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ABSTRACT

This study proposes a challenging yet practical Federated Few-Shot Class-
Incremental Learning (FFSCIL) problem, where clients only hold very few sam-
ples for new classes. We develop a novel Unified Optimized Prototype Prompt
(UOPP) model to simultaneously handle catastrophic forgetting, over-fitting, and
prototype bias in FFSCIL. UOPP utilizes task-wise prompt learning to mitigate
task interference and over-fitting, unified static-dynamic prototypes to achieve a
stability-plasticity balance, and adaptive dual heads for enhanced inferences. Dy-
namic prototypes represent new classes in the current few-shot task and are rec-
tified to deal with prototype bias. Our comprehensive experimental results show
that UOPP significantly outperforms state-of-the-art (SOTA) methods on three
datasets with improvements up to 76% on average accuracy and 90% on harmonic
mean accuracy respectively. Our extensive analysis shows UOPP robustness in
various numbers of local clients and global rounds, low communication costs,
and moderate running time. The source code of UOPP is publicly available at
https://github.com/anwarmaxsum/FFSCIL.

1 INTRODUCTION

Figure 1: The importance of prototype rectification to handle pro-
totype bias (a) Initial prototype per client (b) Aggregation without
rectification can’t handle prototype-bias (c) Aggregation with recti-
fication overcomes prototype-bias.

The previous studies on Federated
Class Incremental Learning (FCIL)
address catastrophic forgetting chal-
lenges in a dynamic environment
with data privacy constraints. Coor-
dinated by a central server, a collec-
tion of clients continually develops
a global recognition model without
sharing their local data. The first is-
sue of FCIL is the existing works i.e.
LGA (Dong et al., 2023), TARGET
(Zhang et al., 2023b) and LANDER (Tran et al., 2024) assume the clients carry abundant training
data and thus impractical in the resource-constrained environments. They are data-hungry such that
they face the issues of prototype bias and over-fitting in realm of the data scarcity constraint. As
in stand-alone few-shot learning (Zhang et al., 2022), federated learning with few samples leads to
prototype bias problems. Figure 1 visualizes how prototypes of the observed classes are generated
and aggregated from the few samples carried by the clients. In FCIL simulation (Dong et al., 2023;
2022), where a client holds only partial classes e.g. 60% of the total classes, it shows that the ob-
served few samples by a client lead to prototype bias where a prototype doesn’t represent the true
population rather it represents the few locally gathered samples. To overcome the prototype bias
problem, each prototype should be refined to a correct location. As shown in Figure 1, we also
emphasize that aggregating the prototype can’t handle the prototype bias. Few-shot learning (FSL)
e.g. MetaNode (Zhang et al., 2022) or few-shot class incremental learning (FSCIL) e.g. S3C (Kalla
& Biswas, 2022) methods can’t be expected since the methods require the presence of all classes
whereas, in a federated setting, a client carries only a subset of all classes.
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Second, the current FCIL methods train and share whole backbone parameters resulting in a large
number of parameters during optimization processes which imply a long training time and a high
communication cost. Third, in the current SOTAs, clients generate and share synthetic images for
global model aggregation on the server side. Aside from overloading the communication costs, this
mechanism may violate data privacy principles since synthetic data may reveal partial information
about the private data of a client to another party due to its similarity to the original data. Last but
not least, some FCIL methods e.g. LGA (Dong et al., 2023) GLFC (Dong et al., 2022) save several
exemplars from previous tasks for rehearsal that may breach data openness policy, where data are
only open for a client at a specific moment.

These gaps motivate us to address a new direction of FCIL i.e. Federated Few-Shot Class Incremen-
tal Learning (FFSCIL) where a client participating in the federated learning process only possesses
very few samples. Second, we develop a novel efficient but effective approach to the FFSCIL prob-
lem, where a client trains and shares as small parameters as possible but produces a highly accurate
global model without sharing any synthetic samples or saving exemplars from previous samples.
Therefore, our proposed method handles catastrophic forgetting in dynamic collaborative learning
with data privacy and data scarcity constraints. The contributions of this paper are: (1) We empha-
size the data scarcity issue leading to the prototype-bias and over-fitting problems in FCIL and define
a new problem, namely Federated Few-Shot Class Incremental Learning (FFSCIL); (2) We propose
a novel method for the FFSCIL problem termed Unified Optimized Prototype Prompt (UOPP) built
upon a prompt learning framework coupled with static and dynamic prototypes optimized by Neu-
ral Ordinary Differential Equation (ODE). The proposed method utilizes an adaptive dual-head to
enhance its predictive accuracy. To our knowledge, our proposed method is the first prompt-based
that integrates prompt tuning, prototype rectification by trainable network and adaptive dual clas-
sifiers in a single pipeline; (3) We offer theoretical studies for the convergence and generalization
of the proposed method; (4) We provide a comprehensive analysis in three benchmark datasets that
show the proposed method outperforms the baseline and current SOTAs with significant gaps and
achieves improved stability-plasticity balances. Our analysis emphasizes the robustness of the pro-
posed method in various participating clients and small rounds per task.

2 RELATED WORKS
Federated Class Incremental Learning (FCIL): The FCIL studies address catastrophic forgetting
problem while preserving dta privacy e.g. FedWeIT (Yoon et al., 2021), GLFC (Dong et al., 2022),
and LGA (Dong et al., 2023) optimize the global model by aggregating locally optimized models
by the participating clients. The current SOTAs prove their effectiveness rather than combining Fe-
dAvg (McMahan et al., 2017) and class incremental learning (CIL) method such as ICARL(Rebuffi
et al., 2017) and BiC (Wu et al., 2019). However, the SOTAs tune and send the whole backbone,
producing long training times and high communication costs as a consequence. Furthermore, the
SOTAs assume that a client saves several samples as memory that may not be practically applicable.
Other studies i.e. TARGET (Zhang et al., 2023a) leverage synthetic samples for rehearsal instead
of real samples. It achieves higher performance than FedWeIT (Yoon et al., 2021) but still outper-
formed by LGA. A different approach i.e. FedCIL (Qi et al., 2023) trains a generative model i.e.
ACGAN (Odena et al., 2017) on local clients side to generate fake samples for aggregation on the
central server’s side. It achieves a higher performance than the combination of FedAvg or FedProx
(Li et al., 2020) with ACGAN, DGR(Shin et al., 2017) or LWF-2T (Usmanova et al., 2021), but it
needs more expensive communication costs and training time due to the generative model.

Few Shot Class Incremental Learning (FSCIL): Previous studies on FSCIL have attempted to
maintain stability-plasticity tradeoff under data scarcity by adding extra representation e.g. TOPIC
(Tao et al., 2020b) introduces Neural gas as the graph of mapped features and CEC (Zhang et al.,
2021) continually evolves its classifier to adapt to new tasks. Another approach modifies its learning
mechanism e.g. FSLL (Mazumder et al., 2021) updates with self-supervised loss, F2M (Shi et al.,
2021) finds flat minima regions on the base task then forces parameter updates on few shot tasks to
reside within the flat region, S3C (Kalla & Biswas, 2022) trains scholastic classifier with supervised
loss and MgSvF (Zhao et al., 2024) applies multi grained fast-slow learning mechanism. Prototype-
based methods e.g. TEEN(Wang et al., 2024), NC-FSCIL(Yang et al., 2023), and OrCO(Ahmed
et al., 2024) show the important of prototype correction to deal with prototype bias in FSCIL. How-
ever, prototype refinement in the data scarcity is still an open challenge. Besides, FSCIL methods
aren’t yet proven in federated settings under non-i.i.d constrain. A comprehensive literature review
is presented in Appendix G.

2



Published as a conference paper at ICLR 2025

(c) Federated training, interaction between clients and central server
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Figure 2: The visualization of UOPP, includes task-wise prompt learning empowered by shared unified static-
dynamic prototypes, dynamic prototypes rectification, adaptive dual heads, and weighted aggregation. The
gray-colored parameters are frozen and unshareable parameters, the green-colored parameters are trainable and
shareable parameters, while the blue-colored parameters are trainable but unshareable parameters

3 PROBLEM FORMULATION

Federated Few-Shot Class-Incremental Learning (FFSCIL) is defined as: Given a sequence of
tasks [0, 1, 2, ..., T ] where each task t carries a labeled training set T t = {(xti, yti)}

|T t|
i=1 , where

xti ∈ X denotes an input image and yti ∈ Y denotes its label, and |.| denotes the cardinality. Each
task t is disjoint with another task t′. i.e. ∀t,t′T t ∩ T t

′
= ∅. On each task-t, a set of clients {l}Lall

l=1
coordinated by a central server G are deployed to learn T t. In the first task (t = 0), each client l
carries abundant training samples while the remaining tasks (t > 0), it carries far smaller samples
than the first task i.e |T 0

l | >> |T t>0
l |. For a convenient way, task-0 is called the base task while the

rest is called the few-shot task (FS task). A client l holds only a subset of current task training set
i.e. T tl ⊂ T t. Each client-l carries non-identically and distributed data (non-i.i.d) to another client
l′ i.e. ∀l,l′Dtl ̸= Dtl′ where Dtl and Dtl′ are distribution of T tl and T tl′ respectively. Following FCIL,
Non-i.i.d distribution is represented by the percentage of available classes η. Each task-t is learned
in a federated way that is repeated in RT rounds where in each round r ∈ [1..RT ], a set of local
clients is randomly selected from all available clients i.e. {l}Ll=1 ⊂ {l}

Lall

l=1 . Due to data privacy
constraints, a client-l is not allowed to share any training sample (xi, yi) ∈ T tl to another client or
server, but permitted to share its parameters.

Let a deep neural network gΦ(fΘ(.)) be parameterized by Θ and Φ where f(.) and g(.) are the
feature extractor and classifier respectively. In each round r of task t, a central server G coordinates
selected local clients {l}Ll=1 to conduct local CIL training using its training samples {T tl }. Each
client-l optimizes its local parameters (Θl,Φl), then sends its locally optimized parameters to the
central server G to be aggregated. The central server G aggregates all received local parameters into
optimum global parameters i.e. (ΘG,ΦG) = Agg({(ΘG,ΦG)}Ll=1) and communicates them back
to all clients for the next round process. The objective of FFSCIL is to achieve an optimum global
model gΦG

(fΘG
(.)) to recognize the learned classes from the first task (task-0) until the current task

(task-t) i.e. {T 0, ..., T t}.

4 PROPOSED METHOD: UNIFIED OPTIMIZED PROTOTYPE PROMPT(UOPP)
We design our method, termed Unified Optimized Prototype Prompt (UOPP), to address challenges
in FFSCIL i.e. catastrophic forgetting, over-fitting and prototype bias simultaneously under data
privacy constraints. Figure 2 exhibits the flow of our method in both the local training view (a)
and federated training view (b). Looking at Figure 2 (a), we utilize a prompt-based approach on
top of the frozen ViT backbone as it minimizes task interference that leads to better handling of
catastrophic forgetting with lightweight learnable parameters (prompts). Then we add a rectification
block to handle prototype bias in the few-shot tasks (t > 0) by iteratively rectifying the prototypes.
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Note that each client only holds few samples for any class in the few-shot tasks. Then we add a
unification block to unify the rectified prototypes and the feature produced by the ViT encoder. Since
the prototypes are shareable to/from the server, this mechanism handles a non-i.i.d challenge where
a client-l is accommodated to learn knowledge representation from the classes not available in T tl .
Last, we design an adaptive dual head that leverages the strength of both MLP and prototype-based
classifiers. On the federated view (b), the Figure shows that in our method, a client shares only small-
sized parameters i.e. prompts, prototypes, and MLP parameters rather than the whole backbone
parameters. Thus, it minimizes the communication cost between clients and the central server. The
details of our method are presented in the following subsections. The uniqueness of our method
from the existing prototype-based methods i.e. (Wang et al., 2024), (Yang et al., 2023), (Ahmed
et al., 2024), (Goswami et al., 2024), and (Guo et al., 2024) is that we utilize a trainable Neural
ODE that works by support and query samples drawn from different distribution, while the existing
method utilizes similarity ratio for rectification process. Second, alongside prototype rectification,
we adjust task-wise key and prompt parameters to improve inter-task separability. Different from
PILoRA (Guo et al., 2024), the prompt is prepended to WKx and WV x of ViT model, while
PILoRA appends matrices A.B into WQ and WV and doesn’t use task-wise keys. Third, we utilize
dual-head classifiers to leverage the strength of both combined with task prediction.

4.1 MINIMIZING TASK INTERFERENCE VIA PROMPT LEARNING

Prompt Structure: we define a prompt Pl for each client-l to learn a sequence of task {t}Tt=0 as:
Pl = [(K0

l , P
0
l ), (K

t
l , P

t
l ), .., (K

T
l , P

T
l )], t ∈ [0..T ] where (Kt

l , P
t
l ) is a pair of prompt key-and-

value corresponded to task-t. Our method utilizes the prefix tuning technique (Li & Liang, 2021)
because it usually outperforms the prompt tuning method, then following the definition of prefix
tuning, and attention mechanism in ViT, the output of ViT backbone given an input x and prompt
(Kt

l , P
t
l ) is defined as:

f(Kt
l ,P

t
l )
(x) = A(Qij , [K

t
l ++Ki,j ], [P

t
l ++ Vi,j ]) (1)

where Qi,j ,Ki,j , Vi,j are query, key and value of jth head MSA in ith layer of ViT encoder, ++ de-
notes concatenation, and A denotes attention function. Note that the function is applied for all MSA
heads j ∈ [1..J ] and all encoder layers i ∈ [1..I]. At task-t, a client-l optimizes only (Kt

l , P
t
l ) and

not the other prompt key-value pair, and (Kt
l , P

t
l ) is adjusted only in task t, not in the previous or

upcoming tasks. Therefore, once optimal to T tl , the pair (Kt
l , P

t
l ) will remain robust against forget-

ting since its value is not adjusted afterward. In addition, Kt
l is adjusted to match sample xi ∈ T tl by

using a matching loss Lm during training. This mechanism is designed to make (Kt
l , P

t
l ) exclusive

to task-t and not the samples from other tasks. In other words, it minimizes task interference. In
addition, since only prompts rather than the whole network parameters are adjusted, this strategy
alleviates the over-fitting problem due to few samples.

4.2 UNIFIED STATIC-DYNAMIC PROTOTYPE AND ITS USABILITY

Static Prototype: we define a vector of D-dimension z̃c as the prototype for class c ∈ T t that is pro-
duced from ViT encoder, where D is the embedding dimension. A static prototype set Z̃l = {z̃lc} is
a collection of static prototypes of class-c that are available at client-l. Assuming that a prototype fol-
lows a Gaussian distribution i.e. zc ∼ N (µc, Σc) and forms D disjoint uni-variate distribution, then
a prototype of class c is represented as zc ∼ N (µc, σc

2) where σc
2 = ID.σc,i

2, i ∈ {1, 2, ..., D},
ID is identity matrix. Note that at task-t, a selected local client-l holds its local training set T tl .
Suppose that T tlc = {(xtli, ytli) ∈ T tl , ytli = c} is the samples of class-c in T tl and |.| denotes the
number of samples. Then, a static prototype z̃lc ∼ N (µlc, σlc

2) for a class-c available in T tl is
computed by Eq. 2 and 3.

µlc =
1

|T t
lc|

|T t
lc|∑

i=1

f(Kt
l
,P t

l
)(xi) , xi ∈ T t

lc (2)

σlc
2 =

1

|T t
lc|

|T t
lc|∑

i=1

(µt
lc − f(Kt

l
,P t

l
)(xi))

2 , xi ∈ T t
lc (3)

Dynamic Prototype: we define a vector ẑc of D dimension as the prototype for class c ∈ T t>0

iteratively rectified during local training on task-t, where D is the embedding dimension. A dynamic
prototype set Ẑl = {ẑlc} is a collection of dynamic prototypes of class-c available at client-l. At
the beginning of local training at task t > 0 on client-l, a dynamic prototype ẑlc is set by its corre-
sponding static prototype value z̃lc, then iteratively rectified by GradNet gΨl

during local training
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i.e. ẑlc = Rectification(gΨl
, z̃lc). After finishing the training of task-t, the dynamic prototypes

of all classes c ∈ T t are not updated anymore and are stored as static prototypes. Therefore, the
dynamic prototype set Ẑl includes prototypes from currently learned classes only, while the static
prototype set Z̃l includes both currently learned classes and previously learned classes. The details
of the rectification process are explained in the following sub-section.

Unified Prototype: we define the unified prototype Zl = Z̃l ∪ Ẑ as the union of static and dy-
namic prototype of client-l. Following the definition of static and dynamic prototypes, Zl con-
tains static prototypes of previously learned classes and dynamic prototypes of currently learned
classes that are still updated during the local training at client-l. Unified prototype Zl plays an
important role in our method, both in the base task (t = 0) and the few-shot task (t > 0). As
illustrated by the unification block in Figure 2, in the base task, Zl is unified with the output of
ViT i.e. f(Kt

l ,P
t
l )
(x). Since Zl is shareable, then Zl contains prototypes of classes unavailable

in T tl shared by the central server. Therefore, each client-l can afford to learn all classes in T t.
In the few-shot task, each client-l rectifies ẑlc for all classes c ∈ T tl . Similarly, the shareable Zl
enhances the separability of ẑlc since it is contrasted to all other prototypes of all learned classes.

Observed
samples

Optimal
Prototype

Biased
Prototype

s=0 s=M
(a) Biased & Optimal Prototype (b) Prototype Rectification

Figure 3: Visualization of Biased and Opti-
mal Prototype (a), and Rectification (b)

4.3 HANDLING PROTOTYPE-BIAS
VIA DYNAMIC PROTOTYPE RECTIFICATION

Previous studies (Chen et al., 2018; Zhang et al., 2022)
emphasize that generations of prototypes by averaging
few samples leads to prototype bias, as the prototypes
only represent the observed samples but not the whole
population, as illustrated in Figure 3(a). Therefore, our
method rectifies a prototype ẑc to become as close as pos-
sible to the population mean. We follow the framework
of episodic training in few-shot learning (Vinyals et al., 2016; Zhang et al., 2022), a rectification pro-
cess of a prototype ẑc can be defined as: ẑc(M) = Rectification(gΨ(), ẑc(0),S,Q, s = M) where
s is the number of rectification steps, ẑc(0) and ẑc(M) are the initial prototype and final prototype
after M -steps rectification process, S is the support set that contains few observed samples per class,
Q is the query set comprising unlabeled samples, and gΨ() is gradient networks (GradNet) parame-
terized by Ψ. Now looking into a more detailed view, suppose that L(ẑc(s)) as a differentiable loss
function with prototype ẑc(s) and ∇L(ẑc(s)) as its gradient during the optimization process, one
step prototype rectification can be defined as an iterative process of Gradient Descent algorithm as
described in equation 4. Symbol α denotes the learning rate, while ω denotes l2-norm regularizer.

ẑc(s+ 1) = ẑc(s)− α(∇L(ẑc(s)) + ω(ẑc(s)) (4)

The previous study (Chen et al., 2018) discovered that the iterative process above can be viewed
as Euler discretization of an Ordinary Differential Equation (ODE). Therefore, the term ∇L(ẑc(s))
in the process above can be derived into equation 5, where s represents a continuous variable such
as time, and dẑc(s)

ds represents a continuous gradient flow of prototype ẑtc(s) over s. Since the opti-
mization process is executed by a neural network model gΨ(.) (last part of equation 5), then ODE
becomes Neural ODE.

−∇L(ẑc(s)) =
dẑc(s)

ds
= gΨl((ẑc(s),S,Q, s)) (5)

We follow the implementation of GradNet (Zhang et al., 2022) as the neural network model gψ(.)
that executes the rectification process. Following the implementation on GradNet, the optimum pro-
totype is produced in the last step of rectification i.e. ẑc(M) = ẑc(0) +

∫M
s=0

gΨl
((ẑc(0),S,Q, s)).

We follow the implementation of the previous study (Chen et al., 2018; Zhang et al., 2022), where
the last term is solved by ODESolver based on Runge-Kutta method (Alexander, 1990). Therefore,
the optimum prototype ẑc(M) can be obtained by executing equation 6.

ẑc(M) = ODESolver(gΨl , ẑc(0),S,Q, s = M) (6)

In previous studies (Chen et al., 2018; Zhang et al., 2022), Q contains images from base task. Now
dealing with limitations in FFSCIL, we can’t afford to save exemplars from previous tasks or gather
images from other clients. However, we have a shareable unified prototype Zl = Z̃l ∪ Ẑl containing
all learned class prototypes. Therefore, the uniqueness of our rectification is that we generate
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support set S is constructed by drawing prototypes fromN (µlc, σlc
2) where (µlc, σlc2) is computed

by eq. 2-3 for all class c available in T tl , and generate query set Q by drawing prototypes from
N (µ̂l, σ̂

2
l ) where (µ̂l, σ̂

2
l ) is the property of ẑl ∈ Ẑl. As the implications, our rectification occurs

fully in the embedding space and pseudo-rehearsal free. Note that Zl is assigned by aggregated
prototypes i.e. Zl = ZG in each federated round.

4.4 ADAPTIVE DUAL-HEAD CLASSIFIER FOR A BETTER PREDICTION

We design an adaptive dual head classifier by leveraging MLP classifier gΦ(.) that works effectively
in the highly labeled task (T 0) and prototype-based (PB) classifier gZ(.) that has been proven robust
in few shot tasks (T t>0). We combine both MLP and PB classifiers as one united head layer. MLP
parameter Φ is optimized in the base task, while unified prototype set Z is optimized in all few shot
tasks. In the testing phase, we deploy a head selector to select which classifier to use for an input x.
The head selector works by predicting the task ID based on the input-key matching. Given an input
image x, and a sequence of prompt-key K0,K1, ...,KT , we can find the task-id where x belong
by finding the highest similarity of x and Kt, t ∈ [0, ..T ]. The predicted label ŷ of an input x is
computed by equation 7.

ŷ =

{
gΦ(fK(0,P0)(x)), if t̂ = 0

gZ(f(Kt̂,P t̂)
(x), otherwise,

, where, t̂ = argmin
t
Lm(x,Kt) (7)

where Lm is matching loss between input x and prompt-key Kt. Note that equation 7 is applicable
both for the client and server side. The united classifier is expected to elevate the prediction result,
rather than employing one of the FC or PB classifiers alone, this hypothesis will be proven in our
ablation study.

4.5 FEDERATED LEARNING AND SERVER-SIDE AGGREGATION

Figure 2 shows that on a task-t, each client-l optimizes its local parameters based on its local
training data T tl . Then the optimized parameters i.e. ((Kt

l , P
t
l ),Φl, Zl) to the central server

G are aggregated. We propose a simple weighted aggregation applying the principle ”the more
you learn, the better your knowledge”. We consider the total participation of a client Sl on the
task t as the client’s weight wl. In a round r of a task t, given clients that carry locally opti-
mized parameter {((Kt

l , P
t
l ),Φl, Zl)}Ll=1 and their weights {wl}Ll=1, then the aggregated parameter

((Kt
G, P

t
G),Φl, ZG) is computed using equation 8.

((Kt
G, P

t
G),ΦG, ZG) =

1∑L
l=1 wl

L∑
l=1

((Kt
l , P

t
l ),Φl, Zl).wl (8)

In the base task (t = 0), the server aggregates and distributes prompt parameter (Kt
G, P

t
G), MLP

head parameter ΦG, and unified prototype set ZtG to all participating clients. while in the few shot
tasks (t > 0), the server aggregates and distributes prompt parameters and unified prototype set only.
The GradNet parameter Ψl is unshared and utilized only for local prototype rectification. Rather, a
client sends the rectified dynamic prototype Ẑl ⊆ Zl to the central server.

4.6 WRAP UP AND FINAL OBJECTIVE

In the base task, each client-l unifies f(K0
l ,P

0
l )
(x) with Zl then updates prompt and MLP head

parameters i.e. (K0
l , P

0
l ) and Φl. In the few-shot tasks, client-l performs f(Kt

l ,P
t
l )
(x) to form static

prorotype Z̃lc, then construct support sample (S) and query samples (Q), and perform rectification
for all ẑlc ∈ Ẑlc. Afterward, it updates prompt parameters (Kt

l , P
t
l ) and GradNet parameter Ψl.

Therefore, the objectives of local training are defined in the equations below:

(i). Base Task (t = 0) objective :
Lt=0 = Lce(gΦl(f(K0

l
,P0

l
)(xi) ∪ Zl), yi ∪ Cl) + λLm(xi,K

0
l ), (xi, yi) ∈ T 0

l (9)

(ii). Few Shot Tasks (t ≥ 1) objective:
Lt>0 = Lpce(gZl(gΨl(Ẑlc(s),S,Q, s), Cl) + λLm(xi,K

t
l ), (xi, yi) ∈ T t

l (10)

where Lce denotes cross-entropy loss, Lpce denotes prototype cross-entropy loss utilizing cosine
distance as similarity measurement, Lm denotes matching loss, and Cl is the label set of the unified
prototype set Zl, (f(Kt

l ,P
t
l )
) denotes prompting output as in eq. 1, and gΨl

denotes rectification
function as in eq. 5. The detailed process of our method is presented in Appendix A.
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5 THEORETICAL ANALYSIS

Let Θ = (P,Φ,Ψ) be trainable parameters, F (Θ) = E[L(T ; Θ)] = E[L(T ; (P,Φ,Ψ))] is the
expected loss function, k,E, R, and LS is local iteration, local epoch, global round, and number
of selected local clients respectively. We follow L-smooth and µ-strongly convex F , G-bounded
uniformly gradient assumptions, random uniformly distributed batches, and decreasing learning rate
as in (Li et al., 2019),(Bottou et al., 2018) We stated Theorem 1,2, and 3 as presented in Appendix B.
Theorem 1 and 2 prove UOPP local training and federated convergence respectively, while theorem
3 proves UOPP generalization.

6 EXPERIMENTAL RESULTS AND ANALYSIS

6.1 EXPERIMENTAL SETTING

Datasets: our experiment is done using three benchmarks i.e. split CIFAR100, split MiniImageNet,
and split CUB200. The CIFAR100 and miniImageNet datasets contain 100 classes while CUB200
is a dataset of 200 classes. We follow the settings from (Tao et al., 2020a) for tasks and classes per
task split, and (Dong et al., 2023) for the federated setting. For CIFAR100 and MiniImageNet, we
split the dataset into 9 tasks i.e. 60 classes for the base task (t = 0), and 5 classes for each few-shot
task (t ≥ 1). We split the CUB200 dataset into 11 tasks i.e. 100 classes for the base task, and 10
classes for each few-shot task. Few shot tasks are measured in 5-shot and 1-shot settings.

Benchmark Algorithms: UOPP are compared with 9 benchmark algorithms i.e. LGA (Dong et al.,
2023), TARGET (Zhang et al., 2023b), LANDER (Tran et al., 2024), and Fed-CPrompt (Bagwe
et al., 2023) that represent the SOTA in federated class incremental learning, Fed-S3C(Kalla &
Biswas, 2022) that represents SOTA in few shot class incremental learning, Fed-L2P(Wang et al.,
2022b), Fed-DualP(Wang et al., 2022a), Fed-CODAP(Smith et al., 2023), and PILoRA(Guo et al.,
2024) that represent SOTA in FCIL. Except for Fed-CPrompt, ”Fed-” denotes that the method is cus-
tomized in a federated manner from its original (stand-alone) mode, by using FedAvg as the aggre-
gation function. We only run LANDER and PILoRA for CIFAR100 since their official code, setting,
and pre-trained embedding that can be executed in our setting is only for CIFAR100 dataset. We
also evaluated our method in standalone FSCIL and compared it to FSCIL SOTAs i.e. TEEN(Wang
et al., 2024), NC-FSCIL(Yang et al., 2023), OrCo(Ahmed et al., 2024), and PriViLege(Park et al.,
2024), Please see Appendix D.1.

Details and Metrics: our numerical study is executed under a single NVIDIA A100 GPU with 40
GB memory across 3 different random seeds. Adapted from (Dong et al., 2023), the simulation is
run by 20 total clients and 1 global server, where in each round, 6 (30%) local clients are selected
randomly. Each client randomly receives 60% (η = 0.6) classes. The total global round is set to 90
(10 rounds/task) for CIFAR100 and MiniImageNet and 110 for CUB200. Our task split setting is
different from the recent study (Jiang et al., 2024), since it follows FCIL setting, while our setting
follows FSCIL setting.We evaluate the consolidated algorithms for all learned classes with accuracy
metrics (Acc.) adn performance drop (PD). Besides, we measure the accuracy of base classes, novel
classes, and harmonic mean accuracy that represents stability-plasticity performance. Please see
Appendix F for the detailed experiment settings, hyperparameters, and metrics.

6.2 MAIN RESULTS

a) General Performance: the numerical result of the consolidated algorithms is shown in table
1. The proposed method (UOPP) achieves the highest accuracy with a significant gap 5 − 76%
compared to the competitor methods both in 5-shot and 1-shot settings. Fed-S3C, TARGET, LGA,
and LANDER achieve relatively low performance with 30 − 76% gap in 3 benchmark datasets in
both 5-shot and 1-shot settings compared to UOPP. The results confirm that the FCIL and FSCIL
methods can’t be applied directly on FFSCIL. Meanwhile, prompt-based methods i.e. Fed-L2P, Fed-
DualP, Fed-CODAP, and Fed-CPrompt achieve a relatively better performance than those 4 methods.
Compared to UOPP, the methods have relatively smaller gap i.e. 5 − 36%. The results prove that
prompt-based methods are more promising than the SOTAs of FCIL and FSCIL, The proposed
method also achieves the lowest performance drop with (0.7 − 19%) followed by Fed-L2P with
(0.4−22%) PD and Fed-DualP with (−0.4−28%) PD. Despite utilizing ViT and prototype approach,
PILoRA achieves lower performance than the prompt-based method i.e. < 52% in average. Looking
at per-task performance, Figure 4 shows that UOPP achieves the highest accuracy in all tasks in those
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Table 1: Numerical result of the consolidated algorithms in CIFAR100, MiniImageNet, and CUB200 dataset
in 5-shot and 1-shot setting across 3 different seeded runs.

(a) Complete numerical result on CIFAR100 dataset with 5-shot setting
Method Trainable

Params.
Accuracy in each session (%) ↑ Avg↑ PD ↓ Gap↓0 1 2 3 4 5 6 7 8

Fed-S3C CNN 44.51 48.97 47.77 45.35 43.48 41.47 40.33 39.32 37.71 43.21 6.80 46.80
TARGET CNN 68.90 63.61 59.06 55.12 51.68 48.64 45.94 43.52 41.34 53.09 27.56 36.92
LGA CNN 73.76 69.80 65.59 60.26 56.87 52.94 50.66 47.69 44.89 58.05 28.87 31.96
LANDER CNN 58.60 61.75 56.26 52.11 47.71 44.71 41.69 40.28 38.87 49.11 19.73 40.90
Fed-L2P Prompt 73.47 74.20 73.37 71.88 70.85 70.72 69.28 68.66 68.37 71.20 5.10 18.81
Fed-DualP Prompt 76.39 82.75 83.37 80.80 79.93 78.26 77.73 76.98 77.11 79.26 -0.72 10.75
Fed-CODAP Prompt 81.73 69.29 70.81 68.67 67.17 66.14 64.32 64.79 64.12 68.56 17.62 21.45
Fed-CPrompt Prompt 88.00 64.63 69.30 67.39 63.39 62.33 61.11 59.78 59.00 66.10 29.00 23.91
PILoRA Params (A,B) 67.40 62.22 57.77 53.92 50.55 47.58 44.93 42.57 40.44 51.93 26.96 38.08
UOPP (Ours) Prompt 90.57 90.58 90.85 90.96 91.23 91.51 91.56 91.74 81.05 90.01 9.52 0.00

(b) Summarized numerical result on CIFAR100 dataset with 1-shot setting, MiniImagenet, and CUB200
dataset with 5-shot and 1-shot settings

Method
CIFAR100 MiniImageNet CUB200

1-shot 5-shot 1-shot 5-shot 1-shot
Avg PD Gap Avg PD Gap Avg PD Gap Avg PD Gap Avg PD Gap

Fed-S3C 41.97 9.07 46.65 29.73 5.48 63.19 29.16 8.24 63.05 14.91 7.22 65.89 14.40 7.85 62.33
TARGET 53.09 27.56 35.53 44.77 23.24 48.15 44.77 23.24 47.44 21.47 16.77 59.33 20.70 14.17 56.03
LGA 58.29 24.80 30.33 35.07 30.51 57.85 31.65 28.44 60.56 16.92 14.16 63.88 10.02 17.86 66.71
LANDER 48.43 19.90 40.19 - - - - - - - - - - - -
Fed-L2P 74.29 3.75 14.33 78.92 1.01 14.00 80.80 0.45 11.41 58.26 22.67 22.54 57.12 24.34 19.61
Fed-DualP 81.95 -0.87 6.67 85.91 -0.45 7.01 86.88 0.67 5.33 62.89 28.21 17.91 62.41 26.94 14.32
Fed-CODAP 68.72 21.62 19.90 80.11 15.12 12.81 80.13 15.70 12.08 37.55 42.26 43.25 39.80 45.68 36.93
Fed-CPrompt 73.82 24.69 14.80 88.77 8.29 4.15 86.34 12.38 5.87 61.23 37.33 19.57 58.26 36.86 18.47
PILoRA 51.78 26.88 36.84 - - - - - - - - - - - -
UOPP (Ours) 88.62 5.83 0.00 92.92 0.73 0.00 92.21 2.18 0.00 80.80 10.90 0.00 76.73 19.54 0.00
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Figure 4: Visualization of the performance of consolidated algorithms in MiniImageNet, CIFAR100
and CUB200.

three datasets. In the first task (base task), the proposed method achieves higher performance with a
small gap i.e. 1− 2% than the competitor methods. However, with the increasing number of tasks,
the gap gets higher e.g. ≥ 3% in task-1, ≥ 4% in task-2, and ≥ 6% in task-9 (last task). It shows
that the proposed method handles catastrophic forgetting better than the competitor methods. Please
see our extended analysis on different k-shot and standalone FSCIL in Appendix D. The complete
numerical results for all dataset are presented in Appendix H.

Table 2: Harmonic mean accuracy of the consolidated algo-
rithms in CIFAR100 dataset with 5-shot setting.

Method Harmonic Mean Acc. by Session (%) Avg PD Gap1 2 3 4 5 6 7 8
Fed-S3C 49.3 42.8 38.0 35.4 33.9 33.4 32.9 32.1 37.2 17.3 53.3
TARGET 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.5
LGA 44.7 31.5 19.3 16.2 12.5 12.3 9.9 7.8 19.3 36.9 71.2
LANDER 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.5
Fed-L2P 46.0 50.2 49.2 50.0 53.5 54.8 56.1 57.7 52.2 -11.7 38.3
Fed-DualP 67.4 71.4 66.8 68.4 68.2 69.3 70.1 71.8 69.2 -4.5 21.3
Fed-CODAP 69.8 69.3 66.1 65.2 63.3 61.8 62.0 61.3 64.9 8.5 25.6
Fed-CPrompt 73.3 74.4 67.6 63.5 62.3 60.4 59.4 58.9 65.0 14.3 25.5
PILoRA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.5
UOPP 90.6 91.6 91.6 91.9 92.1 92.0 92.1 81.8 90.5 8.8 0.0

b) Stability-Plasticity Analysis: We
evaluate UOPP stability-plasticity perfor-
mance by evaluating the harmonic mean
accuracy on each few-shot task. Ta-
ble 2 shows the harmonic mean accuracy
of consolidated methods in CIFAR100
with 5-shot setting, while Figure 5 vi-
sualizes the accuracy for base classes,
novel classes, and harmonic mean accu-
racy. Both show that UOPP achieves the
best harmonic mean accuracy with≥ 15%
gap on each task and 18−58% on average of all tasks. The results prove that UOPP handles stability-
plasticity dilemmas better than its competitors. Looking at the base classes and novel classes perfor-
mance, Figure 5 shows that UOPP achieves the highest accuracy of base classes and novel classes
that are consistent through all tasks. Fed-L2P has increased base classes and novel classes accuracy,
but the performance is still below UOPP with a significant gap. Fed-Dual, Fed-CODAP, and Fed-
CPrompt have relatively stable base class accuracy but decreasing novel class accuracy. TARGET,
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Figure 5: Visualization of the performance of consolidated methods for base classes and novel classes in
CIFAR100 Dataset.

Table 3: Summary of the numerical result of the consolidated algorithms in CIFAR100 dataset with the varia-
tion of Non-i.i.d. level (a), selected local clients (b) and variation of total global round (c).

Method
(a) Non-i.i.d level (η) (b) Selected Local Client (L) (c) Total Global Round (R)

η=0.6
(60%)

η=0.4
(40%)

η=0.2
(20%)

L=4
(20%)

L=6
(30%)

L=8
(40%)

R=54
(6 r/task)

R=72
(8 r/task)

R=90
(10 r/task)

Avg PD Avg PD Avg PD Avg PD Avg PD Avg PD Avg PD Avg PD Avg PD
Fed-S3C 43.2 6.8 34.2 0.5 18.9 1.4 43.9 4.2 43.2 6.8 42.7 6.2 43.4 5.3 47.4 10.1 42.6 6.5
TARGET 53.1 27.6 41.3 27.5 23.2 13.5 51.4 26.7 53.1 27.6 56.7 29.4 44.4 23.0 51.8 26.9 53.5 27.8
LGA 58.1 28.9 56.4 29.5 56.4 29.7 56.3 30.4 58.1 28.9 57.9 29.1 57.1 22.1 55.2 26.3 58.0 29.3
LANDER 49.1 19.7 37.6 18.9 17.5 8.9 47.4 22.3 49.1 19.7 51.6 20.8 37.9 31.4 47.2 26.0 49.1 19.7
Fed-DualP 79.3 -0.7 60.2 -41.9 6.6 -21.5 76.2 -11.2 79.3 -0.7 79.2 11.1 81.5 -0.9 80.2 1.8 79.3 -0.7
Fed-Cpompt 66.1 29.0 66.2 28.1 66.2 28.1 62.5 36.9 66.1 29.0 59.6 38.1 62.5 36.9 59.6 38.1 66.1 29.0
PILoRA 51.9 27.0 43.4 22.5 35.3 18.3 50.6 26.3 51.9 27.0 51.1 26.5 55.9 29.0 53.9 28.0 51.9 27.0
UOPP 90.0 9.5 86.3 4.3 68.8 29.4 89.1 4.2 90.0 9.5 91.3 0.0 90.7 -1.5 90.8 0.2 90.0 9.5

LANDER, and PILoRA can’t achieve plasticity since their novel classes’ accuracy is close to 0.
Fed-S3C maintains stability-plasticity dilemma with relative balances, but the performance of both
components is low (< 40%). The complete numerical results are presented in Appendix I.

6.3 ROBUSTNESS, ABLATION, AND FURTHER ANALYSIS:

Table 4: Summary of the numerical result of our abla-
tion study in CIFAR100 dataset, MLP, and PB and Rect.
denote prototypes-based and rectification respectively.
Conf. Stiatic

Proto.
Dynamic

Proto.
MLP
Head

PB.
Head Rect. Avg PD Gap Time

A - ✓ ✓ ✓ ✓ 80.62 7.76 9.39 6.01h
B ✓ - ✓ ✓ - 85.32 10.06 4.69 4.17h
C ✓ ✓ - ✓ ✓ 88.72 5.49 1.29 8.00h
D - - ✓ - - 69.23 37.76 20.78 3.50h

UOPP ✓ ✓ ✓ ✓ ✓ 90.01 9.52 0.00 6.05h

a) Different Non-i.i.d. level: Table 3 (a) shows
the performance of the methods w.r.t. non-i.i.d
level represented by the percentage of available
class η (lower is harder). The table shows that
our method outperforms the existing methods
in all non-i.i.d. levels with a significant margin
i.e. up to 50%. The table shows that the small
available class (η = 20%) remains challenging
since all the methods achieve less than 70% on
average. In contrast, in other cases i.e. (η > 40%) our method achieves > 86% accuracy on average.

b) Different Participating Local Clients: we evaluate UOPP robustness in various selected local
clients simulating fluctuations of participating clients in real-life applications. Table 3 (b) shows the
performance of consolidated methods with 4 (20%), 6 (30%), and 8 (40%) selected local clients from
20 total clients. The table shows that the UOPP achieves the highest performance in all combinations
with a significant gap i.e. ≥ 10% compared to the competitor methods. Table 3 also shows that
UOPP achieves higher performance on a higher percentage of participating local clients. Besides,
UOPP achieves a relatively lower performance drop (PD) than Fed-S3C, TARGET, LGA, LANDER
and Fed-CPrompt. In 8 (40%) local client cases, UOPP achieves the lowest PD, while in 4 (20%) and
6 (30%) local client cases, UOPP experiences a higher PD than 8 and 4 local client cases due to an
accuracy drop on the last task. The accuracy drop is caused by a mismatch between the samples and
prompt keys resulting in inaccurate feature extraction and classifiers selection. The more detailed
per-task result is presented in Appendix J.

c) Variation of Total Global Rounds: we evaluate UOPP robustness in smaller global rounds sim-
ulating real-world conditions where the global model is urgently needed, thereby requiring smaller
rounds. Table 3(b) summarizes our investigation on 54 (6 r/task) to 90 (10 r/task) global rounds in
CIFAR100 datasets, while the complete result is presented in Appendix J. . The table shows that
UOPP achieves the highest performance with a significant gap i.e. (≥ 9%) compared to the competi-
tors. In the lower global rounds, the UOPP achieves even better performance than in normal global
rounds as it doesn’t experience the accuracy drop aforementioned. UOPP also achieves the smallest
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PD compared to the competitor methods in smaller rounds. Prompt-based method i.e. Fed-DualP
is proven to be more robust than Fed-S3C, TARGET, LGA, LANDER, and Fed-CPrompt. Further-
more, those 3 methods achieve lower accuracy in the smaller global rounds. This finding confirms
the robustness of our proposed method in the case of low global rounds.

d) Ablation Study: we conduct an ablation study to investigate the contribution of each component
of the proposed method. The result is summarized in Table 4, while the detailed result is presented
in Appendix K. The result shows that the absence of static prototype (Conf. A) and dynamic pro-
totype (Conf. B) drops the average performance with 9.4% and 4.7% gap respectively. This result
proves the importance of unified prototypes for prompt learning to deal with FFSCIL problems. The
absence of the MLP head drops the performance with 1.3% gap. This result shows the presence of
MLP classifiers (Conf. C) contributes to the model prediction performance. Last, the absence of
the prototype-based head (Conf. D) drops the performance with the most significant magnitude e.g.
20.8%. It proves that the PB classifier is a must to deal with few-shot tasks. Note that the presence
of rectification (Rect.) follows the presence of dynamic prototype (e.g. in configuration B and D
where dynamic prototype is absent, the rectification is absent in those configurations).
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Figure 6: Visualization of Novel Classes Valida-
tion Loss with vs without Rectification.

e) The Importance of Prototype Rectification: We
analyze the impact of prototype rectification in our
proposed method. Figure 6 shows the validation loss
of novel classes with rectification and without rectifi-
cation on CIFAR100 dataset with 5-shot and 1-shot
settings. The figure shows that, without prototype
rectification (red line), our method produces a far
higher validation loss for novel classes as there are
many misclassified samples. On the contrary, with
prototype rectification (blue line), our method produces far smaller and more stable validation loss.
The figure also shows that the difference in loss magnitude between the two variants is even higher in
the 1-shot setting. This finding emphasizes the importance of prototype rectification in our method.

Table 5: Comparison of Parameters, Communication
Cost, and Training time in CIFAR100 dataset.

Method
Number of Parameters (M) Comm.

Cost (MB) Running
Time (h)Trainable Sharable

Base
Task

FS
Task

Base
Task

FS
Task

Base
Task

FS
Task

Fed-S3C 11.7 11.7 11.7 11.7 46.8 46.8 4.1
TARGET 11.3 11.3 17.45 17.45 61.7 61.7 2.02
LGA 11.3 11.3 15.42 15.42 69.8 69.8 8.22
LANDER 11.3 11.3 17.45 17.45 61.7 61.7 4.78
Fed-L2P 0.29 0.29 0.29 0.29 1.16 1.16 4.83
Fed-DualP 0.33 0.33 0.33 0.33 1.32 1.32 3.2
Fed-CODAP 0.33 0.33 0.33 0.33 1.32 1.32 1.42
Fed-Cprompt 0.33 0.33 0.33 0.33 1.32 1.32 2.03
PILoRA 0.30 0.30 0.34 0.37 1.37 1.50 6.24
UOPP 0.33 34.1 0.38 0.41 1.5 1.63 6.05

f) Complexity, Running Time, Parameters,
and Communication Cost: our complexity
analysis shows that our proposed method has
the same complexity i.e. O(R.L.N) where R
is the number of global rounds, L is the number
of participating local clients in each round, and
N is the size of the training data in each client.
The detailed complexity analysis is provided in
Appendix C. Table 5 shows the training time of
the consolidated method in CIFAR100 dataset.
The table shows that the proposed method re-
quires a moderate training time since it is lower
than LGA and higher than the other methods.
In the base task, UOPP trains only a small amount (0.33 M) of parameters, since it trains only its
prompts and MLP classifier. However, in a few-shot tasks, it trains GradNet for prototype rectifica-
tion which contributes to the high amount of trainable parameters. However, UOPP keeps its low
communication cost both in the base task and few shot tasks since it only shares prompt+MLP or
prompt+prototypes in both tasks. Please see Appendix D and E for our extended analysis on running
time, memory consumption, limitations and potential solution.

7 CONCLUDING REMARKS

We define a new Federated Few-Shot Class-Incremental Learning (FFSCIL) problem and develop
a novel Unified Optimized Prototype Prompt (UOPP) model that utilizes task-wise prompt learning
to mitigate task interference empowered by shared static-dynamic prototypes, adaptive dual heads,
and weighted aggregation. The dynamic prototype tackles prototype bias by iterative rectifications.
Our comprehensive experimental results show that UOPP significantly outperforms existing SOTA
methods of FCIL, FSCIL, and CIL, on three datasets with a significant gap i.e. up to 76%. Our
deeper analysis confirms that the proposed method achieves better stability-plasticity trade-off, and
robustness in different local clients and small global rounds. Our analysis shows that our proposed
method requires moderate training time but a lower communication cost than the SOTAs.
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A DETAILED PROCESS OF UNIFIED OPTIMIZED PROTOTYPE PROMPT
(UOPP)

In this section, we present the detailed algorithm of UOPP as shown in algorithm 1.

B DETAILED THEORETICAL ANALYSIS

Let Θ = (P,Φ,Ψ) be trainable parameters, F (Θ) = E[L(T ; Θ)] = E[L(T ; (P,Φ,Ψ))] is the
expected loss function, k,E, R, and LS is local iteration, local epoch, global round, and number
of selected local clients respectively. We follow L-smooth and µ-strongly convex F , G-bounded
uniformly gradient assumptions, random uniformly distributed batches, and decreasing learning rate
as in (Li et al., 2019),(Bottou et al., 2018) We state the following theorems.

Theorem 1: lim infk→∞ E[||∇F (Θk)||22] = 0

Theorem 2: Let Θ1,ΘR,Θ∗ is the initial, last updated (R-th), and optimum parameter respectively,
F ∗ is minimum of F , exist A,B,C, δ > 0 so that: E[F (ΘR)]−F ∗ ≤ A

R (
2(B+C)

µ + µδ
2 E||Θ1−Θ∗||).

Theorem 3: Given Θ∗ and Θ are optimal parameter in T tl ∪Z and T tl respectively, where T tl ⊂ T t,
where |T tl |/|T t| = η ∈ (0, 1), then at least there’s ϵ > 0 that satisfy F (Θ; T t) − F (Θ∗; T t) ≥ ϵ.
Theorem 1 and 2 prove UOPP local training and federated convergence respectively, while theo-
rem 3 proves UOPP generalization. The detailed theoretical analysis, assumptions, and proofs are
presented in Appendix B.

Let Θ = (P,Φ,Ψ) be the trainable parameters, F (Θ) = E[L(T ; Θ)] = E[L(T ; (P,Φ,Ψ))] is the
expected loss function, k,E, R, and L is local iteration, local epoch, global round, and number of
selected local clients respectively. Please note that in this analysis, L denotes the number of selected
local clients, while l ≥ 1 denotes a constant for the l-smooth coefficient. Following the update rule
in section 4.3, the expression of F (Θ) above can be detailed as follows:

(i) Base Task (t = 0): Θ = (P,Φ), and F (Θ) = E[L(T ; Θ)] = E[Ll+(T ; (P,Φ))] as local clients
update (P,Φ) using Ll+ following equations 7 and 8.

(i) FS Task (t ≥ 1): Θ = (P,Ψ), and F (Θ) = E[L(T ; Θ)] = E[Llfs+(T ; (P,Ψ))] as local clients
update (P,Ψ) using Llfs+ following equations 9 and 10.

We adopt the SGD optimization convergence analysis (Bottou et al., 2018) and FedAvg convergence
analysis (Li et al., 2019) assumptions as follows:
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Algorithm 1 UOPP
1: Input: Number of clients Lall, number of selected local clients L, total number of rounds R,

number of task T + 1, local epochs E, batch size B.
2: Distribute frozen ViT backbone f to all clients {l}Lall

l=1 and central server G
3: Initiate prompt, key, and head layer for all clients and central server PG = Pl, ΦG = Φl, Ψl =

init(), l ∈ {1..Lall}
4: RT ← R/(T + 1), RT represents round per task
5: Init global and local unified prototypes ZG = Zl,= Z = ∅
6: for t = 0 : T do
7: for r = 1 : RT do
8: {l}Ll=1 ← randomly select L local clients from Lall total clients
9: Clients execute:

10: if RT = 1 then
11: Compute static prototype Z̃l as in Eq. (3)-(4), then send it to server
12: end if
13: Receive global parameters i.e. prompt, FC layer, and prototypes set PG,ΦG, and ZG
14: Assign local parameters (Pl,Φl, Zl)← (PG,ΦG, ZG)
15: B ← Split T tl into B sized batches
16: for e = 1 : E do
17: for b = 1 : B do
18: if (t = 0) then // Base Task Update
19: Compute prompt-generated feature f(Kt

l ,P
t
l )
(x) as in Eq. (2)

20: Compute logits with FC clsasifier gΦl
(f(Kt

l ,P
t
l )
(x) ∪ ZG)

21: Compute loss Lt=0 as in Eq. (10)
22: Update local parameters (Kt

l , P
t
l ,Φl) based on Lt=0

23: else (t > 0) // Few-shot Task Update
24: Compute static prototype Z̃l using feature f(Kt

l ,P
t
l )
(x) as in Eq. (2)

25: Draw S from Z̃l and draw Q from Zl = ZG
26: Rectify dynamic prototype Ẑl using gΨ(.)as in Eq. (5) to (7)
27: Form unified prototype Zl = ZG ∪ Ẑl
28: Compute logits with PB classifier gZl

(f(Kt
l ,P

t
l )
(x) ∪ S)

29: Compute loss Lt>0 as in Eq. (11)
30: Update local parameters (Kt

l , P
t
l ,Ψl) based on Lt>0

31: end if
32: end for
33: if t = 0 then
34: Update local static prototype Z̃l as Eq. (3)-(4) for all class c ∈ T tl
35: end if
36: end for
37: if t = 0 then
38: Set unified prototype Zl = Z̃G ∪ Z̃l
39: else
40: Set unified prototype Zl = Z̃G ∪ Ẑl
41: end if
42: Store local parameters (Kt

l , P
t
l ,Φl, Ψl, Zl)

43: Compute clients’ weight ωl
44: Send local parameters (Kt

l , P
t
l ,Φl, Zl) and weight ωtl to server

45: Server executes:
46: if RT = 1 then
47: Receive clients initial static prototype Z̃l for l ∈ [1..L]

48: Generate ZG = ZG ∪Agg(Z̃l for l ∈ [1..L]) and send ZG to clients
49: end if
50: Receives selected clients parameters (Kt

l , P
t
l ,Φl, Zl) and weight ωl for l ∈ [1..L]

51: Do weighted aggregation as in Eq. (9)
52: Send global parameters (Kt

G, P
t
G,ΦG, ZG) to clients for the next round

53: end for
54: end for
55: Output: Optimal Global parameters (PG,ΦG, ZG)
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Assumption 1: F1, ...Fl, ..., FLS
are all L−smooth: for all Θ and Θ′, Fl(Θ) ≤ Fl(Θ

′) + (Θ −
Θ′)T∇Fl(Θ) + L

2 ||Θ−Θ′||22.
Assumption 2: F1, ...Fl, ..., FLS

are all µ−strongly convex: for all Θ and Θ′, Fl(Θ) ≤ Fl(Θ
′) +

(Θ−Θ′)T∇Fl(Θ) + µ
2 ||Θ−Θ′||22.

Assumption 3: Let ξkl be the random uniformly sampled from l-th local data at k − th itera-
tion . The variance of stochastic gradients in each client is bounded by the following criteria:
E||∇Fl(Θkl , ξkl )−∇Fl(Θkl )|| ≤ σ2

l for l = 1, 2, ..., LS

Assumption 4:The expected squared norm of stochastic gradients in each client is bounded by:
E||∇Fl(Θkl , ξkl )|| ≤ G2 for all l = 1, 2, ..., LS and k = 1, 2, ....,K where K ∈ N.

Assumption 5:
∑∞
k=1 α

k
l = ∞ and

∑∞
k=1 α

k
l

2
< ∞ where αkl is the learning rate of l − th client

in k-th step training.

We follow the theoretical analysis in federated class incremental learning method (Ma’sum et al.,
2024) as it has a similar characteristic i.e. prompt-based method supported by shared prototypes.

B.1 PROOF OF THEOREM 1

Let a client-l be trained locally with its local data T tl ∪ Z, where T tl is local;y observed training
samples for t-th task and Z = Zl = ZG is aggregated unified prototype for task t shared by server
respectively. We assume that Z is augmented so that |zcb | ≈ |xca | for zcb ∈ Z and xtca ∈ T

t
l ⊆ T t.

As an implication, the number of prototypes of unavailable classes in T tl and the samples of available
classes in T tl are balanced. Then the local model Θl = (Pl,Φl) or Θl = (Pl,Ψl) is updated in K
iterations based on minibatches drawn from T tl ∪Z. Since thefeature extractor parameters are frozen,
and T tl ∪ Z has balance samples for all classes, then ξkl approximates ξk that is a sample from T t.
The local model parameters are optimized by a stochastic gradient (SG) approach. Suppose that
g(Θl, ξ

k
l ) is a SG function, then the parameter update can be simplified as:

Θk+1
l ← Θk

l − αk
l g(Θ

k
l , ξ

k
l ) (A11)

Applying assumption 1, and local parameter updates Θ by iterating stochastic gradient with sample
ξkl , then we get:

Fl(Θ
k+1
l )− Fl(Θ

k
l ) ≤ (Θk+1

l −Θk
l )

T∇Fl(Θ
k
l ) +

L

2
||Θk+1

l −Θk
l ||22

≤ −αk
l∇Fl(Θ

k
l )

T g(Θk
l , ξ

k
l ) + αk

l

2L

2
||g(Θk

l , ξ
k
l )||22

(A12)

The equation above can be derived into:

Eξk
l
[Fl(Θ

k+1
l )]− Fl(Θ

k
l ) ≤− αk

l∇Fl(Θ
k
l )

TE[g(Θk
l , ξ

k
l )]

+ αk
l

2L

2
Eξk

l
[||g(Θk

l , ξ
k
l )||22]

(A13)

The inequation above shows Θkl optimization by SG method at a step k, and it shows the reduction of
Fl (left side) is bounded by the value in the right side involving∇Fl which is derivative of Fl at Θkl
along with −g(Θkl , ξkl ) (first term) and second moment of g(Θkl , ξ

k
l ) (second term). Let g(Θkl , ξ

k
l )

be the unbiased estimator of∇Fl, then we derive inequation above into:

Eξk
l
[Fl(Θ

k+1
l )]− Fl(Θ

k
l ) ≤ −αk

l∇||Fl(Θ
k
l )||22 + αk

l

2L

2
Eξk

l
[||g(Θk

l , ξ
k
l )||22] (A14)

The inequation above guarantees SGD convergence as long as the stochastic directions and stepsize
are chosen. We apply the restriction below to avoid the harm of the second term of the right side in
the inequation above,

V[g(Θk
l , ξ

k
l )] = E[||g(Θk

l , ξ
k
l )||22]− ||E[g(Θk

l , ξ
k
l )]||22. (A15)
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Adopting first and second-moment limit as in (Bottou et al., 2018), then we add the following as-
sumption.

Assumption 6: The objective function Fl and SG satisfy the following conditions.

(a). The sequence of {Θkl } is contained in an open space where Fl is bounded below by a scalar
Finf

(b) Exist scalars νG ≥ ν > 0 so that for all k ∈ N satisfy:

∇Fl(Θ
k
l )

TEξk
l
[g(Θk

l , ξ
k
l )] ≥ ν||∇Fl(Θ

k
l )T ||22, and

||Eξk
l
[g(Θk

l , ξ
k
l )]||2 ≤ νG||∇Fl(Θ

k
l )||2.

(A16)

(c) Exist scalars m1 ≥ 0 and m2 ≥ 0 so that for all k ∈ N satisfy:

V[g(Θk
l , ξ

k
l )] ≤ m1 +m2||∇Fl(Θ

k
l )||22 (A17)

Combining assumption 6 and restriction criteria as presented in equation (5), then we have:

Eξkl [||g(Θ
k
l , ξ

k
l )||22] ≤ m1 +mG||∇Fl(Θkl )||22, with

mG = m2 + ν2G ≥ ν2 > 0
(A18)

Then by substituting Eξkl [||g(Θ
k
l , ξ

k
l )||22] from equation (A8) into equation (A3), we have:

Eξk
l
[Fl(Θ

k+1
l )]− Fl(Θ

k
l ) ≤− αk

l∇Fl(Θ
k
l )

TE[g(Θk
l , ξ

k
l )]

+ αk
l

2L

2
(m1 +mG||∇Fl(Θ

k
l )||22)

(A19)

Assumption 5 ensures that {αkl } → 0 is practically achievable by applying a learning rate sched-
uler (with decay) that reduces the learning rate in each step of local training. Then by choosing
αkl LmG ≤ ν and substituting ∇Fl(Θkl )TE[g(Θkl , ξkl )] in equation (A9) with the condition in as-
sumption 6.b, we have

Eξk
l
[Fl(Θ

k+1
l )]− Fl(Θ

k
l ) ≤− αk

l ν||∇Fl(Θ
k
l )||22

+ αk
l

2L

2
(m1 +mG||∇Fl(Θ

k
l )||22)

(A20)

Applying expectation into the equation above we get

Eξk
l
[Fl(Θ

k+1
l )]− E[Fl(Θ

k
l )] ≤− αk

l νE[||∇Fl(Θ
k
l )||22]

+ αk
l

2 1

2
(m1 +mGE[||∇Fl(Θ

k
l )||22])

Eξk
l
[Fl(Θ

k+1
l )]− E[Fl(Θ

k
l )] ≤−

1

2
ναk

l E[||∇Fl(Θ
k
l )||22]

+
1

2
αk
l

2
Lm1

(A21)

Sum both sides for k ∈ {1, ...,K} we get

Finf − E[F (Θ1
l )] ≤ E[Fl(Θ

K+1
l )]− E[Fl(Θ

1
l )]

Finf − E[F (Θ1
l )] ≤ −

1

2
ν

K∑
k=1

αk
l E[||∇Fl(Θ

k
l )||22] +

1

2
Lm1

K∑
k=1

αk
l

2 (A22)

Dividing by ν for both sides, then we get

K∑
k=1

αk
l E[||∇Fl(Θ

k
l )||22] ≤

2(E[F (Θ1
l )]− Finf )

ν
+

Lm1

ν

K∑
k=1

αk
l

2
(A23)
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Applying limK→∞ and assumption 5 to the equation above we get

lim
K→∞

K∑
k=1

αk
l E[||∇Fl(Θ

k
l )||22] ≤

2(E[F (Θ1
l )]− Finf )

ν

+
Lm1

ν
lim

K→∞

K∑
k=1

αk
l

2
<∞

(A24)

Dividing both sides with
∑K
k=1 α

k
l , and following assumption 5 where limK→∞

∑K
k=1 α

k
l = ∞

and limK→∞
∑K
k=1 α

k
l

2
<∞, then the right side will return 0. Therefore, we have

lim
K→∞

∑K
k=1 E[α

k
l ||∇Fl(Θ

k
l )||22]∑K

k=1 α
k
l

= 0 (A25)

lim
K→∞

E[
∑K

k=1 α
k
l ||∇Fl(Θ

k
l )||22∑K

k=1 α
k
l

] = 0 (A26)

lim
k→∞

E[||∇Fl(Θ
k
l )||22] = 0 (A27)

The equation (A17) proves the convergence for local training in l-th client where the gradient of loss
F converges to 0 along with the increase of training step/iteration k and the decreasing of learning
rate α.

B.2 PROOF OF THEOREM 2

Let the selected local clients {l}l=LS

l=1 are conduct local optimization with its local training data
{T tl ∪ Z}l=LS

l=1 coordinated by central server G, where T tl is local training sample for client l for
task t. Client local update is conducted in k iterations using minibatch sampling on local training
data set ξkl ∈ T tl . Global model aggregation is executed in each round r = {1, 2, ..., R}. We define
global aggregation step as IE = {rE|r = 1, 2, ...R}. Following (Li et al., 2019), symbol Θk+1

l

denotes the local parameter of client l after communication steps, while φk+1
l denotes the local

parameter after an immediate result of one step of stochastic gradient descent. Then the definition
satisfies the following expressions:

φk+1
l = Θk

l − αk
l∇Fl(Θ

k
l , ξ

k
l ) (A28)

Θk+1
l =

{
φk+1

l if k + 1 /∈ IE∑LS
l=1 w

k
l φ

k+1
l if k + 1 ∈ IE

(A29)

Where wl = ωl/
∑LS

l=1 ωl,where ωl is the weight of client l. We state φ̄k+1
l =

∑LS

l=1 wlφ
k+1
l and

Θ̄k+1
l =

∑LS

l=1 wlΘ
k+1
l , φ̄k+1

l is the result of single step of stochastic gradient descent iteration
from Θ̄k+1

l . Then we define ḡk =
∑LS

l=1 wl∇Fl(Θkl ) and gk =
∑LS

l=1 wl∇Fl(Θkl , ξkl ). We adopt
the lemmas below from (Li et al., 2019) where their derivation is obtained from fully participating
clients in FL setting.

Lemma 1: By applying assumptions 1 and 2, in one step SGD training and chose α ≤ 1
4L we have

E[||φ̄k+1 − Θ∗||2] ≤ (1 − αkµ)E[||Θ̄k − Θ∗||2] − (αk)2E[||gk − ḡk||2] + 6L(αk)2Γ +

2E[
∑LS

l=1 wl||Θ̄k −Θkl ||2] where Γ = F ∗ −
∑LS

l=1 wlF
∗
l ≥ 0.

Lemma 2: By applying assumption 3, the gradient function follows:

E[||ḡk − ḡk||2] ≤
∑LS

l=1 w
2
l σ

2
l , where σ2

l is the variance of Θl

Lemma 3: By applying assumption 4, where αk is non-increasing and it satisfies αk ≤
αk+Efor allk ≥ 0, then we have E[

∑LS

l=1 ||Θ̄k+1 −Θkl ||2] ≤ 4(αk)2(E − 1)2G2

In FL setting with all clients participating, we get Θ̄k+1 = φ̄k+1. However, in a setting with only
partial clients participating, we utilize a random sampling mechanism that satisfies ESL

[Θ̄k+1] =
φ̄k+1. We also adopt the bounding condition from (Li et al., 2019) as shown in lemma 4.
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Lemma 4: The expected difference between Θ̄k+1and φ̄k+1 bounded by : ESL
[||φ̄k+1−Θ̄k+1||2] ≤

4
LS

(αk)2E2G2 and in the case of wl is uniform for all l-th client, then ESL
[||φ̄k+1 − Θ̄k+1||2] ≤

4(NS−LS)
NS−1 (αk)2E2G2, where NS is total clients and LS is number of selected clients.

Please note that
||Θ̄k+1 −Θ∗||2 = ||Θ̄k+1 −Θ∗||2 (A30)

||Θ̄k+1 −Θ∗||2 = ||Θ̄k+1 − φ̄k+1 +−φ̄k+1 −Θ∗||2 (A31)

||Θ̄k+1 −Θ∗||2 =||Θ̄k+1 − φ̄k+1||2 + ||φ̄k+1 −Θ∗||2

+ 2||Θ̄k+1 − φ̄k+1||.||φ̄k+1 −Θ∗||
(A32)

||Θ̄k+1 −Θ∗||2 =||Θ̄k+1 − φ̄k+1||2 + ||φ̄k+1 −Θ∗||2

+ 2⟨Θ̄k+1 − φ̄k+1, φ̄k+1 −Θ∗⟩
(A33)

In the case of k+1 /∈ IE , then the term ||Θ̄k+1− φ̄k+1||2 vanishes. Then by applying lemma 4, we
get

E[||Θ̄k+1 −Θ∗||2] ≤ (1− αkµ)E[||Θ̄k+1 −Θ∗||2] + (αk)B (A34)

In the case of k + 1 ∈ IE , then by applying lemma 4, we get

E[||Θ̄k+1 −Θ∗||2] ≤ (1− αkµ)E[||Θ̄k+1 −Θ∗||2] + (αk)(B + C) (A35)

where B =
∑LS

l=1 wlσ
2
l + 6LΣ + 8(E − 1)2G2 and C = 4(NS−LS)

NS−1 (E2G2) if wl is uniform and
C = 4

LS
(E2G2) otherwise.

By choosing αk = β
k+δ for some β > 1/µ and δ > 0 so that α1 ≤ min{1/µ, 1/4L} = 1/4L and

αk ≤ 2αk+E then we have E[||Θ̄k+1 −Θ∗||2] ≤ v
δ+k where v = max{β

2(B+C)
βµ−1 , (δ + 1)||Θ̄k+1 −

Θ∗||2}
Then, by applying a strong convexity assumption of F we have

E[Θ̄k]− F ∗ ≤ L

2
∆k ≤ L

2

v

δ + k
(A36)

where F ∗ is the minimum value of F where optimum parameter Θ∗ is achieved. Later on, if we
choose β = 2/µ, δ = max{8L/µ,E}and denote κ = L/µ, αk = 2/u(1/(δ + k)) then we have

E[F (Θ̄k)]− F ∗ ≤ κ

(δ + k − 1)
(
2(B + C)

µ
+

µδ

2
E||Θ1 −Θ∗||) (A37)

The equation above generalizes FL where the model is optimized in a total of k iterations where in
a practical implementation, k = b.E.R, b is the number of batches. Then, we get k > R as E and b
are positive integers. Therefore, substituting k with R in the inequation above produces the higher
amount on the right side. On that basis, the inequation above can be derived into:

E[F (ΘR)]− F ∗ ≤ κ

(δ +R− 1)
(
2(B + C)

µ
+

µδ

2
E||Θ1 −Θ∗||) (A38)

The equation above can be derived into:

E[F (ΘR)]− F ∗ ≤ 1

R

κ

(δ/R+ 1− 1/R)
(
2(B + C)

µ
+

µδ

2
E||Θ1 −Θ∗||) (A39)

Let A = κ
(δ/R+1−1/R) is a positive number. Then the equation above can be derived into:

E[F (ΘR)]− F ∗ ≤ A

R
(
2(B + C)

µ
+

µδ

2
E||Θ1 −Θ∗||) (A40)

The inequation (A30) guarantees the proposed weighted federated learning achieves a convergence
condition that is upper bounded by the amount on the right side.
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B.3 PROOF OF THEOREM 3

Let Θ∗ and Θ are optimal parameter in T tl ∪ Z and T tl respectively, where T tl ⊂ T t, where
|T tl |/|T t| = η ∈ (0, 1), then we have

F (Θ; T t) = ηF (Θ; T t
l ) + (1− η)F (Θ; (T t − T t

l )) (A41)

F (Θ∗; T t) = ηF (Θ∗; T t
l ) + (1− η)F (Θ∗; (T t − T t

l )) (A42)

Let that Θo is the initial value of Θand Θ∗ assigned by a random uniform initiation. Thus or all
class c ∈ T tc = T ty=c It satisfy F (Θo; T tc ) = eo. After optimally learning on T tl and T tl ∪ Z

then Θo become Θ and Θ∗ respectively. Note that Θ knows only available classes in T tl , while Θ∗

knows classes that available both in T tl and classes in T t − T tl via Z. Assuming that the loss for
predicting classes in T tl is ea < eo, then we have F (Θ; T tl ) = F (Θ∗; T tl ) = ea < eo. Since all
the backbone parameters are frozen and Θ∗ learn Z, then we get F (Θ; (T t − T tl )) = eo, while
F (Θ∗; (T t − T tl )) = eb, where ea ≥ eb ≥ eo.

Then, the equations (A41) and (42) can be derived to

F (Θ; T t) = ηea + (1− η)eo (A43)

F (Θ∗; T t) = ηea + (1− η)eb (A44)

Subtracting the equations above, then we have

F (Θ; T t)− F (Θ∗; T t) = ηea + (1− η)eo − (ηea + (1− η)eb) (A45)

F (Θ; T t)− F (Θ∗; T t) = ηea + (1− η)eo − ηea − (1− η)eb (A46)

F (Θ; T t)− F (Θ∗; T t) = (1− η)eo − (1− η)eb (A47)

F (Θ; T t)− F (Θ∗; T t) = (1− η)(eo − eb) (A48)

As we have 0 < η < 1 and eo > eb, the right side of the inequation above has a positive value.
Then, by choosing a small positive number ϵ > 0 where (1− η)(eo − eb) ≥ ϵ then we have.

F (Θ; T t)− F (Θ∗; T t) ≥ ϵ (A49)

Inequation above proves that Θ∗ is more generalized to T t than Θ. This shows that our idea i.e.
empowering prompt learning with shared unified prototypes improves model generalization.

C DETAILED COMPELXITY ANALYSIS

Following the pseudo-code in Algorithm 1, UOPP have several operations e.g. generate static proto-
type (line 11, 24, 34), drawing S,Q from prototypes (line 25), Rectify prototype (line 26), updating
model parameters (line 20-22, 28-30), forming unified prototype (line 27, 38, 40) data exchange
between clients and server. Knowing that accumulating on all batches, generating prototype or com-
pute features from T tl cost O(N t

l ), drawing (augment) samples from feature costs O(N t
l ) , rectifying

prototypes cost costs O(N t
l ), parameters update cost costs O(N t

l ), forming uniform prototype cost
O(1), and parameters exchange include aggregation costs O(1), and we have 1 base task and T
few-shot tasks (total task is (T+1)) then the UOPP complexity will be:

O(UPPP ) = O(BaseTask) +O(FewStotTask) (A50)

O(UOPP ) =O(1) +RT (O(clientsbase) +O(serverbase)

+O(1) + T.RT .(O(clientsfs) +O(serverfs))
(A51)

O(UOPP ) =O(1) +RT .(L.O(1clientbase) +O(serverbase))

+ T.RT .(L.O(1clientfs) +O(serverfs))
(A52)
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O(UOPP ) =O(1) +RT .(L(O(N0
l ) +O(E.N0

l )

+O(E.N0
l )) +O(1)

+ T.RT .(L(O(N t
l ) +O(E.N t

l ) +O(E.N t
l )

+O(E.1) +O(E.N t
l )) +O(1)

(A53)

O(UOPP ) =O(1) +RT .L.O(E.N0
l ) + T.RT .L.O(E.N t

l ) (A54)

O(UOPP ) =O(1) +RT .L.E.O(N0
l ) + T.RT .L.E.O(N t

l ) (A55)

O(UOPP ) =O(1) +RT .L.E(O(N0
l ) + T.O(N t

l )) (A56)

Please note that Nl = N0
l + N1

l + ... + NT
l = N0

l + T (N t
l ), t ∈ [1..T ]. Therefore, the equation

above can be derived into:

O(UOPP ) =O(1) +RT .L.E(O(N0
l + T.ON t

l )) (A57)

O(UOPP ) = RT .L.E.O(Nl) (A58)

O(UOPP ) = O(RT .L.E.Nl) (A59)

Since E is set as a small constant in our method i.e. 1-20 and RT < R, then the UOPP complexity
will be:

O(UOPP ) = O(R.L.Nl) (A60)

Our derivation shows that our proposed method has the complexity of O(R.L.Nl) where R is total
global rounds, L is the number of selected local clients in each round and Nl is the number of
samples in each client.

D EXTENDED EXPERIMENT RESULTS AND ANALYSIS

D.1 EVALUATION ON STANDALONE FSCIL

We measure the performance of our proposed method in standalone FSCIL setting to evaluate
our idea on prompting with a unified static-dynamic prototype and dual-head classifiers. We
compare our method with existing SOTAs i.e. TEEN(NeurIPS, 2023)(Wang et al., 2024), NC-
FSCIL(ICLR, 2023)(Yang et al., 2023), OrCo(CVPR, 2024)(Ahmed et al., 2024), and PriVi-
Lege(CVPR, 2024)(Park et al., 2024). The evaluation is conducted in 3 datasets i.e. CIFAR100,
MiniImageNet, and CUB200, following common settings in FSCIL.

Table A6 shows the detailed numerical result of our experiment. The table shows that our proposed
method achieves a better performance in general. In comparison to TEEN, NC-FSCIL, and ORCO,
our method archives a significantly better performance i.e. with more than 20%, 25%, and 14% mar-
gin in CIFAR100, MiniImagenet, and CUB200 dataset respectively. In comparison to PriViLedge,
Our method achieves higher performance in CIFAR100 and CUB200 dataset with 1.65% and 4.9%
margins respectively. Our method achieves lower performance than PriViLedge in MiniImageNet
dataset. Looking in a more derailed view, that lower performance is basically due to our method
achieving lower performance in the base task i.e. 3% lower accuracy. Thus, It affects the later
(few-shot) tasks and average performance. Please note that PriviLedge utilize vision and language
modality, while the rest methods only utilize vision modality. This factor should be considered into
account in the performance comparison.

Looking from the performance drop (PD) metrics, our method archives the lowest performance
drop in all dataset by a significant margin i.e. 2 − 28%. This indicates that our method handle the
catastrophic forgetting better than the existing methods.
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Table A6: Numerical result of the FSCIL methods in CIFAR100, MiniImageNet and CUB200 dataset with
5-shot setting, PD indicates the performance drop, and Gap indicates the gap between the respected method to
our proposed method (UOPP).

Method Accuracy in each session (%) Avg PD Gap
CIFAR100: 60 base classes @5 classes in few-shot task

0 1 2 3 4 5 6 7 8 9 10
TEEN (NeurIPS,2023) 74.92 72.65 68.74 65.01 62.01 59.29 57.90 54.76 52.64 - - 63.10 22.28 26.63
NC-FSCIL (ICLR 2023) 89.51 82.62 76.72 71.61 67.13 63.18 59.67 56.53 53.70 - - 68.96 35.81 20.77
OrCO (CVPR 2024) 80.08 68.16 66.99 60.97 59.78 58.60 57.04 55.13 52.19 - - 62.10 27.89 27.63
PriViLege (CVPR 2024) 90.88 89.39 88.97 87.55 87.83 87.35 87.53 87.15 86.06 - - 88.08 4.82 1.65
UOPP (Ours) 90.27 90.45 90.14 89.40 89.26 89.52 89.70 89.48 89.35 - - 89.73 0.92 0.00

MiniImageNet: 60 base classes @5 classes in few-shot task
TEEN (NeurIPS,2023) 73.53 70.55 66.37 63.23 60.53 57.95 55.24 53.44 52.08 - - 61.44 21.45 31.58
NC-FSCIL (ICLR 2023) 77.25 71.30 66.21 61.80 57.94 54.53 51.50 48.79 46.35 - - 59.52 30.90 33.50
OrCO (CVPR 2024) 83.30 75.32 71.53 68.16 65.63 63.12 60.20 58.82 58.08 - - 67.13 25.22 25.89
PriViLege (CVPR 2024) 96.68 96.49 95.65 95.54 95.54 94.91 94.33 94.19 94.10 - - 95.27 2.58 -2.25
UOPP (Ours) 93.57 93.66 93.51 93.51 93.13 92.24 92.23 92.66 92.71 - - 93.02 0.86 0.00

CUB200: 100 base classes @10 classes in few-shot task
TEEN (NeurIPS,2023) 77.26 76.13 72.81 68.16 67.77 64.40 63.25 62.29 61.19 60.32 59.31 68.14 17.95 14.82
NC-FSCIL (ICLR 2023) 78.49 71.52 65.54 60.30 55.81 51.96 48.72 45.78 43.18 40.92 38.80 57.92 39.69 25.04
OrCO (CVPR 2024) 75.59 66.85 64.05 63.69 62.20 60.38 60.18 59.20 58.00 58.42 57.94 63.35 17.66 19.61
PriViLege (CVPR 2024) 82.21 81.25 80.45 77.76 77.78 75.95 75.69 76.00 75.19 75.19 75.08 78.03 7.13 4.93
UOPP (Ours) 86.63 86.99 85.19 83.37 82.42 80.19 80.21 80.76 80.93 81.16 81.17 82.96 5.46 0.00

D.2 PERFORMANCE ON DIFFERENT K-SHOT

We extend our investigation of the methods’ performance on different k-shot values i.e. 7-shot,
5-shot, 3-shot, and 1-shot. Table A7 presents the detailed numerical results on CIFAR100 dataset
with 1-7 shot settings. Table A7 shows that our proposed method consistently achieves the high-
est performance in different of k-shot values. The performance gap is consistently significant i.e.
7-46%. Regarding average performance, our method tends to achieve lower performance in lower
k-shot values i.e. 1 and 3. UOPP performances in 5-shot and 7-setting are comparable on average.
However, in terms of the performance in the last (final) session, UOPP achieves a better final per-
formance in a 7-shot setting. This indicates that more samples for each client improve the global
model performance.

This trend also applies to other methods where their performance on the higher shots is better than
their performance on the lower shots. However, Fed-CPrompt shows the anomaly, where its perfor-
mance in lower shots is better than its performance in higher shots. This condition indicates that the
increase in novel classes’ accuracy is lower than the drop in base classes’ accuracy. Thus, is higher
sample is contra-productive for few-shot task training. Looking to the performance drop (PD), the
table shows that UOPP achieves a lower (better) performance drop in the higher k-shot value. This
fact is in line with the mentioned trend of higher performance in the higher k-shot value before.

D.3 MEMORY CONSUMPTION ANALYSIS

We extended our resource analysis by evaluating the memory consumption by client and server.
Table A8 shows the memory consumption by a single client and central server. Please note that each
client trains its local model utilizing its local dataset, while the central server coordinates the clients,
aggregates the locally optimized models into a global model, and redistributes it to the clients.

Table A8 shows the memory consumption for our proposed method, Fed-DualP, and PILoRA where
these 3 methods have comparable communication costs and similar aggregation methods. As com-
monly known, Table A8 shows the memory consumption of deep learning training is highly affected
by the batch size (BS) of the data loader, while the memory consumption for model aggregation
is affected by the number of participating clients. Second, the table shows that the memory con-
sumption for a central server is relatively lower than the client’s memory consumption. Third, the
memory consumption of our method is comparable with Fed-DualP, and PILoRa even though our
method utilizes more operation for prototype rectification and has more trainable parameters dur-
ing the few-shot tasks. This fact indicates that our method has comparable scalability and resource
requirements with the existing methods. Last but not least, the table shows the high possibility of
practical deployment of our method both in cross-silo and cross-device scenarios. The local training
setting can be adjusted by the end device specification. FOr example, in the case of cross-device
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Table A7: Numerical result of the FFSCIL methods in CIFAR100, 7-shot, 5-shot, 3-shot, and 1-shot setting, S
indicate number of shot, PD indicates the performance drop, and Gap indicates the gap between the respected
method to our proposed method (UOPP).

Method S Accuracy in each session (%) Avg PD Gap0 1 2 3 4 5 6 7 8
Fed-S3C 7 43.98 49.65 48.01 45.83 43.21 41.68 40.39 39.69 38.18 43.40 5.80 46.36
TARGET 7 68.65 63.40 58.36 52.68 50.04 46.58 43.96 39.37 34.04 50.78 34.61 38.98
LGA 7 73.15 67.08 64.56 59.87 56.15 52.04 50.00 47.29 44.39 57.17 28.76 32.59
LANDER 7 66.30 60.65 55.89 51.05 48.15 44.53 42.66 40.83 38.26 49.81 28.04 39.95
Fed-DualP 7 78.45 83.71 84.61 83.40 83.29 81.86 81.84 81.51 81.80 82.27 -3.35 7.49
Fed-Cprompt 7 88.13 77.9385 69.6857 67.13 66.7125 64.8824 64.28 62.51 61.51 69.20 26.62 20.56
PILoRA 7 66.48 61.37 56.99 53.19 49.86 46.93 44.32 41.99 39.89 51.22 26.59 38.54
UOPP 7 90.77 90.86 91.04 90.75 91.08 89.35 88.84 87.87 87.32 89.76 3.45 0.00
Fed-S3C 5 44.51 48.97 47.77 45.35 43.48 41.47 40.33 39.32 37.71 43.21 6.80 46.80
TARGET 5 68.90 63.61 59.06 55.12 51.68 48.64 45.94 43.52 41.34 53.09 27.56 36.92
LGA 5 73.76 69.80 65.59 60.26 56.87 52.94 50.66 47.69 44.89 58.05 28.87 31.96
LANDER 5 58.60 61.75 56.26 52.11 47.71 44.71 41.69 40.28 38.87 49.11 19.73 40.90
Fed-L2P 5 73.47 74.20 73.37 71.88 70.85 70.72 69.28 68.66 68.37 71.20 5.10 18.81
Fed-DualP 5 76.39 82.75 83.37 80.80 79.93 78.26 77.73 76.98 77.11 79.26 -0.72 10.75
Fed-CODAP 5 81.73 69.29 70.81 68.67 67.17 66.14 64.32 64.79 64.12 68.56 17.62 21.45
Fed-Cprompt 5 88.00 64.63 69.30 67.39 63.39 62.33 61.11 59.78 59.00 66.10 29.00 23.91
PILoRA 5 67.40 62.22 57.77 53.92 50.55 47.58 44.93 42.57 40.44 51.93 26.96 38.08
UOPP 5 90.57 90.58 90.85 90.96 91.23 91.51 91.56 91.74 81.05 90.01 9.52 0.00
Fed-S3C 3 43.98 49.60 48.03 45.19 42.69 41.12 39.87 38.82 37.47 42.97 6.51 45.64
TARGET 3 68.65 63.03 58.10 52.64 49.00 44.92 42.09 37.18 32.20 49.76 36.45 38.85
LGA 3 73.52 67.37 63.57 59.07 56.01 52.35 49.50 46.89 44.15 56.94 29.37 31.67
LANDER 3 66.30 59.77 55.56 50.56 47.40 44.04 41.72 40.72 38.43 49.39 27.87 39.22
Fed-DualP 3 73.20 79.31 82.73 81.53 82.06 81.16 81.56 81.21 80.34 80.34 -7.14 8.27
Fed-Cprompt 3 88.32 83.62 81.46 77.68 77.18 75.40 74.32 70.63 68.51 77.46 19.81 11.15
PILoRA 3 66.43 61.32 56.94 53.15 49.83 46.89 44.29 41.96 39.86 51.19 26.57 37.42
UOPP 3 90.62 90.57 90.84 89.84 90.18 89.69 88.20 88.24 79.31 88.61 11.31 0.00
Fed-S3C 1 44.51 48.70 46.76 44.26 42.09 40.11 38.51 37.35 35.44 41.97 9.07 46.65
TARGET 1 68.90 63.61 59.06 55.12 51.68 48.64 45.94 43.52 41.34 53.09 27.56 35.53
LGA 1 73.58 67.00 63.44 58.88 56.90 54.00 52.82 49.25 48.78 58.29 24.80 30.33
LANDER 1 57.60 61.75 56.09 51.29 47.33 44.22 39.73 40.15 37.70 48.43 19.90 40.19
Fed-L2P 1 77.00 74.91 74.73 74.40 73.45 74.20 73.22 73.46 73.25 74.29 3.75 14.33
Fed-DualP 1 73.20 79.31 82.73 81.53 82.06 81.16 81.56 81.21 80.34 80.34 -7.14 8.28
Fed-CODAP 1 83.29 73.27 72.54 68.37 67.52 65.54 62.11 64.19 61.67 68.72 21.62 19.90
Fed-Cprompt 1 87.53 82.86 79.24 74.87 73.04 69.92 68.28 65.81 62.84 73.82 24.69 14.80
PILoRA 1 67.20 62.03 57.60 53.76 50.40 47.44 44.80 42.44 40.32 51.78 26.88 36.84
UOPP 1 90.65 90.16 89.97 89.49 89.53 88.29 87.66 87.04 84.82 88.62 5.83 0.00
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Table A8: Analysis of Memory Consumptions by Client and Server
Method Single Client Memory Consumption (GB)

BS=128 BS=64 BS=32 BS=16 BS=8 BS=4
Fed-DualP 14.88 9.15 5.82 4.2 3.25 2.82
PILoRA 15.13 9.97 7.02 4.33 3.6 3.2
UOPP 14.89 8.68 5.59 3.98 3.26 2.83

Method Server Memory Consumption (GB)
L=1000 L=100 L=50 L=10 L=5 L=2

Fed-DualP 1.32 0.1320 0.0660 0.0013 0.0066 0.0026
PILoRA 1.50 0.1495 0.0748 0.0015 0.0075 0.0030
UOPP 1.63 0.1627 0.0814 0.0016 0.0081 0.0033

Table A9: Running Time w.r.t. Percentage of Available Classes Number of Selected Local Client in Each
Round

Method Run time (h) in different available classes percentage (η) Run time (h) in different selected local clients (L)
η=0.6(60%) η=0.4(40%) η=0.2(20%) L=4 L=6 L=8

Fed-S3C 4.10 2.07 2.08 2.18 4.10 6.23
TARGET 2.02 2.15 1.99 1.50 2.02 2.50
LGA 8.22 5.35 5.03 3.51 8.22 15.23
LANDER 4.78 1.90 1.85 3.90 4.78 4.60
Fed-DualP 3.20 2.17 1.90 2.07 3.20 4.07
Fed-Cpompt 2.03 2.37 2.45 1.50 2.03 2.77
PILoRA 6.17 4.78 3.13 4.12 6.17 8.62
UOPP 6.05 5.87 5.35 4.70 6.05 8.81

settings where local training is conducted by small edge devices such as laptops or IoT nodes, the
batch size can be set to a smaller value i.e. 16 or less. In the case of a cross-silo setting, where local
training is conducted by more powerful end devices such as a corporate server, the batch size can be
chosen by the larger value i.e. 128 or more.

D.4 RUNNING TIME ANALYSIS

We extend our scalability analysis by investigating the simulation time w.r.t. the training data size
e.g. indicated by the available classes percentage (η), and the number of participating local clients
(L). table A9 shows the running time of our simulation w.r.t. those 2 factors. Please note that our
simulation is run on a single GPU device. Thus each local training is executed sequentially. Thus, If
the local training is conducted in a parallel way, the difference in the simulation time will be smaller.

The table shows that the ratio of the training data doesn’t imply the same running time ratio. For
example in the case of η = 0.6 where each client carries 3x the number of samples of η = 0.2, the
running time in those η = 0.6 is not equal to 3x training time of η = 0.2. In our method, the increase
of running time in those case is less than 20% (5.35 to 6.05). Thus, we found that the scale-up ratio
of training samples with r factor will impact far less than r training time. Second, as we mentioned
earlier regarding the sequential process of local training, table A9 shows a linear trend which is a
logical result. For example, for UOPP and LORA, the total simulation time can be formulated by L
x 1h. In the real application, local training should be conducted parallelly since each client runs on
its local device. The bottleneck will be shifted to the server that receives the locally trained models,
and the delay for round-trip communication (model transfer) between clients and server.

E DISCUSSION ON LIMITATION AND POTENTIAL SOLUTION

Our study has several limitations that can be improved in future studies.

a) Same η for each client : First, In our simulation, each client has the same non-i.i.d level repre-
sented by the same percentage of available classes (η). In the real application, each client may have
a different degree of class availability from the other client. Thus, in the future study, the simulation
can be extended into a variation percentage of available classes where each client is assigned with a
random (picked from a min-max) η range. This variable η raises a new challenge for FFSCIL aside
from simulating a more realistic setting.

b) Simulation on a single device (GPU) : Second, Our simulation is conducted in a single GPU,
where each local training is executed sequentially one by one. This limitation will produce a linearly
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increasing training time with the number of selected local clients. It is less realistic especially when
we want to measure the training time. This limitation can be solved by utilizing a server/workstation
that has multiple GPUs such as a Nvidia DGX server. The other solution is utilizing multiple cloud
devices/servers as the clients.

c) Fixed-size of Prompt : In this study, our method utilized a fixed-size prompt for all clients.
Related to the randomly selected available class and the new challenge of different η (point a), It
will be more realistic if a client decides its prompt size following the condition of its local data.
The evolving prompt approaches such as ConvPrompt(Roy et al., 2024) and EvoPrompt(Kurniawan
et al., 2024) may be suitable for those case. However, It raises a new challenge in the aggregation
process i.e. how to produce an optimum global model from the different-sized local models which
optimum for the current task as well as previously learned tasks.

d) Overfitting Handling : The current version of our method doesn’t utilize advanced overfitting
handling. Thus, in some cases e.g. in the CIFAR100 dataset, the model may suffer from overfitting
indicated by the performance drop in the last task. One of the potential solutions is by applying
early stopping during the training process. The other potential solution is applying learning decay
to reduce the learning rate in line with the increasing training epochs.

e) Multi-Modality : The current version of our proposed method utilizes vision modality only. In
the advance of Vision-Language Models, a language-guided approach may become a prospective
approach to improve the model performance. Alternatively, language embedding can be utilized for
prototype rectification instead of the prototypes generated by ViT.

F EXPERIMENT DETAILS AND HYPER PARAMETER SETTING

Experimental Details: our numerical study is executed under a single NVIDIA A100 GPU with
40 GB memory across 3 runs with different random seeds. Fed-L2P, Fed-DualP, Fed-CODAP, and
UOPP train T number of prompts P ∈ R5×768 and Φ ∈ R|C×768| and head layer Φ, while the
competitors train whole CNN models following their original implementation. Following (Dong
et al., 2023), each experiment is simulated by 20 total clients and 1 global server, where in each
round, 6 (30%) local clients are selected randomly. Each client randomly receives 60% (η = 0.6)
classes. The total global round is set to 90 (10 rounds per class) for CIFAR100 and MiniImageNet
and 110 for CUB200. For all methods, the local training on each client is set with a maximum of
20 epochs, and the learning rate is set by choosing the best value from {0.001, 5.0} by grid search
with 2 incremental factors. Our setting is different to the recent study (Jiang et al., 2024), since it
follows FCIL setting, while our setting follows FSCIL setting for the number of tasks, base classes,
and novel classes in the few-shot tasks.

Performance Metric: on each session, we evaluate the consolidated algorithms to all learned
classes with accuracy metrics (Acc(.)). Besides, we also measure the accuracy of base classes,
novel classes and harmonic mean accuracy that indicates the balance between the performance of
base classes and novel classes, in other words, it represents stability-plasticity performance. We also
measure performance drop (PD), the accuracy difference between the first task, and the last task.

CNN-Based Methods: The competitor methods i.e. Fed-S3C, LGA, TARGET, and LANDER run
with 2-20 local epochs on each client. The learning rate is set with the best result from 0.001 to
5.0 by 5 or 10 increment factor. The other hyperparameters such as weight decay, momentum,
and dropout rate are set with their original setting. The methods utilize ResNet18 as the backbone
model. LGA utilizes LeNet as the perturbation model. TARGET and LANDER use CNN as their
synthesizer model. TARGET and LANDER generate 10000-50000 synthetic images on each task.

Prompt-Based Methods: PILoRA and the prompt-based methods i.e. Fed-L2P, Fed-DualP, Fed-
CODAP, Fed-CPrompt, and UOPP, are run with ViT backbone. The base task is run with 1-2 epochs,
while the few-shot task is run with 2-20 local epochs. For UOPP, the rectification step M is set to
40 steps per iteration. The initial learning rate is set with the best result from 0.001 to 0.2 by a 2 or
5 increment factor. The learning rate for the FS task and base task may be different. The prompt
length is set to 5. The dual-head selection is executed in a batch-wise manner for convenience in
implementation. The other parameters are set with the default settings.
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G EXTENDED LITERATURE STUDY

Few Shot Class Incremental Learning (FSCIL): Previous studies on FSCIL have attempted to
maintain stability-plasticity tradeoff in few labeled sequences of tasks by adding extra representa-
tion e.g. TOPIC (Tao et al., 2020b) introduces Neural gas as the graph of mapped features and
CEC (Zhang et al., 2021) continually evolves its classifier to adapt to new tasks. Another approach
modifies its learning mechanism e.g. FSLL (Mazumder et al., 2021) takes a partial parameter of the
model to be updated with self-supervised loss, F2M (Shi et al., 2021) finds flat minima regions on the
base task then forces parameter update on few shot tasks to reside within the flat region, S3C (Kalla
& Biswas, 2022) trains scholastic classifier with supervised loss and MgSvF (Zhao et al., 2024)
applies multi grained fast-slow learning mechanism. FSCIL methods demonstrate that representa-
tion or prototypes-based inference tends to be more stable (less forgetting) than linear classifiers
under the data scarcity constraint. Nevertheless, the prototypes have to be still refined to avoid the
prototype bias problem due to the data scarcity issue.

Class Incremental Learning (CIL): L2P (Wang et al., 2022b), DualP (Wang et al., 2022a), CODA-
P (Smith et al., 2023) offer a breakthrough solution for CIL by training small-sized task-wise pa-
rameters called prompts while the feature extractor e.g. ViT that contains the biggest parameter
numbers stays frozen. It solves task interference because each task has a specific prompt parameter
to train based on a trainable matching key with its sample. This approach simplifies the training
process and reduces memory consumption. The prompt-based approach is proven to be more effec-
tive than the rehearsal approach e.g. ICARL (Rebuffi et al., 2017), EEIL, (Castro et al., 2018), GD
(Prabhu et al., 2020), DER++ (Buzzega et al., 2020), that saves exemplars from the previous tasks
and replays them along with current task samples, the bias correction approach e.g. BiC (Wu et al.,
2019) and LUCIR (Hou et al., 2019) that trains an additional task-wise bias layer to balance the
model’s stability-plasticity dilemma, and the regularization approach e.g. EWC (Kirkpatrick et al.,
2017), MAS (Aljundi et al., 2018), LWF (Li & Hoiem, 2017), and DMC (Zhang et al., 2020) that
tunes the base learner parameters to accommodate the previous task and current task. Regardless of
its excellent performance in CIL, the prompt-based approach has not yet been proven in federated
or few sample settings.

Few Shot Learning (FSL): FSL method e.g. metric learning(Ge, 2018), prototype network (Laenen
& Bertinetto, 2021), and Neural ODE (Chen et al., 2018; Zhang et al., 2022) works effectively with
few labeled training samples in a single session but not yet tested in continual or federated setting.
However, it confirms that optimizing the prototypes tackles prototype bias that improves model
performance greatly.

Prototype-based Methods: Prototype-based FSCIL method such as TEEN (Wang et al., 2024),
NC-FSCIL (Yang et al., 2023), and OrCO(Ahmed et al., 2024) shows an insight the importance of
prototype adjustment. TEEN recalibrates the prototypes using a similarity ratio between a calibrated
prototype to base classes prototype and a novel classes prototype. NC-FSCIL utilizes the neural col-
lapse principle for prototype alignment, while OrCo generates multi-angle prototypes to improve
class representation and discrimination. Proroype-based FL methods such as FedPCL(Tan et al.,
2022) and FedNCM(Legate et al., 2024) show how to conduct a prototype learning in a federated
way, where a set of clients coordinated by a central server work together to achieve globally optimal
prototypes. Prototype-based FCIL methods such as PILoRA show how a learnable prototype im-
proves a parameter-efficient fine-tuning method to handle catastrophic forgetting with data-privacy
constrains.

The strengths and weaknesses of CIL, FSL, FSCIL, and FCIL methods above inspire us to tackle
the FFSCIL problem by developing a rehearsal-free prompt learning method combined with optimal
prototypes to minimize communication costs.

H DETAILED NUMERICAL RESULTS ON BENCHMARK DATASETS

In this section, we present the detailed numerical result as shown in Tables A10, and A11,.
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Table A10: Numerical result of the consolidated algorithms in MiniImageNet dataset with 5-shot
and 1-shot setting across 3 different seeded runs. S indicates the number of shots for the few shot
tasks, PD indicates the performance drop, and Gap indicates the gap between the respected method
to our proposed method (UOPP).

Method S Accuracy in each session (%) Avg PD Gap0 1 2 3 4 5 6 7 8
Fed-S3C 5 31.91 32.97 31.74 30.96 29.93 28.92 27.66 27.06 26.43 29.73 5.5 63.2
TARGET 5 58.10 53.64 49.80 46.48 43.58 41.02 38.74 36.70 34.86 44.77 23.2 48.2
LGA 5 50.68 49.20 45.19 38.05 29.24 29.91 27.26 25.94 20.17 35.07 30.5 57.8
Fed-L2P 5 81.02 78.22 78.66 79.44 79.67 78.14 77.65 77.48 80.00 78.92 1.0 14.0
Fed-DualP 5 83.93 89.31 88.11 87.47 87.23 84.97 83.96 83.78 84.38 85.91 -0.4 7.0
Fed-CODAP 5 90.21 83.35 82.31 80.27 78.89 77.79 77.13 75.94 75.09 80.11 15.1 12.8
Fed-Cprompt 5 93.57 92.26 90.71 89.60 89.09 87.22 85.80 85.41 85.28 88.77 8.29 4.15
UOPP 5 93.65 93.24 92.97 92.60 92.73 92.92 92.49 92.73 92.92 92.92 0.7 0.0
Fed-S3C 1 32.84 33.19 31.83 30.69 29.17 27.90 26.54 25.68 24.60 29.16 8.2 63.8
TARGET 1 58.10 53.64 49.80 46.48 43.58 41.02 38.74 36.70 34.86 44.77 23.2 48.2
LGA 1 50.15 41.26 37.24 33.33 26.04 27.02 24.61 23.53 21.71 31.65 28.44 60.56
Fed-L2P 1 83.02 79.99 79.92 79.54 80.20 80.84 80.55 80.60 82.57 80.80 0.4 12.1
Fed-DualP 1 85.47 90.06 88.77 88.44 88.14 86.22 85.04 84.98 84.80 86.88 0.7 6.0
Fed-CODAP 1 90.94 83.65 81.53 80.21 79.50 77.48 76.71 75.89 75.24 80.13 15.7 12.8
Fed-Cprompt 1 93.42 91.72 88.94 87.89 87.00 84.12 81.82 81.15 81.04 86.34 12.38 5.87
UOPP 1 93.66 93.15 92.72 92.04 92.20 92.05 91.03 91.56 91.48 92.21 2.2 0.0

Table A11: Numerical result of the consolidated algorithms in CUB200 dataset with 5-shot and
1-sot setting across 3 different seeded runs. S indicates the number of shots for the few shot tasks,
PD indicates the performance drop, and Gap indicates the gap between the respected method to our
proposed method (UOPP).

Method S Accuracy in each session (%) Avg PD Gap0 1 2 3 4 5 6 7 8 9 10
Fed-S3C 5 18.65 18.54 17.97 15.85 15.41 14.26 13.70 13.19 12.70 12.27 11.43 14.91 7.22 65.89
TARGET 5 32.03 27.75 25.44 23.48 21.80 20.35 19.08 17.96 16.96 16.07 15.26 21.47 16.77 59.33
LGA 5 25.07 22.95 21.03 19.89 17.86 16.11 14.94 13.88 12.26 11.19 10.91 16.92 14.16 63.88
Fed-L2P 5 73.24 69.49 63.32 60.46 61.05 56.65 53.24 51.98 51.47 49.42 50.57 58.26 22.67 22.54
Fed-DualP 5 78.98 77.83 72.34 67.29 65.75 62.44 58.25 55.17 51.99 50.95 50.77 62.89 28.21 17.91
Fed-CODAP 5 71.69 53.03 42.26 32.81 34.38 29.69 30.73 30.10 29.24 29.73 29.44 37.55 42.26 43.25
Fed-CPrompt 5 87.81 82.02 78.28 60.76 59.24 52.15 50.76 50.78 50.77 50.53 50.48 61.23 37.33 19.57
UOPP 5 86.18 85.95 84.96 83.02 81.62 79.48 78.57 78.15 77.70 77.86 75.28 80.80 10.90 0.00
Fed-S3C 1 18.65 18.22 17.34 15.65 14.86 13.64 13.22 12.64 11.80 11.57 10.79 14.40 7.85 62.33
TARGET 1 29.03 27.01 24.76 22.86 21.22 19.81 18.57 17.48 16.51 15.64 14.86 20.70 14.17 56.03
LGA 1 23.87 10.74 10.67 10.17 8.83 9.55 7.71 8.88 7.25 6.55 6.01 10.02 17.86 66.71
Fed-L2P 1 73.74 67.78 62.05 58.91 61.08 57.03 52.70 50.25 48.41 46.96 49.40 57.12 24.34 19.61
Fed-DualP 1 78.20 76.41 71.23 66.34 65.63 62.69 58.37 54.25 51.67 50.48 51.27 62.41 26.94 14.32
Fed-CODAP 1 73.07 56.54 48.81 39.62 37.46 35.15 32.56 30.81 28.32 28.10 27.39 39.80 45.68 36.93
Fed-CPrompt 1 87.22 72.41 66.88 50.86 59.63 53.31 51.58 50.99 47.60 50.02 50.36 58.26 36.86 18.47
UOPP 1 85.88 84.66 83.17 80.19 79.19 76.57 74.02 72.71 71.05 70.26 66.34 76.73 19.54 0.00
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Table A12: Base classes accuracy of the consolidated algorithms in CIFAR100 dataset with 5-shot
and 1-shot setting across 3 different seeded runs. S indicates the number of shots for the few shot
tasks, PD indicates the performance drop, and Gap indicates the gap between the respected method
to our proposed method (UOPP).

Method S Base Classes Accuracy in each session (%) Avg PD Gap0 1 2 3 4 5 6 7 8
Fed-S3C 5 44.51 48.90 49.46 48.93 48.69 47.78 47.64 47.58 46.54 47.78 -3.07 40.83
TARGET 5 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 0.00 19.70
LGA 5 73.76 72.92 73.17 72.55 72.79 72.14 72.62 72.40 72.07 72.71 1.36 15.90
LANDER 5 66.90 65.63 65.13 63.62 63.33 62.53 63.78 64.78 64.15 64.43 2.12 24.18
Fed-L2P 5 73.47 77.66 79.49 81.02 82.53 83.81 83.53 84.19 84.78 81.17 -10.72 7.44
Fed-DualP 5 76.39 85.00 87.19 87.50 87.89 87.60 87.98 87.86 88.09 86.17 -11.47 2.44
Fed-CODAP 5 81.73 69.20 71.38 70.26 68.93 69.48 68.23 70.16 70.88 71.14 11.58 17.47
Fed-Cprompt 5 88.00 62.67 66.90 67.22 63.25 62.38 62.48 60.68 59.28 65.87 27.32 22.74
UOPP 5 90.57 90.57 90.56 90.57 90.57 90.56 90.57 90.56 72.97 88.61 0.01 0.00
Fed-S3C 1 44.51 49.42 49.96 49.52 49.56 49.21 48.97 48.93 48.06 48.68 -4.42 40.68
TARGET 1 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 68.91 0.00 20.46
LGA 1 73.58 72.41 73.57 72.26 72.63 71.87 72.40 70.34 70.05 72.12 3.24 17.24
LANDER 1 66.90 65.43 64.12 63.10 62.65 59.60 63.57 62.83 61.95 63.35 4.07 26.01
Fed-L2P 1 77.00 78.36 79.67 80.19 80.59 81.52 81.00 80.93 80.33 79.95 -3.93 9.41
Fed-DualP 1 78.66 86.60 88.35 87.74 87.82 87.88 87.57 87.70 87.11 86.60 -9.04 2.76
Fed-CODAP 1 83.29 74.56 74.18 72.00 71.12 69.91 67.09 70.44 68.42 72.33 12.85 17.03
Fed-Cprompt 1 87.53 85.38 82.57 81.40 80.73 79.60 79.48 77.92 75.77 81.15 9.62 8.21
UOPP 1 90.65 90.65 90.65 90.66 90.66 89.48 88.82 87.97 84.72 89.36 2.68 0.00

Table A13: Novel classes accuracy of the consolidated algorithms in CIFAR100 dataset with 5-shot
and 1-shot setting across 3 different seeded runs. S indicates the number of shots for the few shot
tasks, PD indicates the performance drop, and Gap indicates the gap between the respected method
to our proposed method (UOPP).

Method S Novel Classes Accuracy in each session (%) Avg PD Gap1 2 3 4 5 6 7 8
Fed-S3C 5 49.80 37.67 31.00 27.85 26.31 25.70 25.16 24.48 31.00 25.32 61.92
TARGET 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.92
LGA 5 32.27 20.10 11.13 9.12 6.87 6.75 5.33 4.13 11.96 28.14 80.96
LANDER 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.92
Fed-L2P 5 32.67 36.67 35.29 35.82 39.29 40.77 42.04 43.76 38.29 -11.09 54.63
Fed-DualP 5 55.80 60.43 54.02 56.03 55.84 57.22 58.33 60.64 57.29 -4.84 35.63
Fed-CODAP 5 70.40 67.40 62.33 61.88 58.12 56.52 55.60 53.98 60.78 16.43 32.14
Fed-Cprompt 5 88.20 83.70 68.07 63.80 62.20 58.37 58.23 58.58 67.64 29.63 25.27
UOPP 5 90.73 92.60 92.56 93.20 93.77 93.53 93.75 93.18 92.92 -2.45 0.00
Fed-S3C 1 40.07 27.53 23.22 19.67 18.27 17.60 17.49 16.52 22.55 23.55 62.74
TARGET 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.29
LGA 1 2.07 2.67 5.36 9.68 11.11 13.67 13.11 16.88 9.32 -14.81 75.97
LANDER 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.29
Fed-L2P 1 33.47 45.10 51.24 52.02 56.65 57.67 60.66 62.63 52.43 -29.16 32.86
Fed-DualP 1 65.87 67.07 67.02 66.85 66.48 67.98 67.46 68.15 67.11 -2.28 18.18
Fed-CODAP 1 57.80 62.65 53.87 56.73 55.04 52.13 53.49 51.55 55.41 6.25 29.88
Fed-Cprompt 1 52.60 59.30 48.73 49.95 46.68 45.87 45.06 43.45 48.95 9.15 36.34
UOPP 1 84.27 85.90 84.82 86.15 85.43 85.34 85.46 84.96 85.29 -0.69 0.00

I DETAILED NUMERICAL RESULTS ON STABILITY-PLASTICITY ANALYSIS

In this section, we present the detailed numerical results on the stability-plasticity analysis of UOPP
as shown in Tables A12, A13, and A14.

J DETAILED NUMERICAL RESULTS DIFFERENT LOCAL CLIENTS AND
GLOBAL ROUNDS

In this section we present the detailed numerical results on different local clients and rounds as
presented in tables A15 and A16.

K DETAILED NUMERICAL RESULTS OF ABLATION STUDY

In this section we present detailed numerical results on the ablation study as shown in table A17.
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Table A14: harmonic Mean accuracy of the consolidated algorithms in CIFAR100 dataset with 5-
shot and 1-shot setting across 3 different seeded runs. S indicates the number of shots for the few
shot tasks, PD indicates the performance drop, and Gap indicates the gap between the respected
method to our proposed method (UOPP).

Method S Harmonic Mean Accuracy in each session (%) Avg PD Gap1 2 3 4 5 6 7 8
Fed-S3C 5 49.35 42.76 37.95 35.43 33.93 33.39 32.91 32.08 37.23 17.26 53.27
TARGET 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.50
LGA 5 44.74 31.54 19.30 16.20 12.54 12.35 9.93 7.81 19.30 36.93 71.20
LANDER 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.50
Fed-L2P 5 45.99 50.18 49.16 49.95 53.50 54.79 56.08 57.72 52.17 -11.74 38.33
Fed-DualP 5 67.37 71.39 66.80 68.44 68.20 69.34 70.12 71.83 69.19 -4.46 21.31
Fed-CODAP 5 69.79 69.33 66.06 65.21 63.30 61.82 62.04 61.28 64.85 8.51 25.65
Fed-Cprompt 5 73.27 74.36 67.64 63.52 62.29 60.35 59.43 58.93 64.98 14.35 25.52
PILoRA 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 90.50
UOPP 5 90.65 91.57 91.55 91.86 92.14 92.03 92.13 81.85 90.47 8.80 0.00
Fed-S3C 1 44.25 35.50 31.62 28.16 26.64 25.90 25.77 24.58 30.30 19.67 56.90
TARGET 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87.20
LGA 1 4.02 5.15 9.97 17.09 19.24 22.99 22.10 27.20 15.97 -23.19 71.23
LANDER 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87.20
Fed-L2P 1 46.90 57.60 62.53 63.22 66.85 67.37 69.34 70.38 63.02 -23.48 24.18
Fed-DualP 1 74.82 76.25 76.00 75.91 75.70 76.54 76.26 76.47 75.99 -1.65 11.21
Fed-CODAP 1 65.12 67.93 61.63 63.11 61.59 58.67 60.80 58.80 62.21 6.32 24.99
Fed-Cprompt 1 65.10 69.03 60.97 61.72 58.85 58.17 57.10 55.23 60.77 9.87 26.43
PILoRA 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87.20
UOPP 1 87.34 88.21 87.64 88.35 87.41 87.05 86.69 84.84 87.19 2.50 0.00

Table A15: Accuracy of the consolidated algorithms in CIFAR100 dataset with 5-shot setting on
different number of selected local clients across 3 different seeded runs. S indicates the number
of shots for the few shot tasks, PD indicates the performance drop, and L indicates the number of
selected local clients.

Method L Accuracy in each session (%) Avg PD0 1 2 3 4 5 6 7 8
S3C 4 42.63 50.02 48.77 46.47 44.56 42.72 41.53 40.39 38.39 43.94 4.24
S3C 6 44.51 48.97 47.77 45.35 43.48 41.47 40.33 39.32 37.71 43.21 6.80
S3C 8 43.43 48.60 46.90 44.81 43.16 41.34 40.33 38.84 37.21 42.74 6.22
TARGET 4 66.75 61.62 57.21 53.40 50.06 47.12 44.50 42.16 40.05 51.43 26.70
TARGET 6 68.90 63.61 59.06 55.12 51.68 48.64 45.94 43.52 41.34 53.09 27.56
TARGET 8 73.53 67.88 63.03 58.83 55.15 51.91 49.02 46.44 44.12 56.66 29.41
LGA 4 72.98 68.8 62.81 57.57 54.29 51.51 49.81 46.67 42.58 56.34 30.40
LGA 6 73.76 69.80 65.59 60.26 56.87 52.94 50.66 47.69 44.89 58.05 28.87
LGA 8 73.73 70.03 65.9 60.4 56.31 52.68 50.37 47.32 44.61 57.93 29.12
LANDER 4 59.60 58.03 53.23 49.81 45.80 43.11 40.64 39.06 37.27 47.40 22.33
LANDER 6 58.60 61.75 56.26 52.11 47.71 44.71 41.69 40.28 38.87 49.11 19.73
LANDER 8 61.60 63.80 58.84 54.37 50.46 47.76 44.17 42.18 40.82 51.56 20.78
Fed-DualP 4 64.90 75.14 80.11 78.63 79.35 77.79 76.84 76.67 76.05 76.17 -11.15
Fed-DualP 6 76.39 82.75 83.37 80.80 79.93 78.26 77.73 76.98 77.11 79.26 -0.72
Fed-DualP 8 84.65 84.77 83.90 80.41 78.56 76.64 75.93 74.60 73.58 79.23 11.07
Fed-Cprompt 4 87.78 44.85 35.84 35.13 38.63 40.78 38.12 41.14 41.30 44.84 46.48
Fed-Cprompt t 6 88.00 64.63 69.30 67.39 63.39 62.33 61.11 59.78 59.00 66.10 29.00
Fed-Cprompt 8 87.65 82.52 80.99 77.53 76.64 73.74 71.70 70.67 68.39 76.65 19.26
UOPP 4 89.18 89.49 89.57 89.91 90.35 89.99 89.23 88.88 84.96 89.06 4.22
UOPP 6 90.57 90.58 90.85 90.96 91.23 91.51 91.56 91.74 81.05 90.01 9.52
UOPP 8 90.93 90.91 91.40 91.61 91.74 91.78 91.26 91.36 90.90 91.32 0.03
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Table A16: Accuracy of the consolidated algorithms in CIFAR100 dataset with 5-shot setting on
different number of rounds across 3 different seeded runs. S indicates the number of shots for the
few shot tasks, PD indicates the performance drop, and R indicates the number of rounds.

Method R Accuracy in each session (%) Avg PD0 1 2 3 4 5 6 7 8
S3C 54 43.42 49.51 48.01 45.41 43.69 41.96 40.89 39.64 38.10 43.40 5.32
S3C 72 51.20 53.95 51.97 49.09 47.10 45.11 43.74 42.88 41.13 47.35 10.07
S3C 90 44.51 48.97 47.77 45.35 43.48 41.47 40.33 39.32 37.71 43.21 6.80
TARGET 54 57.60 53.17 49.37 46.08 43.20 40.66 38.40 36.38 34.56 44.38 23.04
TARGET 72 67.28 62.11 57.67 53.83 50.46 47.49 44.86 42.49 40.37 51.84 26.91
TARGET 90 68.90 63.61 59.06 55.12 51.68 48.64 45.94 43.52 41.34 53.09 27.56
LGA 54 69.57 62.32 60.94 61.41 57.44 53.71 49.76 51.24 47.51 57.10 22.06
LGA 72 68.35 66.26 61.61 58.15 54.75 51.55 49.21 45.19 42.08 55.24 26.27
LGA 90 73.76 69.80 65.59 60.26 56.87 52.94 50.66 47.69 44.89 58.05 28.87
LANDER 54 60.60 43.89 40.59 38.16 34.89 32.74 31.04 30.14 29.23 37.92 31.37
LANDER 72 62.60 57.00 52.09 49.21 46.21 43.13 40.42 37.05 36.64 47.15 25.96
LANDER 90 58.60 61.75 56.26 52.11 47.71 44.71 41.69 40.28 38.87 49.11 19.73
Fed-DualP 54 79.40 81.40 83.44 82.67 82.39 81.85 81.31 80.78 80.32 81.51 -0.92
Fed-DualP 72 78.85 83.25 83.96 81.61 80.28 79.73 78.63 78.15 77.06 80.17 1.79
Fed-DualP 90 76.39 82.75 83.37 80.80 79.93 78.26 77.73 76.98 77.11 79.26 -0.72
Fed-Cprompt 54 87.92 72.05 64.70 54.99 66.09 52.84 56.98 55.86 51.01 62.49 36.91
Fed-Cprompt 72 87.92 72.42 49.91 57.41 60.11 55.87 53.98 49.23 49.84 59.63 38.08
Fed-Cprompt 90 88.00 64.63 69.30 67.39 63.39 62.33 61.11 59.78 59.00 66.10 29.00
UOPP 54 89.87 89.75 90.33 90.73 90.91 91.12 91.33 91.18 91.32 90.73 -1.45
UOPP 72 90.37 90.29 90.70 90.99 90.94 91.34 91.27 91.07 90.13 90.79 0.24
UOPP 90 90.57 90.58 90.85 90.96 91.23 91.51 91.56 91.74 81.05 90.01 9.52

Table A17: Accuracy of different configurations in CIFAR100 dataset with 5-shot setting on across
3 different seeded runs. S indicates the number of shots for the few shot tasks, PD indicates the
performance drop, and Gap indicates the difference accuracy to PIP.

Conf. Accuracy in each session (%) Avg PD Gap0 1 2 3 4 5 6 7 8
A (w/o Static Proto) 84.37 82.54 80.91 80.56 80.29 80.54 80.70 79.03 76.61 80.62 7.76 9.39
B (w/o Dynamic Proto) 90.27 87.38 85.67 84.40 84.69 84.84 85.24 85.16 80.21 85.32 10.06 4.69
C (w/o MLP Head) 88.25 88.66 89.07 89.16 89.63 90.11 90.27 90.62 82.76 88.72 5.49 1.29
D (w/o PB. Head) 90.10 83.17 77.23 72.08 67.58 63.60 60.07 56.91 52.34 69.23 37.76 20.78
UOPP 90.57 90.58 90.85 90.96 91.23 91.51 91.56 91.74 81.05 90.01 9.52 0.00
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