Jieming Cui 1,2,3 Zhenghao Qi ^{1,2,3} **Yutang Lin** 1,2,3,4 cuijieming@stu.pku.edu.cn qizh1047@gmail.com yutang.lin@stu.pku.edu.cn Yuntian Hu 1,2,3,4 Eric Kuang⁶ Yifei Zhao⁵ yifei_zhao@tongji.edu.cn hyt@stu.pku.edu.cn ekuang@nvidia.com Ruihua Zhang $^{6, oxtimes}$ Bin He^{5,⊠} Shuang Qiu⁶ juneq@nvidia.com ritaz@nvidia.com hebin@tongji.edu.cn Yixin Zhu $^{1,2,3,7, oxtimes}$ yixin.zhu@pku.edu.cn ¹ Institute for Artificial Intelligence, Peking University

¹ Institute for Artificial Intelligence, Peking University
 ² School of Psychological and Cognitive Sciences, Peking University
 ³ Beijing Key Laboratory of Behavior and Mental Health, Peking University
 ⁴ Yuanpei College, Peking University
 ⁵ Shanghai Institute of Intelligent Science and Technology, Tongji University

Abstract

2

3

5

6

8

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

A central challenge in humanoid robotic control is bridging the gap between simulated and real-world physics to enhance robot learning. This gap often leads to execution failures due to discrepancies in dynamics, actuator behavior, and unmodeled perturbations. This gap manifests as nonlinear variations at the level of each individual motor, and becomes even more unpredictable when the humanoid interacts with objects of varying weights. To better align simulation and real-world physics for robot learning, we curate SimLifter, the first dataset specifically designed to bridge the sim-to-real gap, even under the increased variability introduced by diverse payload interactions. **SimLifter** contains 257,493 frames, and systematically captures multimodal signals—including joint positions, velocities, torques, motor temperatures, and equivalent torques—across four standard payloads, three humanoid robots, and two actuation frequencies, covering both isolated joint movements and full upper-body coordination. We further introduce **GAPONet**, a novel reinforcement learning framework designed to enable robust policy transfer from simulation to the real world. Based on Unstacked Deep Operator Network (DeepONet) and Reinforcement Learning (RL), GAPONet estimates the discrepancies between simulation and real-world executions of the same policy by learning a nonlinear operator over multiple force modalities. It also demonstrates strong extrapolative generalization to unseen robots and zero-shot actions. On previously unseen humanoid robots, GAPONet shows substantial gains in zero-shot motion tracking, improving accuracy across all joints by over 40% on average compared to PD control with default hyperparameters, and up to 50% under maximum payload. In the goal-directed object delivery task, GAPONet improves accuracy by 70% under maximum payload over direct target action execution.

NVIDIA
 Embodied Intelligence Lab, PKU-Wuhan Institute for Artificial Intelligence

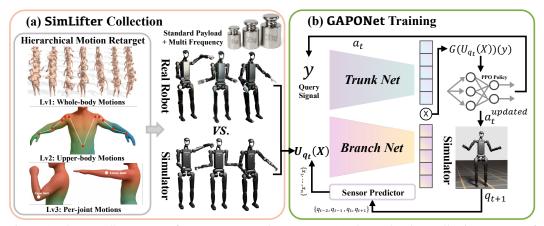


Figure 1: The overall structure of **SimLifter** and **GAPONet**. (a) shows the data collection process of **SimLifter**, where hierarchical motions are executed in both simulation and real-world platforms with standardized payloads to capture multi-modal paired data. (b) An overview of **GAPONet**, where the Branch Net and Trunk Net encode the robot's state and action, integrated with PPO for iterative learning.

1 Introduction

52

53

54

55

56

57

58

59

Policies trained in simulation benefit from GPU acceleration and parallelized sampling [14], allowing fast and scalable training in environments with approximated physical properties such as mass, 27 friction, and damping. However, in real-world interactions, forces such as friction and inertia often 28 diverge significantly from these idealized assumptions [21, 27]. Various mismatches give rise to the 29 well-known sim-to-real gap—a discrepancy between simulated and actual physical behavior—which 30 becomes increasingly pronounced when humanoid robots interact with objects of varying mass. 31 Crucially, this gap grows in a nonlinear and unpredictable manner, posing a serious challenge for 32 robust policy transfer [26]. Bridging this gap is therefore essential for advancing humanoid robot 33 control and enabling reliable real-world deployment. 34

To improve transferability, many current approaches begin with system identification to tune simulation parameters [10, 2, 18], apply domain randomization during training [17, 21, 3], or inject noise into observation signals [8, 25, 16] (e.g., mass, velocity) to prevent policies from overfitting to narrow distributions. Some also incorporate curriculum learning [13, 22] or progressively harder terrains to enhance policy robustness over time [19, 6]. While effective to some extent, these techniques require considerable manual tuning and domain expertise, making them labor-intensive and difficult to scale—especially for complex systems like humanoids.

A parallel line of work attempts to model real-world physics by learning dynamics from real-world 42 data, using either observed states [20, 24] or actions [5]. While this approach holds promise, it 43 typically requires large volumes of paired simulator-real data and struggles to model discrepancies for unseen actions. More importantly, these learned dynamics often fail to generalize across payloads of 45 varying mass, limiting their ability to address the sim-to-real gap in diverse interaction scenarios. To 46 overcome these limitations, we curate **SimLifter**, the first dataset specifically designed to bridge 47 48 the sim-to-real gap, even under the increased variability introduced by diverse payload interactions. Different from prior datasets [23, 15, 1], **SimLifter** provides a structured and comprehensive 49 50 collection of multimodal signals from humanoid upper-body interactions across varying payloads, actuation frequencies, and robot platforms, supporting detailed analysis and evaluation. 51

Building on our dataset, we propose **GAPONet**, which leverages a nonlinear operator [11] to model the sim-to-real gap in humanoid joint dynamics. This approach enables extrapolative generalization across varying payloads, mitigating overfitting to the collected data. **GAPONet** begins with a Sensor Predictor that encodes current state—action changes into distributions. These are then mapped into a latent space via the Branch Net, while the Trunk Net encodes two key query inputs — the payload and the current action. The resulting features are fused into a unified latent representation, from which the model predicts a delta action to compensate for the complex forces caused by discrepancies between simulation and real-world physics. We evaluate **GAPONet** on two tasks: (1) zero-shot motion tracking and (2) goal-directed object delivery, to assess its generalization and modeling capabilities on previously unseen humanoid robots. In zero-shot motion tracking, **GAPONet** improves accuracy

across all joints by over 40% on average compared to sending target actions via API, and up to 50% under maximum payload. In the goal-directed object delivery task, it achieves a 70% accuracy improvement under maximum payload over direct target action execution. This paper makes three primary contributions:

- We curate **SimLifter**, the first dataset specifically designed to bridge the sim-to-real gap under the challenging variability introduced by diverse payload interactions. The data is collected across four distinct payloads and hierarchically structured into whole-body, upper-body, and per-joint levels.
- We introduce **GAPONet**, which models the sim-to-real gap in humanoid joint dynamics through a nonlinear operator, and achieves extrapolative generalization across different payloads, preventing overfitting to the collected data.
- We propose a Sensor Predictor module that replaces the fixed sensor input in traditional
 operator learning with a learnable sensor distribution, enabling parallel training within RL
 environments. This significantly reduces computational cost and makes the operator learning
 framework practically feasible.

2 SimLifter Dataset

SimLifter is the first dataset explicitly designed to bridge the sim-to-real gap under the variability introduced by diverse payload interactions. It records humanoid upper-body dynamics hierarchically — from individual joints to full upper-body motions — using three Unitree H1-2 robots with standardized end-effector weights (0–3 kg) and actuation frequencies of 50 Hz and 100 Hz. The dataset covers ten joints (six shoulders, two elbows, two wrists), with each sequence repeated three times across robots to reduce noise. In total, it contains 28.46 hours, 11,198 sequences, and 257,493 synchronized frames of joint positions, velocities, accelerations, torques, and motor temperatures. Each sequence is paired with a high-fidelity simulation replica, forming synchronized paired data for frame-level comparison of real and simulated executions. The distribution is shown in Fig. 2. Our experiments are further validated on a fourth H1-2 unit unseen during data collection.

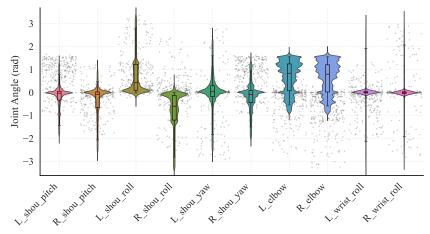


Figure 2: **Joint motion ranges.** The RainCloud plot illustrates the motion range of each upper-body joint by combining random samples (gray), box plots with red medians, and violin plots to reveal overall trends. The distributions span the valid ranges, and left–right joint pairs collectively approximate the electronic limits.

3 Why do we choose DeepONet?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii) answer at arbitrary query points (current actions, payload) across heterogeneous robots and simulators, (iii) train under a closed-loop RL objective without requiring paired function-to-function supervision at every query, and (iv) support low-latency on-board inference. We have considered some alternatives and trade-offs, for example:

- Fourier/Neural Operators (FNO family) [9, 7]: excel on fixed grids with spectral convolutions, but rely on discretization tied to resolution/geometry; cross-morphology deployment (different joint layouts) typically needs regridding or retraining, and spectral blocks add latency on embedded hardware.
- Graph/Galerkin/UNO-style operators [7]: adapt to irregular meshes/graphs but require topology-aligned parameterization; when robots or sensor layouts change, weights/graphs must be remapped. Querying arbitrary state—time points is less natural than function—query separation. Capacity is high, but so are data and compute demands.
- Physics-informed neural operators (PINO): leverage known PDE residuals for sample efficiency, yet our residual field (sim—real actuation gap with delays/saturation) lacks a clean PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet's branch-trunk decomposition [11, 12] aligns directly with our problem: the branch 105 encodes context (multi-sensor histories, simulator traces, payload), and the trunk indexes continuous query variables (state/time/joint), producing residual action/torque values via a simple inner product. 107 This yields (1) continuous space—time queries without grid lock-in, (2) clean conditioning on payload 108 and robot-specific context without graph/topology rewiring, (3) RL-friendly training since supervision 109 can be placed at arbitrary queried points along closed-loop rollouts, and (4) low-latency deployment 110 because inference reduces to lightweight embeddings plus an inner product. Moreover, DeepONet 111 comes with an operator-level universal approximation theorem that provides formal capacity guar-112 antees for nonlinear operators [12], which we found attractive given the diversity of simulators, 113 payloads, and hardware. 114

In summary, we choose DeepONet because its function—query factorization, theoretical operator approximation guarantees, and efficient, payload-conditioned querying match our requirements better than grid-bound spectral operators, topology-coupled graph variants, or physics-informed schemes that presume known PDE structure [11, 12, 9, 7]. Our objective is to demonstrate that operator learning can achieve a mapping from simulation to reality, thereby aiding sim-to-real transfer. Determining the optimal operator architecture is outside the main scope of this work.

121 4 GAPONet

122

130

94

95

96

97

98

99

100

101

102

103

104

4.1 Problem Defination

Previous methods lack an explicit model of both the simulator and the real world [17, 21, 16, 20, 24, 5], which reduces distributional diversity and constrains generalization. Formally, bridging the sim-to-real gap can be posed as learning an operator that maps \mathcal{U}^{sim} to $\mathcal{U}^{\text{real}}$ rather than approximating multiple collected dynamics, where \mathcal{U} denotes the underlying function space. Each element of \mathcal{U} , i.e., an actuation function U, is associated with a natural coordinate representation $\xi \triangleq (q,\dot{q})$, corresponding to joint positions and velocities. With this, an actuation function is written as $U_{\xi}: A \to Q \times V$. The goal of **GAPONet** is to learn an operator \mathcal{G} such that $\mathcal{G}(U_{\xi}^{\text{sim}}) \approx U_{\xi}^{\text{real}}$.

4.2 Model Structure

DeepONet [11]'s branch network encodes samples of the input function (e.g., joint trajectories), while the trunk network provides a query signal (e.g., future state or time) that enables effective generalization in a finite-dimensional space. In robotics, this framework can be integrated with RL algorithms to learn operator mappings between state-action trajectories and future dynamics, going beyond pointwise modeling of joint positions and velocities. Inspired by dynamic modeling [5], GAPONet predicts the delta action of each humanoid joint to compensate complex forces between the simulator and real-world physics [4]. Built on DeepONet and RL, it first employs a Sensor Predictor to encode current state—action changes into a set of distributions.

$$\mathcal{X} = f(A, Q, V, P, J, Q_{\text{real}}, V_{\text{real}}), \tag{1}$$

where A denotes the robot's target position, Q and V are the simulated DoF positions and velocities, and Q_{real} and V_{real} are the corresponding real-world values. The variable P indicates the payload during execution, while J represents the joint index in the humanoid's kinematic structure.

These inputs are mapped into a latent representation by the Branch Net:

$$\mathcal{B}(U_q(x)) = [\mathcal{B}_1(U_q(x)), \dots, \mathcal{B}_p(U_q(x))], \tag{2}$$

where $x \in \mathcal{X}$ is the predicted sensor distribution, and $U_q(x)$ denotes the simulated state at the next step. Each component \mathcal{B}_i encodes a distinct latent feature of the actuation state, enabling the network to decompose complex dynamics into interpretable subcomponents.

The Trunk Net encodes query signals consisting of the payload and current action,

$$Y = \{P, A\}, \quad \mathcal{T}(y) = [\mathcal{T}_1(y), \dots, \mathcal{T}_p(y)]^\top, \tag{3}$$

which condition the latent space and align the actuator dynamics from the Branch Net with the target motion objectives. The fused representation is obtained by combining Branch and Trunk features:

$$\mathcal{G}(U_q(x))(y) = \sum_{i=1}^p \mathcal{B}_i(x) \cdot \mathcal{T}_i(y), \tag{4}$$

yielding the delta action Δa^j for each joint j. This correction is added to the simulator's nominal command to bridge the sim-to-real gap:

$$s^{t+1} = f^{\text{sim}}(s_{\text{sim}}^t, a_{\text{sim}}^t + \mathcal{G}(U_q(x^t))(a^t)).$$
 (5)

5 Experiments

152

153

154

155

156

157

158

159

160

161

162

163

5.1 Zero-shot Motion Tracking

We validate our approach on ten motion sequences not included in the training set. The evaluation metric is the discrepancy in DoF positions between the simulator and the real robot, denoted as $Q_{\rm dis}$. Specifically, $Q_{\rm dis}$ is defined as the integral of the difference between the target trajectory and the real robot's trajectory, where a smaller value indicates stronger gap-bridging capability. As shown in Fig. 3, we report $Q_{\rm dis}$ for eight upper-body joints under four payload conditions. The blue curve shows the natural mismatch between the simulator and the real robot without correction. The orange curve shows the results of [5], originally implemented with an MLP-based architecture (referred to as MLP). The green curve corresponds to the results of our proposed GAPONet. We observe that the gap becomes more pronounced as the payload increases, while GAPONet achieves up to a 50% reduction in $Q_{\rm dis}$. Compared to the MLP baseline, GAPONet also demonstrates stronger generalization, yielding better tracking accuracy even on zero-shot motion sequences.

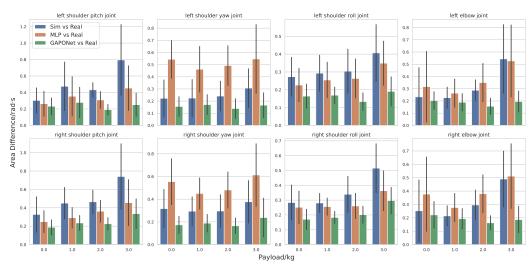


Figure 3: Sim-to-real alignment ($Q_{\rm dis}$) comparison across eight upper-body joints under four payload conditions. GAPONet (green) achieves better trajectory alignment than MLP (orange) and the raw simulator output (blue).

5.2 Goal-directed Object Delivery

This task requires the robot to reach a specified global position while carrying payloads of varying 165 mass. The challenge is to maintain accuracy under heavy loads, where gravitational effects make 166 stable positioning difficult. As shown in Tab. 1, we evaluate four payload conditions across two 167 models. Compared to the simulator's direct outputs, our approach significantly reduces the sim-to-real 168 gap, enabling the robot to stably maintain the commanded position. GAPONet outperforms the MLP 169 baseline with over 40% error reduction along the X and Y axes, and a 70% reduction along the Z 170 axis, effectively mitigating gravitational impact. These results demonstrate GAPONet's robustness in 171 bridging the sim-to-real gap under heavy payloads. 172

Table 1: Performance comparison of Dynamic Lifting and Lowering under varying payloads. The table presents positional deviations (X, Y, Z) for both **GAPONet** and MLP-based baselines and compare them with the direct output of simulator.

	with GAPONet			with MLP			simulator		
Payload	X-offset (cm)	Y-offset (cm)	Z-offset (cm)	X-offset (cm)	Y-offset (cm)	Z-offset (cm)	X-offset (cm)	Y-offset (cm)	Z-offset (cm)
0 kg	0.3564	0.6274	0.4797	0.4298	0.6097	1.7068	0.6733	0.6450	1.9698
1 kg	0.3506	0.7331	0.4885	0.4581	0.5801	1.7142	0.5424	0.7554	1.9978
2 kg	0.3725	0.7357	0.5759	0.4363	0.7374	1.8323	0.8149	1.2051	2.1376
3 kg	0.4597	0.7855	0.6214	0.4726	0.7113	2.1137	1.1455	1.2520	1.9269

5.3 Ablation

173

We conduct ablation studies across five key dimensions Tab. 2: input structure, control frequency, observation history length, delta action duration, and prediction formulation. For fair comparison, all models are trained on **SimLifter** and evaluated using the same metric—mean per-joint angular error (MPJAE)—under different payload conditions.

Table 2: Ablation study results across input structure, frequency, model design, and prediction targets. **GAPONet** consistently outperforms other variants.

Ablation Setting	Obs Dim	0kg MPJAE (rad) \downarrow	1kg MPJAE (rad) \downarrow	2kg MPJAE (rad) \downarrow	3kg MPJAE (rad) \downarrow							
(a) Payload Ablation												
$\begin{array}{l} {\tt GAPONet} \le p \\ {\tt GAPONet} \le w/o \ p \end{array}$	$\left \begin{array}{c} Obs \in R^{141} \\ Obs \in R^{140} \end{array} \right $	0.016 0.013	0.017 0.012	0.018 0.013	0.019 0.015							
(b) Frequency Ablation												
GAPONet @ 100Hz GAPONet @ 50Hz (Ours)	$ \left \begin{array}{c} Obs \in R^{140} \\ Obs \in R^{140} \end{array} \right $	0.019 0.013	0.019 0.012	0.023 0.013	0.021 0.015							
(c) History Length Ablation												
History Length = 2 History Length = 6 History Length = 8 History Length = 4 (Ours)	$\begin{array}{c} Obs \in R^{80} \\ Obs \in R^{200} \\ Obs \in R^{260} \\ Obs \in R^{140} \\ \end{array}$	0.016 0.015 0.017 0.013	0.016 0.016 0.017 0.012	0.017 0.016 0.018 0.013	0.019 0.019 0.021 0.015							
(d) Action Duration Ablation												
Action Duration = 3 Action Duration = 5 Action Duration = 1 (Ours)	$ \left \begin{array}{c} Obs \in R^{140} \\ Obs \in R^{140} \\ Obs \in R^{140} \end{array} \right $	0.017 0.015 0.013	0.016 0.016 0.012	0.017 0.017 0.013	0.018 0.019 0.015							
(d) Prediction Ablation												
Predict S^{t+1} Predict $S^{t+1} - S^t$ (Ours)	$\left \begin{array}{c} Obs \in R^{140} \\ Obs \in R^{140} \end{array} \right $	0.016 0.013	0.017 0.012	0.018 0.013	0.020 0.015							

6 Conclusion

179

180

182

183

184

185

186

187

This work tackles the sim-to-real gap in humanoid control by introducing SimLifter and proposing GAPONet. SimLifter systematically captures multimodal joint-level signals across varying payloads, frequencies, and humanoid platforms, providing the first structured benchmark for analyzing and mitigating actuator-level discrepancies. Building on this foundation, GAPONet leverages operator learning with DeepONet to estimate and correct nonlinear mismatches between simulation and real executions, enabling robust policy transfer. Experiments show that GAPONet not only achieves over 40% improvements in zero-shot motion tracking but also delivers up to 70% accuracy gains in goal-directed object delivery tasks, demonstrating its generalization ability and effectiveness in bridging the sim-to-real gap. Additional details on model design, training procedures, and extended datasets with new experiments will be released in subsequent versions of this work.

References

- [1] AgiBot-World-Contributors, Bu, Q., Cai, J., Chen, L., Cui, X., Ding, Y., Feng, S., Gao, S., He, X., Hu, X.,
 Huang, X., Jiang, S., Jiang, Y., Jing, C., Li, H., Li, J., Liu, C., Liu, Y., Lu, Y., Luo, J., Luo, P., Mu, Y., Niu, Y.,
 Pan, Y., Pang, J., Qiao, Y., Ren, G., Ruan, C., Shan, J., Shen, Y., Shi, C., Shi, M., Shi, M., Sima, C., Song,
- 193 J., Wang, H., Wang, W., Wei, D., Xie, C., Xu, G., Yan, J., Yang, C., Yang, L., Yang, S., Yao, M., Zeng, J.,
- Zhang, C., Zhao, G., Zhao, B., Zhao, C., Zhao, J., and Zhu, J. (2025). Agibot world colosseo: A large-scale
 manipulation platform for scalable and intelligent embodied systems.
- 196 [2] Åström, K. J. and Eykhoff, P. (1971). System identification—a survey. Automatica, 7(2):123–162. 2
- 197 [3] Chen, X., Hu, J., Jin, C., Li, L., and Wang, L. (2021). Understanding domain randomization for sim-to-real transfer. *arXiv* preprint arXiv:2110.03239. 2
- 199 [4] Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E. Pearson Education India. 4
- 200 [5] He, T., Gao, J., Xiao, W., Zhang, Y., Wang, Z., Wang, J., Luo, Z., He, G., Sobanbab, N., Pan, C., et al. (2025). Asap: Aligning simulation and real-world physics for learning agile humanoid whole-body skills. *arXiv preprint arXiv:2502.01143.* 2, 4, 5
- [6] Heess, N., Tb, D., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S., et al. (2017). Emergence of locomotion behaviours in rich environments. *arXiv preprint arXiv:1707.02286.* 2
- Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar, A. (2023).
 Neural operator: Learning maps between function spaces with applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97.
- [8] Laskey, M., Lee, J., Fox, R., Dragan, A., and Goldberg, K. (2017). Dart: Noise injection for robust imitation
 learning. In *Conference on robot learning*, pages 143–156. PMLR.
- [9] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A. (2020). Fourier neural operator for parametric partial differential equations. *arXiv* preprint *arXiv*:2010.08895.
- 212 [10] Ljung, L. (1998). System identification. In Signal analysis and prediction, pages 163–173. Springer. 2
- 213 [11] Lu, L., Jin, P., and Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. *arXiv preprint arXiv:1910.03193*. 2, 4
- [12] Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E. (2021). Learning nonlinear operators via
 deeponet based on the universal approximation theorem of operators. *Nature machine intelligence*, 3(3):218–
 229. 4
- [13] Luo, S., Kasaei, H., and Schomaker, L. (2020). Accelerating reinforcement learning for reaching using
 continuous curriculum learning. In 2020 International Joint Conference on Neural Networks (IJCNN), pages
 1–8. IEEE. 2
- [14] Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey, K., Macklin, M., Hoeller, D., Rudin, N.,
 Allshire, A., Handa, A., et al. (2021). Isaac gym: High performance gpu-based physics simulation for robot
 learning. arXiv preprint arXiv:2108.10470.
- 225 [15] Mao, J., Zhao, S., Song, S., Shi, T., Ye, J., Zhang, M., Geng, H., Malik, J., Guizilini, V., and Wang, Y. (2024). Learning from massive human videos for universal humanoid pose control. 2
- [16] Matas, J., James, S., and Davison, A. J. (2018). Sim-to-real reinforcement learning for deformable object
 manipulation. In *Conference on Robot Learning*, pages 734–743. PMLR. 2, 4
- [17] Mehta, B., Diaz, M., Golemo, F., Pal, C. J., and Paull, L. (2020). Active domain randomization. In *Conference on Robot Learning*, pages 1162–1176. PMLR. 2, 4
- 231 [18] Nelles, O. (2002). Nonlinear system identification. *Measurement Science and Technology*, 13(4):646–646.
- 233 [19] Peng, X. B., Coumans, E., Zhang, T., Lee, T.-W., Tan, J., and Levine, S. (2020). Learning agile robotic locomotion skills by imitating animals. *arXiv preprint arXiv:2004.00784*. 2
- 235 [20] Shi, G., Shi, X., O'Connell, M., Yu, R., Azizzadenesheli, K., Anandkumar, A., Yue, Y., and Chung, S.-J. (2019). Neural lander: Stable drone landing control using learned dynamics. In 2019 international conference
- on robotics and automation (icra), pages 9784–9790. IEEE. 2, 4

- [21] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization for transferring deep neural networks from simulation to the real world. In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. 2, 4
- [22] Wang, X., Chen, Y., and Zhu, W. (2021). A survey on curriculum learning. *IEEE transactions on pattern* analysis and machine intelligence, 44(9):4555–4576.
- 243 [23] Wu, K., Hou, C., Liu, J., Che, Z., Ju, X., Yang, Z., Li, M., Zhao, Y., Xu, Z., Yang, G., et al. (2024).
 Robomind: Benchmark on multi-embodiment intelligence normative data for robot manipulation. 2
- 245 [24] Xiao, W., Xue, H., Tao, T., Kalaria, D., Dolan, J. M., and Shi, G. (2024). Anycar to anywhere: Learning universal dynamics model for agile and adaptive mobility. *arXiv preprint arXiv:2409.15783.* 2, 4
- Zhang, H., Chen, H., Xiao, C., Li, B., Liu, M., Boning, D., and Hsieh, C.-J. (2020). Robust deep reinforcement learning against adversarial perturbations on state observations. *Advances in neural information processing systems*, 33:21024–21037.
- [26] Zhang, X., Wang, C., Sun, L., Wu, Z., Zhu, X., and Tomizuka, M. (2023). Efficient sim-to-real transfer of
 contact-rich manipulation skills with online admittance residual learning. In *Conference on Robot Learning*,
 pages 1621–1639. PMLR. 2
- 253 [27] Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence (SSCI), pages 737–744.

 255 IEEE, 2.