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Abstract

A central challenge in humanoid robotic control is bridging the gap between sim-1

ulated and real-world physics to enhance robot learning. This gap often leads to2

execution failures due to discrepancies in dynamics, actuator behavior, and un-3

modeled perturbations. This gap manifests as nonlinear variations at the level of4

each individual motor, and becomes even more unpredictable when the humanoid5

interacts with objects of varying weights. To better align simulation and real-world6

physics for robot learning, we curate SimLifter, the first dataset specifically7

designed to bridge the sim-to-real gap, even under the increased variability in-8

troduced by diverse payload interactions. SimLifter contains 257,493 frames,9

and systematically captures multimodal signals—including joint positions, veloc-10

ities, torques, motor temperatures, and equivalent torques—across four standard11

payloads, three humanoid robots, and two actuation frequencies, covering both12

isolated joint movements and full upper-body coordination. We further introduce13

GAPONet, a novel reinforcement learning framework designed to enable robust14

policy transfer from simulation to the real world. Based on Unstacked Deep Opera-15

tor Network (DeepONet) and Reinforcement Learning (RL), GAPONet estimates16

the discrepancies between simulation and real-world executions of the same policy17

by learning a nonlinear operator over multiple force modalities. It also demonstrates18

strong extrapolative generalization to unseen robots and zero-shot actions. On pre-19

viously unseen humanoid robots, GAPONet shows substantial gains in zero-shot20

motion tracking, improving accuracy across all joints by over 40% on average com-21

pared to PD control with default hyperparameters, and up to 50% under maximum22

payload. In the goal-directed object delivery task, GAPONet improves accuracy23

by 70% under maximum payload over direct target action execution.24
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Figure 1: The overall structure of SimLifter and GAPONet. (a) shows the data collection process of
SimLifter, where hierarchical motions are executed in both simulation and real-world platforms with
standardized payloads to capture multi-modal paired data. (b) An overview of GAPONet, where the Branch Net
and Trunk Net encode the robot’s state and action, integrated with PPO for iterative learning.

1 Introduction25

Policies trained in simulation benefit from GPU acceleration and parallelized sampling [14], allowing26

fast and scalable training in environments with approximated physical properties such as mass,27

friction, and damping. However, in real-world interactions, forces such as friction and inertia often28

diverge significantly from these idealized assumptions [21, 27]. Various mismatches give rise to the29

well-known sim-to-real gap—a discrepancy between simulated and actual physical behavior—which30

becomes increasingly pronounced when humanoid robots interact with objects of varying mass.31

Crucially, this gap grows in a nonlinear and unpredictable manner, posing a serious challenge for32

robust policy transfer [26]. Bridging this gap is therefore essential for advancing humanoid robot33

control and enabling reliable real-world deployment.34

To improve transferability, many current approaches begin with system identification to tune simula-35

tion parameters [10, 2, 18], apply domain randomization during training [17, 21, 3], or inject noise36

into observation signals [8, 25, 16] (e.g., mass, velocity) to prevent policies from overfitting to narrow37

distributions. Some also incorporate curriculum learning [13, 22] or progressively harder terrains38

to enhance policy robustness over time [19, 6]. While effective to some extent, these techniques39

require considerable manual tuning and domain expertise, making them labor-intensive and difficult40

to scale—especially for complex systems like humanoids.41

A parallel line of work attempts to model real-world physics by learning dynamics from real-world42

data, using either observed states [20, 24] or actions [5]. While this approach holds promise, it43

typically requires large volumes of paired simulator-real data and struggles to model discrepancies for44

unseen actions. More importantly, these learned dynamics often fail to generalize across payloads of45

varying mass, limiting their ability to address the sim-to-real gap in diverse interaction scenarios. To46

overcome these limitations, we curate SimLifter, the first dataset specifically designed to bridge47

the sim-to-real gap, even under the increased variability introduced by diverse payload interactions.48

Different from prior datasets [23, 15, 1], SimLifter provides a structured and comprehensive49

collection of multimodal signals from humanoid upper-body interactions across varying payloads,50

actuation frequencies, and robot platforms, supporting detailed analysis and evaluation.51

Building on our dataset, we propose GAPONet, which leverages a nonlinear operator [11] to model52

the sim-to-real gap in humanoid joint dynamics. This approach enables extrapolative generalization53

across varying payloads, mitigating overfitting to the collected data. GAPONet begins with a Sensor54

Predictor that encodes current state–action changes into distributions. These are then mapped into a55

latent space via the Branch Net, while the Trunk Net encodes two key query inputs — the payload56

and the current action. The resulting features are fused into a unified latent representation, from57

which the model predicts a delta action to compensate for the complex forces caused by discrepancies58

between simulation and real-world physics. We evaluate GAPONet on two tasks: (1) zero-shot motion59

tracking and (2) goal-directed object delivery, to assess its generalization and modeling capabilities60

on previously unseen humanoid robots. In zero-shot motion tracking, GAPONet improves accuracy61
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across all joints by over 40% on average compared to sending target actions via API, and up to62

50% under maximum payload. In the goal-directed object delivery task, it achieves a 70% accuracy63

improvement under maximum payload over direct target action execution. This paper makes three64

primary contributions:65

• We curate SimLifter, the first dataset specifically designed to bridge the sim-to-real66

gap under the challenging variability introduced by diverse payload interactions. The data67

is collected across four distinct payloads and hierarchically structured into whole-body,68

upper-body, and per-joint levels.69

• We introduce GAPONet, which models the sim-to-real gap in humanoid joint dynamics70

through a nonlinear operator, and achieves extrapolative generalization across different71

payloads, preventing overfitting to the collected data.72

• We propose a Sensor Predictor module that replaces the fixed sensor input in traditional73

operator learning with a learnable sensor distribution, enabling parallel training within RL74

environments. This significantly reduces computational cost and makes the operator learning75

framework practically feasible.76

2 SimLifter Dataset77

SimLifter is the first dataset explicitly designed to bridge the sim-to-real gap under the variability78

introduced by diverse payload interactions. It records humanoid upper-body dynamics hierarchically79

— from individual joints to full upper-body motions — using three Unitree H1-2 robots with80

standardized end-effector weights (0–3 kg) and actuation frequencies of 50 Hz and 100 Hz. The81

dataset covers ten joints (six shoulders, two elbows, two wrists), with each sequence repeated three82

times across robots to reduce noise. In total, it contains 28.46 hours, 11,198 sequences, and 257,49383

synchronized frames of joint positions, velocities, accelerations, torques, and motor temperatures.84

Each sequence is paired with a high-fidelity simulation replica, forming synchronized paired data for85

frame-level comparison of real and simulated executions. The distribution is shown in Fig. 2. Our86

experiments are further validated on a fourth H1-2 unit unseen during data collection.87
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Figure 2: Joint motion ranges. The RainCloud plot illustrates the motion range of each upper-body joint by
combining random samples (gray), box plots with red medians, and violin plots to reveal overall trends. The
distributions span the valid ranges, and left–right joint pairs collectively approximate the electronic limits.

3 Why do we choose DeepONet?88

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)89

answer at arbitrary query points (current actions, payload) across heterogeneous robots and simulators,90

(iii) train under a closed-loop RL objective without requiring paired function-to-function supervision91

at every query, and (iv) support low-latency on-board inference. We have considered some alternatives92

and trade-offs, for example:93
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• Fourier/Neural Operators (FNO family) [9, 7]: excel on fixed grids with spectral convolu-94

tions, but rely on discretization tied to resolution/geometry; cross-morphology deployment95

(different joint layouts) typically needs regridding or retraining, and spectral blocks add96

latency on embedded hardware.97

• Graph/Galerkin/UNO-style operators [7]: adapt to irregular meshes/graphs but require98

topology-aligned parameterization; when robots or sensor layouts change, weights/graphs99

must be remapped. Querying arbitrary state–time points is less natural than function–query100

separation. Capacity is high, but so are data and compute demands.101

• Physics-informed neural operators (PINO): leverage known PDE residuals for sample102

efficiency, yet our residual field (sim→real actuation gap with delays/saturation) lacks a103

clean PDE form, making hard constraints difficult to specify and risking model-bias.104

As for DeepONet’s branch–trunk decomposition [11, 12] aligns directly with our problem: the branch105

encodes context (multi-sensor histories, simulator traces, payload), and the trunk indexes continuous106

query variables (state/time/joint), producing residual action/torque values via a simple inner product.107

This yields (1) continuous space–time queries without grid lock-in, (2) clean conditioning on payload108

and robot-specific context without graph/topology rewiring, (3) RL-friendly training since supervision109

can be placed at arbitrary queried points along closed-loop rollouts, and (4) low-latency deployment110

because inference reduces to lightweight embeddings plus an inner product. Moreover, DeepONet111

comes with an operator-level universal approximation theorem that provides formal capacity guar-112

antees for nonlinear operators [12], which we found attractive given the diversity of simulators,113

payloads, and hardware.114

In summary, we choose DeepONet because its function–query factorization, theoretical operator115

approximation guarantees, and efficient, payload-conditioned querying match our requirements116

better than grid-bound spectral operators, topology-coupled graph variants, or physics-informed117

schemes that presume known PDE structure [11, 12, 9, 7]. Our objective is to demonstrate that118

operator learning can achieve a mapping from simulation to reality, thereby aiding sim-to-real transfer.119

Determining the optimal operator architecture is outside the main scope of this work.120

4 GAPONet121

4.1 Problem Defination122

Previous methods lack an explicit model of both the simulator and the real world [17, 21, 16, 20, 24, 5],123

which reduces distributional diversity and constrains generalization. Formally, bridging the sim-to-real124

gap can be posed as learning an operator that maps U sim to U real rather than approximating multiple125

collected dynamics, where U denotes the underlying function space. Each element of U , i.e., an126

actuation function U , is associated with a natural coordinate representation ξ fi pq, 9qq, corresponding127

to joint positions and velocities. With this, an actuation function is written as Uξ : A Ñ Q ˆ V . The128

goal of GAPONet is to learn an operator G such that GpU sim
ξ q « U real

ξ .129

4.2 Model Structure130

DeepONet [11]’s branch network encodes samples of the input function (e.g., joint trajectories),131

while the trunk network provides a query signal (e.g., future state or time) that enables effective132

generalization in a finite-dimensional space. In robotics, this framework can be integrated with RL133

algorithms to learn operator mappings between state-action trajectories and future dynamics, going134

beyond pointwise modeling of joint positions and velocities. Inspired by dynamic modeling [5],135

GAPONet predicts the delta action of each humanoid joint to compensate complex forces between the136

simulator and real-world physics [4]. Built on DeepONet and RL, it first employs a Sensor Predictor137

to encode current state–action changes into a set of distributions.138

X “ fpA,Q, V, P, J,Qreal, Vrealq, (1)

where A denotes the robot’s target position, Q and V are the simulated DoF positions and velocities,139

and Qreal and Vreal are the corresponding real-world values. The variable P indicates the payload140

during execution, while J represents the joint index in the humanoid’s kinematic structure.141
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These inputs are mapped into a latent representation by the Branch Net:142

BpUqpxqq “ rB1pUqpxqq, . . . ,BppUqpxqqs, (2)

where x P X is the predicted sensor distribution, and Uqpxq denotes the simulated state at the next143

step. Each component Bi encodes a distinct latent feature of the actuation state, enabling the network144

to decompose complex dynamics into interpretable subcomponents.145

The Trunk Net encodes query signals consisting of the payload and current action,146

Y “ tP,Au, T pyq “ rT1pyq, . . . , TppyqsJ, (3)

which condition the latent space and align the actuator dynamics from the Branch Net with the target147

motion objectives. The fused representation is obtained by combining Branch and Trunk features:148

GpUqpxqqpyq “

p
ÿ

i“1

Bipxq ¨ Tipyq, (4)

yielding the delta action ∆aj for each joint j. This correction is added to the simulator’s nominal149

command to bridge the sim-to-real gap:150

st`1 “ f sim`

stsim, a
t
sim ` GpUqpxtqqpatq

˘

. (5)

5 Experiments151

5.1 Zero-shot Motion Tracking152

We validate our approach on ten motion sequences not included in the training set. The evaluation153

metric is the discrepancy in DoF positions between the simulator and the real robot, denoted as Qdis.154

Specifically, Qdis is defined as the integral of the difference between the target trajectory and the155

real robot’s trajectory, where a smaller value indicates stronger gap-bridging capability. As shown156

in Fig. 3, we report Qdis for eight upper-body joints under four payload conditions. The blue curve157

shows the natural mismatch between the simulator and the real robot without correction. The orange158

curve shows the results of [5], originally implemented with an MLP-based architecture (referred159

to as MLP). The green curve corresponds to the results of our proposed GAPONet. We observe160

that the gap becomes more pronounced as the payload increases, while GAPONet achieves up to161

a 50% reduction in Qdis. Compared to the MLP baseline, GAPONet also demonstrates stronger162

generalization, yielding better tracking accuracy even on zero-shot motion sequences.163
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Figure 3: Sim-to-real alignment (Qdis) comparison across eight upper-body joints under four payload
conditions. GAPONet (green) achieves better trajectory alignment than MLP (orange) and the raw simulator
output (blue).
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5.2 Goal-directed Object Delivery164

This task requires the robot to reach a specified global position while carrying payloads of varying165

mass. The challenge is to maintain accuracy under heavy loads, where gravitational effects make166

stable positioning difficult. As shown in Tab. 1, we evaluate four payload conditions across two167

models. Compared to the simulator’s direct outputs, our approach significantly reduces the sim-to-real168

gap, enabling the robot to stably maintain the commanded position. GAPONet outperforms the MLP169

baseline with over 40% error reduction along the X and Y axes, and a 70% reduction along the Z170

axis, effectively mitigating gravitational impact. These results demonstrate GAPONet’s robustness in171

bridging the sim-to-real gap under heavy payloads.172

Table 1: Performance comparison of Dynamic Lifting and Lowering under varying payloads. The table presents
positional deviations (X, Y, Z) for both GAPONet and MLP-based baselines and compare them with the direct
output of simulator.

with GAPONet with MLP simulator
Payload X-offset (cm) Y-offset (cm) Z-offset (cm) X-offset (cm) Y-offset (cm) Z-offset (cm) X-offset (cm) Y-offset (cm) Z-offset (cm)

0 kg 0.3564 0.6274 0.4797 0.4298 0.6097 1.7068 0.6733 0.6450 1.9698
1 kg 0.3506 0.7331 0.4885 0.4581 0.5801 1.7142 0.5424 0.7554 1.9978
2 kg 0.3725 0.7357 0.5759 0.4363 0.7374 1.8323 0.8149 1.2051 2.1376
3 kg 0.4597 0.7855 0.6214 0.4726 0.7113 2.1137 1.1455 1.2520 1.9269

5.3 Ablation173

We conduct ablation studies across five key dimensions Tab. 2: input structure, control frequency,174

observation history length, delta action duration, and prediction formulation. For fair comparison, all175

models are trained on SimLifter and evaluated using the same metric—mean per-joint angular176

error (MPJAE)—under different payload conditions.177

Table 2: Ablation study results across input structure, frequency, model design, and prediction targets. GAPONet
consistently outperforms other variants.

Ablation Setting Obs Dim 0kg MPJAE (rad) ↓ 1kg MPJAE (rad) ↓ 2kg MPJAE (rad) ↓ 3kg MPJAE (rad) ↓

(a) Payload Ablation

GAPONet w p Obs P R141 0.016 0.017 0.018 0.019
GAPONet w/o p Obs P R140 0.013 0.012 0.013 0.015

(b) Frequency Ablation

GAPONet @ 100Hz Obs P R140 0.019 0.019 0.023 0.021
GAPONet @ 50Hz (Ours) Obs P R140 0.013 0.012 0.013 0.015

(c) History Length Ablation

History Length = 2 Obs P R80 0.016 0.016 0.017 0.019
History Length = 6 Obs P R200 0.015 0.016 0.016 0.019
History Length = 8 Obs P R260 0.017 0.017 0.018 0.021
History Length = 4 (Ours) Obs P R140 0.013 0.012 0.013 0.015

(d) Action Duration Ablation

Action Duration = 3 Obs P R140 0.017 0.016 0.017 0.018
Action Duration = 5 Obs P R140 0.015 0.016 0.017 0.019
Action Duration = 1 (Ours) Obs P R140 0.013 0.012 0.013 0.015

(d) Prediction Ablation

Predict St`1 Obs P R140 0.016 0.017 0.018 0.020
Predict St`1 ´ St (Ours) Obs P R140 0.013 0.012 0.013 0.015

6 Conclusion178

This work tackles the sim-to-real gap in humanoid control by introducing SimLifter and propos-179

ing GAPONet. SimLifter systematically captures multimodal joint-level signals across varying180

payloads, frequencies, and humanoid platforms, providing the first structured benchmark for analyz-181

ing and mitigating actuator-level discrepancies. Building on this foundation, GAPONet leverages182

operator learning with DeepONet to estimate and correct nonlinear mismatches between simulation183

and real executions, enabling robust policy transfer. Experiments show that GAPONet not only184

achieves over 40% improvements in zero-shot motion tracking but also delivers up to 70% accuracy185

gains in goal-directed object delivery tasks, demonstrating its generalization ability and effectiveness186

in bridging the sim-to-real gap. Additional details on model design, training procedures, and extended187

datasets with new experiments will be released in subsequent versions of this work.188
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