. While this approach holds promise, it typ-44

ically requires large volumes of paired simulator-real data and struggles to model discrepancies for45

unseen actions. More importantly, these learned dynamics often fail to generalize across payloads of46

varying mass, limiting their ability to address the sim-to-real gap in diverse interaction scenarios. To47

overcome these limitations, we curate SimLifter, the first dataset specifically designed to bridge48

the sim-to-real gap, even under the increased variability introduced by diverse payload interactions.49

Different from prior datasets [20, 12, 1], SimLifter provides a structured and comprehensive50

collection of multimodal signals from humanoid upper-body interactions across varying payloads,51

actuation frequencies, and robot platforms, supporting detailed analysis and robust sim-to-real eval-52

uation.53

Building on our dataset, we propose GAPONet, which leverages a nonlinear operator [9] to model54

the sim-to-real gap in humanoid joint dynamics. This approach enables extrapolative generalization55

across varying payloads, mitigating overfitting to the collected data. GAPONet begins with a Sensor56

Predictor that encodes current state–action changes into distributions. These are then mapped into a57

latent space via the Branch Net, while the Trunk Net encodes two key query inputs — the payload58

and the current action. The resulting features are fused into a unified latent representation, from59

which the model predicts a delta action to compensate for the complex forces caused by discrepan-60

cies between simulation and real-world physics. We evaluate GAPONet on two tasks: (1) zero-shot61

motion tracking and (2) goal-directed object delivery, to assess its generalization and modeling ca-62

pabilities on previously unseen humanoid robots. In zero-shot motion tracking, GAPONet improves63

accuracy across all joints by over 40% on average compared to sending target actions via API, and64

up to 50% under maximum payload. In the goal-directed object delivery task, it achieves a 70% ac-65

curacy improvement under maximum payload over direct target action execution. This paper makes66

three primary contributions:67

• We curate SimLifter, the first dataset specifically designed to bridge the sim-to-real68

gap under the challenging variability introduced by diverse payload interactions. The data69

is collected across four distinct payloads and hierarchically structured into whole-body,70

upper-body, and per-joint levels.71

• We introduce GAPONet, which models the sim-to-real gap in humanoid joint dynamics72

through a nonlinear operator, and achieves extrapolative generalization across different73

payloads, preventing overfitting to the collected data.74
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• We propose a Sensor Predictor module that replaces the fixed sensor input in traditional75

operator learning with a learnable sensor distribution, enabling parallel training within RL76

environments. This significantly reduces computational cost and makes the operator learn-77

ing framework practically feasible.78

2 SimLifter Dataset79

SimLifter is the first dataset explicitly designed to bridge the sim-to-real gap under the variabil-80

ity introduced by diverse payload interactions. It records humanoid upper-body dynamics hierarchi-81

cally — from individual joints to full upper-body motions — using three Unitree H1-2 robots with82

standardized end-effector weights (0–3 kg) and actuation frequencies of 50 Hz and 100 Hz. The83

dataset covers ten joints (six shoulders, two elbows, two wrists), with each sequence repeated three84

times across robots to reduce noise. In total, it contains 28.46 hours, 11,198 sequences, and 257,49385

synchronized frames of joint positions, velocities, accelerations, torques, and motor temperatures.86

Each sequence is paired with a high-fidelity simulation replica, forming synchronized paired data87

for frame-level comparison of real and simulated executions. The distribution is shown in Fig. 2.88

Our experiments are further validated on a fourth H1-2 unit unseen during data collection.89
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Figure 2: Joint motion ranges. The RainCloud plot illustrates the motion range of each upper-body joint by
combining random samples (gray), box plots with red medians, and violin plots to reveal overall trends. The
distributions span the valid ranges, and left–right joint pairs collectively approximate the electronic limits.

3 GAPONet90

DeepONet [9]’s branch network encodes samples of the input function (e.g., joint trajectories), while91

the trunk network provides a query signal (e.g., future state or time) that enables effective generaliza-92

tion in a finite-dimensional space. In robotics, this framework can be integrated with RL algorithms93

to learn operator mappings between state-action trajectories and future dynamics, going beyond94

pointwise modeling of joint positions and velocities. Inspired by dynamic modeling [5], GAPONet95

predicts the delta action of each humanoid joint to compensate complex forces between the simu-96

lator and real-world physics [4]. Built on DeepONet and RL, it first employs a Sensor Predictor to97

encode current state–action changes into a set of distributions.98

X “ fpA,Q, V, P, J,Qreal, Vrealq, (1)
where A denotes the robot’s target position, Q and V are the simulated DoF positions and velocities,99

and Qreal and Vreal are the corresponding real-world values. The variable P indicates the payload100

during execution, while J represents the joint index in the humanoid’s kinematic structure.101

These inputs are mapped into a latent representation by the Branch Net:102

BpUqpxqq “ rB1pUqpxqq, . . . ,BppUqpxqqs, (2)
where x P X is the predicted sensor distribution, and Uqpxq denotes the simulated state at the next103

step. Each component Bi encodes a distinct latent feature of the actuation state, enabling the network104

to decompose complex dynamics into interpretable subcomponents.105
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The Trunk Net encodes query signals consisting of the payload and current action,106

Y “ tP,Au, T pyq “ rT1pyq, . . . , TppyqsJ, (3)

which condition the latent space and align the actuator dynamics from the Branch Net with the target107

motion objectives.108

The fused representation is obtained by combining Branch and Trunk features:109

GpUqpxqqpyq “

p
ÿ

i“1

Bipxq ¨ Tipyq, (4)

yielding the delta action ∆aj for each joint j. This correction is added to the simulator’s nominal110

command to bridge the sim-to-real gap:111

st`1 “ f sim`

stsim, a
t
sim ` GpUqpxtqqpatq

˘

. (5)

4 Experiments112

4.1 Zero-shot Motion Tracking113

We validate our approach on ten motion sequences not included in the training set. The evaluation114

metric is the discrepancy in DoF positions between the simulator and the real robot, denoted as Qdis.115

Specifically, Qdis is defined as the integral of the difference between the target trajectory and the116

real robot’s trajectory, where a smaller value indicates stronger gap-bridging capability. As shown117

in Fig. 3, we report Qdis for eight upper-body joints under four payload conditions. The blue curve118

shows the natural mismatch between the simulator and the real robot without correction. The orange119

curve shows the results of [5], originally implemented with an MLP-based architecture (referred to120

as MLP). The green curve corresponds to the results of our proposed GAPONet.121
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Figure 3: Sim-to-real alignment (Qdis) comparison across eight upper-body joints under four payload
conditions. GAPONet (green) achieves better trajectory alignment than MLP (orange) and the raw simulator
output (blue).

We observe that the gap becomes more pronounced as the payload increases, while GAPONet122

achieves up to a 50% reduction in Qdis. Compared to the MLP baseline, GAPONet also demonstrates123

stronger generalization, yielding better tracking accuracy even on zero-shot motion sequences.124

4.2 Goal-directed Object Delivery125

This task requires the robot to reach a specified global position while carrying payloads of varying126

mass. The challenge is to maintain accuracy under heavy loads, where gravitational effects make127

stable positioning difficult. As shown in Tab. 1, we evaluate four payload conditions across two128
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models. Compared to the simulator’s direct outputs, our approach significantly reduces the sim-to-129

real gap, enabling the robot to stably maintain the commanded position. GAPONet outperforms130

the MLP baseline with over 40% error reduction along the X and Y axes, and a 70% reduction131

along the Z axis, effectively mitigating gravitational impact. These results demonstrate GAPONet’s132

robustness in bridging the sim-to-real gap under heavy payloads.133

Table 1: Performance comparison of Dynamic Lifting and Lowering under varying payloads. The table presents
positional deviations (X, Y, Z) for both GAPONet and MLP-based baselines and compare them with the direct
output of simulator.

with GAPONet with MLP simulator
Payload X-offset (cm) Y-offset (cm) Z-offset (cm) X-offset (cm) Y-offset (cm) Z-offset (cm) X-offset (cm) Y-offset (cm) Z-offset (cm)

0 kg 0.3564 0.6274 0.4797 0.4298 0.6097 1.7068 0.6733 0.6450 1.9698
1 kg 0.3506 0.7331 0.4885 0.4581 0.5801 1.7142 0.5424 0.7554 1.9978
2 kg 0.3725 0.7357 0.5759 0.4363 0.7374 1.8323 0.8149 1.2051 2.1376
3 kg 0.4597 0.7855 0.6214 0.4726 0.7113 2.1137 1.1455 1.2520 1.9269

4.3 Ablation134

To better understand the contribution of different design choices in GAPONet, we conduct extensive135

ablation studies across five key dimensions Tab. 2: input structure, control frequency, observation136

history length, delta action duration, and prediction formulation. For fair comparison, all models137

are trained on SimLifter and evaluated using the same metric—mean per-joint angular error138

(MPJAE)—under different payload conditions.139

Table 2: Ablation study results across input structure, frequency, model design, and prediction targets.
GAPONet consistently outperforms other variants.

Ablation Setting Obs Dim 0kg MPJAE (rad) ↓ 1kg MPJAE (rad) ↓ 2kg MPJAE (rad) ↓ 3kg MPJAE (rad) ↓

(a) Payload Ablation

GAPONet w p Obs P R141 0.016 0.017 0.018 0.019
GAPONet w/o p Obs P R140 0.013 0.012 0.013 0.015

(b) Frequency Ablation

GAPONet @ 100Hz Obs P R140 0.019 0.019 0.023 0.021
GAPONet @ 50Hz (Ours) Obs P R140 0.013 0.012 0.013 0.015

(c) History Length Ablation

History Length = 2 Obs P R80 0.016 0.016 0.017 0.019
History Length = 6 Obs P R200 0.015 0.016 0.016 0.019
History Length = 8 Obs P R260 0.017 0.017 0.018 0.021
History Length = 4 (Ours) Obs P R140 0.013 0.012 0.013 0.015

(d) Action Duration Ablation

Action Duration = 3 Obs P R140 0.017 0.016 0.017 0.018
Action Duration = 5 Obs P R140 0.015 0.016 0.017 0.019
Action Duration = 1 (Ours) Obs P R140 0.013 0.012 0.013 0.015

(d) Prediction Ablation

Predict St`1 Obs P R140 0.016 0.017 0.018 0.020
Predict St`1 ´ St (Ours) Obs P R140 0.013 0.012 0.013 0.015

5 Conclusion140

This work tackles the sim-to-real gap in humanoid control by introducing SimLifter and propos-141

ing GAPONet. SimLifter systematically captures multimodal joint-level signals across varying142

payloads, frequencies, and humanoid platforms, providing the first structured benchmark for ana-143

lyzing and mitigating actuator-level discrepancies. Building on this foundation, GAPONet leverages144

operator learning with DeepONet to estimate and correct nonlinear mismatches between simulation145

and real executions, enabling robust policy transfer. Experiments show that GAPONet not only146

achieves over 40% improvements in zero-shot motion tracking but also delivers up to 70% accuracy147

gains in goal-directed object delivery tasks, demonstrating its generalization ability and effective-148

ness in bridging the sim-to-real gap. Additional details on model design, training procedures, and149

extended datasets with new experiments will be released in subsequent versions of this work.150
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