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ABSTRACT

Federated learning (FL) enhances data privacy with collaborative in-
situ training on decentralized clients. Nevertheless, FL encounters
challenges due to non-independent and identically distributed (non-
ii.d) data, leading to potential performance degradation and hin-
dered convergence. While prior studies predominantly addressed
the issue of skewed label distribution, our research addresses a
crucial yet frequently overlooked problem known as multi-domain
FL. In this scenario, clients’ data originate from diverse domains
with distinct feature distributions, as opposed to label distributions.
To address the multi-domain problem in FL, we propose a novel
method called Federated learning Without normalizations (Fed-
Won). FedWon draws inspiration from the observation that batch
normalization (BN) faces challenges in effectively modeling the
statistics of multiple domains, while alternative normalizations pos-
sess their own limitations. In order to address these issues, FedWon
eliminates all normalizations in FL and reparameterizes convolution
layers with scaled weight standardization. Through comprehen-
sive experimentation on four datasets and four models, our results
demonstrate that FedWon surpasses both FedAvg and the current
state-of-the-art method (FedBN) across all settings, achieving no-
table improvements of over 10% in certain domains. Furthermore,
FedWon is versatile for both cross-silo and cross-device FL, exhibit-
ing strong performance even with a batch size as small as 1, thereby
catering to resource-constrained devices. Additionally, FedWon
effectively tackles the challenge of skewed label distribution.
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Figure 1: We consider multi-domain federated learning,
where each client contains data of one domain. This setting
is highly practical and applicable in reality. For example, au-
tonomous cars in distinct locations capture images in varying
weather conditions, and healthcare institutions collect medi-
cal images with different machines and protocols.

1 INTRODUCTION

Federated learning (FL) has emerged as a promising method for
distributed machine learning, enabling in-situ model training on
decentralized client data. It has been widely adopted in diverse appli-
cations, such as healthcare [3] and autonomous cars [29]. However,
FL commonly suffers from non-independent and identically dis-
tributed (non-i.i.d) data across clients [18]. This is due to the fact
that data generated from different clients is highly likely to have dif-
ferent data distributions, which can cause performance degradation
[9] even divergence in training [26, 31].

The majority of studies that address the problem of non-i.i.d
data mainly focus on the issue of skewed label distribution, where
clients have different label distributions [9, 19]. However, multi-
domain FL, where data in clients are from different domains, has
received little attention, despite its practicality in reality. Figure
1 depicts two practical examples of multi-domain FL. For exam-
ple, autonomous cars may collaborate on model training, but their
data could originate from different weather conditions or times
of day, leading to domain discrepancies in collected images [28].
Similarly, multiple healthcare institutions collaborating on medical
imaging analysis may face significant domain gaps due to varia-
tions in imaging machines and protocols [3]. Hence, developing
solutions for multi-domain FL is a critical research problem with
broad implications.
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(a) Statistics of 4-th BN Layers. (b) Statistics of 5-th BN Layer.
Figure 2: Visualization of batch normalization (BN) channel-
wise statistics from two clients, each with data of a single
domain. (a) and (b) are the results from 4-th and 5-th BN layer
of a 6-layer CNN, respectively. It highlights different feature
statistics of BN layers trained on different domains.

However, the existing solutions are unable to adequately address
the problem of multi-domain FL. FedBN [20] attempts to solve this
problem by keeping batch normalization (BN) [12] parameters and
statistics locally in client, but it is only suitable for cross-silo FL
[13], where clients are organizations like healthcare institutions,
because it requires clients to be stateful [14] (i.e. keeping states of
BN information) and participate training every round. As a result,
FedBN is not suitable for cross-device FL, where the clients are
stateless and only a fraction of clients could be available each round.
Besides, BN relies on the assumption that training data are from the
same distribution, ensuring the mean and variance of each mini-
batch are representative of the entire data distribution [12]. Figure
2a shows that the running mean and variance of BNs in two FL
clients from different domains can differ significantly. Alternative
normalizations like Layer Norm [2] and Group Norm [27] have not
been studied for multi-domain FL, but they have limitations like
requiring extra computation in inference.

This paper explores a fundamentally different approach to ad-
dress multi-domain FL. Given that BN struggles to capture multi-
domain data and other normalizations come with their own limita-
tions, we further ask the question: is normalization indispensable
to learning a general global model for multi-domain FL? In recent
studies, normalization-free ResNets [4] demonstrates comparable
performance to standard ResNets[8]. Inspired by these findings, we
build upon this methodology and explore its untapped potential
within the realm of multi-domain FL.

We introduce Federated learning Without normalizations (Fed-
Won) to address the domain discrepancies among clients in multi-
domain FL. FedWon follows FedAvg [21] protocols for server ag-
gregation and client training. Unlike existing methods, FedWon
removes normalization layers and reparameterizes convolution lay-
ers with Scaled Weight Standardization [4]. Extensive experiments
on four datasets and four models indicate that FedWon outperforms
state-of-the-art methods under all settings. The general global model
trained by FedWon can achieve more than 10% improvement on cer-
tain domains compared to the personalized models from FedBN [20].
Moreover, our empirical evaluation demonstrated three key ben-
efits of FedWon: 1) FedWon is versatile to support both cross-silo
and cross-device FL; 2) FedWon achieves competitive performance
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on small batch sizes (even on a batch size of 1), which is particu-
larly useful for resource-constrained devices; 3) FedWon can also
be applied to address the skewed label distribution problem.

In summary, our contributions are as follows:

e We introduce FedWon, a simple yet effective method for
multi-domain FL. By removing normalizations and employ-
ing scaled weight standardization, FedWon learns a general
global model from clients with significant domain gaps.

o To the best of our knowledge, FedWon is the first method
that enables both cross-silo and cross-device FL without
relying on any form of normalization. Our study also reveals
the unexplored benefits of this method, particularly in the
context of multi-domain FL.

e Extensive experiments demonstrate that FedWon outper-
forms state-of-the-art methods on all datasets and models,
and is suitable for training with small batch sizes, which is
especially beneficial for cross-device FL.

2 METHOD

This section presents the problem setup of multi-domain FL and
introduces FL without normalization to address the problem.

2.1 Problem Setup

Assume there are N clients in FL and each client k contains n € N
data samples {(xllC , yf )}7:"1 Skewed label distribution refers to the
scenario where data in clients have different label distributions, i.e.
the marginal distributions P (y) may differ across clients (P (y) +
P (y) for different clients k and k”). In contrast, this work focuses
on multi-domain FL, where clients possess data from various do-
mains, and data samples within a client belong to the same domain
[13, 20]. Specifically, the marginal distribution P (x) may vary
across clients (P (x) + Py (x) for clients k and k’), while the mar-
ginal distribution of data samples within a client is the same, i.e.,
Pr(xi) ~ Pr(x;j) forall i, j € 1,2, ..., ny. Figure 1 illustrates practi-
cal examples of multi-domain FL. For example, autonomous cars in
different locations could capture images under different weather.

2.2 Normalization-Free Federated Learning

Figure 2a demonstrates that the BN statistics of clients with data
from distinct domains are considerably dissimilar in multi-domain
FL. Although various existing approaches have attempted to ad-
dress this challenge by manipulating or replacing the BN layer
with other normalization layers [5, 20, 30], they come with their
own set of limitations, such as additional computation cost during
inference. Unlike all the existing approaches, we instead propose a
novel approach called Federated learning Without normalizations
(FedWon), which removes all normalization layers in FL.

Compared with FedAvg [21], FedWon completely removes nor-
malization layers in DNNs and reparameterizes convolution layers.
We employ the Scaled Weight Standardization technique proposed
by [4] to reparameterize the convolution layers after removing BN.
The reparameterization formula can be expressed as follows:

. Wij — i

Wij = ; (1)
v oiVN
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Figure 3: Illustration of three FL algorithms: (a) FedAvg aggregates both convolution (Conv) layers and batch normalization
(BN) layers; (b) FedBN keeps BN layers in clients and only aggregates Conv layers; (c) Our proposed Federated learning Without
normalizations (FedWon) removes all BN layers and reparameterizes Conv layers with scaled weight standardization (WSConv).

where W ; is the weight matrix of a convolution layer, y is a con-
stant number, N is the fan-in of convolution layer, y; = (1/N) X ; W;
and O'l-z = (1/N) X;(W;,j — p;) are the mean and variance of the i-th
row of W; j, respectively. This weight standardization technique is
closely linked to Centered Weight Normalization [10]. By remov-
ing normalization layers, FedWon eliminates batch dependency,
resolves discrepancies between training and inference, and does
not require computation for normalization statistics in inference.
We refer to this newly parameterized convolution as WSConv.

Figure 3 highlights the algorithmic differences between our pro-
posed FedWon and the other two FL algorithms: FedAvg [21] and
FedBN [20]. FedAvg aggregates both convolution and BN layers on
the server; FedBN only aggregates the convolution layers and keeps
BN layers locally in clients. Unlike these two methods, FedWon
removes BN layers, replaces convolution layers with WSConv, and
only aggregates these reparameterized convolution layers. Prior
work theoretically shows that BN slows down and biases the FL
convergence [26]. FedWon circumvents these issues by removing
BN and offers unexplored benefits to multi-domain FL. These ben-
efits include versatility for both cross-silo and cross-device FL, as
well as compelling performance on batch sizes as small as 1.

3 EXPERIMENTS
3.1 Experiment Setup

Datasets. We run experiments for multi-domain FL using three
datasets: Digits-Five [20], Office-Caltech-10 [7], and DomainNet
[24]. Digits-Five consists of five sets of 28x28 digit images, including
MNIST [17], SVHN [22], USPS [11], SynthDigits [6], MNIST-M [6];
each digit dataset represents a domain. Office-Caltech-10 consists
of real-world object images from four domains: Amazon, Caltech,
DSLR, and Webcam. DomainNet [24] contains 244x244 object im-
ages in six domains: Clipart, Infograph, Painting, Quickdraw, Real,
and Sketch. We follow [20] to preprocess these datasets. Besides, we
evenly split samples of Digits-Five into 20 clients for cross-device
FL with total 100 clients. To simulate multi-domain FL, we construct
a client to contain images from a single domain.

Additionally, we simulate skewed label distribution using CIFAR-
10 dataset [15]. We split training samples into 100 clients and con-
struct i.i.d data and three levels of label skewness using Dirichlet
process Dir(a) with & = {0.1,0.5,1}.

Implementation Details. We implement FedWon using PyTorch
[23] and evaluate the algorithms with three architectures in multi-
domain FL: 6-layer convolution neural network (CNN) [20] for
Digits-Five dataset, AlexNet [16] and ResNet-18 [8] for Office-
Caltech-10 dataset, and AlexNet [16] for DomainNet dataset. Be-
sides, we use MobileNetV2 [25] for experiments on skewed label
distribution. We use cross-entropy loss and stochastic gradient opti-
mization (SGD) as optimizer with learning rates tuned in the range
of [0.001, 0.1] for all methods. By default, we conduct experiments
with local epochs E = 1 and batch size B = 32.

Compared Methods. We compare FedWon with the following
methods: state-of-the-art methods that use customized approaches
on BN, including SiloBN [1], FedBN [20], and FixBN [30]; baseline
algorithms, including FedProx [19], FedAvg [21], and Standalone
training (i.e. training a model independently in each client); alterna-
tive normalization methods, including FedAvg+GN and Fed Avg+LN
that replace BN layers with GN [27] and LN layers [2], respectively.

3.2 Experiments on Multi-domain FL

Table 1 presents a comprehensive comparison of the aforemen-
tioned methods under cross-silo FL on Digits-Five, Office-Caltech-
10, and DomainNet datasets. Our proposed FedWon outperforms
the state-of-the-art methods on most of the domains. Specifically,
FedProx has similar performance as FedAvg and both methods may
exhibit inferior performance compared to Standalone in certain
domains on DomainNet dataset. SiloBN and FixBN perform simi-
larly to FedAvg in terms of average testing accuracy. However, they
tend to underperform FedBN in multi-domain FL, where FedBN is
specifically designed to excel. Interestingly, we discover that simply
replacing BN with GN (FedAvg+GN) could boost the performance
of FedAvg in multi-domain FL. Furthermore, our proposed FedWon
surpasses both FedAvg+GN and FedBN in terms of the average test-
ing accuracy. Although FedWon falls slightly behind FedBN by less
than 1% in one domain on Digits-Five dataset, it outperforms FedBN
by more than 10% on certain domains. These results demonstrate
the effectiveness of FedWon under the cross-silo FL scenario. We
prertthenesanal Sheanmeahars are ossbi e aapnp af T ivesrys-
mance of FedWon with state-of-the-art methods using small batch
sizes B = {1,2} on Office-Caltech-10 dataset. FedWon achieves
outstanding performance, with competitive results even at a batch
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Table 1: Testing accuracy (%) comparison on Digits-Five, Office-Caltech-10, and DomainNet datasets. For Digits-Five, M, S, U,
Syn, and M-M are abbreviations for MNIST, SVHN, USPS, SynthDigits, and MNIST-M. For Office-Caltech-10, A, C, D, and W
are abbreviations for Amazon, Caltech, DSLR, and WebCam. For DomainNet, C, I, P, O, R, and S are abbreviations for Clipart,

Infograph, Painting, Quickdraw, Real, and Sketch.

Methods Digit-Five Office-Caltech-10 DomainNet
M S U Syn M-M Avg. | A C D W Avg.| C I p Q R S Avg.
Standalone 944 67.1 954 803 77.0 831|545 40.2 813 893 663 |42.7 24.0 342 71.6 51.2 335 429
FedAvg 96.2 716 963 86.0 825 865 |61.8 449 77.1 814 663 | 489 265 377 445 468 357 40.0
FedProx 96.4 71.0 96.1 859 831 86.5|599 440 760 808 652 |51.1 241 373 46.1 455 375 40.2
FedAvg+GN 964 769 96.6 86.6 837 880|608 50.8 885 83.6 709|454 21.1 354 572 50.7 36,5 41.1
FedAvg+LN 964 752 964 856 822 87.1|550 413 792 718 61.8 |42.7 23.6 353 460 439 289 36.7
SiloBN 96.2 713 96.0 86.0 83.1 86.5 |608 444 760 819 658 |51.8 25.0 364 459 477 380 408
FixBN 963 713 96.1 858 83.0 865|592 44.0 79.2 79.6 655 |49.2 245 382 463 462 374 403
FedBN 96.5 773 969 86.8 84.6 884 |67.2 453 854 875 714|499 28.1 404 690 552 38.2 46.8
FedWon(Ours)‘96.8 774 97.0 87.6 84.0 88.5‘67.0 504 95.3 90.7 75.6 | 57.2 28.1 43.7 69.2 56.5 519 51.1
Table 2: Testing accuracy (%) comparison using small batch 100
sizes B = {1, 2} on Office-Caltech-10 dataset. ~ 951
£ 901
8',',
B ‘ Methods ‘ Amazon Caltech DSLR Webcam ‘%o 83* ’_{—ﬂ
0
F 75 ‘ : ‘ : ;
FedAvg+GN | 60.4 22.0 87.5 84.8 7T MNIST  SVHN USPS  Synthetic  MNIST-M
1 | FedAvg+LN 55.7 43.1 84.4 88.1 [0 FedAvg (B=2) [ FedWon (B=2) [ FedWon (B=1)
FedWon 66.7 55.1 96.9 89.8
FedAvg 64.1 49.3 87.5 89.8 Figure 4: Performance comparison of FedWon and FedAvg
FedAvg+GN 63.5 52.0 813 84.8 using small batch sizes B = {1, 2} on Digits-Five dataset, where
FedAvg+LN 583 44.9 87.5 86.4 C = 10% out of 100 clients are randomly selected each round.
2 | FixBN 66.2 50.7 87.5 88.1
SiloBN 61.5 47.1 87.5 86.4
FedBN 59.4 48.0 96.9 86.4 training round, which is common in cross-device FL. We conduct
FedWon 66.2 54.7 93.8 89.8 experiments with fraction C = {10%,40%} out of 100 clients on

Table 3: Evaluation on randomly selecting C = {10%, 40%} out
of total 100 clients to train each round with batch size B = 4.
M, S, U, Syn, and M-M are abbreviations of five domains.

S

81.0
85.4

U

97.2
98.3

M-M

89.3
90.5

C ‘Method ‘ M Syn Avg.

FedAvg
FedWon

FedAvg
FedWon

98.2
98.6

91.6
93.6

91.5
93.3

10%

98.1
98.8

80.5
86.4

97.0
98.4

91.4
94.2

89.4
91.0

91.3

40% 93.7

size of 1. Although FedAvg+GN also achieves comparable results on
batch size B = 1, it requires additional computational cost during in-
ference to calculate the running mean and variance. The capability
of our method to perform well with small batch sizes is particularly
important for cross-device FL, as some devices may only be capable
of training with small batch sizes under constrained resources. We
tune the best learning rates for methods in these experiments.

Impact of Selection a Subset of Clients. We assess the impact
of randomly selecting a fraction of clients to participate in each

Digits-Five dataset, i.e., K = {10,40} clients are selected to par-
ticipate in training in each round. Table 3 shows that FedWon
outperforms FedAvg under all client fractions. FedBN is not com-
pared as it is not applicable in cross-device FL. We also evaluate
small batch sizes in cross-device FL, with K = 10 clients selected
per round. Figure 4 illustrates that our proposed FedWon consis-
tently surpasses FedAvg with batch sizes B = {1, 2} and it achieves
consistently comparable results to training with larger batch sizes.
Evaluation on Alternative Backbones. In addition to evaluat-
ing the effectiveness of FedWon using AlexNet [16], Table 4 com-
pares testing accuracies with ResNet18 [8] on the Office-Caltech-10
dataset. Our proposed FedWon generally has better performance
than the existing methods even using ResNet-18 as the backbone.

3.3 Experiments on Skewed Label Distribution

We run experiments on skewed label distribution with a fraction
C = 10% randomly selected clients (i.e., K = 10) out of total 100
clients in each round. Table 5 compares our proposed FedWon with
FedAvg, FedAvg+GN, FedAvg+LN, and FixBN. FedWon achieves
similar performance as FedAvg and FixBN on the i.i.d setting, but
outperforms all methods on different degrees of label skewness. We
do not compare with FedBN and SiloBN as they are not suitable for
cross-device FL. All experiments are run with local epoch E = 5 for
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Table 4: Testing accuracy (%) comparison using ResNet-18 on
Office-Caltech-10 Dataset.

Methods ‘ Amazon Caltech DSLR Webcam Average
FedAvg 45.3 36.4 68.8 76.3 56.7
FedAvg+GN 443 31.1 71.9 74.6 55.5
FedAvg+LN 34.4 26.2 59.4 44.1 41.0
FixBN 34.9 33.8 62.5 78.0 52.3
SiloBN 40.6 29.3 59.4 81.4 52.7
FedBN 57.3 37.3 90.6 89.8 68.8
FedWon 63.0 46.7 90.6 86.4 71.7

Table 5: Testing accuracy comparison on different levels of
label skewness using MobileNetV2 as backbone on CIFAR-10
dataset, where Dir (0.1) is the most skewed setting.

Methods | iid | Dir (1) | Dir (0.5) | Dir (0.1)
FedAvg 75.0 | 645 61.1 36.0
FedAvg+GN 653 | 588 51.8 21.5
FedAvg+LN 69.2 | 618 57.9 233
FixBN 75.4 | 64.1 61.2 34.7
FedWon (Ours) | 75.7 | 72.8 70.7 41.9

300 rounds. We use SGD as the optimizer and tune the learning in
the range of [0.001, 0.1] for different algorithms. These experiments
indicate the possibility of employing our proposed FedWon to solve
the skewed label distribution problem.

4 CONCLUSION

In conclusion, we propose FedWon, a new method for multi-domain
FL by removing all normalizations and reparameterizing convolu-
tion layers with weight scaled convolution. Extensive experiments
across four datasets and models demonstrate that this simple yet
effective method outperforms state-of-the-art methods in a wide
range of settings. Notably, FedWon is versatile for both cross-silo
and cross-device FL. Its ability to train on small batch sizes is par-
ticularly useful for resource-constrained devices.
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