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ABSTRACT

Coverage path planning (CPP) is the problem of finding a path that covers the
entire free space of a confined area, with applications ranging from robotic lawn
mowing and vacuum cleaning, to demining and search-and-rescue tasks. While
offline methods can find provably complete, and in some cases optimal, paths for
known environments, their value is limited in online scenarios where the environ-
ment is not known beforehand. In this case, the path needs to be planned online
while mapping the environment. We investigate how suitable reinforcement learn-
ing is for this challenging problem, and analyze the involved components required
to efficiently learn coverage paths, such as action space, input feature representa-
tion, neural network architecture, and reward function. Compared to existing clas-
sical methods, this approach allows for a flexible path space, and enables the agent
to adapt to specific environment dynamics. In addition to local sensory inputs for
acting on short-term obstacle detections, we propose to use egocentric maps in
multiple scales based on frontiers. This allows the agent to plan a long-term path
in large-scale environments with feasible computational and memory complexity.
Furthermore, we propose a novel total variation reward term for guiding the agent
not to leave small holes of non-covered free space. To validate the effectiveness of
our approach, we perform extensive experiments in simulation with a 2D ranging
sensor on different variations of the CPP problem, surpassing the performance of
both previous RL-based approaches and highly specialized methods. Our code
implementation can be found in the supplementary material.

1 INTRODUCTION

Task automation is an ever growing field, and as automated systems become more intelligent, they
are expected to solve increasingly challenging problems. One such problem is coverage path plan-
ning (CPP), where a path is sought that covers the entire free space of a confined area. It is related
to the traveling salesman and covering salesman problems (Galceran & Carreras| [2013)), and known
to be NP-hard (Arkin et al.} 2000). If the environment is known a priori, including the extent of the
area and the location and geometry of all obstacles, an optimal path can be planned offline (Huang,
2001). However, if the environment is initially unknown, or at least partially unknown, the path has
to be planned online, e.g. by a robot, using sensors to simultaneously map the environment. In this
case, an optimal path cannot generally be found (Galceran & Carreras}, [ 2013).

Coverage path planning is an essential part in a wide variety of robotic applications, where the
range of settings define different variants of the CPP problem. In applications such as robotic lawn
mowing (Cao et al., [1988), snow removal (Chosetl 2001), and vacuum cleaning (Yasutomi et al.,
1988)), the region that is covered is defined by an attached work tool. In contrast, in applications
such as search-and-rescue (Jia et al.,|2016), autonomous underwater exploration (Hert et al.,|1996),
and aerial terrain coverage (Xu et al., 2011}, the covered region is defined by the range of a sensor.
Additionally, the space of valid paths is limited, induced by the motion constraints of the robot.

We aim to develop a task- and robot-agnostic method for online CPP, where the environment is
not known beforehand. This is a challenging task, as intricacies in certain applications may be
difficult to model, or even impossible in some cases. In the real world, unforeseen discrepancies
between the modeled and true environment dynamics may occur, e.g. due to a damaged sensor or
actuator. A further aspect that needs to be considered is the sensing capability of the agent, e.g. if it
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Figure 1: Examples of learned paths (yellow) for exploration (left) and lawn mowing (right).

is not omnidirectional, the agent needs to rotate itself to explore a different view of the environment.
Incompleteness of the present model must be assumed to account for open world scenarios. Thus,
we approach the problem from the perspective of learning through embodiment. Reinforcement
learning (RL) lends itself as a natural choice, as it allows an agent to interact with the world and adapt
to specific environment conditions, without the need for an explicit model. Concretely, we consider
the case where an RL model directly predicts the control signals for an agent from sensor data.
Besides the benefit of learning coverage paths for specific agent and environment dynamics, this
approach does not constrain the path space in terms of subdivisions with pre-defined patterns as in
cellular decomposition methods (Acar et al.L[2002; [Choset & Pignon, [1998), or primitive movements

such as 90° turns and moving straight in grid-based methods (Gabriely & Rimonl, 2002}
2005). In other words, it allows for flexibility in the path space, as can be seen in Figure |1

We analyze the different components in RL to efficiently learn coverage paths. First, to enable
learning every valid path, a discrete action space used in some previous RL-based approaches
et all} 2020 [Piardi et al, [2019) is insufficient, as it excludes a large set of paths. Thus, a continuous
action space is necessary, where the model predicts control signals for an agent. Second, to decide
which action to perform, the agent needs information about its pose and the currently known state
of the environment. Following [Chen et al.| (2019al)), we use egocentric maps of the coverage and the
known environment geometry. This provides a suitable observation space, as the egocentric maps
efficiently encode the pose in an easily digestible manner. For a scalable input representation for the
RL model, we propose to use multiple maps in different scales, with lower resolutions for the larger
scales. With this approach, a square of size nxn can be represented in O(log n) memory complexity,
compared to O(n?) for a single fixed-resolution map. We make this multi-scale approach viable
through frontier maps that can preserve information about the existence of non-covered space at
any scale. Third, a convolutional network architecture is a natural choice as it efficiently exploits
the spatial correlation in the maps. We propose to group the maps by scale and convolve them
separately, as their spatial positions do not correspond to the same location. Fourth, besides intuitive
positive reward terms based on covering new ground (Chaplot et all, 2020} [Chen et all, 20194), we
propose a novel reward term based on total variation, which guides the agent not to leave small holes
of non-covered free space. Our contributions are summarized as follows:

* We propose an end-to-end reinforcement learning method for the continuous online CPP problem.
* Through frontier maps, our multi-scale map approach can represent non-visited space in any scale.
* We introduce a novel total variation reward term for eliminating islands of non-covered space.

* Finally, we conduct extensive experiments to validate the effectiveness of our approach.

2 RELATED WORK

Coverage path planning has previously been approached from the perspective of classical robotics,
as well as reinforcement learning. Both approaches require a suitable map representation of the
environment. We summarize the related works within these topics.

Classical methods. Cellular decomposition methods, such as boustrophedon cellular decomposition

(BCD) (Choset & Pignon| [1998)) and Morse decomposition [2002), subdivide the area

into several non-overlapping cells free of obstacles. Each cell is covered with a pre-defined motion,
e.g. a back-and-forth motion. The cells are then connected using transport paths, which inevitably




Under review as a conference paper at ICLR 2024

lead to overlap with the already covered cells. Grid-based methods, such as Spiral-STC (Gabriely
& Rimon, 2002) and the backtracking spiral algorithm (BSA) (Gonzalez et al., 2005), decompose
the environment into uniform grid cells, such as rectangles (Zelinsky et al., [1993) or triangles (Oh
et al.| [2004), with a comparable size to the agent. The coverage path is defined by primitive motions
between adjacent cells on the grid. The simplicity of these methods is attractive, but they heavily
constrain the space of available paths. Frontier-based methods keep track of the boundary between
covered and non-covered free space, i.e. the frontier. Segments of the frontier are clustered into
frontier nodes, where one node is chosen as the next short-term goal. The criteria for choosing
which node to visit next is based on different attributes, such as the shortest distance to the agent
(Yamauchi, [1997), the path in a rapidly exploring random tree (RRT) (Umari & Mukhopadhyay,
2017), or the gradient in a potential field (Yu et al.|2021). These methods are mainly tailored for
robot exploration, where the notion of a frontier is suitable. Compared to classical approaches, RL
can be more robust against non-modeled environment dynamics (Saha et al.| 2021c).

RL-based methods. Many learning-based methods combine classical components with reinforce-
ment learning. For known environments, (Chen et al| (2019b) present Adaptive Deep Path, where
they apply RL to find the order in which to cover the cells in BCD. Discrete methods (Piardi et al.,
2019; [Kyaw et al., 2020} |[Saha et al., [2021b) utilize the simplicity of grid-based approaches, where
an RL model predicts movement primitives, e.g. to move up, down, left, or right, based on a discrete
action space. However, this constrains the space of possible paths, and may result in paths that are
not possible to navigate by a robot in the real world, which is continuous by nature. Thus, we con-
sider a continuous action space, which has been used successfully for the related navigation problem
(Tai et al.,|2017). Other works combine RL with a frontier-based approach, either by using an RL
model to predict the cost of each frontier node (Niroui et al.,[2019), or to predict continuous control
signals for navigating to a chosen node (Hu et al.,|2020). Different from previous approaches, which
use RL within a multi-stage framework, we predict continuous control signals end-to-end to fully
utilize the flexibility of RL. To the best of our knowledge, we are the first to do so for CPP.

Map representation. To perform coverage path planning, the environment needs to be represented
in a suitable manner. Similar to previous work, we discretize the map into a 2D grid with sufficiently
high resolution to accurately represent the environment. This map-based approach presents different
choices for the input feature representation. [Saha et al.|(2021a)) observe such maps in full resolution,
where the effort for a d x d grid is O(d?), which is infeasible for large-scale environments. Niroui
et al.[(2019) resize the maps to keep the input size fixed. However, this means that the information in
each grid cell varies between environments, and hinders learning and generalization for differently
sized environments. Instead of considering the whole environment at once, other works (Heydari
et al.,|2021;Saha et al., | 2021b) observe a local neighborhood around the robot. While the computa-
tional cost is manageable for small neighborhoods, the long-term planning potential is limited as the
space beyond the local neighborhood cannot be observed. For example, if the local neighborhood
is fully covered, the robot must pick a direction at random to explore further. To avoid the limita-
tions of these representations, we use multiple maps in different scales, similar to |[Klamt & Behnke
(2018)). Finally, Shrestha et al.|(2019) propose to learn the map in unexplored regions.

3 LEARNING COVERAGE PATHS

Before presenting our approach for learning coverage paths, we first define the online CPP problem
in Section after which we formulate it as a Markov decision process in Section Subse-
quently, we present our RL-based approach in terms of observation space in Section [3.3] action
space in Section [3.4] reward function in Section [3.5] and agent architecture in Section 3.6

3.1 PROBLEM DEFINITION AND LIMITATIONS

Without prior knowledge about the geometry of a confined area, the goal is to navigate in it with an
agent with radius r to visit every point of the free space. The free space includes all points inside
the area that are not occupied by obstacles. A point is considered visited when the distance between
the point and the agent is less than the coverage radius d, and the point is within the field-of-view
of the agent. This definition unifies variations where d < r, which we define as the lawn mowing
problem, and where d > r, which we refer to as exploration. To interactively gain knowledge about
the environment, and for mapping its geometry, the agent needs some form of sensor. Both ranging
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Figure 2: (a) Agent-environment interaction: The observation consists of multi-scale maps from
(b) and lidar detections, based on which the model predicts continuous control signals for an agent.
(b) Illustration of coverage, obstacle, and frontier maps in multiple scales: This example shows
m = 4 scales with a scale factor of s = 2. All scales are centered at the agent, and discretized into
the same pixel resolution, resulting in the multi-scale maps M., M,, and My, of size 8 x 8 x 4 here.

sensors, e.g. a light detection and ranging (lidar) sensor (Hu et al.,[2020), and depth cameras (Chen|
have been utilized for this purpose. In this work, we choose a simulated 2D lidar sensor

that can detect obstacles in fixed angles relative to the agent, although our proposed framework is
not limited to this choice. Based on the pose of the agent, the detections are transformed to global
coordinates, and a map of the environment is continuously formed. As the focus of this paper is to
learn coverage paths, and not to solve the localization problem, we assume known localization up to
a certain noise level. However, our method may be extended to the case with unknown pose with the
use of an off-the-shelf SLAM method. Finally, while our method can be further extended to account
for dynamic obstacles and multi-agent coverage, they are beyond the scope of this paper.

3.2 COVERAGE PATH PLANNING AS A MARKOV DECISION PROCESS

We formulate the CPP problem as a partially observable Markov decision process (POMDP) with
discrete time steps ¢ € [1..7, continuous actions a; ~ 7(at|o;) made by the agent according to
policy 7, observations and rewards o¢, 7+ ~ p(ot, r¢|St, ar—1), and states s; ~ p(St|st—1,a¢—-1)
based on environment dynamics. We use a neural network for the policy, and the goal for the agent
is to maximize the expected discounted reward E(Zthl ~r;) with discount factor . In our case,
the state s; consists of the geometry of the area, location and shape of all obstacles, visited points,
and the pose of the agent. The observation o, contains the area and obstacle geometries mapped
until time step ¢, as well as visited points, agent pose, and sensor data. Based on the observation,
the model predicts control signals for the agent. The reinforcement learning loop is depicted in
Figure |Zka), where observations, actions, and rewards are collected into a replay buffer, from which
training batches are drawn for gradient backpropagation.

3.3 OBSERVATION SPACE

To efficiently learn coverage paths, the observation space needs to be mapped into a suitable input
feature representation for the neural network policy. To this end, we represent the visited points as a
coverage map, and the mapped obstacles and boundary of the area as an obstacle map. The maps are
discretized into a 2D grid with sufficiently high resolution to accurately represent the environment.
To represent large regions in a scalable manner, we propose to use multi-scale maps, which was
necessary for large environments, see Appendix[A.T] We make this viable through frontier maps, as
they can preserve information about the existence of non-covered space, even in coarse scales.

Multi-scale maps. Inspired by multi-layered maps with varying scale and coarseness levels for
search-and-rescue (Klamt & Behnkel 2018)), we propose to use multi-scale maps for the coverage
and obstacles to solve the scalability issue. We extract multiple local neighborhoods with increasing
size and decreasing resolution, keeping the grid size fixed. We start with a local square crop M (1)
with side length d; for the smallest and finest scale. The multi-scale map representation M =
{M () }im . with m scales is constructed by cropping increasingly larger areas based on a fixed scale
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factor s. Concretely, the side length of map M () is d; = sd;_;. The resolution for the finest scale is
chosen sufficiently high such that the desired level of detail is attained in the nearest vicinity of the
agent, allowing it to perform precise local navigation. At the same time, the large-scale maps allow
the agent to perform long-term planning, where a high resolution is less important. This multi-scale
map representation can completely contain an area of size d x d in O(log d) number of scales. The
total number of grid cells is O(wh log d), where w and h are the fixed width and height of the grids,
and do not depend on d. This is a significant improvement over a single fixed-resolution map with
O(d?) grid cells. For the observation space, we use a multi-scale map M, for the coverage and M,
for the obstacles. These are illustrated in Figure[2|b).

Frontier maps. When the closest vicinity is covered, the agent needs to make a decision where
to explore next. However, the information in the low-resolution large-scale maps may be insuffi-
cient. For example, consider an obstacle-cluttered region where the obstacle boundaries have been
mapped. A low coverage could either mean that some parts are non-covered free space, or that they
are occupied by obstacles. These cases cannot be distinguished if the resolution is too low. As a so-
lution to this problem, we propose to encode a multi-scale frontier map My, which we define in the
following way. In the finest scale, a grid cell that has not been visited is a frontier point if any of its
neighbours have been visited. Thus, a frontier point is non-visited free space that is reachable from
the covered area. A region where the entire free space has been visited does not induce any frontier
points. In the coarser scales, a grid cell is a frontier cell if and only if it contains a frontier point.
In this way, the existence of frontier points persists through scales. Thus, regions with non-covered
free space can be deduced in any scale, based on this multi-scale frontier map representation.

Egocentric maps. As the movement is made relative to the agent, its pose needs to be related to the
map of the environment. Following Chen et al.|(2019a), we use egocentric maps which encode the
pose by representing the maps in the coordinate frame of the agent. Each multi-scale map is aligned
such that the agent is in the center of the map, facing upwards. This allows the agent to easily map
observations to movement actions, instead of having to learn an additional mapping from a separate
feature representation of its position, such as a 2D one-hot map (Theile et al., [2020).

Sensor observations. To react on short-term obstacle detections, we include the sensor data in the
input feature representation. The depth measurements from the lidar sensor are normalized to [0, 1]
based on its maximum range, and concatenated into a vector S (see Appendix [A-6]for implications).

3.4 ACTION SPACE

We let the model directly predict the control signals for the agent, which allows it to adapt to the
specific agent dynamics, and overcoming the limitations of a discrete action space. We consider
an agent that independently controls the linear velocity v and the angular velocity w, although the
action space may seamlessly be changed to specific vehicle models. To keep a fixed output range,
the actions are normalized to [—1, 1] based on the maximum linear and angular velocities. The sign
of the linear and angular velocities controls the direction of travel and rotation respectively.

3.5 REWARD FUNCTION
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where 7 is the agent radius and At is the time step size. See Figure [3]for an illustration.
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By only maximizing the coverage reward in (I)), the agent is discouraged from overlapping its pre-
vious path, as this reduces the reward in the short term. This might lead to holes or stripes in the
coverage, which we observed in our experiments (see Appendix [A.4), where the agent would leave
a small gap when driving adjacent to a previously covered part. These leftover parts can be costly
to cover later on for reaching complete coverage. Covering the thin stripes afterward only yields a
minor reward, resulting in slow convergence towards an optimal path. To reduce the leftover parts,
we propose a reward term based on minimizing the total variation (TV) of the coverage map. Min-
imizing the TV corresponds to reducing the boundary of the coverage map, and thus leads to fewer
holes. Given a 2D signal z, the discrete isotropic total variation, which has been used for image
denoising (Rudin et al.,|1992), is expressed as

Vie) =) \/|xi+1,j = i+ i — i) @)
i

We consider two variants of the TV reward term, a global and an incremental. For the global TV
reward R%\,, the agent is given a reward based on the global coverage map C; at time step ¢t. To
avoid an unbounded TV for large environments, it is scaled by the square root of the covered area
Acovered, as this results in a constant TV for a given shape of the coverage map, independent of
scale. The incremental TV reward R'.,; is based on the difference in TV between the current and
the previous time step. A positive reward is given if the TV is decreased, and vice versa. The
incremental reward is scaled by the maximum possible increase in TV in a time step, which is twice
the traveled distance. The global and incremental rewards are respectively given by

V(C, V(Cy) —V(C:_
REy(t) = _)\%v\/A(it)d: Ry (t) = =My ( t2)v itt 1)7 3)

where )‘%v and A are reward scaling parameters to make sure that | Rrv| < |Rarea| on average.
Otherwise, the optimal behaviour is simply to stand still.

To avoid obstacle collisions, a negative reward R is given each time the agent collides with an
obstacle. Finally, a small constant negative reward R.opnst iS given in each time step to encourage
fast execution. Thus, our final reward function is written as

R = Rarea + R’(f:r\/' + R’ITV + Rcoll + Rconst- (4)
During training, each episode is terminated when the agent reaches a pre-defined goal coverage, or
when 7 consecutive time steps have passed without the agent having covered any new space.

3.6 AGENT ARCHITECTURE Map feature extractor

group
Observation | matching
scales

Due to the multi-modal nature of the ob-
servation space, we use a map feature ex-
tractor g,,, a sensor feature extractor g,
and a fusing module g;. The map and sen-
sor features are fused, resulting in the con-
trol signal prediction

(U, (JJ) - gf (gm ( @ o f) ’ gs (S) ) : . Sensor feature extractor
S) | o,

We consider two network architectures, a
simple multilayer perceptron (MLP) as a
baseline choice, and a scale-grouped con-
volutional neural network (SGCNN) uti-
lizing an inductive prior on the spatial cor-
relations in the maps, see Figure For
the MLP, the feature extractors, g,, and
gs, are identity functions that simply flat-
ten the inputs, and the fusing module consists of two fully connected (FC) layers. For the SGCNN
architecture, we group the maps in M., M, and My by scale, as the pixel positions between differ-
ent scales do not correspond to the same world coordinate. Each scale is convolved separately using
grouped convolutions. This makes sure that grid cells are always compared to grid cells that corre-
spond to the same spatial position. The map feature extractor additionally includes a final FC layer.
The sensor feature extractor, is a single FC layer, and the fusing module consists of three FC layers.
ReLU is used as the activation function throughout. Full details can be found in Appendix

control
signals

Figure 4: Our proposed agent architecture, SGCNN,
consists of convolution (CONV) and fully connected
(FC) layers. The scales of the multi-scale maps are
convolved separately as their spatial positions are not
aligned in the grid. x3/x4 refer to the number of layers.
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Figure 5: Examples of fixed (a-f) and randomly generated (g-h) training maps.
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Figure 6: Examples of evaluation maps used for omnidirectional exploration (a-c), non-omni-
directional exploration (d-e), and lawn mowing (f-h).

4 EXPERIMENTS

In this section, we first describe the implementation details including the training of the agent and the
setup of the environment in Section .1} Subsequently, we evaluate our method in omnidirectional
exploration in Section non-omnidirectional exploration in Section and on the lawn mowing
CPP problem in Section4.4] Finally, we provide ablation studies in Section[4.5]

4.1 IMPLEMENTATION DETAILS

Agent and training details. We use soft actor-critic (SAC) RL (Haarnoja et al., [2018a) with auto-
matic temperature tuning (Haarnoja et al.,|2018b). The actor and critic networks share the network
architecture, but not any weights. We train for 4M iterations with learning rate 5 - 10>, batch size
256, replay buffer size 5 - 10°, and discount factor y = 0.99. The simulated lidar field-of-view was
360° in omnidirectional exploration, and 180° in the other two settings. The coverage radius was
set to the lidar range in both exploration tasks, which was 7 m and 3.5 m in omnidirectional and
non-omnidirectional exploration respectively. In the lawn mowing case, the coverage radius was the
agent radius, which was 0.15 m. For full details on the physical dimensions, see Appendix [B.I} The
training time for one agent varied between 50 and 100 hours on a T4 GPU and a 6226R CPU.

Environment details. For the multi-scale maps, we use m = 4 scales with 32 x 32 pixel resolution,
a scale factor of s = 4, and 0.0375 meters per pixel for the finest scale, which corresponds to 4
pixels per robot radius. Thus, the maps span a square with side length 76.8 m. We progressively
increase the difficulty of the environment during training, starting from simple maps and increase
their complexity over time. The episodes are terminated when a goal coverage rate between 90—99%
is reached, depending on the training progression. For full details on the progressive training, see
Appendix Based on initial experiments, we find suitable reward parameters. The episodes are
prematurely truncated if 7 = 1000 consecutive steps have passed without the agent covering any
new space. We set the maximum coverage reward A,.., = 1, the incremental TV reward scale
ALy = 0.2 for exploration and AL, = 1 for lawn mowing, the collision reward R = —10, and
the constant reward Ro,st = —0.1. The global TV reward scale was set to /\”(r;v = 0 as it did not
contribute to a performance gain in our ablations in Section[4.5]

Map geometry. To increase the variation of training scenarios, we use both a fixed set of maps and
randomly generated maps, see Figure[5] The fixed maps provide both simple, and more challenging
scenarios that a CPP method is expected to solve. The randomly generated maps provide orders of
magnitude more variation, and avoid the problem of overfitting to the fixed maps. They are created
by randomizing grid-like floor plans with random obstacles. For more details, see Appendix [B.4]

Evaluation. We measure the times Tgg and Tog to reach 90% and 99% coverage respectively. We
use separate maps for evaluation that are not seen during training. See Figure [6] for examples, and
Appendix [B.6] for a full list of evaluation maps used in the different CPP variations. Additionally,
see Appendix for inference times, and Appendix for an evaluation on collision frequency.
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4.2 OMNIDIRECTIONAL EXPLORATION

To evaluate our method on omnidirectional exploration, we use Explore-Bench (Xu et al., [2022),
which is a recent benchmark for exploration that implements relevant baseline methods and envi-
ronments. It includes six environments; loop, corridor, corner, rooms, combination 1 (rooms with
corridors), and combination 2 (complex rooms with tight spaces), which can be found in Appendix
Figure [I1](a), ordered left to right. We compare our method against a distance-based frontier
method (Yamauchi, [1997), an RRT-based frontier method (Umari & Mukhopadhyay, [2017), and a
potential field-based frontier method (Yu et al.,2021). We also compare with an RL-based approach,
where | Xu et al.| (2022) train an RL model to determine a global goal based on active neural SLAM
(Chaplot et al., 2020). As the baseline methods estimate the position with SLAM, we measure their
average position error to 1 cm. For a fair comparison, we add Gaussian noise to the position in our
method with a corresponding standard deviation. The results are presented in Table [I] where our
approach surpasses all methods in the comparison. This shows that learning control signals end-to-
end with RL is in fact a suitable approach to CPP. Remarkably, this approach is even robust to noise,
which highlights that the agent can adapt to uncertainties in the observed state of the environment.

Table 1: Time in seconds for reaching 90% and 99% coverage in Explore-Bench.

Map — Loop  Corridor Corner Rooms Comb.1 Comb. 2 Total

Method | Too Too Too Too Too Tog Too Tog Too Toe9 Too Tog Too T
Distance frontier 124 145 162 169 210 426 159 210 169 175 230 537 1054 1662
RRT frontier 145 180 166 170 171 331 176 211 141 192 249 439 1048 1523

Pot. field frontier 131 152 158 162 133 324 156 191 165 183 224 547 967 1559
Act. Neur. SLAM 190 214 160 266 324 381 270 315 249 297 588 755 1781 2228
Ours (withnoise) 99 109 84 120 123 489 83 165 97 101 149 420 635 1404

Ours (nonoise) 126 137 95 100 76 302 71 250 87 118 195 353 650 1260

4.3 NON-OMNIDIRECTIONAL EXPLORATION

We further evaluate our method on non-omnidirectional exploration, using the maps in Appendix
Figure @b). We compare with a recent frontier-based RL method (Hu et al.,2020), and a ran-
dom agent baseline. The random agent drives forward until it encounters an obstacle, where it turns
a random amount, and repeats. The coverage over time is presented in Figure [/} Our method out-
performs the frontier-based RL approach, demonstrating that end-to-end learning of control signals
is superior to a multi-stage approach for adapting to a specific sensor setup.

4.4 LAWN MOWING

For the lawn mowing problem, where the coverage radius is the same as the agent radius, we com-
pare with the backtracking spiral algorithm (BSA) (Gonzalez et al. |2005), which is a common
benchmark for this CPP variation. Note however that BSA is an offline method and does not solve
the mapping problem. As such, we do not expect our approach to outperform it in this comparison.
Instead, we use it to see how close we are to a good solution. Table E] shows Ty and Tgg for six
maps numbered 1-6, which can be found in Appendix Figure [T1fc), ordered left to right. In
total, our method takes 29% and 49% more time to reach 90% and 99% coverage respectively. This
is an impressive result considering the challenge of simultaneously mapping the environment.

4.5 ABLATION STUDY

In Table[2] we explore the impact of different components of our approach via a series of ablations.

TV rewards. We find that the incremental TV reward has a major impact in the lawn mowing
problem, increasing the coverage from 85.1% to 97.8% (@ vs. ®). It also affects exploration, but
not to the same extent. This is reasonable, as the total variation in the coverage map is lower in this
case. Moreover, as global TV has less temporal variation, and behaves more like a constant reward,
it turns out not to be beneficial for CPP (® vs. ®).
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100{ _ Ours Table 2: Coverage (%) at 1500 and 1000 seconds
—. Frontier RL for mowing (Mow) and exploration (Exp) respectively,
. 807... Random comparing agent architecture (NN), TV rewards, and
& frontier observation (Fopg).
o 60
0 T aemmme
g 01 A-mT Settings Coverage
@) 20] A R[FV R%V . NN Mow Exp
0 © Vv v MLP 814 273
‘ : ; : ; @ Vv v CNN 932 884
0 50 100 150 200 250 300
Time (seconds) ® v SGCNN 85.1 915
® V SGCNN 72.6 80.6
Figure 7: Coverage over time in non- ® v v v SGCNN 966 89.0
® Vv v SGCNN 97.8 93.0

omnidirectional exploration.

Table 3: Time in minutes for reaching 90% and 99% coverage in lawn mowing.
Map — Mapl Map2 Map3 Map4 Map5 Mapb6 Total
Method Too Tog Too Too Too Tog Too Tog Too Too Too Tog Too Tog

BSA 30 35 29 35 31 36 34 41 17 23 88 100 229 270
Ours 42 55 36 52 43 54 43 51 33 44 99 146 296 402

Agent architectures. The higher model capacity of the

CNN architecture enables a better understanding of the 100

environment, and outperforms the MLP baseline (@ vs. _ 80

®). Our proposed architecture (SGCNN, ®), which <

groups the different scales and convolves them separately, Qc;o 607

further improves the performance compared to a naive s 40

CNN, which treats all scales as the same spatial structure. S

Multi-scale frontier maps. We find that our proposed 20

frontier map representation is crucial for achieving a high 0

performance with the multi-scale map approach (@ VS. 0 200 400 600 800 1000
®). Without this input feature, too much information is Time (seconds)

lost in the coarser scales, which is needed for finding ef- .

ficient coverage paths. Figure 8: Exploration coverage over

time for different number of scales.
Number of scales. In Figure |8 we compare the coverage

for different number of scales on the exploration task. It

shows that only using one or two scales is not sufficient, where at least three scales are required to
represent a large enough environment to enable long-term planning. The discrepancy was not as
large for the lawn mowing problem, as it is more local in nature with a lower coverage radius.

5 CONCLUSIONS

We present a method for online coverage path planning in unknown environments, based on a con-
tinuous end-to-end reinforcement learning approach. The agent implicitly solves three tasks simulta-
neously, namely mapping of the environment, planning a coverage path, and navigating the planned
path while avoiding obstacles. For a scalable solution, we propose to use multi-scale maps, which
is made viable through frontier maps that preserve the existence of non-covered space in coarse
scales. Furthermore, we propose a novel reward term based on total variation, to reduce islands of
non-covered space. This results in a task- and robot-agnostic CPP method that can be applied to
different applications, which has been demonstrated for the exploration and lawn mowing tasks.
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APPENDIX

This appendix contains an extended analysis in Section |Aland additional implementation details in
Section Bl

A EXTENDED ANALYSIS

A.1 THE NECESSITY OF MULTI-SCALE MAPS

While the multi-scale maps can represent large regions efficiently, they are even necessary for large-
scale environments. In large environments, using a single map is not feasible as the computational
cost is O(n?). For example, with our current setup with 4 maps that span an area of size 76.8 x 76.8
m?, the training step time is 40 ms. With a single map spanning only 19.2 x 19.2 m? using the
same pixel resolution as the finest scale, the training step time is 2500 ms. This would increase the
total training time by roughly two orders of magnitude. Going beyond this size resulted in memory
problems on a T4 16GB GPU. Thus, a multi-scale map is necessary for large-scale environments.

A.2 INFERENCE TIME ANALYSIS

We evaluate the inference time of our method on two different systems in Table [4] System 1 is a
high-performance computing cluster, with 16-core 6226R CPUs, and T4 GPUs. However, only 4
CPU cores and one GPU were allocated for the analysis. System 2 is a laptop computer, with a 2-
core i5-520M CPU, without a GPU. The times are compared between the mowing and exploration
tasks, where the inference time is lower for the mowing task since a smaller local neighborhood
is used for updating the global coverage map. As our network is fairly lightweight it can run in
real time, i.e. > 20 frames per second, even on a low-performance laptop without a GPU. All map
updates are performed locally, resulting in high scalability, reaching real-time performance on the
cluster node, and close to real-time performance on the laptop.

Table 4: Inference time in milliseconds, on a high-performance computing cluster and a laptop, for
the model forward pass, other components (map updates, observation creation etc.), and in total.

Cluster node Laptop
6226R CPU, T4 GPU i5-520M CPU, No GPU
Task model  other total ~model other total
Exploration 2 19 21 5 57 62
Mowing 2 3 5 5 9 14

A.3 COLLISION FREQUENCY

In most real-world applications, it is vital to minimize the collision frequency, as collisions can
inflict harm on humans, animals, the environment, and the robot. To gain insights into the colli-
sion characteristics of our trained agent, we tracked the collision frequency during evaluation. For
exploration, it varied between once every 100-1000 seconds, which is roughly once every 50-500
meters. For lawn mowing, it varied between once every 150-250 seconds, which is roughly once
every 30-50 meters. These include all forms of collisions, even low-speed side collisions. The
vast majority of collisions were near-parallel, and we did not observe any head on collisions. The
practical implications are very different between these cases.

A.4 IMPACT OF THE TV REWARD ON LEARNED PATHS

Figure [0 shows learned paths both with and without the incremental TV reward. The TV reward
reduces small leftover regions which are costly to cover later on.
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Figure 9: The total variation reward term improves path quality. The figure shows the path without
TV reward (left), and with TV reward (right).

A.5 ADDITIONAL REWARDS THAT DID NOT WORK

In addition to the reward terms described in Section [3.3] we experimented with a goal coverage
reward, and an episode truncation reward. Both were added at the end of every episode. The goal
coverage reward was a positive reward that was given once the agent reached the predefined goal
coverage. The truncation reward was a negative reward that was given in case the episode was
prematurely truncated due to the agent not covering new ground in 7 consecutive steps. However,
neither of these rewards affected the end result, likely due to the fact that they are sparse compared
to the other rewards, and do not provide a strong reward signal. The coverage reward already en-
courages complete coverage, and the constant negative reward heavily penalizes not reaching full
coverage. Since both of these are dense, adding sparse rewards for the same purpose does not pro-
vide any benefit.

A.6  GENERALIZATION OF THE LIDAR FEATURE REPRESENTATION

Since we represent the lidar distance measurements as a vector of a fixed size and normalize the
distances to [0, 1], the sensor observation is tied to a specific sensor setup. Due to the normalization,
the sensor observation is tied to a specific sensor range. This is important to keep in mind when
transferring to another sensor setup. If the maximum range differs, the normalization constant needs
to be considered, such that the same distance corresponds to the same observed value, and the max-
imum observable value should be limited to 1. If the number of lidar rays differ, the representation
might not generalize as easily, as the dimensionality of the sensor vector would change. One option
is to interpolate the observed distances at the ray angles that were used during training. Although,
inaccuracies may occur if the angles are not well aligned. However, the map representation is more
flexible, and does in theory also contain the information of the raw lidar data. So excluding the
sensor feature extractor would in theory generalize to any sensor setup.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 PHYSICAL DIMENSIONS

Table [5] shows the physical dimensions in the three different variations of the CPP problem that
were considered. We match the dimensions of the methods under comparison to get comparable
performance values.
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Table 5: Physical dimensions for the three different CPP variations.

Omnidirectional Non-omnidirectional .
Lawn mowing

exploration exploration
Coverage radius 7m 3.5m 0.15m
Agent radius 0.08 m 0.15m 0.15m
Maximum linear velocity 0.5 m/s 0.26 m/s 0.26 m/s
Maximum angular velocity 1 rad/s 1 rad/s 1 rad/s
Simulation step size 0.5s 0.5s 0.5s
Lidar rays 20 24 24
Lidar range 7m 3.0m 3.0m
Lidar field-of-view 360° 180° 180°

B.2 AGENT ARCHITECTURE DETAILS

As proposed for soft actor-critic (SAC) (Haarnoja et al., 2018b), we use two Q-functions that are
trained independently, together with accompanying target Q-functions whose weights are exponen-
tially moving averages. No separate state-value network is used. All networks, including actor
network, Q-functions, and target Q-functions share the same network architecture, which is either a
multilayer perceptron (MLP), a naive convolutional neural network (CNN), or our proposed scale-
grouped convolutional neural network (SGCNN). These are described in the following paragraphs.

MLP. As mentioned in the main paper, the map and sensor feature extractors for MLP simply
consist of flattening layers that restructure the inputs into vectors. The flattened multi-scale coverage
maps, obstacle maps, frontier maps, and lidar detections are concatenated and fed to the fusion
module. For the Q-functions, the predicted action is appended to the input of the fusion module.
The fusion module consists of two fully connected layers with ReLLU and 256 units each. A final
linear prediction head is appended, which predicts the mean and standard deviation for sampling the
action in the actor network, or the Q-value in the Q-functions.

Naive CNN. This architecture is identical to SGCNN, see below, except that it convolves all maps
simultaneously in one go, without utilizing grouped convolutions.

SGCNN. Our proposed SGCNN architecture uses the same fusion module as MLP, but uses addi-
tional layers for the feature extractors, including convolutional layers for the image-like maps. Due
to the simple nature of the distance readings for the lidar sensor, the lidar feature extractor only uses
a single fully connected layer with ReLU. It has the same number of hidden neurons as there are
lidar rays. The map feature extractor consists of a 2 X 2 convolution with stride 2 to reduce the
spatial resolution, followed by three 3 x 3 convolutions with stride 1 and without padding. We use
24 total channels in the convolution layers. Note that the maps are grouped by scale, and convolved
separately by their own set of filters. The map features are flattened into a vector and fed to a fully
connected layer of 256 units, which is the final output of the map feature extractor. ReLU is used as
the activation function throughout.

B.3 CHOICE OF HYPERPARAMETERS

Multi-scale map parameters. We started by considering the size and resolution in the finest scale,
such that sufficiently small details could be represented in the nearest vicinity. We concluded that
a resolution of 0.0375 meters per pixel was a good choice as it corresponds to 8 pixels for a robot
with a diameter of 30 cm. Next, we chose a size of 32 x 32 pixels, as this results in the finest scale
spanning 1.2 x 1.2 meters. Next, we chose the scale factor s = 4, as this allows only a few maps
to represent a relatively large region, while maintaining sufficient detail in the second finest scale.
Finally, the training needs to be done with a fixed number of scales. The most practical way is to
simply train with sufficiently many scales to cover the maximum size for a particular use case. Thus,
we chose m = 4 scales, which in total spans a 76.8 x 76.8 m region, and can contain any of the
considered training and evaluation environments. If the model is deployed in a small area, the larger
scales would not contain any frontier points in the far distance, but the agent can still cover the area
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by utilizing the smaller scales. For a larger use case, increasing the size of the represented area by
adding more scales is fairly cheap, as the computational cost is O(logn).

Reward parameters. Due to the normalization of the area and TV rewards, they are given an equal
weight with a maximum reward of one for Rayea and Ri,, with Aaea = 1 and MLy, = 1. RSy, is
close to one for )\%V = 1. Thus, we used this as a starting point, which seemed to work well for the
lawn mowing problem, while a lower value was advantageous for exploration.

Episode truncation. For large environments, we found it important not to truncate the episodes too
early, as this would hinder learning. If the truncation parameter T was set too low, the agent would
not be forced to learn to cover an area completely, as the episode would simply truncate whenever
the agent could not progress, without a large penalty. With the chosen value of 7 = 1000, the agent
would be greatly penalized by the constant reward R.onst for not reaching the goal coverage, and
would be forced to learn to cover the complete area in order to maximize the reward.

B.4 RANDOM MAP GENERATION

Inspired by procedural environment generation for reinforcement learning (Justesen et al.| |2018),
we use randomly generated maps during training to increase the variation in the training data and
to improve generalization. We consider random floor plans and randomly placed circular obstacles.
First, the side length of a square area is chosen uniformly at random, from the interval [2.4, 7.5]
meters for mowing and [9.6, 15] meters for exploration. Subsequently, a random floor plan is created
with a 70% probability. Finally, with 70% probability, a number of obstacles are placed such that
they are far enough apart to guarantee that the agent can visit the entire free space, i.e. that they are
not blocking the path between different parts of the free space. An empty map can be generated if
neither a floor plan is created nor obstacles placed. In the following paragraphs, we describe the
floor plan generation and obstacle placement in more detail.

Random floor plans. The random floor plans contain square rooms of equal size in a grid-like
configuration, where neighboring rooms can be accessed through door openings. On occasion,
a wall is removed completely or some openings are closed off to increase the variation further.
First, floor plan parameters are chosen uniformly at random, such as the side length of the rooms
from [1.5, 4.8] meters, wall thickness from [0.075, 0.3] meters, and door opening size from [0.6, 1.2]
meters. Subsequently, each vertical and horizontal wall spanning the whole map either top-to-bottom
or left-to-right is placed with a 90% probability. After that, door openings are created at random
positions between each neighboring room. Finally, one opening is closed off at random for either
each top-to-bottom spanning vertical wall or each left-to-right spanning horizontal wall, not both.
This is to ensure that each part of the free space can be reached by the agent.

Random circular obstacles. Circular obstacles with radius 0.25 meters are randomly scattered
across the map, where one obstacle is placed for every four square meters. If the closest distance
between a new obstacle and any previous obstacle or wall is less than 0.6 meters, the new obstacle
is removed to ensure that large enough gaps are left for the agent to navigate through and that it can
reach every part of the free space.

B.5 PROGRESSIVE TRAINING

To improve convergence in the early parts of training, we apply curriculum learning (Bengio et al.,
2009), which has shown to be effective in reinforcement learning (Narvekar et al., 2020). We use
simple maps and increase their difficulty progressively. To this end, we rank the fixed training maps
by difficulty, and assign them into tiers, see Figure[I0} The maps in the lower tiers have smaller sizes
and simpler obstacles. For the higher tiers, the map size is increased together with the complexity
of the obstacles.

Furthermore, we define levels containing certain sets of maps and specific goal coverage percent-
ages, see Table[6] The agent starts at level 1, and progresses through the levels during training. To
progress to the next level, the agent has to complete each map in the current level, by reaching the
specified goal coverage. Note that randomly generated maps are also used in the higher levels, in
which case the agent has to additionally complete a map with random floor plans, and a map with
randomly placed circular obstacles to progress. Whenever random maps are used in a level, either a
fixed map or a random map is chosen with a 50% probability each at the start of every episode.
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Figure 10: The fixed training maps are grouped into tiers by difficulty, depending on their size and
complexity of the obstacles.

Tier 4

B.6 EVALUATION MAPS

Figure [TT] shows the maps used for evaluating our method on the different CPP variations, as well
as additional maps for the ablation study.

B.7 IMPLEMENTATION OF THE COMPARED METHODS

Table [/] lists the code implementations used for the methods under comparison. Note that for om-
nidirectional exploration, we evaluate our method under the same settings as in Explore-Bench, for
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Table 6: The progressive training levels contain maps of increasingly higher tiers and goal coverage
percentages. At the highest levels, generated maps with random floor plans and obstacles are also
used.

Exploration Lawn mowing

Map Random Goal Map Random Goal
Level tiers maps  coverage tiers ~maps  coverage

1 12 90% 0 90%
2 124 90% 0,1 90%
3 124 95% 0,1 95%
4 124 97%  0-2 95%
5 124 99%  0-2 97%
6 14 99%  0-2 99%
7 14 v 99%  0-3 99%
8 15 v 99%  0-3 v 99%
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Figure 11: Evaluation maps used for (a) omnidirectional exploration, (b) non-omnidirectional ex-

ploration, and (c) lawn mowing. The maps in the last two rows were used additionally for ablations
in (d) exploration and (e) lawn mowing.

which Xu et al.|(2022) report the performance of the compared methods. We report these results in
Table|l} and use their official implementation to estimate the position noise.
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Table 7: Links to code implementations used for the methods under comparison.

Omnidirectional exploration
Official Explore-Bench implementation (Xu et al.,[2022):

https://github.com/efc-robot/Explore-Bench

Non-omnidirectional exploration

Official Frontier RL implementation (Hu et al.||[2020):
https://github.com/hanlinniu/turtlebot3_ddpg_collision_avoidance
Frontier RL implementation in simulation:

https://github.com/Peacel997/Voronoi_Based_Multi_Robot_Collaborate_Exploration_Unknow_Enviroment

Lawn mowing
Implementation of BSA (Gonzalez et al., 2005):

https://github.com/nobleo/full_coverage_path_planner
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