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Abstract

A central challenge in humanoid robotic control is bridging the gap between sim-
ulated and real-world physics to enhance robot learning. This gap often leads to
execution failures due to discrepancies in dynamics, actuator behavior, and un-
modeled perturbations. This gap manifests as nonlinear variations at the level of
each individual motor, and becomes even more unpredictable when the humanoid
interacts with objects of varying weights. To better align simulation and real-world
physics for robot learning, we curate SimLifter, the first dataset specifically
designed to bridge the sim-to-real gap, even under the increased variability in-
troduced by diverse payload interactions. SimLifter contains 257,493 frames,
and systematically captures multimodal signals—including joint positions, veloc-
ities, torques, motor temperatures, and equivalent torques—across four standard
payloads, three humanoid robots, and two actuation frequencies, covering both
isolated joint movements and full upper-body coordination. We further introduce
GAPONet, a novel reinforcement learning framework designed to enable robust
policy transfer from simulation to the real world. Based on Unstacked Deep Opera-
tor Network (DeepONet) and Reinforcement Learning (RL), GAPONet estimates
the discrepancies between simulation and real-world executions of the same policy
by learning a nonlinear operator over multiple force modalities. It also demonstrates
strong extrapolative generalization to unseen robots and zero-shot actions. On pre-
viously unseen humanoid robots, GAPONet shows substantial gains in zero-shot
motion tracking, improving accuracy across all joints by over 40% on average com-
pared to PD control with default hyperparameters, and up to 50% under maximum
payload. In the goal-directed object delivery task, GAPONet improves accuracy
by 70% under maximum payload over direct target action execution.
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Figure 1: The overall structure of SimLifter and GAPONet. (a) shows the data collection process of
SimLifter, where hierarchical motions are executed in both simulation and real-world platforms with
standardized payloads to capture multi-modal paired data. (b) An overview of GAPONet, where the Branch Net
and Trunk Net encode the robot’s state and action, integrated with PPO for iterative learning.

1 Introduction

Policies trained in simulation benefit from GPU acceleration and parallelized sampling [14], allowing
fast and scalable training in environments with approximated physical properties such as mass,
friction, and damping. However, in real-world interactions, forces such as friction and inertia often
diverge significantly from these idealized assumptions [21, 27]. Various mismatches give rise to the
well-known sim-to-real gap—a discrepancy between simulated and actual physical behavior—which
becomes increasingly pronounced when humanoid robots interact with objects of varying mass.
Crucially, this gap grows in a nonlinear and unpredictable manner, posing a serious challenge for
robust policy transfer [26]. Bridging this gap is therefore essential for advancing humanoid robot
control and enabling reliable real-world deployment.

To improve transferability, many current approaches begin with system identification to tune simula-
tion parameters [10, 2, 18], apply domain randomization during training [17, 21, 3], or inject noise
into observation signals [8, 25, 16] (e.g., mass, velocity) to prevent policies from overfitting to narrow
distributions. Some also incorporate curriculum learning [13, 22] or progressively harder terrains
to enhance policy robustness over time [19, 6]. While effective to some extent, these techniques
require considerable manual tuning and domain expertise, making them labor-intensive and difficult
to scale—especially for complex systems like humanoids.

A parallel line of work attempts to model real-world physics by learning dynamics from real-world
data, using either observed states [20, 24] or actions [5]. While this approach holds promise, it
typically requires large volumes of paired simulator-real data and struggles to model discrepancies for
unseen actions. More importantly, these learned dynamics often fail to generalize across payloads of
varying mass, limiting their ability to address the sim-to-real gap in diverse interaction scenarios. To
overcome these limitations, we curate SimLifter, the first dataset specifically designed to bridge
the sim-to-real gap, even under the increased variability introduced by diverse payload interactions.
Different from prior datasets [23, 15, 1], SimLifter provides a structured and comprehensive
collection of multimodal signals from humanoid upper-body interactions across varying payloads,
actuation frequencies, and robot platforms, supporting detailed analysis and evaluation.

Building on our dataset, we propose GAPONet, which leverages a nonlinear operator [11] to model
the sim-to-real gap in humanoid joint dynamics. This approach enables extrapolative generalization
across varying payloads, mitigating overfitting to the collected data. GAPONet begins with a Sensor
Predictor that encodes current state—action changes into distributions. These are then mapped into a
latent space via the Branch Net, while the Trunk Net encodes two key query inputs — the payload
and the current action. The resulting features are fused into a unified latent representation, from
which the model predicts a delta action to compensate for the complex forces caused by discrepancies
between simulation and real-world physics. We evaluate GAPONet on two tasks: (1) zero-shot motion
tracking and (2) goal-directed object delivery, to assess its generalization and modeling capabilities
on previously unseen humanoid robots. In zero-shot motion tracking, GAPONet improves accuracy
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across all joints by over 40% on average compared to sending target actions via API, and up to
50% under maximum payload. In the goal-directed object delivery task, it achieves a 70% accuracy
improvement under maximum payload over direct target action execution. This paper makes three
primary contributions:

* We curate SimLifter, the first dataset specifically designed to bridge the sim-to-real
gap under the challenging variability introduced by diverse payload interactions. The data
is collected across four distinct payloads and hierarchically structured into whole-body,
upper-body, and per-joint levels.

* We introduce GAPONet, which models the sim-to-real gap in humanoid joint dynamics
through a nonlinear operator, and achieves extrapolative generalization across different
payloads, preventing overfitting to the collected data.

* We propose a Sensor Predictor module that replaces the fixed sensor input in traditional
operator learning with a learnable sensor distribution, enabling parallel training within RL
environments. This significantly reduces computational cost and makes the operator learning
framework practically feasible.

2 SimLifter Dataset

SimLifter is the first dataset explicitly designed to bridge the sim-to-real gap under the variability
introduced by diverse payload interactions. It records humanoid upper-body dynamics hierarchically
— from individual joints to full upper-body motions — using three Unitree H1-2 robots with
standardized end-effector weights (0-3 kg) and actuation frequencies of 50 Hz and 100 Hz. The
dataset covers ten joints (six shoulders, two elbows, two wrists), with each sequence repeated three
times across robots to reduce noise. In total, it contains 28.46 hours, 11,198 sequences, and 257,493
synchronized frames of joint positions, velocities, accelerations, torques, and motor temperatures.
Each sequence is paired with a high-fidelity simulation replica, forming synchronized paired data for
frame-level comparison of real and simulated executions. The distribution is shown in Fig. 2. Our
experiments are further validated on a fourth H1-2 unit unseen during data collection.

3
=)
£
L
é:c:u -<+> -
E
=]
<
Q D D
NS 9
Q &7 &7
</ 410 $¢
o /s

Figure 2: Joint motion ranges. The RainCloud plot illustrates the motion range of each upper-body joint by
combining random samples (gray), box plots with red medians, and violin plots to reveal overall trends. The
distributions span the valid ranges, and left-right joint pairs collectively approximate the electronic limits.

3  Why do we choose DeepONet?

Our operator must (i) ingest simulation context functions with explicit payload conditioning, (ii)
answer at arbitrary query points (current actions, payload) across heterogeneous robots and simulators,
(iii) train under a closed-loop RL objective without requiring paired function-to-function supervision
at every query, and (iv) support low-latency on-board inference. We have considered some alternatives
and trade-offs, for example:
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* Fourier/Neural Operators (FNO family) [9, 7]: excel on fixed grids with spectral convolu-
tions, but rely on discretization tied to resolution/geometry; cross-morphology deployment
(different joint layouts) typically needs regridding or retraining, and spectral blocks add
latency on embedded hardware.

* Graph/Galerkin/UNO-style operators [7]: adapt to irregular meshes/graphs but require
topology-aligned parameterization; when robots or sensor layouts change, weights/graphs
must be remapped. Querying arbitrary state—time points is less natural than function—query
separation. Capacity is high, but so are data and compute demands.

* Physics-informed neural operators (PINO): leverage known PDE residuals for sample
efficiency, yet our residual field (sim—real actuation gap with delays/saturation) lacks a
clean PDE form, making hard constraints difficult to specify and risking model-bias.

As for DeepONet’s branch—trunk decomposition [1 1, 12] aligns directly with our problem: the branch
encodes context (multi-sensor histories, simulator traces, payload), and the trunk indexes continuous
query variables (state/time/joint), producing residual action/torque values via a simple inner product.
This yields (1) continuous space—time queries without grid lock-in, (2) clean conditioning on payload
and robot-specific context without graph/topology rewiring, (3) RL-friendly training since supervision
can be placed at arbitrary queried points along closed-loop rollouts, and (4) low-latency deployment
because inference reduces to lightweight embeddings plus an inner product. Moreover, DeepONet
comes with an operator-level universal approximation theorem that provides formal capacity guar-
antees for nonlinear operators [12], which we found attractive given the diversity of simulators,
payloads, and hardware.

In summary, we choose DeepONet because its function—query factorization, theoretical operator
approximation guarantees, and efficient, payload-conditioned querying match our requirements
better than grid-bound spectral operators, topology-coupled graph variants, or physics-informed
schemes that presume known PDE structure [11, 12, 9, 7]. Our objective is to demonstrate that
operator learning can achieve a mapping from simulation to reality, thereby aiding sim-to-real transfer.
Determining the optimal operator architecture is outside the main scope of this work.

4 GAPONet

4.1 Problem Defination

Previous methods lack an explicit model of both the simulator and the real world [17, 21, 16, 20, 24, 5],
which reduces distributional diversity and constrains generalization. Formally, bridging the sim-to-real
gap can be posed as learning an operator that maps /5™ to /" rather than approximating multiple
collected dynamics, where U/ denotes the underlying function space. Each element of U/, i.e., an
actuation function U, is associated with a natural coordinate representation £ = (g, ¢), corresponding
to joint positions and velocities. With this, an actuation function is written as Uz : A — ) x V. The
goal of GAPONet is to learn an operator G such that g(Ugim) ~ Ugea'.

4.2 Model Structure

DeepONet [11]’s branch network encodes samples of the input function (e.g., joint trajectories),
while the trunk network provides a query signal (e.g., future state or time) that enables effective
generalization in a finite-dimensional space. In robotics, this framework can be integrated with RL
algorithms to learn operator mappings between state-action trajectories and future dynamics, going
beyond pointwise modeling of joint positions and velocities. Inspired by dynamic modeling [5],
GAPONet predicts the delta action of each humanoid joint to compensate complex forces between the
simulator and real-world physics [4]. Built on DeepONet and RL, it first employs a Sensor Predictor
to encode current state—action changes into a set of distributions.

X = f(Ava‘/vPa Ja Qrealvv;eal)» €))

where A denotes the robot’s target position, () and V' are the simulated DoF positions and velocities,
and Qrea and Vi, are the corresponding real-world values. The variable P indicates the payload
during execution, while J represents the joint index in the humanoid’s kinematic structure.
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These inputs are mapped into a latent representation by the Branch Net:
B(Uy(2)) = [B1(Uq (), - -, Bp(Uy(2))], @)

where x € X is the predicted sensor distribution, and U, (z) denotes the simulated state at the next
step. Each component B; encodes a distinct latent feature of the actuation state, enabling the network
to decompose complex dynamics into interpretable subcomponents.

The Trunk Net encodes query signals consisting of the payload and current action,
Y ={PA}, Ty =[N - Ty, (©)

which condition the latent space and align the actuator dynamics from the Branch Net with the target
motion objectives. The fused representation is obtained by combining Branch and Trunk features:

G(Uy(2))(y) = Z Bi(z) - Ti(y), )

yielding the delta action Aa’ for each joint j. This correction is added to the simulator’s nominal
command to bridge the sim-to-real gap:

s = I (shmy m + G(Ug(2%))(a)) - ©)

5 Experiments

5.1 Zero-shot Motion Tracking

We validate our approach on ten motion sequences not included in the training set. The evaluation
metric is the discrepancy in DoF positions between the simulator and the real robot, denoted as Qg;s.
Specifically, Qgis is defined as the integral of the difference between the target trajectory and the
real robot’s trajectory, where a smaller value indicates stronger gap-bridging capability. As shown
in Fig. 3, we report Qg;s for eight upper-body joints under four payload conditions. The blue curve
shows the natural mismatch between the simulator and the real robot without correction. The orange
curve shows the results of [5], originally implemented with an MLP-based architecture (referred
to as MLP). The green curve corresponds to the results of our proposed GAPONet. We observe
that the gap becomes more pronounced as the payload increases, while GAPONet achieves up to
a 50% reduction in @gis. Compared to the MLP baseline, GAPONet also demonstrates stronger
generalization, yielding better tracking accuracy even on zero-shot motion sequences.
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Figure 3: Sim-to-real alignment (Qqis) comparison across eight upper-body joints under four payload
conditions. GAPONet (green) achieves better trajectory alignment than MLP (orange) and the raw simulator
output (blue).
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5.2 Goal-directed Object Delivery

This task requires the robot to reach a specified global position while carrying payloads of varying
mass. The challenge is to maintain accuracy under heavy loads, where gravitational effects make
stable positioning difficult. As shown in Tab. 1, we evaluate four payload conditions across two
models. Compared to the simulator’s direct outputs, our approach significantly reduces the sim-to-real
gap, enabling the robot to stably maintain the commanded position. GAPONet outperforms the MLP
baseline with over 40% error reduction along the X and Y axes, and a 70% reduction along the Z
axis, effectively mitigating gravitational impact. These results demonstrate GAPONet’s robustness in
bridging the sim-to-real gap under heavy payloads.

Table 1: Performance comparison of Dynamic Lifting and Lowering under varying payloads. The table presents
positional deviations (X, Y, Z) for both GAPONet and MLP-based baselines and compare them with the direct
output of simulator.

with GAPONet with MLP simulator
Payload | X-offset (cm) Y-offset (cm) Z-offset (cm) | X-offset (cm)  Y-offset (cm) Z-offset (cm) | X-offset (cm) Y-offset (cm)  Z-offset (cm)
O kg 0.3564 0.6274 0.4797 0.4298 0.6097 1.7068 0.6733 0.6450 1.9698
1kg 0.3506 0.7331 0.4885 0.4581 0.5801 1.7142 0.5424 0.7554 1.9978
2kg 0.3725 0.7357 0.5759 0.4363 0.7374 1.8323 0.8149 1.2051 2.1376
3kg 0.4597 0.7855 0.6214 0.4726 0.7113 2.1137 1.1455 1.2520 1.9269

5.3 Ablation

We conduct ablation studies across five key dimensions Tab. 2: input structure, control frequency,
observation history length, delta action duration, and prediction formulation. For fair comparison, all
models are trained on SimLifter and evaluated using the same metric—mean per-joint angular
error (MPJAE)—under different payload conditions.

Table 2: Ablation study results across input structure, frequency, model design, and prediction targets. GAPONet
consistently outperforms other variants.

Ablation Setting | ObsDim | Okg MPJAE (rad) | | 1kg MPJAE (rad) | 2kg MPJAE (rad) | | 3kg MPJAE (rad) |
(a) Payload Ablation

GAPONet w p Obs € R'! 0.016 0.017 0.018 0.019
GAPONet w/o p Obs € R0 0.013 0.012 0.013 0.015
(b) Frequency Ablation

GAPONet @ 100Hz Obs € R0 0.019 0.019 0.023 0.021
GAPONet @ 50Hz (Ours) | Obs e R'0 0.013 0.012 0.013 0.015
(c) History Length Ablation

History Length =2 Obs € R® 0.016 0.016 0.017 0.019
History Length = 6 Obs € R?00 0.015 0.016 0.016 0.019
History Length = 8 Obs € R?00 0.017 0.017 0.018 0.021
History Length =4 (Ours) | Obs € R0 0.013 0.012 0.013 0.015
(d) Action Duration Ablation

Action Duration = 3 Obs € R0 0.017 0.016 0.017 0.018
Action Duration = 5 Obs € R0 0.015 0.016 0.017 0.019
Action Duration = 1 (Ours) | Obs € R0 0.013 0.012 0.013 0.015
(d) Prediction Ablation

Predict St+! Obs € R'0 0.016 0.017 0.018 0.020
Predict S*+! — S (Ours) Obs € R0 0.013 0.012 0.013 0.015

6 Conclusion

This work tackles the sim-to-real gap in humanoid control by introducing SimLifter and propos-
ing GAPONet. SimLifter systematically captures multimodal joint-level signals across varying
payloads, frequencies, and humanoid platforms, providing the first structured benchmark for analyz-
ing and mitigating actuator-level discrepancies. Building on this foundation, GAPONet leverages
operator learning with DeepONet to estimate and correct nonlinear mismatches between simulation
and real executions, enabling robust policy transfer. Experiments show that GAPONet not only
achieves over 40% improvements in zero-shot motion tracking but also delivers up to 70% accuracy
gains in goal-directed object delivery tasks, demonstrating its generalization ability and effectiveness
in bridging the sim-to-real gap. Additional details on model design, training procedures, and extended
datasets with new experiments will be released in subsequent versions of this work.
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