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ABSTRACT

Most conventional online learning literature implicitly assumed a static feature
space, while in practice the feature space may vary over time with the emerging
of new features and vanishing of outdated features, which is named as online
learning with Varying Feature Space (VFS). There have been increasing attention
that initiated the exploration into this novel online learning paradigm. However,
none of them was aware of the potentially informative information embodied as
presence / absence (i.e., variation in this paper) for each feature, which indicates
that the existence of some features of the VFS can be correlated with the class
labels. Such information can be potentially beneficial to predictive performance
if properly used for the learning purpose. To this end, we formally formulate
this specific learning scenario, namely Online learning in Varying Feature space
with Informative Variation (OVFIV), and present a learning framework to address
this problem. The essence of the framework aim for answering the following
two questions: how to learn a model to capture the association of the existence
of features with the class labels and how to incorporate such information into
the prediction process in order to gain performance improvement. Theoretical
analyses and empirical studies based on 17 datasets from diverse fields verify the
validity of our proposed method.

1 INTRODUCTION

Classical online learning problems assume that the feature space used to learn a predictor remains
static over time. However, this assumption does not hold in the setting of Varying Feature Space
(VFS), where new features would join the learning process and old features would vanish over
time. This emerging research field has numerous real-world applications, such as the healthcare
monitoring (Yao et al., 2018). To monitor patients’ health conditions using streaming data from
various health devices, the feature space varies when new devices providing additional features are
introduced and unnecessary devices removed, resulting in adding and diminishing features. The
varying feature property arises from the dynamic addition and removal of devices over time.

To surmount this constraint, recent studies have done wide explorations, where VFS scenarios are
categorized into three primary forms: 1) the trapezoidal feature space (Gu et al., 2022; Zhang et al.,
2016; Liu et al., 2022; Gu et al., 2023), where data exhibits simultaneous growth in instance and
feature numbers; 2) the evolving feature space (Hou et al., 2017; 2021; Lian et al., 2022), which
restricts variations to be regular, focusing on knowledge transfer from vanishing to emerging features
during overlapping periods; and 3) the capricious feature space (He et al., 2020; 2021b; Beyazit
et al., 2019), which represents the general case encompassing trapezoidal and evolving situations,
permitting feature set of adjacent points to differ arbitrarily. This study focuses on the third case.

Although previous efforts, existing studies have not yet noticed the potential information contained
in the feature varying pattern of VFS. Specifically, the presence and absence of features can be
relevant to the class labels, which is referred to as informative variation in our study. Returning to the
healthcare application, the feature variation, i.e., whether a health monitor is utilized, can be relevant
to the current patient’s health condition. For instance, the presence of features associated with
devices that are only used in severe cases may imply poor health condition of the patient; whereas
their absence may indicate an improved health condition. In this sense, there may be potential
benefits in incorporating such presence / absence properties of VFS in the model training process.
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This paper aims to explore this novel problem, for which we call Online learning in Varying Feature
spaces with Informative Variation (OVFIV), with prediction models trained on both the informative
feature variation and the feature values themselves. We aim to provide a framework to lift existing
works with feature variation information. There are two primary challenges: First, after formulating
the informative variation, how to learn a classifier that captures useful variation? Note that not
all feature variation would provide informative signals when the features are present in the VFS
Constantly (e.g. essential health monitors such as blood pressure and heart rate), meaning their
absence / presence provide no information and are thus irrelevant to the class label. Naively taking all
feature variations into account would induces computational complexity and inefficiency. Second,
how to incorporate such informative variation in classification models to help with the improvement
of predictive performance? Simply concatenating features and their variation representations may
not be viable, as this would mix distinct data concepts, potentially obstructing the learning process.

Therefore, we propose to build two base classifiers based on the binary variation representation
space and original feature space individually, and then aggregate their predictions to form the final
prediction of the framework. Specifically, we first learn a sparse classifier on the variation space
(a.k.a. variation stream in this paper), for which the model weights are penalized via a sparse
regularization. Introducing sparsity enables the model to perform well regardless of the amount of
information in the variation space. Together with the base learner built based on the original feature
space, we introduce an ensemble approach and its two variants to provide final predictions. The
fundamental concept entails combining the predictions by weighted average, and then adaptively
recalibrating their relative importance based on respective cumulative losses after each prediction.
The variants aim to conquer limitations of the basic ensemble from diverse perspectives, thus can
improve the performance in different datasets.

Experimental results based 17 datasets from various fields validate the robustness and validity of our
proposed approaches. The contributions of this work are summarized as follow:

1. This is the first effort to formulate the informativeness of the variation space and supple-
ment prediction models with this additional information.

2. We employ a sparse online learner to learn from the variation space, alleviating potential
negative effects from non-informative feature variations.

3. We employ an adaptive ensemble approach to produce the final prediction. Our results
demonstrate the effectiveness of our learning framework, rarely having negative effort to
predictive performance.

The remainder of this paper is organized as follows. Section 2 presents related work. Section 3
formulates the research problem of VFS, specifies its attribute and presents the methods dealing with
the two recognized challenges. Experimental setup, results and further discussions are presented in
Section 4. Section 5 conclude this paper. We have also supplied related theoretical analysis and
additional experimental results in the appendix.

2 RELATED WORK

Our framework is most related to online learning tasks under varying feature space (VFS). Current
literature classifies VFS into three primary categories, as described in previous section: 1) the trape-
zoidal feature space (Gu et al., 2022; Zhang et al., 2016; Liu et al., 2022), 2) the evolving feature
space (Hou et al., 2017; 2021; Alagurajah et al., 2020), and 3) the capricious feature space (He
et al., 2020; Beyazit et al., 2019; You et al., 2023; He et al., 2021b;a; Schreckenberger et al., 2020;
2023). Because the first two VFS types impose rigid assumptions about feature variation, making it
unsuitable for our problem, in this article, we focus our comparison exclusively on algorithms de-
signed for capricious feature space. The following is a brief overview of these algorithms: He et al.
(2020) discusses the generative approach of reconstructing the universal feature space which con-
tains all possible features thus an online learner can be directly trained. Beyazit et al. (2019) gives
the solution based on the idea of projection confidence. Schreckenberger et al. (2023) learns an in-
terpretable random feature forests to handle varying feature space. Other three related works further
explored VFS scenarios with constraints: semi-supervised and class imbalance learning (You et al.,
2023), mixed-type data (He et al., 2021a) and incomplete supervision (He et al., 2021b). Although
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widely discussed and applicable to our problem, however, because the neglecting of the information
contained in feature variation, the performance of prior works still have improvement potentiality.

Another relevant topic is informatively missing observations or informative missingness, common in
clinical trials and related domains. For instance, in a congestive heart failure study, exercise testing
scheduled at 12 weeks may lack results for patients who died during the trial (Lachin, 1999), leading
to missingness that can be related to other features’ values. Several other works, including those by
Liu et al. (2006) and Shih (2002), have also thoroughly investigated this issue. The key relevance to
our study lies in informative feature presence or absence. However, some distinctions exist between
our work and current efforts: 1) We concentrate on classification, exploiting additional information
to improve predictions, whereas they focus more on imputation task aimed at reconstructing datasets;
2) Our online learning setting requires observing data points only once, in contrast to informative
missingness scenarios without this limitation, rendering proposed offline algorithms incompatible.
Therefore, these works are not applicable to our settings.

In summary, while existing works have explored related areas, none fully encapsulates our proposed
problem and associated algorithms are not directly applicable. Therefore, this framework represents
a novel formulation and solution method.

3 THE PROPOSED APPROACH

In this section, we first formally present the learning problem, and then detail the two components
of our proposed methods individually.

3.1 PROBLEM FORMULATION

We formulate the learning process with a varying feature space based on He et al. (2021a)
and He et al. (2020). Let {(xt, yt)|t = 1, 2, ..., T} denote an input sequence, where xt =
[x1, x2, ..., xdt

]⊤ ∈ Rdt is a dt-dimensional vector observed at the t-th round, accompanied by
a label yt ∈ {−1,+1}. In a varying feature space, di = dj does not necessarily occur for any
i ̸= j. We can then construct a universal feature space using the sequence xt until round t. Let
Ut =

⋃t
i=1 Rdi signify the universal feature space encompassing all emerged features up to round

t. For missing features at t, i.e. those in Ut but not Rdt , we denote as xM ∈ RM . Similarly, for
remaining features, denote the observed as xO ∈ RO = Rdt . Notably, RO ∩ RM = ∅, hence the
universal space decomposes into the direct sum of observed and missing subspaces: Ut = RO⊕RM .

The informative variation can then be formulated as the followings. Given RO, RM and Ut, we can
obtain the position encoding of the missing features at round t. Let {mt|t = 1, 2..., T} signify the
corresponding variation sequence, where mt = [m1,m2, ...,m|Ut|]

⊤ ∈ Ut. We have:

mi =

{
1 if xi ∈ RM

0 if xi ∈ RO , i = 1, ..., |Ut| (1)

Thus, the variation sequence encodes whether each feature is missing at round twith a fixed size fea-
ture space. In our setting, the probability that a feature xi is missing (i.e., the variation mt) may cor-
relate with the class label. Formally, we term a feature mi of mt informative if P (mi) ̸= P (mi|yt),
and mt informative if P (mt) ̸= P (mt|yt). Here yt denotes the true label of xt. Informative
variations provide an additional route to learn yt via Bayes’ rule: P (yt|mt) =

P (mt|yt)P (yt)
P (mt)

.

Given the feature stream xt and variation stream mt, our objective becomes learning yt from xt

and mt, for t = 1, 2, ..., T . Specifically, let {(xt,mt, yt) ∈ Rdt × Ut × {−1,+1}|t = 1, 2, ..., T}.
At round t, the learner ϕt observes xt,mt and then predicts. An immediate loss reflecting the dis-
crepancy between prediction and true label is incurred, prompting learner update to ϕt+1. Our goal
is finding ϕ1, ..., ϕT that accurately predict the sequence via empirical risk minimization (ERM):
minϕ1,...,ϕT

1
T

∑T
t=1 ℓ

(
yt, ϕt(xt,mt)

)
, where ℓ(·, ·) is a convex loss metric such as square or logis-

tic loss.
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3.2 LEARNING A PREDICTOR IN THE VARIATION SPACE

In this subsection, we discuss the usage of online models in learning from variation space.

The primary limitation of existing approaches which neglects potential information in mt makes it
necessary to integrate it into learning process. According to our formulation of mt, it is reasonable
that an arbitrary online learner on that stream works. However, the problem is not such trivial con-
sidering that not all features’ variation assist prediction, e.g., the essential monitors always appear
so that the corresponding feature’s variation provides no information. Ignorance of this potential
risk makes the trained model suffered from noise. On account of the advantages of sparse model,
we conjecture introducing sparsity could raise a solution by sparsifying the weights whose feature
has uninformative variations, thus causing the learner to disregard those weights and thereby handle
the problem effectively.

To introduce sparsity, a straightforward approach is regularization. Regularization methods are well-
studied, with different techniques offering distinct properties (Tian & Zhang, 2022). Through pre-
liminary experiments, we find L1 regularization well-suited here. Formally, the learning objective
becomes:

∀t, wt = argmin
w∈S

t∑
i=1

ℓi(w) + ∥w∥1 (2)

where S is the decision space.

A plausible way is using online gradient descent (OGD) which is essentially the same as stochastic
gradient descent in batch learning and it is easy to adapt by just adding one regularization penalty
term. However, this does not work as expected since it will essentially never produce weights that
are exactly zero. Existing literature has explored online sparse learning problem extensively. In
particular, Our target of learning an efficient and sparse learner can be tackled by online convex
optimization (OCO). Existing works such as RDA (Xiao, 2009), FOBOS (Singer & Duchi, 2009),
FTRL-Proximal (McMahan et al., 2013) all focus on the OCO problem. In this article, we use
FTRL-Proximal as the classifier on variation feature space.

Denote a sequence of gradients as gt ∈ Rd and g1:t =
∑t

s=1 gs. The update rule of FTRL-Proximal
is:

wt+1 = argmin
w

(
g1:t ·w +

1

2

t∑
s=1

σs∥w −ws∥22 + λ1∥w∥1

)
(3)

where σs relates to the learning rate schedule by σ1:t = 1
η′
t
. With λ1 = 0, this reduces to online

gradient descent. Set the derivative of the term in argmin to 0 and solve for wt+1 and it becomes
wt+1 = wt−ηtgt, where ηt is a non-increasing learning-rate schedule, e.g., σ1:t = 1

ηt
. For λ1 > 0,

sparsity induction performs well, as later experiments demonstrate.

Rewriting the argmin term in Eq. (3), we obtain:(
g1:t −

t∑
s=1

σsws

)
·w +

1

ηt
∥w∥22 + λ1∥w∥1 + (const) (4)

Thus, storing zt−1 = g1:t−1 −
∑t−1

s=1 σsws, at the beginning of round t we update via zt = zt−1 +
gt + ( 1

ηt
− 1

ηt−1
)wt, and solve for wt+1 in closed form per-coordinate as:

wt+1,i =

{
0 if |zt,i| ≤ λ1
−ηt(zt,i − sgn(zt,i)λ1) otherwise.

(5)

where zt,i denotes the ith component of zt, case of wt,i is similar. The full procedure is summarized
in Algorithm 1.

3.3 ENSEMBLE PREDICTION

In this subsection, we present one ensemble approach called OVFIV as well as two variants OVFIV-
co and OVFIV-ca for aggregating predictions from the feature classifier and the variation classifier.
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Algorithm 1: Learning from Feature Variation
Data: Input Sequence {(mt, yt)|t = 1, 2, ..., T}
Result: Predictions {w⊤

t mt|t = 1, 2, ..., T}
1 for t = 1 to T do
2 Receive mt and predict label ft = w⊤

t mt;
3 Suffer loss ℓ(ft, yt) and get gradient gt ∈ Rd;
4 Update weights using Eq. (5) according to the gradient;
5 end

In our setting, where two synchronous streams are available, actually numerous approaches could
potentially leverage the double data sources beyond learning separate predictors and ensembling.
Since the streams align synchronously, the naive method is concatenating the feature spaces and
yielding an even larger space. However, this approach merges heterogeneous streams with distinct
perspectives, obstructing classifier optimization. Alternative approaches, such as online multi-view
learning, particularly two-view methods (Nguyen et al., 2012), are also inapplicable, despite their
ability to handle heterogeneous streams. Multi-view learners typically deal with data from multiple
sources, such as a webpage’s content text and link graph. Seemingly, our framework seems well-
matched to such algorithms. However, fundamental distinctions arise: multi-view learning combines
distinct views, whereas our variation stream offers supplementary information, rather than an addi-
tional view, to facilitate the overall learning process. The variation itself does not constitute data,
hence cannot be regarded as a distinct view.

Instead, ensemble approaches seem the most viable strategy in our context, albeit not all online
types apply here. Online bagging and boosting (Oza & Russell, 2001), for instance, are unsuitable
as they rely on identical data sources, whereas our approach involves two classifiers operating on
distinct streams. Furthermore, these ensemble methods employ numerous base learners collectively,
whereas our approach utilizes only two. However, online learning with expert advice (Cesa-Bianchi
& Lugosi, 2006) overcomes these limitations, and our methods build upon this technique.

Let the classifier predictions be:

fO,t = ψ(xt), fM,t = w⊤
M,tmt (6)

Since existing methods have given a solution for learning ψ(·), we use a general formulation and
have no assumption about it. Our ensemble approaches generate final predictions per round using
fO,t and fM,t. Empirically and theoretically, the proposed methods can be shown matching the best
individual component performance.

OVFIV combines predictions via weighted averaging:

p̂t = αO,tfO,t + αM,tfM,t (7)

With no preference, α initializes to 1
2 ; otherwise, α reflects prior performance knowledge.

To minimize cumulative loss L =
∑T

t=1 ℓ(ft, yt), where ℓ(·, ·) is the loss function, ft the prediction,
and yt the label, updating α based on performance up to the current time step is reasonable:


αO,t+1 = e−ηLO,t

Wt

αM,t+1 = e−ηLM,t

Wt

Wt = e−ηLO,t + e−ηLM,t

(8)

where η is a tuned parameter and Wt is the normalization term. Lp,t denotes the cumulative loss of
base learner p ∈ {O,M} until round t. Intuitively, this updates α to weight learners exponentially
based on relative suffered loss up to round t.

There are three approaches for setting hyperparameter η, the simplest ensemble OVFIV sets an
empirically good single η across datasets:

η = c, c > 0 (9)
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However, a fixed η risks instability as it also depends on other factors. Fortunately, by Theorem 1,
the optimal η is:

η =

√
8 ln 2

T
(10)

where T is the stream size. This variant is termed OVFIV-c(ombination)o(ptimal). If T is known
a priori, e.g. for large offline data in a single-pass online setting, OVFIV-co surpasses empirical
OVFIV theoretically. However, when the optimal η is unavailable, a practical alternative is needed.
To address this, the adaptive OVFIV-c(ombination)a(daptive) can be utilized, adjusting η via:

ηt =
√

8 ln 2/t (11)

Since ηt depends only on t, this variant is practical. It also enjoys low regret bounds (Theorem 2).
Algorithm 2 summarizes OVFIV and its two variants, OVFIV-co and OVFIV-ca.

Algorithm 2: OVFIV
Data: Input Sequence {(xt,mt, yt)|t = 1, 2, ..., T}
Result: Predictions {ϕt(xt,mt)|t = 1, 2, ..., T}

1 αO,1 = αM,1 = 1
2 ; LO,t = LM,t = 0;

2 for t = 1 to T do
3 Receive xt ∈ RO, mt ∈ RM and predict fO,t = ψ(xt), fM,t = w⊤

M,tmt;
4 Predict p̂t using Eq. (7), then receive the target yt.
5 Suffer loss ℓ(p̂t, yt), ℓ(fO,t, yt) and ℓ(fM,t, yt);
6 Compute the cumulative loss LO,t+1 = LO,t + ℓ(fO,t, yt), LM,t+1 = LM,t + ℓ(fM,t, yt)
7 Update weights using Eq. (8), where η is determined by Eq. (9), Eq. (10) or Eq. (11);
8 Update ψ and update wM,t by Algorithm 1;
9 end

4 EXPERIMENTAL STUDIES

In this section, we first introduce the experimental setup and comparative methods. Next, we present
results obtained on various datasets. Finally, we study sparsity effects in our method.

4.1 EXPERIMENT SETTING

4.1.1 DATASET

We assess the effectiveness of our algorithms using a diverse set of datasets, including 16 UCI
datasets (Asuncion & Newman, 2007) spanning various domains and one real-world streaming
dataset. To ensure controlled experiment and reduce interference, we balance highly imbalanced
dataset through oversampling. Some UCI datasets are adapted from prior researches (You et al.,
2023; He et al., 2021b), and are randomly shuffled with a fixed seed to simulate streaming data. The
electricity dataset, derived from real streaming data, exposes our methods to more realistic condi-
tions. Table 1 provides details regarding dataset sizes, the number of features, and imbalance ratios
for all datasets.

Because all datasets are originally complete, to simulate varying feature spaces, we employ the
following approach to generate semi-artificial datasets:

• For non-informative cases, all features of a data point exhibit a 50% missing rate, irrespec-
tive of the class label.

• In the case of informative scenarios, half of the features have a 50% missing rate, again
regardless of the class label. The remaining features follow the conditions: p(mi|yt =
0) = a and p(mi|yt = 1) = b, where missing rates are a for one class and b for the other
class. Specifically, in our experimental study, we set a = 0.1 and b = 0.3.
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Table 1: Characteristics of the studied datasets

Dataset #Inst #Feat IR Dataset #Inst #Feat IR
abalone 4177 8 1.01 glioma 839 23 1.38
adult 5000 13 1.1 wpbc 302 34 1
australian 690 14 1.25 ionosphere 450 34 1
credit-a 653 15 1.21 kr-vs-kp 3196 36 1.09
diabetes 1000 8 1 spambase 4601 57 1.54
diabetes-risk 520 17 1.6 splice 3175 60 1.08
dropout 4424 36 1 wbc 916 9 1
electricity 5000 8 1.57 wdbc 569 30 1.68
german 1400 24 1

4.1.2 COMPETING METHODS

To ensure a fair evaluation, we employ two algorithms specifically designed for handling varying
feature spaces, along with a naive model, as our feature classifiers for comparison. These base
models serve as the learner ψ in Eq. (6).

• Naive: Adapted from FTRL-ADP (Huynh et al., 2018) directly. It serves as a baseline
model, providing essential insights into our methods. Upon encountering incomplete data,
the model first replaces all missing values with zeros and subsequently trains a linear model
on the complete data.

• OVFM (He et al., 2021a): Designed to handle varying feature space amid arbitrary
changes, OVFM can also manage mixed-type data. The core concept involves learning
a multivariate joint distribution known as the Gaussian Copula for mixed-type data and
imputing missing values in incoming data using this distribution. Its classifier is trained
on both the observed feature space, with zero-padding for missing values, and the latent
feature space of Gaussian Copula.

• OLIDS (You et al., 2023): This algorithm was developed to address both incomplete and
imbalanced data. Incomplete data may exhibit arbitrary missing values, falling within the
realm of varying feature space. The main idea is identifying the most informative features
by adhering to the empirical risk minimization principle.

We select these two related works for two primary reasons. Firstly, they are the only ones that have
made their code publicly available. Secondly, conducting a comprehensive study using these meth-
ods can empirically confirm that our framework is independent of the base models and is irrelevant
to incremental tasks on varying feature spaces.

We use ensemble method OVFIV-ca here, and results for other variants are presented in the ap-
pendix. We configure the L1 regularization coefficient λ at 1 to induce sparsity. Regarding the
hyperparameters of the two compared methods, since our datasets partially overlap with theirs, we
refrain from altering their fine-tuned settings. We employ the square error as the loss function ℓ,
which yields superior results in our preliminary experiments.

4.1.3 PERFORMANCE EVALUATION

We evaluate the models based on cumulative error rate (CER), defined as CER = (1/t)
∑

i≤t I(yi ̸=
sign(ŷi)), where I(·) takes the value of 1 if the argument is true and 0 otherwise. Each configuration
is executed 10 times with different seeds to obtain average performance (mean) ± standard deviation
(std). To detect statistically significant differences among two or more methods across datasets, we
employ the Friedman test. In cases where the null hypothesis is rejected, Nemenyi post-hoc test
(Demšar, 2006) is conducted.

4.2 EXPERIMENTAL RESULTS

In this subsection, we conduct experiments addressing three specific questions and present the cor-
responding results.
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Table 2: Comparison with existing methods involving information in the variation stream. Signifi-
cant differences compared to OVFIV-ca are indicated in bold.

Naive OVFM OLIDS
variation-classifier feature-classifier ensemble variation-classifier feature-classifier ensemble variation-classifier feature-classifier ensemble

abalone 0.325 ± 0.012 0.263 ± 0.009 0.261 ± 0.010 0.325 ± 0.012 0.243 ± 0.006 0.234 ± 0.007 0.325 ± 0.012 0.263 ± 0.003 0.219 ± 0.009
adult 0.293 ± 0.008 0.386 ± 0.007 0.292 ± 0.008 0.293 ± 0.008 0.285 ± 0.007 0.241 ± 0.007 0.293 ± 0.008 0.313 ± 0.005 0.255 ± 0.006
australian 0.296 ± 0.017 0.274 ± 0.013 0.239 ± 0.016 0.296 ± 0.017 0.212 ± 0.012 0.197 ± 0.013 0.296 ± 0.017 0.232 ± 0.015 0.190 ± 0.018
credit-a 0.305 ± 0.011 0.273 ± 0.014 0.241 ± 0.019 0.305 ± 0.011 0.225 ± 0.012 0.203 ± 0.011 0.305 ± 0.011 0.232 ± 0.008 0.199 ± 0.011
electricity 0.310 ± 0.006 0.341 ± 0.006 0.298 ± 0.006 0.310 ± 0.006 0.278 ± 0.012 0.259 ± 0.011 0.310 ± 0.006 0.303 ± 0.004 0.247 ± 0.007
kr-vs-kp 0.155 ± 0.006 0.277 ± 0.006 0.152 ± 0.005 0.155 ± 0.006 0.234 ± 0.006 0.145 ± 0.005 0.155 ± 0.006 0.242 ± 0.005 0.147 ± 0.006
spambase 0.102 ± 0.004 0.167 ± 0.007 0.098 ± 0.004 0.102 ± 0.004 0.093 ± 0.004 0.069 ± 0.002 0.102 ± 0.004 0.125 ± 0.003 0.093 ± 0.004
splice 0.100 ± 0.005 0.342 ± 0.008 0.100 ± 0.005 0.100 ± 0.005 0.328 ± 0.004 0.100 ± 0.005 0.100 ± 0.005 0.306 ± 0.009 0.099 ± 0.004
wdbc 0.214 ± 0.011 0.062 ± 0.007 0.062 ± 0.008 0.214 ± 0.011 0.052 ± 0.006 0.049 ± 0.005 0.214 ± 0.011 0.061 ± 0.006 0.054 ± 0.004
diabetes-risk 0.274 ± 0.013 0.430 ± 0.020 0.279 ± 0.012 0.274 ± 0.013 0.371 ± 0.010 0.274 ± 0.012 0.274 ± 0.013 0.185 ± 0.010 0.153 ± 0.014
glioma 0.238 ± 0.009 0.254 ± 0.011 0.198 ± 0.011 0.238 ± 0.009 0.193 ± 0.005 0.163 ± 0.010 0.238 ± 0.009 0.177 ± 0.009 0.148 ± 0.008
dropout 0.157 ± 0.004 0.225 ± 0.007 0.150 ± 0.002 0.157 ± 0.004 0.189 ± 0.004 0.139 ± 0.003 0.157 ± 0.004 0.214 ± 0.005 0.148 ± 0.003
diabetes 0.341 ± 0.012 0.305 ± 0.013 0.242 ± 0.012 0.341 ± 0.012 0.296 ± 0.009 0.238 ± 0.013 0.341 ± 0.012 0.285 ± 0.010 0.234 ± 0.012
german 0.216 ± 0.006 0.334 ± 0.008 0.208 ± 0.006 0.216 ± 0.006 0.327 ± 0.009 0.204 ± 0.006 0.216 ± 0.006 0.315 ± 0.007 0.201 ± 0.006
ionosphere 0.220 ± 0.018 0.175 ± 0.013 0.146 ± 0.015 0.220 ± 0.018 0.160 ± 0.009 0.136 ± 0.014 0.220 ± 0.018 0.166 ± 0.008 0.126 ± 0.014
wbc 0.339 ± 0.017 0.055 ± 0.005 0.055 ± 0.005 0.339 ± 0.017 0.051 ± 0.005 0.050 ± 0.005 0.339 ± 0.017 0.088 ± 0.006 0.083 ± 0.005
wpbc 0.246 ± 0.022 0.395 ± 0.014 0.253 ± 0.022 0.246 ± 0.022 0.366 ± 0.018 0.245 ± 0.016 0.246 ± 0.022 0.377 ± 0.018 0.235 ± 0.018
average rank 2.265 2.529 1.206 2.588 2.353 1.059 2.588 2.412 1

Table 3: Comparison with existing methods involving no information in the variation stream. In
most cases, our methods exhibit performance that does not significantly deviate from the original
methods.

Naive OVFM OLIDS
variation-classifier feature-classifier ensemble variation-classifier feature-classifier ensemble variation-classifier feature-classifier ensemble

abalone 0.432 ± 0.005 0.354 ± 0.010 0.356 ± 0.011 0.432 ± 0.005 0.283 ± 0.008 0.282 ± 0.008 0.432 ± 0.005 0.265 ± 0.004 0.257 ± 0.004
adult 0.496 ± 0.005 0.343 ± 0.006 0.345 ± 0.006 0.496 ± 0.005 0.332 ± 0.007 0.336 ± 0.008 0.496 ± 0.005 0.323 ± 0.004 0.326 ± 0.004
australian 0.476 ± 0.022 0.229 ± 0.012 0.232 ± 0.013 0.476 ± 0.022 0.219 ± 0.011 0.219 ± 0.014 0.476 ± 0.022 0.228 ± 0.013 0.240 ± 0.018
credit-a 0.486 ± 0.015 0.235 ± 0.017 0.236 ± 0.015 0.486 ± 0.015 0.224 ± 0.015 0.225 ± 0.012 0.486 ± 0.015 0.226 ± 0.012 0.245 ± 0.012
diabetes 0.503 ± 0.017 0.341 ± 0.010 0.346 ± 0.010 0.503 ± 0.017 0.331 ± 0.010 0.334 ± 0.010 0.503 ± 0.017 0.327 ± 0.007 0.338 ± 0.009
diabetes-risk 0.422 ± 0.011 0.342 ± 0.015 0.378 ± 0.020 0.422 ± 0.011 0.318 ± 0.015 0.353 ± 0.023 0.422 ± 0.011 0.218 ± 0.008 0.235 ± 0.009
dropout 0.475 ± 0.007 0.268 ± 0.008 0.268 ± 0.008 0.475 ± 0.007 0.235 ± 0.005 0.235 ± 0.005 0.475 ± 0.007 0.237 ± 0.004 0.241 ± 0.005
electricity 0.415 ± 0.006 0.387 ± 0.007 0.382 ± 0.006 0.415 ± 0.006 0.303 ± 0.006 0.304 ± 0.007 0.415 ± 0.006 0.295 ± 0.006 0.306 ± 0.005
german 0.510 ± 0.010 0.378 ± 0.009 0.384 ± 0.008 0.510 ± 0.010 0.364 ± 0.007 0.371 ± 0.008 0.510 ± 0.010 0.353 ± 0.005 0.358 ± 0.008
glioma 0.475 ± 0.020 0.230 ± 0.009 0.233 ± 0.012 0.475 ± 0.020 0.217 ± 0.010 0.219 ± 0.010 0.475 ± 0.020 0.224 ± 0.009 0.240 ± 0.009
ionosphere 0.505 ± 0.017 0.232 ± 0.017 0.238 ± 0.017 0.505 ± 0.017 0.205 ± 0.015 0.208 ± 0.011 0.505 ± 0.017 0.212 ± 0.011 0.236 ± 0.013
kr-vs-kp 0.497 ± 0.005 0.282 ± 0.008 0.282 ± 0.007 0.497 ± 0.005 0.265 ± 0.007 0.266 ± 0.006 0.497 ± 0.005 0.259 ± 0.005 0.262 ± 0.006
spambase 0.458 ± 0.008 0.172 ± 0.003 0.172 ± 0.003 0.458 ± 0.008 0.164 ± 0.004 0.164 ± 0.003 0.458 ± 0.008 0.150 ± 0.003 0.153 ± 0.002
splice 0.501 ± 0.010 0.330 ± 0.008 0.331 ± 0.008 0.501 ± 0.010 0.325 ± 0.008 0.327 ± 0.009 0.501 ± 0.010 0.287 ± 0.006 0.291 ± 0.007
wbc 0.502 ± 0.019 0.075 ± 0.006 0.075 ± 0.006 0.502 ± 0.019 0.065 ± 0.007 0.065 ± 0.007 0.502 ± 0.019 0.106 ± 0.008 0.111 ± 0.009
wdbc 0.420 ± 0.015 0.066 ± 0.006 0.066 ± 0.007 0.420 ± 0.015 0.059 ± 0.010 0.060 ± 0.009 0.420 ± 0.015 0.074 ± 0.008 0.086 ± 0.008
wpbc 0.452 ± 0.020 0.421 ± 0.016 0.418 ± 0.021 0.452 ± 0.020 0.405 ± 0.024 0.419 ± 0.034 0.452 ± 0.020 0.416 ± 0.017 0.407 ± 0.023
average rank 3 1.265 1.735 3 1.176 1.824 3 1.118 1.882

If the variation contains information, does our approach outperform existing works?

According to Table 2, it is evident that when there is sufficient additional information to exploit,
our approach consistently outperforms the individual base learners. The Friedman tests, conducted
at a significance level of 0.05, reject the null hypothesis (H0) with p-values of 0.00016 (Naive),
6.94e−6 (OVFM), and 2.54e−6 (OLIDS), indicating significant differences between the methods.
The average rank in last row provides a summary of relative performance. Notably, the ensemble
achieves lowest rank, indicating its superiority among all competing methods. To further substantiate
its superiority, the ensemble method is selected as the control for post-hoc tests, demonstrating
its significant outperformance compared to the base classifiers. This reaffirms that the additional
information indeed enhances overall performance.

If the variation does not contain information, does our approach still maintain tolerable per-
formance compared to existing algorithms?

Table 3 presents the results of experiments in which the variation does not contain information, and
the variation learner provides nearly nonsensical predictions in a balanced dataset setting. Notably,
the enhanced version does not significantly lag behind the original classifiers. Specifically, Fried-
man tests conducted at a significance level of 0.05 reject the null hypothesis (H0) with p-values of
3.82e− 7, 1.98e− 7 and 2.42e− 7 for the three cases with different feature classifiers respectively,
signifying significant differences between methods. However, post-hoc tests reveal no significant
difference between the feature classifier and the ensemble, with p-values of 0.36, 1.98, and 2.42 for
the three feature classifiers respectively. Consequently, our method maintains tolerable performance
compared to the existing work.

Does introducing sparsity crucial to our method?

We conduct a comparison by varying the L1 regularization coefficient settings to explore the im-
portance of introducing sparsity, with Naive method as feature classifier. Based on results in Table
4, it is evident that sparsity enhances the performance of the base model in general by examining
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Table 4: Comparison between various sparsity levels, with the best-performing one highlighted in
bold text. The Nemenyi post-hoc test reveals that, at an informative level, our method with λ = 1
significantly outperforms the non-sparse counterpart.

non-informative informative
λ=0 λ=1 λ=3 λ=0 λ=1 λ=3

abalone 0.356 ± 0.011 0.356 ± 0.011 0.356 ± 0.012 0.261 ± 0.011 0.261 ± 0.010 0.261 ± 0.010
adult 0.345 ± 0.006 0.345 ± 0.006 0.345 ± 0.006 0.290 ± 0.007 0.292 ± 0.008 0.292 ± 0.008
australian 0.233 ± 0.012 0.232 ± 0.013 0.231 ± 0.012 0.242 ± 0.015 0.239 ± 0.016 0.239 ± 0.016
credit-a 0.240 ± 0.016 0.236 ± 0.015 0.237 ± 0.018 0.242 ± 0.016 0.241 ± 0.019 0.246 ± 0.017
electricity 0.382 ± 0.006 0.382 ± 0.006 0.381 ± 0.005 0.299 ± 0.006 0.298 ± 0.006 0.293 ± 0.008
kr-vs-kp 0.282 ± 0.007 0.282 ± 0.007 0.282 ± 0.007 0.156 ± 0.005 0.152 ± 0.005 0.152 ± 0.006
spambase 0.172 ± 0.003 0.172 ± 0.003 0.172 ± 0.003 0.102 ± 0.005 0.098 ± 0.004 0.097 ± 0.003
splice 0.330 ± 0.009 0.331 ± 0.008 0.333 ± 0.008 0.107 ± 0.006 0.100 ± 0.005 0.101 ± 0.005
wdbc 0.069 ± 0.007 0.066 ± 0.007 0.065 ± 0.007 0.062 ± 0.007 0.062 ± 0.008 0.062 ± 0.007
diabetes-risk 0.369 ± 0.022 0.378 ± 0.020 0.375 ± 0.016 0.279 ± 0.017 0.279 ± 0.012 0.289 ± 0.015
glioma 0.234 ± 0.011 0.233 ± 0.012 0.233 ± 0.012 0.202 ± 0.014 0.198 ± 0.011 0.201 ± 0.008
dropout 0.268 ± 0.008 0.268 ± 0.008 0.267 ± 0.007 0.153 ± 0.003 0.150 ± 0.002 0.148 ± 0.003
diabetes 0.344 ± 0.012 0.346 ± 0.010 0.346 ± 0.011 0.243 ± 0.012 0.242 ± 0.012 0.243 ± 0.011
german 0.381 ± 0.007 0.384 ± 0.008 0.382 ± 0.008 0.212 ± 0.005 0.208 ± 0.006 0.211 ± 0.007
ionosphere 0.238 ± 0.018 0.238 ± 0.017 0.237 ± 0.019 0.148 ± 0.013 0.146 ± 0.015 0.157 ± 0.014
wbc 0.076 ± 0.006 0.075 ± 0.006 0.075 ± 0.006 0.056 ± 0.006 0.055 ± 0.005 0.055 ± 0.005
wpbc 0.418 ± 0.013 0.418 ± 0.021 0.429 ± 0.022 0.248 ± 0.014 0.253 ± 0.022 0.281 ± 0.028
average rank 2.118 2.088 1.794 2.441 1.559 2.000

the average rank. Further more, Friedman tests, conducted at the significance level of 0.05, reject
H0 with a p-value of 0.017 when the variation is informative, indicating significant differences be-
tween the methods. Subsequently, post-hoc tests demonstrate that with a properly chosen λ = 1, the
method with λ = 0 has a significant difference to its non-sparse counterpart. Therefore, our method
can benefit from sparsity in general and even get significantly improved with a fined-tuned sparsity
coefficient, supporting our speculation.

4.3 FURTHER DISCUSSION

Our methods significantly outperform existing works, as demonstrated through experiments. How-
ever, the added variation stream actually provides no new information beyond the incomplete stream,
which implicitly have already encoded variation through missing features. Further explanation is
still needed as to why introducing this seemingly redundant stream impacts performance. We pro-
pose two explanations:

1. Some current approaches rely on imputation techniques such as He et al. (2021a), He et al.
(2020) and You et al. (2023), filling in missing features using imputed values. Although
this simplifies learning on the universal space, it fails to retain the potential variation infor-
mation.

2. The variation space offers a more abstract representation of sample points, independent of
feature values. Isolating this concept and training an additional model benefits the overall
process, as a single learner capturing both feature values and variation notions simultane-
ously appears inefficient.

5 CONCLUSIONS

This paper investigated online learning in a dynamic feature space characterized by informative
variation. The key challenge involves harnessing the informative variation to improve predictive
performance. Our approach involves representing feature variation as a binary stream, applying
sparse learning for robust information extraction, and incorporating this information using ensemble
methods. The proposed ensemble method, denoted as OVFIV, along with its two variants, bal-
ances two base classifiers based on cumulative loss to make final predictions. Theoretical analyses
illustrate that the introduced supplementary space has the capability to augment the performance
of pre-existing methodologies. We substantiate our contributions through extensive experiments,
comparing with existing approaches and analyzing the role of sparsity in our method.
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A APPENDIX

A.1 THEORETICAL ANALYSIS

In this section, we assess the performance of our methods using the concept of regret. Concretely,
we present two theorems based on Cesa-Bianchi & Lugosi (2006) that establish the loss bounds
for our ensemble methods. Building upon this foundation, we study the asymptotic properties and
demonstrate that they exhibit an asymptotically no-regret behavior when compared to the two base
learners.
Theorem 1. Assume that the loss function ℓ is convex in its first argument and that it takes values
in [0, 1]. For all T > 1 and for all yt ∈ Y with t = 1, 2, ..., T . The cumulative loss L of OVFIV
satisfies

L−min(LO, LM ) ≤ ln 2

η
+
Tη

8
(12)

In particular, with η =
√

8 ln 2
T , we get the upper loss bound of OVFIV-co:

L−min(LO, LM ) ≤
√
T ln 2

2
(13)

This theorem indicates that the long-term average performance of the ensemble will, at a minimum,
be comparable to that of its two components. This observation is substantiated by the fact that:

1

T

(
L−min(LO, LM )

)
≤

√
T ln 2

2

T
−→ 0

as T −→ ∞. Consequently, as the number of iterations T increases, the performance of OVFIV-co
asymptotically matches the performance of the better of the two classifiers, a phenomenon referred
to as asymptotic no-regret.
Theorem 2. Assume that the loss function ℓ is convex in its first argument and takes values in [0, 1].
For all n ≥ 1 and for all y1, ..., yn ∈ Y , the regret of OVFIV-ca with time-varying parameter
ηt =

√
8 ln 2/t satisfies

L−min(LO, LM ) ≤ 2

√
T

2
ln 2 +

√
ln 2

8
. (14)

This theorem guarantees that the bound for OVFIV-ca differs from the bound for OVFIV-co by
only a constant asymptotically. Similar analysis reveals that it also exhibits asymptotic no-regret
behavior.

A.2 ADDITIONAL EXPERIMENTS

Does ensemble learning enhance classification performance?

While the theoretical guarantees for ensemble, empirical validation in our settings is lacking. To
this end, we conduct experiments using the cumulative loss rate (CLR, or average cumulative loss)
(1/t)

∑
i≤t ℓ(yi, ŷi) as well aforementioned CER. Table 2 illustrates that the ensemble performance

generally outperforms both base classifiers, as indicated by the bold text in most cases. Even in
the worst-case scenarios, where one classifier exhibits significantly inferior performance compared
to the other or even provides no useful predictions, as seen in Table 3, our methods can still ap-
proximate the performance of the best classifier, consistent with the theorem’s support. Therefore,
as assessing the relative performances between the two classifiers beforehand is challenging and
requires knowledge of the informativeness of the variation stream, our ensemble methods alleviate
this requirement, enabling their application across different datasets and situations. More detailed
performance trends are presented in Figure 1 and Figure 2.

Comparison between ensemble variants

12
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(a) (b) (c)

Figure 1: Ensemble performance CLR with different configuration

(a) (b) (c)

Figure 2: Ensemble performance CER with different configuration

In this subsection, we aim to assess the practical performance of ensemble method variants. We set
the hyperparameters η = 0.05 for OVFIV. In this comparison, we keep other unrelated hyperpa-
rameters constant, specifically setting the L1 regularization coefficient λ to 1 and using the Naive
method as the feature classifier. The results are presented in Table 5. From the results, we draw the
following observations:

1. OVFIV’s performance is not consistently stable across all datasets, consistent to our specu-
lation. While it ranks first in many cases, its average performance does not exhibit distinct
superiority.

2. OVFIV-co does not steadily outperform other methods, which seems contradictory to our
theoretical analysis. We offer three explanations for this phenomenon: 1) The lower regret
bound guarantees the worst performance but not actual performance; 2) The regret bound
pertains to the loss function, which slightly differs from the cumulative error; and 3) The
learning process is dynamic, with the performances of the two base learners continually
changing, while the ensemble method strives to catch up to the best one. Consequently, a
final guaranteed regret bound may not accurately reflect the performance on a limited-sized
dataset. Instead, with a sufficiently large dataset, it provides more accurate predictions
based on relatively stable experts, such as in the datasets electricity, kr-vs-kp and spambase.

3. OVFIV-ca generally performs better, thanks to its dynamic fine-tuning hyperparameter.
Therefore, we recommend using OVFIV-ca with small sample datasets and OVFIV-co with
sufficiently large sample datasets.

A.3 DETAILED PROOFS OF THEOREMS

In this section, we give a detailed proof about the strict regret bound of the ensemble methods by
following the methods from Cesa-Bianchi & Lugosi (2006). For notation simplicity, we number our
two learners as 1 and 2. That is we denote LO, LM at round t as L1,t, L2,t, fM,t, fO,t as f1,t, f2,t,
αO,t, αM,t as α1,t, α2,t.

13
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Table 5: Comparison between four ensemble methods. The best one is indicated by bold text.

non-informative informative
OVFIV-ca OVFIV OVFIV-co OVFIV-ca OVFIV OVFIV-co

abalone 0.356 ± 0.011 0.360 ± 0.014 0.359 ± 0.014 0.261 ± 0.010 0.264 ± 0.011 0.263 ± 0.011
adult 0.345 ± 0.006 0.345 ± 0.006 0.345 ± 0.006 0.292 ± 0.008 0.293 ± 0.008 0.293 ± 0.008
australian 0.232 ± 0.013 0.232 ± 0.013 0.231 ± 0.012 0.239 ± 0.016 0.239 ± 0.014 0.247 ± 0.013
credit-a 0.236 ± 0.015 0.238 ± 0.015 0.236 ± 0.015 0.241 ± 0.019 0.243 ± 0.016 0.247 ± 0.021
diabetes 0.346 ± 0.010 0.346 ± 0.010 0.344 ± 0.010 0.242 ± 0.012 0.241 ± 0.011 0.243 ± 0.012
diabetes-risk 0.378 ± 0.020 0.367 ± 0.019 0.390 ± 0.020 0.279 ± 0.012 0.286 ± 0.015 0.281 ± 0.013
dropout 0.268 ± 0.008 0.268 ± 0.008 0.267 ± 0.007 0.150 ± 0.002 0.152 ± 0.003 0.150 ± 0.003
electricity 0.382 ± 0.006 0.382 ± 0.006 0.381 ± 0.006 0.298 ± 0.006 0.299 ± 0.006 0.298 ± 0.006
german 0.384 ± 0.008 0.383 ± 0.009 0.383 ± 0.008 0.208 ± 0.006 0.210 ± 0.007 0.211 ± 0.006
glioma 0.233 ± 0.012 0.235 ± 0.013 0.234 ± 0.011 0.198 ± 0.011 0.200 ± 0.010 0.204 ± 0.010
ionosphere 0.238 ± 0.017 0.239 ± 0.019 0.239 ± 0.018 0.146 ± 0.015 0.140 ± 0.015 0.148 ± 0.014
kr-vs-kp 0.282 ± 0.007 0.282 ± 0.007 0.282 ± 0.007 0.152 ± 0.005 0.152 ± 0.005 0.152 ± 0.005
spambase 0.172 ± 0.003 0.172 ± 0.003 0.172 ± 0.003 0.098 ± 0.004 0.098 ± 0.004 0.097 ± 0.004
splice 0.331 ± 0.008 0.330 ± 0.008 0.330 ± 0.008 0.100 ± 0.005 0.101 ± 0.004 0.101 ± 0.005
wbc 0.075 ± 0.006 0.074 ± 0.006 0.075 ± 0.006 0.055 ± 0.005 0.054 ± 0.005 0.055 ± 0.005
wdbc 0.066 ± 0.007 0.069 ± 0.006 0.068 ± 0.007 0.062 ± 0.008 0.062 ± 0.007 0.062 ± 0.007
wpbc 0.418 ± 0.021 0.410 ± 0.022 0.430 ± 0.027 0.253 ± 0.022 0.257 ± 0.024 0.256 ± 0.021
average rank 2 2.147 1.853 1.5 2.176 2.324

A.3.1 PROOF OF THEOREM 1

To prove Theorem 1, we begin by bounding the related quantities (1/η) ln(Wt/Wt−1), recall

Wt =

2∑
i=1

αi,t =

2∑
i=1

e−ηLi,t , (15)

for t ≥ 1, and W1 = 2. Li,t is the cumulative loss at time t of the ith base learner, namely
Li,t =

∑T
t=1 ℓ(fi,t, yt). Note that here αi,t has not been normalized. In the proof we use the

following classical inequality due to Hoeffding (Hoeffding, 1994).

Lemma 1. Let X be a random variable with a ≤ X ≤ b. Then for any s ∈ R,

lnE[esX ] ≤ sEX +
s2(b− a)2

8
. (16)

The detailed proof of Lemma 1 can be found in Section A.1 of the Appendix in Cesa-Bianchi &
Lugosi (2006).

Proof of Theorem 1. First observe that

ln
WT

W1
= ln

(
2∑

i=1

e−ηLi,T

)
− ln 2

≥ ln

(
max
i=1,2

e−ηLi,T

)
− ln 2

= −η min
i=1,2

Li,T − ln 2.

(17)

On the other hand, for each t = T1 + 1, . . . , T1 + T2,

ln
Wt

Wt−1
= ln

∑2
i=1 e

−ηℓ(fi,t,yt)e−ηLi,t−1∑2
j=1 e

−ηLj,t−1

= ln

∑2
i=1 αi,t−1e

−ηℓ(fi,t,yt)∑2
j=1 αj,t−1

.

(18)

14



Under review as a conference paper at ICLR 2024

Now using Lemma 1, we observe that the quantity above may be upper bounded by

−η
∑2

i=1 αi,t−1ℓ(fi,t, yt)∑2
j=1 αj,t−1

+
η2

8

≤ −ηℓ

(∑2
i=1 αi,t−1fi,t∑2
j=1 αj,t−1

, yt

)
+
η2

8

= −ηℓ(p̂t, yt) +
η2

8
,

(19)

where we used the convexity of the loss function in its first argument and the way how the weight
updates. Summing over t = 1, . . . , T , we get

ln
WT

W1
≤ −ηL+

η2

8
T (20)

Combining this with the lower bound and solving for L , we find that

L ≤ min(L1,T , L2,T ) +
ln 2

η
+
η

8
T, (21)

as desired. In particular, with η =
√
8 ln 2/T , the upper bound becomes min(L1,T , L2,T ) +√

(T/2) ln 2.

A.3.2 PROOF OF THEOREM 2

Lemma 2. For allN ≥ 2, for all β ≥ α ≥ 0, and for all d1, . . . , dN ≥ 0 such that
∑N

i=1 e
−αdi ≥ 1,

ln

∑N
i=1 e

−αdi∑N
j=1 e

−βdj

≤ β − α

α
lnN

Proof. We begin by writing

ln

∑N
i=1 e

−αdi∑N
j=1 e

−βdj

= ln

∑N
i=1 e

−αdi∑N
j=1 e

(α−β)dje−αdj

= − lnE
[
e(α−β)D

]
≤ (β − α)ED

by Jensen’s inequality, where D is a random variable taking value di with probability
e−αdi/

∑N
j=1 e

−αdj for each i = 1, . . . , N . Because D takes at most N distinct values, its en-
tropy H(D) is at most lnN (see Section A.2 of the Appendix in Cesa-Bianchi & Lugosi (2006)).
Therefore,

lnN ≥ H(D)

=

N∑
i=1

e−αdi

(
αdi + ln

N∑
k=1

e−αdk

)
1∑N

j=1 e
−αdj

= αED + ln

N∑
k=1

e−αdk

≥ αED,

where the last inequality holds because
∑N

i=1 e
−αdi ≥ 1. Hence ED ≤ (lnN)/α. As β > α by

hypothesis, we can substitute the upper bound on ED in the first derivation above and conclude the
proof.

We are now ready to prove the Theorem 2.
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Proof of Theorem 2. First, we study both ln (Wt/Wt−1) and ln
(
wkt−1,t−1/wkt,t

)
, with the time-

varying parameter ηt. Keeping track of the currently best expert, kt is the index of the expert with
the smallest loss after the first t rounds, and is used to lower bound the weight ln (wkt,t/Wt). In fact,
the weight of the overall best expert (after T rounds) could get arbitrarily small during the prediction
process. We thus write the following:

1

ηt
ln
wkt−1,t−1

Wt−1
− 1

ηt+1
ln
wkt,t

Wt

=

(
1

ηt+1
− 1

ηt

)
ln

Wt

wkt,t︸ ︷︷ ︸
(A)

+
1

ηt
ln
w′

kt,t
/W ′

t

wkt,t/Wt︸ ︷︷ ︸
(B)

+
1

ηt
ln
wkt−1,t−1/Wt−1

w′
kt,t

/W ′
t︸ ︷︷ ︸

(C)

.

where W ′
t =

∑2
i=1 wi,t−1e

−ηtℓ(fi,t,yt) and w′
kt,t

= e−ηtLkt,t . We now bound separately the three
terms on the right-hand side. The term (A) is easily bounded by noting that ηt+1 < ηt and using
the fact that kt is the index of the expert with the smallest loss after the first t rounds. Therefore,
wkt,t/Wt must be at least 1/2. Thus we have

(A) =

(
1

ηt+1
− 1

ηt

)
ln

Wt

wkt,t
≤
(

1

ηt+1
− 1

ηt

)
ln 2.

We proceed to bounding the term (B) as follows:

(B) =
1

ηt
ln
w′

kt,t
/W ′

t

wkt,t/Wt
=

1

ηt
ln

∑2
i=1 e

−ηt+1(Li,t−Lkt,t)∑2
j=1 e

−ηt(Lj,t−Lkt,t)

≤ ηt − ηt+1

ηtηt+1
ln 2 =

(
1

ηt+1
− 1

ηt

)
ln 2,

where the inequality is proven by applying Lemma 2 with di = Li,t − Lkt+1,t. Note that
di ≥ 0 because kt is the index of the expert with the smallest loss after the first t rounds and∑2

i=1 e
−ηt+1di ≥ 1 as for i = kt+1 we have di = 0. The term (C) is first split as follows:

(C) =
1

ηt
ln
wkt−1,t−1/Wt−1

w′
kt,t

/W ′
t

=
1

ηt
ln
wkt−1,t−1

w′
kt,t

+
1

ηt
ln

W ′
t

Wt−1
.

We treat separately each one of the two subterms on the right-hand side. For the first one, we have

1

ηt
ln
wkt−1,t−1

w′
kt,t

=
1

ηt
ln
e−ηtLkt−1,t−1

e−ηtLkt,t
= Lkt,t − Lkt−1,t−1.

For the second subterm, we proceed similarly to the proof of Theorem 1 by applying Hoeffd-
ing’s bound (Lemma 1) to the random variable Z that takes the value ℓ (fi,t, yt) with probability
wi,t−1/Wt−1 for each i = 1, 2 :

1

ηt
ln

W ′
t

Wt−1
=

1

ηt
ln

2∑
i=1

wi,t−1

Wt−1
e−ηtℓ(fi,t,yt)

≤ −
2∑

i=1

wi,t−1

Wt−1
ℓ (fi,t, yt) +

ηt
8

≤ −ℓ (p̂t, yt) +
ηt
8

where in the last step we used the convexity of the loss ℓ. Finally, we substitute back in the main
equation the bounds on the first two terms (A) and (B), and the bounds on the two subterms of the
term (C). Solving for ℓ (p̂t, yt), we obtain
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ℓ (p̂t, yt) ≤
(
Lkt,t − Lkt−1,t−1

)
+

√
a ln 2

8

1√
t

+
1

ηt+1
ln
wkt,t

Wt
− 1

ηt
ln
wkt−1,t−1

Wt−1

+ 2

(
1

ηt+1
− 1

ηt

)
ln 2.

We apply the above inequality to each t = 1, . . . , T and sum up using
∑T

t=1 ℓ (p̂t, yt) = L̂T ,∑T
t=1

(
Lkt,t − Lkt−1,t−1

)
= mini=1,2 Li,T ,

∑T
t=1 1/

√
t ≤ 2

√
T , and

T∑
t=1

(
1

ηt+1
ln
wkt,t

Wt
− 1

ηt
ln
wkt−1,t−1

Wt−1

)
≤ − 1

η1
ln
wk1,1

W1
=

√
ln 2

a

T∑
t=1

(
1

ηt+1
− 1

ηt

)
=

√
T + 1

a(ln 2)
−

√
1

a(ln 2)
.

Thus, we can write the bound

L̂T ≤ min
i=1,2

Li,T +

√
aT ln 2

4
+ 2

√
(T + 1) ln 2

a
−
√

ln 2

a
.

Finally, by overapproximating and choosing a = 8 to trade off the two main terms, we get

L̂T ≤ min
i=1,2

Li,T + 2

√
T

2
ln 2 +

√
ln 2

8

as desired.
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