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ABSTRACT

Before taking actions in an environment with more than one intelligent agent, an
autonomous agent may benefit from reasoning about the other agents and utilizing
a notion of a guarantee or confidence about the behavior of the system. In this ar-
ticle, we propose a novel multi-agent reinforcement learning (MARL) algorithm
CAMMARL, which involves modeling the actions of other agents in different sit-
uations in the form of confident sets, i.e., sets containing their true actions with
a high probability. We then use these estimates to inform an agent’s decision-
making. For estimating such sets, we use the concept of conformal predictions,
by means of which, we not only obtain an estimate of the most probable out-
come but get to quantify the operable uncertainty as well. For instance, we can
predict a set that provably covers the true predictions with high probabilities (e.g.,
95%). Through several experiments in two fully cooperative multi-agent tasks, we
show that CAMMARL elevates the capabilities of an autonomous agent in MARL
by modeling conformal prediction sets over the behavior of other agents in the
environment and utilizing such estimates to enhance its policy learning.

1 INTRODUCTION

Developing systems of autonomous agents capable of effective multi-agent interactions can be very
useful in modern cooperative artificial intelligence (AI). For instance, service robots, surveillance
agents, and many more similar applications require profound collaboration among agents (and with
humans), without prior coordination. Now, to enable complex, constructive behaviors to emerge
from unsupervised interactions among agents, an essential skill for an agent to have is the ability to
reason about other agents in the environment. There has been considerable research addressing this
problem of agent or opponent modeling (Albrecht & Stone, 2018). Generally, it involves construct-
ing models of other agents that learn useful attributes to inform its own decision-making (such as the
future actions of the other agents, or their current goals and plans) from current or past interaction
history (such as the previous actions taken by other agents in different situations).

We are interested in the particular aspect of an interactive, autonomous agent that involves learning
an additional, independent model to make predictions about the actions of the other agents in the
environment, supplemental to its reinforcement learning-based policy to make decisions related to its
downstream task. An autonomous agent can then incorporate those estimates to inform its decision-
making and optimize its interaction with the other agents. While there exist several methods for
developing such models for other agents (Albrecht & Stone, 2018), there is currently no method
or theory to the best of our knowledge that would allow an agent to consider the correctness or
confidence of the predictions of the learned model.

Conformal Predictions. Conformal predictions or inference is a fitting method for generating
statistically accurate uncertainty sets for the predictions from machine learning classifiers. It is
steadily gaining popularity owing to its explicit and non-asymptotic guarantees over the produced
sets (Angelopoulos & Bates, 2021). In other words, we can obtain conformal sets that provably
contain the true predictions with high probabilities, such as 95%, chosen in advance. This can be
very useful and successful in high-risk learning settings, especially in decision-making in medical
applications from diagnostic information, for instance, which demand quantifying uncertainties to
avoid insufferable model failures. What if we only prefer to use the predictions when the model is
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Figure 1: Our proposed methodology of informing an autonomous agent’s decision-making by
means of conformal predictions of action sets of other agents in the environment illustrated with
two agents for simplicity. Two agents (Nself , Nother) receive their own partial observations from
the environment (oself , oother) and take their actions (aself , aother). An independent conformal ac-
tion prediction model C learns to output a conformal action set, {a′other}, corresponding to Nother

which are then used as additional inputs for training by Nself to inform its policy and perform its
action aself .

confident? For example, doctors may only consider a predicted medical diagnosis when the model is
at least 95% accurate, or may want to use the predicted set with high credence to consider ruling out
relevant possibilities. So, in this article, we aim to enhance the capabilities of an agent in a multi-
agent reinforcement learning (MARL) setting by modeling and using conformal prediction sets (or
the latent representations learned in the process1) over the behavior of an autonomous system. In
particular, we model other agents’ actions in the form of confident sets, i.e., sets that contain other
agents’ true actions with a high probability. We hypothesize that these estimated conformal sets
would inform our learning agent’s decision-making and elevate its performance in MARL. Figure 1
shows the high-level idea of our proposed model for learning agents in any given environment.

In this work, we aim to introduce a novel framework to train an autonomous agent that enhances its
decision-making by modeling and predicting confident conformal actions of other agents in the envi-
ronment — the CAMMARL algorithm (Section 3), and then empirically demonstrate that conformal
action modeling used in CAMMARL indeed can help make significant improvements in cooperative
policies learned by reinforcement learning agents in two multi-agent domains (Section 4).

2 RELATED WORKS

Decision-making without reasoning about other agents in the environment can be very challenging,
for instance, due to weak or no theoretical guarantees, non-stationarity (single agent’s perspective),
and inefficient coordination for a considerable coherent joint behavior (Matignon et al., 2012). Mod-
eling other agents in an environment is not new and has been studied in the past (Albrecht & Stone,
2018; Albrecht et al., 2020). However, our proposal of predicting conformal sets of actions of the
other agents in the environment (with high probability) is novel and has not been attempted to the
best of our knowledge.

Learning world models. Model-based reinforcement learning (MBRL) has certainly shown its
advantages in data efficiency, generalization, exploration, counterfactual reasoning, and perfor-
mance in many tasks and domains (Hafner et al., 2020; 2021; Jain et al., 2022; Moerland et al.,
2023; Pal & Leon, 2020; Polydoros & Nalpantidis, 2017) in single-agent RL, and now, it has also
started to attract attention in MARL (Wang et al., 2022). However, most of the current works in
model-based MARL do not yet focus on teammate or opponent modeling. Some recent works (Park
et al., 2019b; Zhang et al., 2021) incorporated dynamics modeling and a prediction module to esti-
mate the actions of other agents within the construction of the environment model. However, these

1More details in Appendix B.
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prediction models were trained without accessing the true trajectories from the other agents which
can be problematic in several use cases.

Learning agent models. A widely popular technique to reason about other agents in the envi-
ronment is to learn representations of different properties of other agents. For instance, learning
to reconstruct the actions of other agents from their partial observations (He et al., 2016; Mealing
& Shapiro, 2015; Panella & Gmytrasiewicz, 2017; Albrecht & Ramamoorthy, 2015), modeling an
agent or its policy using encoder-decoder-based architectures Grover et al. (2018); Zintgraf et al.
(2021), learning latent representations from local information with or without utilizing the modeled
agent’s trajectories (Papoudakis et al., 2021; Xie et al., 2021) or modeling the forward dynamics
of the system through relational reasoning using graph neural networks (Tacchetti et al., 2018).
Theory-of-Mind Network or TomNet learned embeddings corresponding to other agents in the en-
vironment for meta-learning (Rabinowitz et al., 2018). Some works also constructed I-POMDPs to
utilize recursive reasoning (Albrecht & Stone, 2018) assuming unrestricted knowledge of the obser-
vation models of other agents. Nevertheless, CAMMARL involves no form of reconstruction of other
agent’s policy or rewards, or state models. Any of these techniques can be used with CAMMARL
which, however, is not the objective of this work. Also, unlike CAMMARL, many of these afore-
mentioned techniques evaluate in fully-observable environments or rely upon direct access to other
agents’ experience trajectories even during execution. This can be infeasible in various settings.

Multi-agent reinforcement learning (MARL). Numerous deep MARL research works that focus
on partial observability in fully cooperative settings indirectly involve reasoning about the intentions
of teammates or opponents in an environment (Gronauer & Diepold, 2022). For instance, many
works allow agents to communicate, enabling them to indirectly reason about the others’ intentions
(Lazaridou et al., 2016; Foerster et al., 2016; Sukhbaatar et al., 2016; Das et al., 2017; Mordatch
& Abbeel, 2018; Gupta et al., 2021; Zhu et al., 2022). On the other hand, some studied the emer-
gence of cooperative and competitive behaviors among agents in varying environmental factors, for
instance, task types or reward structures (Leibo et al., 2017). Recent work in hierarchical reinforce-
ment learning also attempts to develop a hierarchical model to enable agents to strategically decide
whether to cooperate or compete with others in the environment and then execute respective plan-
ning programs (Kleiman-Weiner et al., 2016). However, none of these works study the improvement
in an autonomous agent’s decision-making via directly modeling the other agents in the environment
or predicting their actions or current or future intentions.

Inverse reinforcement learning (IRL). Research in the field of IRL also relates to our work
because we share the key motive of inferring other agents’ intentions and then use it to learn a policy
that maximizes the utility of our learning agent (Arora & Doshi, 2021). However, IRL addresses this
by deducing the reward functions of other agents based on their behavior, assuming it to be nearly
optimal. On the other hand, in CAMMARL we directly model the other agent’s actions based on their
observations and use these estimates to indirectly infer their goal in an online manner.

Conformal prediction. Estimating well-grounded uncertainty in predictions is a difficult and un-
solved problem and there have been numerous approaches for approximating it in research in super-
vised learning (Gawlikowski et al., 2021). Recent works in conformal predictions (Angelopoulos
et al., 2020; Lei et al., 2018; Hechtlinger et al., 2018; Park et al., 2019a; Cauchois et al., 2020; Mes-
soudi et al., 2020) have now significantly improved upon some of the early research (Vovk et al.,
2005; Platt et al., 1999; Papadopoulos et al., 2002), for instance in terms of predicted set sizes, im-
proved efficiency, and providing formal guarantees. For this article, we adapt the core ideas from
Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2020) to our setting owing to its
demonstrated improved performance evaluation on classification benchmarks in supervised learning
(Angelopoulos et al., 2020).

3 THE CAMMARL ALGORITHM

3.1 MATHEMATICAL MODEL

Formally, we consider two agents in the environment — learning agent denoted by self and the other
agent denoted by other. The partially observable Markov game Littman (1994) for our setting can
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then be defined using the following tuple2:
⟨Ni,S,Ai,Oi, T , C, πθi , ri⟩i∈{self,other1...otherK−1}

With the set S describing the possible true states (or full observations) of the environment, K agents,
Nself and (K−1)Notherj (j ∈ [1,K]), observe the environment locally using their sets of observa-
tions Oself and (K − 1) Ootherj respectively, and act using their set of actions, Aself and (K − 1)
Aotherj . Each agent i can select an action ai ∈ Ai using their policy πθi , and their joint action
a ∈ Aself × Aother1 × . . .AotherK then imposes a transition to the next state in the environment
according to the state transition function T , defined as a probability distribution on the subsequent
state based on current state and actions, T : S × Aself ×Aother1 × . . .AotherK × S → [0, 1]. The
agents use their individual reward function ri(s, a) : Oi × Ai → R. Both agents aim to maximize
their own total expected rewards Ri =

∑T
t=0 γ

trti where γ ∈ [0, 1) as the discount factor and T is
the time horizon.

In CAMMARL, at each time step t, we also use a conformal prediction model for the j-th agent,
defined as a set-valued function, C : Rd → 2|Aotherj

|

C(ototherj )→ {A
i
otherj}

which outputs a conformal action predictive set {At
otherj

} for each input of Notherj ’s local obser-
vation ototherj ∈ Ootherj at the time.

3.2 CONFORMAL ACTION MODELING

Algorithm 1 CONFORMAL ACTION MODELING IN MARL

1: Nself , Notherj ← Initialize Actor-Critic networks for — Nself and Notherj , where j ∈ [1,K]
2: (K-1) conformalModels← Initialize the conformal model to predict conformal action sets
3: for episode = 1, 2, . . . do
4: Fetch observations oself , oother1 . . . ootherK from environment
5: for timesteps = 1, 2, . . . , T do
6: conformalActions← conformalModels(ootherj ); for j ∈ [1,K] ▷ Predict

conformal action set
7: oself ← oself + conformalActions ▷ Concatenate conformal actions to oself
8: Run agent policies in the environment
9: Collect trajectories of Nself and Nother1 . . .NotherK

10: if update interval reached then
11: Train conformalModels using Notherj ’s state-action mappings; for j ∈ [1,K]
12: Train Nself using PPO
13: Train Notherj using PPO; for j ∈ [1,K]
14: end if
15: end for
16: end for

Now we formally describe our proposed algorithm — Conformal Action Modeling-based Multi-
Agent Reinforcement Learning or CAMMARL. Our objective is to inform anNself ’s decision-making
by modeling the other agent’s actions in the environment as conformal prediction sets that contain
the true actions with a high probability (for example, 95%). More specifically,Nself uses a separate
conformal action prediction model to obtain sets of Notherj ’s actions at each timestep that contains
latter’s true action in the environment at a given time step with high prespecified probabilities.

Algorithm 1 describes the complete workflow of training of agents in CAMMARL. We begin by
initializing the actor-critic networks for both the agents in the environment, the conformal model,
and the memory buffers for each of these. Now, at the beginning of each episode in the environment,
both agents receive their own partial observations (line 4). Next, the conformal model predicts the
actions of all theNotherj ’s in the form of a set, which is then provided as an additional input toNself

(lines 6-7), whereasNotherj has access to only its own partial observation, ootherj . Both agents now
take actions in the environment and continue collecting their experiences (lines 8-9). The agents and
the conformal model periodically train using their respective experience memory (lines 10-14).

2A tabular version can be found in Section E
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Figure 2: A detailed illustration of conformal action modelling and inference in CAMMARL to gen-
erate prediction sets of Nother’s actions using conformal predictors.

Figure 2 shows a detailed illustration of our conformal action modeling that materializes internally
at each time step. We use only one other agent Nother for simplicity. The conformal predictor C
collects Nother’s state-action pairs and periodically learns and updates a neural network classifier,
f(·) : Rd → R|Aother| (where d is the number of dimensions in Nother’s local observation and
|Aother| is the number of possible discrete actions available for Nother), to predict action from a
given state. Then, we adapt RAPS conformal calibration (Angelopoulos et al., 2020) to our setting.
Considering o ∈ Oother as feature vectors, we use the updated f to compute action probabilities
π̂o ∈ R|Aother|. The probabilities are then ordered from most probable to least probable followed
by the estimation of the predictive action set for the given feature inputs. To promote small predictive
sets we also add a regularization term as also proposed in RAPS. Formally, for a feature vector o and
the corresponding possible prediction a, to estimate a set which includes all the actions that will be
included before a, let us define the total probability mass of the set of actions that are more probable
than a:

ρo(a) =

|Aother|∑
a′=1

π̂o(a
′)1{π̂o(a′)≥π̂o(a)}

Also, if we define a function to rank the possible action outcomes based on their probabilities π̂ as

zo(a) = |{a′ ∈ Aother : {π̂o(a
′) ≥ π̂o(a)}}|

we can then estimate a predictive action set as follows:

C∗(o) :=
{

a : ρo(a) + π̂o(a) · u+ λ · (zo(a)− kreg)
+ ≤ τ

}
where (x)+ denotes the positive portion of x, and λ, kreg ≥ 0 are regularization hyperparameters to
incentivize small set sizes. Here, u ∼ uniform [0, 1] (used to allow for randomized procedures)
and the tuning parameter τ (the cumulative sum of the classifier scores after sorting and penalization)
to control the size of the sets are identical to as used in RAPS for supervised tasks (Angelopoulos
et al., 2020).

To summarize, in CAMMARL, Nself gets to use estimates of Nother’s actions at each time step to
make informed decisions in the environment. Instead of modeling exact actions with no uncertainty

5



Under review as a conference paper at ICLR 2024

estimation, we prefer to produce an action set carrying desirable guarantees of containing Nother’s
true action with high probability, integrate it into an agent’s downstream task, and enable improved
decision-making and collaboration with Nother.

4 EXPERIMENTS

In this section, we discuss the cooperative tasks with two agents used in this study (Figure 3). We
note here that though we work in fully cooperative settings in this article, CAMMARL as an idea can
be generalized to competitive or mixed settings too.

4.1 ENVIRONMENTS

We focus on two cooperative multi-agent environments illustrated in Figure 3a & 3b. Further details
on these environments are in Section A.

(a) (b)

Figure 3: Multi-agent cooperative environments used in this study: (a) OpenAI MPE’s Cooperative
Navigation: Agents (blue) learn to cover the two landmarks (black) avoiding collisions. The figure
shows cooperative navigation with 2 agents (N=2) and 2 landmarks (L=2). and (b) Level-based
foraging: Agents must collect food and learn to cooperate using sparse rewards. This is a 12 × 12
level-based foraging grid-world with 2 cooperative players and 4 food locations.

4.2 RESULTS

To show the benefits of conformal action set prediction, we compare CAMMARL with the perfor-
mances of agents in different settings with varying pieces of information made available to Nself

during training.

No-Other-Agent-Modeling (NOAM). At first, we train Nself without allowing it to model
Nother. This baseline, as expected, underperforms when compared to any other settings (where
any kind of agent modeling is allowed). It is indicative of a lower bound to the learning performance
of our model where no kind of benefit from agent modeling is utilized by Nself . Results are shown
in Figure 4. We call this baseline — No-Other-Agent-Modeling or NOAM.

True-Action-Agent-Modeling (TAAM). Advancing from the inputs available in NOAM, we im-
plement TAAM by allowingNself to additionally utilizeNother’s true actions to train. This baseline
helps us evaluate CAMMARL against works that estimate other agents’ actions in the environment
and use those predictions to enhance the decision-making of their controlled autonomous agents.
By giving the true actions as inputs, this baseline can act as an upper bound to such works(He et al.,
2016; Grover et al., 2018; Zintgraf et al., 2021; Mealing & Shapiro, 2015; Panella & Gmytrasiewicz,
2017; Albrecht & Ramamoorthy, 2015). Figure 4 shows TAAM’s performance curve. Using addi-
tional information, it does reasonably better than NOAM in both tasks.

True-Observation-Agent-Modeling (TOAM). As discussed in Section 2, learning world
models often involves reconstructing observation as an additional task while learning task-
related policies (Jain et al., 2022; Hafner et al., 2020; 2021). Inspired by this re-
search, we implement the TOAM baseline where we allow access to Nother’s true obser-
vations to Nself during training and execution. In other words, we augment Nself ’s par-
tial observations with the other agent’s local observations too. This baseline can act as
an upper bound to the performances of research works that learn to reconstruct states for
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(a) CN (b) LBF

Figure 4: Comparison of agent performances (in terms of reward accumulation) in CN and LBF in
different settings with varying pieces of information available toNself during training. CAMMARL’s
performance is very close to the upper bound, GIAM, and is considerably better than the other
extreme, NOAM. It also outperforms the other defined benchmarks (TAAM, TOAM, & EAP) in
both tasks, along with the benefit of uncertainty quantification of its estimates. Interestingly, in
CN, CAMMARL can be seen to learn arguably faster, but all methods converge to similar results,
whereas in LBF, it actually seems to converge to a better policy. The curves are averaged over five
independent trials and smoothed using a moving window average (100 points) for readability.

agents (Hafner et al., 2020; 2021; Wang et al., 2022; Park et al., 2019b; Zhang et al., 2021). As ex-
pected, Nself performs considerably better than NOAM in both environments (Figure 4). Here, the
difference in returns in TOAM and TAAM can be attributed to the fact that the local observations
of other agents include more information that can be useful to infer their behavior. For instance, in
CN, knowing the relative positions of other agents with respect to the landmarks can be more useful
to infer which landmark that agent might be approaching when compared to knowing its current (or
history) actions.

Global-Information-Agent-Modeling (GIAM). On the other extreme, we also implement GIAM,
whereNself trains with complete access to both (1)Nother’s true action trajectories (aother), and (2)
Nother’s true observations (oother) as additional information. Figure 4 shows that GIAM achieves
higher returns compared to all other settings in both environments. This is intuitive because it ben-
efits from more information. GIAM is conditioned on Nother’s true experiences and consequently
demands access to them even during execution. This can be infeasible in real-world scenarios, how-
ever, theoretically represents an upper bound on the performance of agents in CAMMARL and other
settings.

Exact-Action-Prediction (EAP). Building over the inputs of TOAM, we construct a stronger
baseline, EAP, in which Nself uses an additional neural network classifier to model a probabil-
ity distribution overNother’s actions. In other words, instead of predicting conformal sets of actions
(like in CAMMARL), in this baseline, Nself tries to model Nother’s actions from the latter’s obser-
vations without accounting for any uncertainty quantification. This baseline is inspired by works
that explicitly model the other agent’s actions in the environments and utilize them to inform their
controlled agent’s decision-making (for instance, He et al. (2016); Grover et al. (2018); Zintgraf
et al. (2021)). Hence, here, a cross-entropy loss is used to train the added sub-module that predicts
the Nother’s actions along with a PPO loss to train Nself ’s policy network. Figure 4 shows that
CAMMARL agents are able to distinctly perform better than EAP in LBF, however, interestingly, the
performance curve for this baseline nearly overlaps with CAMMARL in CN. Also, in LBF, the curves
for TOAM and EAP seem to significantly overlap. We speculate that in a complicated task like LBF,
estimating the exact action of Nother can be difficult, and with unaccounted uncertainty in the pre-
dictions,Nself suffers from a lower return. In CN, which is comparatively simpler, the closeness of
returns in EAP and CAMMARL seem reasonable as even the conformal model predictions eventually
start predicting the most probable action with higher probabilities and hence a set of size one (more
on this in Section 6).
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CAMMARL. Now, we implement CAMMARL, where the conformal action prediction model peri-
odically trains on collected observations of Nother and predicts a corresponding conformal set of
actions. Nself uses these estimates of Nother’s actions along with its own observations and then
decides upon its actions in the environment. Figure 4 shows that CAMMARL agents obtain returns
that are much closer to the upper bound, GIAM, than the lower bound, NOAM. Furthermore, CAM-
MARL’s better performance compared to TOAM in both environments can be attributed to the fact
that it can be difficult to predict theNother’s intentions by only using oother without any information
pertaining to its actions in those situations. And, in TAAM, Nself is expected to implicitly encode
information regarding Nother’s observations from its own local observations or in the latent space
and map it to Nother’s true actions. We speculate that this could be a strong assumption and con-
sequently very difficult, hence, CAMMARL agents outperform TAAM too. Note here that the sets
output by the conformal action prediction model are of varying sizes in each iteration. Now, to be
able to use these dynamically changing inputs for Nself in CAMMARL, we convert the output sets
to a corresponding binary encoding (by firing up the bits in a zero vector at indices corresponding
to the actions predicted by the model). We discuss some more ways to be able to use conformal
prediction sets with dynamic sizes and compare CAMMARL’s performances in all variations later in
the supplementary.

In summary, through experiments in two complex cooperative tasks, we show that (1) CAMMARL
indeed works, (2) it outperforms common settings like NOAM, TOAM, and TAAM which assume
the availability of other agents’ true trajectories during training and execution (generally infeasible
in real-world scenarios), (3) Its performance is closest to our upper bound of performance (GIAM),
(4) CAMMARL agents learn their policies faster than the other baselines, and (5) CAMMARL can
be preferred over strong benchmarks such as EAP owing to its higher interpretability due to the
theoretical guarantees of conformal predictions in terms of coverage (Angelopoulos et al., 2020)
(discussed more in Section 6).

5 MOTIVATING CONFORMAL PREDICTIONS

Figure 5: Comparison of agent perfor-
mances in CN with uncertainty infor-
mation available to Nself during train-
ing. This graph highlights the merit
of using Conformal Action Predictions
over simple uncertainty estimation.

In Figure 4a and 4b, we observe the improved perfor-
mance of CAMMARL by predicting conformal sets. One
key ingredient to CAMMARL was the addition of uncer-
tainty predictions to the actions of the other agents. Thus,
we can attribute the increased performance of CAMMARL
to this as well. To test this theory, we added one more
baseline where similar to the action prediction baseline
(EAP), we add the action prediction probabilities directly
into the state space. We call this Action Prediction with
Uncertainty (APU), and both APU and CAMMARL oper-
ate on the same information. From Figure 5, we can con-
clude that just adding uncertain predictions is not enough
to achieve an uplift in performance that we see for CAM-
MARL and there is definite merit to using conformal pre-
dictions. Another reason for the poor performance of
APU would be that the agent has to parse through the
relevant information and learn from it, whereas they are
readily provided in a concise manner for CAMMARL.

6 DISCUSSION

In this section, we dig deeper and try to analyze the inner components of CAMMARL. In particular,
we plot some observable trends during the training of CAMMARL’s agents in both the tasks (Figure
6) and discuss each of them here.

Set Sizes. We collected the set sizes produced in CAMMARL throughout the training and report
them in Figure 6a and 6e. Smaller sets are preferred, as they carry specific information which can
be more useful practically. The curves show a decreasing trend in the set sizes in CAMMARL in both
CN and LBF respectively when tracked over the number of updates of the conformal prediction
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model during training. This is a good sign for CAMMARL, as it shows that the conformal predictions
are becoming more precise with continued training over time.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Analysing conformal prediction in CAMMARL over time during the training by looking
at trends in conformal sets sizes, coverage of highly probable predictions, model loss and accuracy
during training of CAMMARL agents.

Coverage. As also discussed earlier, it is desirable for the predicted sets to provide 1 - α coverage
for a pre-defined user-specified α such as 10%. Formally, to map a feature vector, oother ∈ Oother,
to a subset of discrete responses, a′other ∈ Aother, it is useful to define an uncertainty set function,
C(oother), such that P (a′other ∈ C(oother)) ≥ 1 − α. Figure 6b and 6f shows the increasing trend
of confidence coverage in CAMMARL.

Model accuracy and loss. In Figure 6c and Figure 6d we show the conformal model’s accuracy
and loss respectively for CN and LBF in Figure 6g and Figure 6h. The model accuracy, as expected,
increases with more data coming in to train over time and the loss correspondingly decreases.

7 CONCLUSION

In this article, we propose a novel MARL algorithm, CAMMARL, which calls for confident reasoning
about other artificial agents in the environment and benefiting from inferences about their behavior.
Through experiments in two cooperative multi-agent tasks, CN and LBF, we showed that guiding
an agent’s decision-making by inferring other agents’ actions in the form of conformal sets, indeed
helps in achieving better performances of the learning agents. By using conformal prediction, we
were also able to ensure the estimation of predictive sets that covered the real predictions of the
intentions of other agents with a very high pre-specified probability of 95%.
Limitations and Future Works: In our paper, we analyzed CAMMARL with two agents, however,
CAMMARL is certainly generalizable to bigger networks or more simple classifiers, and analyzing
its changing performance on varying buffer sizes can help in better comprehending its efficiency.
Second, it would be interesting to investigate the CAMMARL’s scalability to a system of many agents
(say 100 or 1000) or on more complicated multi-agent environments such as tasks requiring a higher
need for coordination. Thirdly, our mathematical model in Section 3.1 makes an assumption that the
state space is accessible globally which may not be the case in some problems. Finally, in this work,
we restricted the agents to infer the behavior of other agents only via conformal sets; it would be
interesting to study the cases where more ways of sharing information or modeling agents’ behavior
are additionally allowed.

REPRODUCIBILITY

All the information for reproduction of the results can be found in Section 4 with further discussions
on environments in Section A, variations of CAMMARL in Section B, implementation details in
Section C. We also provide the code in the supplementary material with detailed explanations.
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APPENDIX

A ENVIRONMENTS

(a) (b)

(c)

Figure 7: Multi-agent cooperative environments used in this study: (a) OpenAI MPE’s Cooperative
Navigation: Agents (blue) learn to cover the two landmarks (black) avoiding collisions. The figure
shows cooperative navigation with 2 agents (N=2) and 2 landmarks (L=2). and (b) Level-based
foraging: Agents must collect food and learn to cooperate using sparse rewards. This is a 12 ×
12 level-based foraging grid-world with 2 cooperative players and 4 food locations. (c) Pressure
Plate: Agents must stand on the pressure plate to keep the gates open for one of the agents to reach
the goal. This is a pressure plate environment with 4 agents.

Cooperative Navigation (CN) (Mordatch & Abbeel, 2017; Lowe et al., 2017). In this task,
agents are expected to learn to navigate and cover all the landmarks cooperatively and without
colliding. Each agent can perceive the other agents and landmarks within its reference frame (in the
form of relative positions and velocities) and can take discrete actions to move around (left, right,
up, down, stay) in the environment. The agents receive a team reward (so rself and rother are the
same in this case) which is calculated as the minimum of the distance of the agents’ and landmarks’
(xi, yi) positions in the grid world. This reward, based on their proximity (or distance) from each of
the landmarks, forces the need for cooperation in order to succeed in the task. Furthermore, agents
are penalized upon collisions. Formally, the reward function in this environment can be defined as

r =

[
−1 ∗

L∑
l=1

min{n∈N}(distance(n, l))

]
− c

where |N | is the number of agents and L are the landmarks in the environment. Here, c is the number
of collisions in an episode and the agents are penalized with -1 for each time two agents collide.

Level-based foraging (LBF) (Albrecht & Ramamoorthy, 2015). In this environment,Nself and
Nother are part of a 12×12 grid world which contains four randomly scattered food locations, each
assigned a level. The agents also have a level of their own. They attempt to collect food which is
successful only if the sum of the levels of the agents involved in loading is greater than or equal
to the level of the food. This is a challenging environment, requiring agents to learn to trade off
between collecting food for their own and cooperating with the other agent to acquire higher team
rewards. Moreover, this environment has sparse rewards making it difficult to learn and operate
independently in the environment. In particular, each agent is rewarded equal to the level of the food
it managed to collect, divided by its level (its contribution).
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Pressure Plate 3. In this domain, the agents are expected to learn to co-operate in traversing the
gridworld to collect the yellow treasure chest. Each agent is assigned a pressure plate that only they
can activate. That agents must stand on the pressure plate to keep the corresponding doorway to
open while the other agents can go through it leaving the agent behind. Each agent can only view
a limited portion of the environment. If an agent is in the room with their assigned plate, their
reward is the negative normalized Manhattan distance between the agent and plate’s position, else
the reward is the difference between the current and desired room number.

B VARIATIONS OF THE CAMMARL ALGORITHM

As noted earlier, the output of the conformal prediction model, i.e., the conformal sets, are of varying
sizes in different situations. So, we came up with numerous ways to be able to use them to implement
CAMMARL. In this section, we discuss and compare them and speculate some pros and cons for each
of them.

CAM-PADDING. The conformal model outputs a set containing the action predictions in the de-
creasing order of their probability of being the true actions. In other words, the first element in the
set is the highest probable action, the next is second highest probable, and so on. The maximum set
size being |Aother|, we try padding the set with zeros to fix its size when used as input in CAMMARL.
We hypothesise that in this way, Nself must be able to learn to infer the information about the ac-
tions along with the notion of their importance. Figure 8 also supports this hypothesis by showing
the reasonable performance of this version of CAMMARL(green curve). Nevertheless, such padding
can be undesirable, particularly because zeros need not necessarily mean “no information”, and we
try to remove it in the versions discussed next.

CAM-BINARY. In this method (also discussed earlier in Section 4), we encode the conformal sets
into binary strings. We start with a vector of zeros of size |Aother| and fire up the bits corresponding
to the output actions in the sets. The orange curve in Figure 8 shows that this version of CAMMARL
outperforms all the other versions.

CAM-PENULTIMATE. Here, we modify CAMMARL to now share the embedding (representations)
learned in the conformal prediction model as input toNself . The size of embedding is fixed and this
way, padding of conformal action sets in CAMMARL can be avoided. As shown in Figure 8 (blue
curve), CAMMARL with representations also manages to obtain returns close to binary-CAMMARL
and padded-CAMMARL. We also note here that, binary-CAMMARL and padded-CAMMARL still
performs slightly better than CAMMARL with representations.

Interestingly, all versions perform almost equivalently for the use-cases tested in this article. Any
method can be used depending on the application at hand. For instance in medical use-cases, the
knowledge of ranks of conformal actions is critical, and so cp-padding can be used. In this article,
we choose cp-binary. It is a simple way to ensure fixed-sized inputs for Nself in CAMMARL and
empirically works very well, and hence we propose this as a generic solution. We note here that, the
embeddings here are not being passed in addition to the set of predictions.

C MARL AGENTS: IMPLEMENTATION DETAILS

We use proximal policy optimization (PPO) Schulman et al. (2017) to update the decision-making
policy for both the RL agents, however, any other RL algorithm could be used alternatively. For
the individual actor and critic networks, we used 2 fully-connected multi-layer perceptron (MLP)
layers. For the conformal prediction model C, we use another fully-connected MLP with 2 layers
each with 64 hidden nodes. All the agents and the model C collect their individual experiences and
train their own policies independently.

We add regularization to the conformal model to encourage small set sizes. This regularization
is controlled by two hyper-parameters λ and kreg. Each time the conformal model is trained, we
choose the λ and kreg parameters from a set that optimizes for small sizes of the action set. The
kreg values are dependent on the logits, however, the λ values are in a set [0.001, 0.01, 0.1, 0.2, 0.5].

3https://github.com/uoe-agents/pressureplate
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(a) CN

(b) LBF

Figure 8: Comparing the performance of agents when trained with different variants of CAMMARL.

D ADDITIONAL RESULTS

D.1 RESULTS ON LBF WITH COOPERATION TURNED OFF

For these experiments, we use the original LBF environment, but we turn off the cooperation flag.
This should be a slightly easier task, however, each agent here would fight for different food posi-
tions, so it is kind of like a mixed setting. Modelling actions of other agents can also help to improve
performance here as well, although it is not as critical as in the cooperative setting.
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Figure 9: Comparison of agent performances (in terms of reward accumulation) in LBF with 2
and 6 agents respectively. CAMMARL’s performance is very close to the upper bound, GIAM, and is
considerably better than the other extreme, NOAM. Interestingly, CAMMARL also seems to converge
faster than the other baselines. The curves are averaged over five seeds and smoothed using a moving
window average (100 points) for readability.

Figure 9 highlights the training performance on LBF with 2 and 6 agents respectively. Although this
is a simpler task, which is why all the algorithms roughly converge to the same reward, CAMMARL
seems to be at par with our upper bound GIAM, especially in terms of faster convergence.

D.2 RESULTS ON PRESSURE PLATE
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Figure 10: Comparing the performance of agents in terms of rewards on Pressure Plate. CAMMARL
converges faster than all the other baselines, which highlights the superiority of conformal predic-
tions.

Pressure Plate environment has 4 agents cooperating to capture the goal. From Figure 10, we have
similar conclusion to the Coperative Navigation task. Although, all the algorithms ultimately con-
verge to the optimal reward, CAMMARL is more sample efficient and converges in roughly 10%
faster episodes compared to GIAM and TOAM. This experiments also highlights the benefit of us-
ing conformal predictions, as TAAM with the accurate actions do not converge as fast as CAMMARL.

D.3 VISUALIZATION OF LEARNED POLICY

In this section, we visualize the learned policy in Pressure Plate with CAMMARL demonstrating
cooperation between the 4 agents.
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(a) Start Frame (b) Plate 1 activated (c) Plate 2 activated

(d) Plate 3 activated (e) Goal reached

Figure 11: Visualization of the policy learned by CAMMARL in Pressure Plate with 4 agents

E PARTIALLY OBSERVABLE MDP

The partially observable MDP defined and used in this study has numerous parameters as defined
previously. Here is a table for quick reference (Table 1).

Symbol Description
i self or other
Ni Agent i
S Set of possible states of the environment
Ai Set of available actions for agent i
Oi Set of local observations of agent i
T State transition function
C Conformal Prediction model
πθi Agent i’s decision policy
ri Reward function for agent i
γ Discount factor
T Time horizon (length of an episode)

Table 1: Parameters in our POMDP
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