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Diagnostically Lossless Compression of Medical Images
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Abstract
Medical images (e.g. X-rays) are often acquired
at high resolutions with large dimensions in or-
der to capture fine-grained details. In this work,
we address the challenge of compressing med-
ical images while preserving fine-grained fea-
tures needed for diagnosis, a property known
as diagnostic losslessness. To this end, we (1)
use over one million medical images to train a
domain-specific neural compressor and (2) de-
velop a comprehensive evaluation suite for mea-
suring compressed image quality. Extensive ex-
periments demonstrate that large-scale, domain-
specific training of neural compressors improves
the diagnostic losslessness of compressed images
when compared to prior approaches.

1. Introduction
Medical images are essential diagnostic tools in clinical
practice. Since medical conditions are often characterized
by the presence of small features (e.g. microcalcifications,
fractures), images are acquired with high spatial resolu-
tion in order to capture the required level of detail (Huda &
Abrahams, 2015). However, high-resolution medical images
often have large dimension sizes, particularly when cover-
ing a large anatomical region; this can pose a problem for
computer-aided diagnosis (CAD) by resulting in increased
or even intractable computational complexity (Freire et al.,
2022; Tan & Le, 2019). As a result, effective compres-
sion approaches are necessary for enabling computationally
feasible analysis of medical images.

Previous strategies for lossy compression include (1) storage
methods, which optimize for low bitrates (e.g. JPEG2000),
and (2) scaling methods, which compress images into struc-
tured representations with reduced input dimensions (e.g.
neural compressors). Representations generated by storage
methods generally need to be decompressed before subse-
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Figure 1. We train a neural compressor that better preserves diag-
nostic features in medical images (e.g. fracture shown in yellow).

quent usage and do not improve computational efficiency of
CAD; consequently, we focus solely on scaling methods in
this work. In particular, recent work has demonstrated that
large-scale neural compressors (e.g. autoencoders) trained
on millions of natural images can effectively compress im-
ages into downsized latent representations while preserving
key visual features, leading to improvements in downstream
computational efficiency (Rombach et al., 2022).

However, medical image compression is complicated by the
need for diagnostic losslessness, meaning that compressed
images should preserve all features needed for diagnosis
(European Society of Radiology, 2011). Whereas natural
images generally only require the preservation of larger,
global features for accurate image interpretation, medical
images consist of small, fine-grained features that must be
retained in order to enable effective clinical diagnoses. As
a result, there are two key challenges associated with ap-
plying large-scale neural compressors to the medical image
domain. First, existing neural compressors are trained on
natural images, which represent a significant domain shift
from medical images. In particular, the role of domain-
specific training on performance of large-scale neural com-
pressors remains unclear. Second, evaluating compression
approaches with respect to diagnostic losslessness is chal-
lenging due to the lack of available evaluation suites. Prior
works predominantly evaluate the quality of compressed
images using perceptual metrics, which do not specifically
measure the preservation of clinically-relevant features.

In this work, we address these challenges by introducing
the first large-scale domain-specific variational autoencoder
(VAE) designed for compression of high-resolution med-
ical images. We use over one million medical images to
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train several domain-specific VAEs at various levels of com-
pression. Then, we introduce a suite of quantitative and
qualitative metrics for evaluating our method with respect
to diagnostic losslessness. While compression methods are
typically evaluated from a rate-distortion perspective (Shan-
non, 1948), we instead propose a benchmark that includes 5
fine-grained classification tasks and an expert reader study
in addition to standard perceptual quality assessments.

Our experiments demonstrate that domain-specific training
of neural compressors improves the diagnostic losslessness
of compressed images. When comparing compressed im-
ages generated by our domain-specific VAE to those from
existing neural compressors, we obtain an average perfor-
mance improvement of 5.7% across our fine-grained classifi-
cation tasks. Our expert reader study confirms these findings
qualitatively. Additionally, we show that commonly-used
perceptual metrics are insufficient for measuring diagnos-
tic losslessness, demonstrating the critical need for finer-
grained evaluations.

Related Work: Prior works on neural compression have pre-
dominantly focused on the natural image setting (Rombach
et al., 2022; Dubois et al., 2021). In the medical domain,
some previous works have applied various neural compres-
sion techniques to X-rays, MRI scans, and pathology images
(Dupont et al., 2022; Tellez et al., 2019; Sushmit et al., 2019;
Tellez et al., 2020); however, no prior studies have explored
large-scale training of neural compressors on medical im-
ages. Additionally, prior medical compression methods are
generally evaluated with rate-distortion and perceptual qual-
ity metrics (Dupont et al., 2022; Sushmit et al., 2019). No
systematic evaluation framework for diagnostic losslessness
has been previously introduced for medical images.

2. Our Approach
In this section, we introduce our domain-specific VAE for
medical image compression (Section 2.1). We also discuss
our evaluation suite for benchmarking compression methods
with respect to diagnostic losslessness (Section 2.2).

2.1. Neural Compression of Medical Images

We begin with a training dataset D = {xi}ni=1 consisting
of n grayscale medical images xi ∈ X . Each image xi

has dimensions H ×W with a single channel, expressed as
xi ∈ RH×W×1. Our goal is to learn a stochastic mapping
g : X → Z , where Z represents a low-dimensional latent
space. Specifically, for a compression factor f and image xi,
a latent sample zi ∈ Z has dimension (H/f)× (W/f)×C,
where C represents a pre-specified number of channels. In
combination with g, we also learn a mapping h : Z → X̂ ,
which reconstructs the image from the latent sample.

Motivated by prior work on large-scale neural compressors

(Rombach et al., 2022), we learn functions g and h using a
fully convolutional VAE with a combination of a perceptual
loss, a patch-based adversarial objective, and a penalty based
on the Kullback-Leibler (KL) divergence. We train six
neural compressors with varying values of f (4, 8, and 16)
and C (1, 4, and 16).

The training dataset D consists of X-ray data from two
modalities: chest X-rays and full-field digital mammo-
grams (FFDM). We select these modalities because (a) chest
X-rays are well-studied with large amounts of publicly-
available data and (b) FFDMs are a challenging class of
images due to large dimensions and the presence of fine-
grained features critical for diagnoses (e.g. microcalcifica-
tions). We use images from two chest X-ray datasets and
six FFDM datasets: MIMIC-CXR (Johnson et al., 2019),
CANDID-PTX (Feng et al., 2021), EMBED (Jeong et al.,
2022), CSAW-CC (Sorkhei et al., 2021), RSNA Mammog-
raphy (RSNA, 2023), VinDr-Mammo (Nguyen et al., 2022),
INBreast (Moreira et al., 2012), and CMMD (Cai et al.,
2023). The final dataset comprises 1,021,356 images.

2.2. Evaluation Suite

We use three evaluation tasks for quantitatively and qual-
itatively assessing compression methods with respect to
diagnostic losslessness: (1) fine-grained classification, (2)
expert reader study, and (3) perceptual quality metrics.

First, we evaluate the preservation of fine-grained features
in compressed images z with five classification tasks: mali-
gancy detection, calcification identification, and BI-RADS
classification on FFDMs (Nguyen et al., 2022; Cai et al.,
2023); bone age prediction on hand X-rays (Halabi et al.,
2019); and fracture detection on pediatric wrist radiographs
(Nagy et al., 2022). Classification accuracy is assessed using
a high-resolution network (HRNet) (Wang et al., 2020) with
supervised linear probing (Zhang et al., 2016).

Next, we qualitatively assess the information loss resulting
from compression. We perform a study with two expert
radiologists, where each reader is presented with 50 unique
reconstructed chest X-rays (x̂) paired with the ground-truth
image (x). All X-rays include at least one fracture. Rat-
ings are given on a 5-point Likert-scale for image fidelity,
diagnostic losslessness, and the presence of artifacts.

Finally, we evaluate image fidelity by using standard per-
ceptual quality metrics to compare reconstructed images x̂
with the original x. We report Fréchet Inception Distance
(FID), peak signal-to-noise ratio (PSNR), and multi-scale
structural similarity index measure (MS-SSIM). Since FID
is computed using an Inception V3 network (Szegedy et al.,
2015) that is not adapted for medical images, we introduce
two variants based on CLIP and BiomedCLIP (Radford
et al., 2021; Zhang et al., 2023; Chambon et al., 2022).
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Method Compression AUROC ↑

f C γ FLOPS Malignancy Calcification BI-RADS Bone Age Wrist Fracture

Full Size 1 1 1 607.33 65.5 63.3 63.4 80.4 73.7

Bicubic Interpolation 4 1 16 37.96 65.9 58.9 61.3 81.8 71.0
SD VAE 4 3 5.3 37.98 65.6 54.6 59.5 75.9 66.9
Ours 4 1 16 37.96 65.8 62.2 63.2 81.7 70
Ours 4 4 4 37.99 65.4 60.9 61.3 82.5 69.7

Bicubic Interpolation 8 1 64 9.49 61.5 56.9 61.2 73.0 67.9
SD VAE 8 4 16 9.50 59.6 57.3 57.3 67.7 61.9
Ours 8 1 64 9.49 62.6 59.1 61.9 73.8 65.4
Ours 8 4 16 9.50 61.5 57.5 59.4 67.2 62.1

Bicubic Interpolation 16 1 256 2.37 59.2 53.4 59.7 63.9 61.2
SD VAE 16 16 16 2.38 56.4 52.7 56.0 60.5 56.9
Ours 16 1 256 2.37 59.0 55.1 58.9 62.4 59.9
Ours 16 16 16 2.38 54.5 53.5 56.0 62.3 56.2

Table 1. Fine-grained classification results. We compare our trained neural compressor (Ours) to a conventional image downsizing
approach (Bicubic Interpolation) as well as an existing large-scale neural compressor trained on natural images (SD VAE). Here, f
represents the compression factor per dimension, C represents the number of latent channels, γ represents the compression ratio, and
FLOPS represent GigaFLOPS using a high-resolution network (HRNet w64) with a single output class.

3. Experiments
We use our evaluation suite to compare our domain-specific
neural compressor to a conventional image downsizing ap-
proach as well as an existing large-scale neural compressor
trained on eight million natural images (Rombach et al.,
2022). Our experiments show that (1) domain-specific
training yields compressed images that better capture fine-
grained features, (2) expert radiologists qualitatively con-
firm these findings, and (3) commonly-used perceptual met-
rics do not effectively measure diagnostic losslessness.

3.1. Fine-Grained Classification

We evaluate the quality of compressed images across 5 clas-
sification tasks that measure the preservation of fine-grained
features. In Table 1, we compare three methods: bicubic
interpolation, a large-scale neural compressor trained on
natural images (SD VAE), and our domain-specific neural
compressor (Ours). We evaluate each approach with three
different compression factors f (4, 8, and 16) and varying
numbers of latent channels C. The original, full-size input
images are 1024 pixels along the longest dimension, mean-
ing that compressed images range in size from 256 pixels
(f = 4) to 32 pixels (f = 16) along the longest dimension.

As shown in Table 1, our domain-specific VAE consistently
outperforms the SD VAE on fine-grained classification tasks.

On average across the 5 tasks, our domain-specific VAE
demonstrates a 6.33% improvement over the SD VAE at a
compression factor of 4, a 6.25% improvement at a compres-
sion factor of 8, and a 4.50% improvement at a compression
factor of 16. Additionally, our domain-specific VAE outper-
forms bicubic interpolation across most tasks at f = 4 and
f = 8; however, bicubic interpolation is consistently supe-
rior at f = 16. Our findings suggest that domain-specific
training of neural compressors is critical for improving di-
agnostic losslessness of compressed medical images.

However, we note that none of the methods evaluated in
this study exhibit perfect diagnostic losslessness. Across
the majority of tasks, we observe significant drops in perfor-
mance between classification models trained with full-size
images and those trained with compressed images (e.g. up
to 20 points on bone age classification). Additionally, we
observe that increasing C decreases the compression ratio
yet leads to performance degradations; this suggests that the
classification models are unable to effectively reason over
the extra information stored in the latent channels. Our find-
ings demonstrate the need for more effective compression
methods as well as downstream models that can effectively
reason over multi-channel latent samples.
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Method Compression Perceptual Metrics

f C γ FID-Inc ↓ FID-CLIP ↓ FID-BiomedCLIP ↓ PSNR ↑ MS-SSIM ↑

Bicubic Interpolation 4 1 16 28.03±0.20 7.52±0.03 227.20±3.55 33.48±0.08 0.973±0.00

SD VAE 4 3 5.3 3.23±0.03 4.36±0.03 3.66±0.09 38.37±0.08 0.992±0.00

Ours 4 1 16 6.28±0.02 0.36±0.02 10.00±0.17 33.45±0.10 0.973±0.00

Ours 4 4 4 2.57±0.02 0.10±0.01 5.04±0.04 38.85±0.12 0.996±0.00

Bicubic Interpolation 8 1 64 79.29±0.47 13.13±0.07 840.56±1.18 29.81±0.08 0.913±0.00

SD VAE 8 4 16 7.37±0.03 4.30±0.03 12.10±0.35 33.80±0.10 0.971±0.00

Ours 8 1 64 19.09±0.39 0.99±0.02 45.64±1.39 29.71±0.07 0.926±0.00

Ours 8 4 16 6.57±0.07 0.38±0.00 13.51±0.30 33.35±0.09 0.973±0.00

Table 2. Perceptual quality assessments. We compare our trained neural compressor (Ours) to a conventional image downsizing approach
(Bicubic Interpolation) as well as an existing large-scale neural compressor trained on natural images (SD VAE). We report five metrics
that measure the perceptual quality of the reconstructed image.
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Figure 2. Results from expert reader study.

3.2. Expert Reader Study

We qualitatively assess image fidelity, diagnostic lossless-
ness, and the presence of artifacts for bicubic interpolation
(f ∈ {4, 8, 16}) and our domain-specific VAEs with equiva-
lent compression factors (Figure 2). Image fidelity for our
neural compressor was 2.1 points higher than bicubic in-
terpolation (p < 0.05). Diagnostic losslessness scores also
favored our neural compressor by 1.37 points (p < 0.05).
Artifacts (e.g. blurring, hallucinations) were more frequent
in interpolated images (+1.48 points; p < 0.05). Our re-
sults suggest that our neural compressor better preserves
critical diagnostic features than bicubic interpolation, a
conventionally-used downsizing approach.

3.3. Perceptual Quality Assessments

We evaluate image fidelity by comparing original and recon-
structed images using standard perceptual quality metrics.
We evaluate three compression methods (bicubic interpola-
tion, SD VAE, and our domain-specific compressor) with

two different compression factors f (4 and 8). As shown in
Table 2, we observe that across most metrics, our domain-
specific VAE outperforms both bicubic interpolation and
SD VAE. We also note a general trend that increasing C
improves image perceptual quality.

However, the perceptual quality metrics exhibit some incon-
sistencies. In particular, results in Table 2 suggest that SD
VAEs offer better image fidelity than bicubic interpolation,
yet our analysis in Section 3.1 demonstrates the opposite:
bicubic interpolation better captures important diagnostic
features. Similarly, our domain-specific VAE trained with
f = 4 and C = 1 achieves similar PSNR and MS-SSIM
scores to bicubic interpolation with f = 4; however, our
results from Section 3.2 show that radiologists perceive our
VAE to exhibit better fidelity. These findings suggest that
perceptual quality metrics, which are conventionally used
to evaluate compression approaches, are inadequate for cap-
turing diagnostic losslessness and should be supplemented
with finer-grained evaluations.

4. Discussion
In this work, we explore neural compression on medical
images with the goal of achieving diagnostic losslessness.
To this end, we introduce (1) a large-scale domain-specific
VAE for compression of high-resolution medical images
and (2) a suite of quantitative and qualitative metrics for
evaluating compressed image quality with respect to diag-
nostic losslessness. Our results demonstrate that large-scale,
domain-specific training of neural compressors improves
the quality of compressed medical images. Future direc-
tions include expanding our evaluation suite to additional
tasks and modalities and designing classification methods
to better capture signal from multi-channel latents.
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A. Implementation Details for Our Neural Compressor
A.1. Data Preprocessing

All datasets were collected in Digital Imaging and Communications in Medicine (DICOM) file format. First, we extract the
raw pixel data from the DICOM files. We then compute a mask based on iterative binary thresholding and extract the region
of interest from the original pixel array. In accordance with the metadata, we either apply the RescaleIntercept and
RescaleSlope DICOM attributes or the Modality LUT. Finally, the images are windowed based on the WindowCenter
and WindowWidth attributes, and inverted based on the PhotometricInterpretation if needed. All preprocessing
was performed using the pyvoxel package for Python (https://github.com/pyvoxel/pyvoxel). The final dataset
was divided into a training and validation set with non-overlapping patients.

A.2. Training Details

Our domain-specific VAEs were trained for 15000 steps on 16 NVIDIA A100 GPUs across two nodes with a batch size
of 64. All training was performed using full precision. To preserve aspect ratio and fine-grained features, we use random
(resized) crops of the high-resolution images as inputs.

B. Extended Details on Evaluation Suite
We use three tasks - fine-grained classification, an expert reader study, and perceptual quality metrics - to evaluate
compression methods with respect to diagnostic losslessness. Below, we provide extended details on our evaluation suite.

B.1. Fine-Grained Classification

We use the following 5 fine-grained classification tasks to evaluate the preservation of diagnostic features in compressed
images:

• Malignancy Detection: We classify images from the CMMD mammogram dataset (Cai et al., 2023) into two classes:
presence of a malignancy and absence of a malignancy.

• Calcification Identification: We classify images from the CMMD mammogram dataset (Cai et al., 2023) into two
classes: presence of calcification and absence of calcification.

• BI-RADS Classification: We classify images from the VinDR-Mammo mammogram dataset (Nguyen et al., 2022)
into five classes corresponding to BI-RADS scores. BI-RADS scores are assigned by clinicians to score mammogram
findings on a scale from 1 (no cancer detected) to 5 (>95% likelihood of cancer).

• Bone Age Prediction: We classify images from the RSNA Bone Age dataset (Halabi et al., 2019) into 20 classes
corresponding to patient age in years (ranging from 0 to 19).

• Fracture Detection: We classify pediatric forearm X-rays from the GRAZPEDWRI-DX dataset (Nagy et al., 2022) into
two classes: presence of a wrist fracture and absence of a wrist fracture.

We note that the bone age prediction and fracture detection tasks involve images with anatomical regions that do not appear
in the training set for our neural compressor; as a result, these serve tasks as effective out-of-distribution evaluation settings.

For each classification task, we divide the dataset into a train and test set, ensuring that no samples in the test set are used
for training the neural compressor. We then train a high-resolution convolutional neural network (Wang et al., 2020) with
supervised linear probing (Zhang et al., 2016) to perform the classification task. We use an AdamW optimizer with a batch
size of 128 and a learning rate of 1e-4, and we train with fp16 precision for 100 epochs across 8 NVIDIA A100 GPUs.
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