
BagFlip: A Certified Defense against Data Poisoning

Yuhao Zhang
University of Wisconsin-Madison

yuhaoz@cs.wisc.edu

Aws Albarghouthi
University of Wisconsin-Madison

aws@cs.wisc.edu

Loris D’Antoni
University of Wisconsin-Madison

loris@cs.wisc.edu

Abstract

Machine learning models are vulnerable to data-poisoning attacks, in which an
attacker maliciously modifies the training set to change the prediction of a learned
model. In a trigger-less attack, the attacker can modify the training set but not
the test inputs, while in a backdoor attack the attacker can also modify test inputs.
Existing model-agnostic defense approaches either cannot handle backdoor attacks
or do not provide effective certificates (i.e., a proof of a defense). We present
BagFlip, a model-agnostic certified approach that can effectively defend against
both trigger-less and backdoor attacks. We evaluate BagFlip on image classification
and malware detection datasets. BagFlip is equal to or more effective than the
state-of-the-art approaches for trigger-less attacks and more effective than the
state-of-the-art approaches for backdoor attacks.

1 Introduction

Recent works have shown that machine learning models are vulnerable to data-poisoning attacks,
where the attackers maliciously modify the training set to influence the prediction of the victim model
as they desire. In a trigger-less attack [42, 31, 24, 3, 1, 11], the attacker can modify the training set
but not the test inputs, while in a backdoor attack [29, 34, 41, 30, 5, 21, 25, 27] the attacker can also
modify test inputs. Effective attack approaches have been proposed for various domains such as
image recognition [12], sentiment analysis [25], and malware detection [30].

Consider the malware detection setting. An attacker can modify the training data by adding a special
signature—e.g., a line of code—to a set of benign programs. The idea is to make the learned model
correlate the presence of the signature with benign programs. Then, the attacker can sneak a piece
of malware past the model by including the signature, fooling the model into thinking it is a benign
program. Indeed, it has been shown that if the model is trained on a dataset with only a few poisoned
examples, a backdoor signature can be installed in the learned model [30, 27]. Thus, data-poisoning
attacks are of great concern to the safety and security of machine learning models and systems,
particularly as training data is gathered from different sources, e.g., via web scraping.

Ideally, a defense against data poisoning should fulfill the following desiderata: (1) Construct effective
certificates (proofs) of the defense. (2) Defend against both trigger-less and backdoor attacks. (3)
Be model-agnostic. It is quite challenging to fulfill all three desiderata; indeed, existing techniques
are forced to make tradeoffs. For instance, empirical approaches [10, 40, 20, 26, 36, 13, 33, 9] cannot
construct certificates and are likely to be bypassed by new attack approaches [32, 37, 16]. Some
certified approaches [39, 35] provide ineffective certificates for both trigger-less and backdoor attacks.
Some certified approaches [15, 19, 4, 28, 22, 38] provide effective certificates for trigger-less attacks

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
5.

13
63

4v
2

 [
cs

.L
G

]
 1

6
O

ct
 2

02
2

but not backdoor attacks. Other certification approaches [14, 7, 23] are restricted to specific learning
algorithms, e.g., decision trees.

This paper proposes BagFlip, a model-agnostic certified approach that uses randomized smoothing [6,
8, 18] to effectively defend against both trigger-less and backdoor attacks (Section 4). BagFlip uses a
novel smoothing distribution that combines bagging of the training set and noising of the training
data and the test input by randomly flipping features and labels.

Although both bagging-based and noise-based approaches have been proposed independently in the
literature, combining them makes it challenging to compute the certified radius, i.e., the amount of
poisoning a learning algorithm can withstand without changing its prediction.

To compute the certified radius precisely, we apply the Neyman–Pearson lemma to the sample space of
BagFlip’s smoothing distribution. This lemma requires partitioning the outcomes in the sample space
into subspaces such that the likelihood ratio in each subspace is a constant. However, because our
sample space is exponential in the number of features, we cannot naively apply the lemma. To address
this problem, we exploit properties of our smoothing distribution to design an efficient algorithm that
partitions the sample space into polynomially many subspaces (Section 5). Furthermore, we present
a relaxation of the Neyman–Pearson lemma that further speeds up the computation (Section 6). Our
evaluation against existing approaches shows that BagFlip is comparable to them or more effective
for trigger-less attacks and more effective for backdoor attacks (Section 7).

2 Related Work

Our model-agnostic approach BagFlip uses randomized smoothing to compute effective certificates
for both trigger-less and backdoor attacks. BagFlip focuses on feature-and-label-flipping perturbation
functions that modify training examples and test inputs. We discuss how existing approaches differ.

Some model-agnostic certified approaches can defend against both trigger-less and backdoor attacks
but cannot construct effective certificates. Wang et al. [35], Weber et al. [39] defended feature-
flipping poisoning attacks and l2-norm poisoning attacks, respectively. However, their certificates are
practically ineffective due to the curse of dimensionality [17].

Some model-agnostic certified approaches construct effective certificates but cannot defend against
backdoor attacks. Jia et al. [15] proposed to defend against general trigger-less attacks, i.e., the
attackers can add/delete/modify examples in the training dataset, by bootstrap aggregating (bagging).
Chen et al. [4] extended bagging by designing other selection strategies, e.g., selecting without
replacement and with a fixed probability. Rosenfeld et al. [28] defended against label-flipping
attacks and instantiated their framework on linear classifiers. Differential privacy [22] can also
provide probabilistic certificates for trigger-less attacks, but it cannot handle backdoor attacks, and its
certificates are ineffective. Levine and Feizi [19] proposed a deterministic partition aggregation (DPA)
to defend against general trigger-less attacks by partitioning the training dataset using a secret hash
function. Wang et al. [38] further improved DPA by introducing a spread stage.

Other certified approaches construct effective certificates but are not model-agnostic. Jia et al. [14]
provided deterministic certificates only for nearest neighborhood classifiers (kNN/rNN), but for
both trigger-less and backdoor attacks. Meyer et al. [23], Drews et al. [7] provided deterministic
certificates only for decision trees but against general trigger-less attacks.

3 Problem Definition

We take a holistic view of training and inference as a single deterministic algorithm A. Given a
dataset D = {(x1, y1), . . . , (xn, yn)} and a (test) input x, we write A(D,x) to denote the prediction
of algorithm A on the input x after being trained on dataset D.

We are interested in certifying that the algorithm will still behave “well” after training on a tampered
dataset. Before describing what “well” means, to define our problem we need to assume a perturbation
space—i.e., what possible changes the attacker could make to the dataset. Given a pair (x, y), we
write π(x, y) to denote the set of perturbed examples that an attacker can transform the example
(x, y) into. Given a dataset D and a radius r ≥ 0, we define the perturbation space as the set of

2

datasets that can be obtained by modifying up to r examples in D using the perturbation π:

Sπr (D) =

{
{(x̃i, ỹi)}i

∣∣∣∣ ∀i. (x̃i, ỹi) ∈ π(xi, yi),

n∑
i=1

1(x̃i,ỹi)6=(xi,yi) ≤ r

}

Threat models. We consider two attacks: one where an attacker can perturb only the training set (a
trigger-less attack) and one where the attacker can perturb both the training set and the test input (a
backdoor attack). We assume a backdoor attack scenario where test input perturbation is the same
as training one. If these two perturbation spaces can perturb examples differently, we can always
over-approximate them by their union. In the following definitions, we assume that we are given a
perturbation space π, a radius r ≥ 0, and a benign training dataset D and test input x.

We say that algorithm A is robust to a trigger-less attack on the test input x if A yields the same
prediction on the input x when trained on any perturbed dataset D̃ and the benign datasetD. Formally,

∀D̃ ∈ Sπr (D). A(D̃,x) = A(D,x) (1)

We say that algorithm A is robust to a backdoor attack on the test input x if the algorithm trained
on any perturbed dataset D̃ produces the prediction A(D,x) on any perturbed input x̃. Let π(x, y)1

denote the projection of the perturbation space π(x, y) onto the feature space (the attack can only
backdoor features of the test input). Robustness to a backdoor attack is defined as

∀D̃ ∈ Sπr (D), x̃ ∈ π(x, y)1. A(D̃, x̃) = A(D,x) (2)

Given a large enough radius r, an attacker can always change enough examples and succeed at
breaking robustness for either kind of attack. Therefore, we will focus on computing the maximal
radius r, for which we can prove that Eq 1 and 2 hold for a given perturbation function π. We refer to
this quantity as the certified radius. It is infeasible to prove Eq 1 and 2 by enumerating all possible D̃
because Sπr (D) can be ridiculously large, e.g., |Sπr (D)| > 1030 when |D| = 1000 and r = 10.

Defining the perturbation function. We have not yet specified the perturbation function π, i.e., how
the attacker can modify examples. In this paper, we focus on the following perturbation spaces.

Given a bound s ≥ 0, a feature-and-label-flipping perturbation, FLs, allows the attacker to modify
the values of up to s features and the label in an example (x, y), where x ∈ [K]d (i.e., x is a
d-dimensional feature vector with each dimension having {0, 1, . . . ,K} categories). Formally,

FLs(x, y) = {(x̃, y′) | ‖x− x̃‖0 + 1y 6=y′ ≤ s},

There are two special cases of FLs, a feature-flipping perturbation Fs and a label-flipping pertur-
bation L. Given a bound s ≥ 0, Fs allows the attacker to modify the values of up to s features in the
input x but not the label. L only allows the attacker to modify the label of a training example. Note
that L cannot modify the test input’s features, so it can only be used in trigger-less attacks.
Example 3.1. If D is a binary-classification image dataset, where each pixel is either black or white,
then the perturbation function F1 assumes the attacker can modify up to one pixel per image.

The goal of this paper is to design a certifiable algorithm that can defend against trigger-less and
backdoor attacks (Section 4) by computing the certified radius (Sections 5 and 6). Given a benign
dataset D, our algorithm certifies that an attacker can perturb D by some amount (the certified radius)
without changing the prediction. Symmetrically, if we suspect that D is poisoned, our algorithm
certifies that even if an attacker had not poisoned D by up to the certified radius, the prediction would
have been the same. The two views are equivalent, and we use the former in the paper.

4 BagFlip: Dual-Measure Randomized Smoothing

Our approach, which we call BagFlip, is a model-agnostic certification technique. Given a learning
algorithm A, we want to automatically construct a new learning algorithm Ā with certified poisoning-
robustness guarantees (Eqs. (1) and (2)). To do so, we adopt and extend the framework of randomized
smoothing. Initially used for test-time robustness, randomized smoothing robustifies a function f by
carefully constructing a noisy version f̄ and theoretically analyzing the guarantees of f̄ .

3

Our approach, BagFlip, constructs a noisy algorithm Ā by randomly perturbing the training set and
the test input and invoking A on the result. Formally, if we have a set of output labels C, we define
the smoothed learning algorithm Ā as follows:

Ā(D,x) , argmax
y∈C

Pr
Ḋ,ẋ∼µ(D,x)

(A(Ḋ, ẋ) = y), (3)

where µ is a carefully designed probability distribution—the smoothing distribution—over the training
set and the test input (Ḋ, ẋ are a sampled dataset and a test input from the smoothing distribution).

We present two key contributions that enable BagFlip to efficiently certify robustness up to large
poisoning radii. First, we define a smoothing distribution µ that combines bagging [15] of the training
set D, and noising [35] of the training set and the test input x (done by randomly flipping features
and labels). This combination, described below, allows us to defend against trigger-less and backdoor
attacks. However, this combination also makes it challenging to compute the certified radius due to
the combinatorial explosion of the sample space. Our second contribution is a partition strategy for
the Neyman–Pearson lemma that results in an efficient certification algorithm (Section 5), as well as
a relaxation of the Neyman–Pearson lemma that further speeds up certification (Section 6).

Smoothing distribution. We describe the smoothing distribution µ that defends against feature and
label flipping. Given a dataset D = {(xi, yi)} and a test input x, sampling from µ(D,x) generates a
random dataset and test input in the following way: (1) Uniformly select k examples from D with
replacement and record their indices as w1, . . . , wk. (2) Modify each selected example (xwi , ywi)
and the test input x to (x′wi , y

′
wi) and x′, respectively, as follows: For each feature, with probability

1− ρ, uniformly change its value to one of the other categories in {0, . . . ,K}. Randomly modify
labels ywi in the same way. In other words, each feature will be flipped to another value from the
domain with probability γ , 1−ρ

K , where ρ ∈ [0, 1] is the parameter controlling the noise level.

For Fs (resp. L), we simply do not modify the labels (resp. features) of the k selected examples.
Example 4.1. Suppose we defend against F1 in a trigger-less setting, then the distribution µ will not
modify labels or the test input. Let ρ = 4

5 , k = 1. Following Example 3.1, let the binary-classification
image dataset D = {(x1, y1), (x2, y2)}, where each image contains only one pixel. Then, one
possible element of µ(D,x) can be the pair ({(x′2, y2)},x), where x′2 = x2. The probability of this
element is 1

2 × ρ = 0.4 because we uniformly select one out of two examples and do not flip any
feature, that is, the single feature retains its original value.

5 A Precise Approach to Computing the Certified Radius

In this section, we show how to compute the certified radius of the smoothed algorithm Ā given a
dataset D, a test input x, and a perturbation function π. We focus on binary classification and provide
the multi-class case in Appendix B.

Suppose that we have computed the prediction y∗ = Ā(D,x). We want to show how many examples
we can perturb in D to obtain any other D̃ so the prediction remains y∗. Specifically, we want to find
the largest possible radius r such that

∀D̃ ∈ Sπr (D), x̃ ∈ π(x, y)1. Pr
Ḋ,ẋ∼µ(D̃,x̃)

(A(Ḋ, ẋ) = y∗) > 0.5 (4)

We first show how to certify that Eq 4 holds for a given r and then rely on binary search to compute
the largest r, i.e., the certified radius.1 In Section 5.1, we present the Neyman–Pearson lemma to
certify Eq 4 as it is a common practice in randomized smoothing. In Section 5.2, we show how to
compute the certified radius for the distribution µ and the perturbation functions Fs, FLs, and L.

5.1 The Neyman–Pearson Lemma

Hereinafter, we simplify the notation and use o to denote the pair (Ḋ, ẋ) and A(o) to denote the
prediction of the algorithm training and evaluating on o. We further simplify the distribution µ(D,x)

1It is difficult to get a closed-form solution of the certified radius (as done in [15, 39]) in our setting because
the distribution of BagFlip is complicated. We rely on binary search as it is also done in Wang et al. [35], Lee
et al. [18]. Appendix D shows a loose closed-form bound on the certified radius by KL-divergence [8].

4

as µ and the distribution µ(D̃, x̃) as µ̃. We define the performance of the smoothed algorithm Ā on
dataset D, i.e., the probability of predicting y∗, as p∗ = Pro∼µ(A(o) = y∗).

The challenge of certifying Eq 4 is that we cannot directly estimate the performance of the smoothed
algorithm on the perturbed data, i.e., Pro∼µ̃(A(o) = y∗), because µ̃ is universally quantified. To
address this problem, we use the Neyman–Pearson lemma to find a lower bound lb for Pro∼µ̃(A(o) =

y∗). We do so by constructing a worst-case algorithm Ā? and distribution µ̃. Note that we add the
superscript ? to denote a worst-case algorithm. Specifically, we minimize Pro∼µ̃(A?(o) = y∗) while
maintaining the algorithm’s performance on µ, i.e., keeping Pro∼µ(A?(o) = y∗) = p∗. We use A to
denote the set of all possible algorithms. We formalize the computation of the lower bound lb as the
following constrained minimization objective:

lb , min
Ā?∈A

Pr
o∼µ̃

(A?(o) = y∗) s.t. Pr
o∼µ

(A?(o) = y∗) = p∗ and D̃ ∈ Sπr (D), x̃ ∈ π(x, y)1 (5)

It is easy to see that lb is the lower bound of Pro∼µ̃(A(o) = y∗) in Eq. 4 because Ā ∈ A and Ā
satisfies the minimization constraint. Thus, lb > 0.5 implies the correctness of Eq. 4.

We show how to construct Ā? and µ̃ greedily. For each outcome o = (Ḋ, ẋ) in the sample space
Ω—i.e., the set of all possible sampled datasets and test inputs—we define the likelihood ratio of o as
η(o) = pµ(o)/pµ̃(o), where pµ and pµ̃ are the PMFs of µ and µ̃, respectively.

The key idea is as follows: We partition Ω into finitely many disjoint subspaces L1, . . . ,Lm such
that the likelihood ratio in each subspace Li is some constant ηi ∈ [0,∞], i.e., ∀o ∈ Li.η(o) = ηi.
We can sort and reorder the subspaces by likelihood ratios such that η1 ≥ . . . ≥ ηm. We denote the
probability mass of µ on subspace Li as pµ(Li).

Example 5.1. Suppose pµ(o1)= 4
10 , pµ̃(o1)= 4

10 , pµ(o2)= 1
10 , pµ̃(o2)= 1

10 , pµ(o3)= 4
10 , pµ̃(o3)= 1

10 ,
pµ(o4)= 1

10 , pµ̃(o4)= 4
10 . We can partition o1 and o2 into one subspace L because η(o1)=η(o2)=1.

The construction of the Ā? that minimizes Eq. 5 is a greedy process, which iteratively assigns
A?(o) = y∗ for L1,L2, . . . until the budget p∗ is met. The worst-case µ̃ can also be constructed
greedily by maximizing the top-most likelihood ratios, and we can prove that the worst-case happens
when the difference between µ and µ̃ is maximized, i.e., D̃ and x̃ are maximally perturbed. The
following theorem adapts the Neyman–Pearson lemma to our setting.

Theorem 5.1 (Neyman–Pearson Lemma for FLs, Fs, L). Let D̃ and x̃ be a maximally perturbed
dataset and test input, i.e., |D̃ \ D| = r, ‖x̃ − x‖0 = s, and ‖x̃i − xi‖0 + 1ỹi 6=yi = s, for
each perturbed example (x̃i, ỹi) in D̃. Let ilb , argmini∈[1,m]

∑i
j=1 pµ(Lj) ≥ p∗. Then, lb =∑ilb−1

j=1 pµ̃(Lj) +
(
p∗ −

∑ilb−1
j=1 pµ(Lj)

)
/ηilb .

We say that lb is tight due to the existence of the minimizer Ā? and µ̃ (see Appendix B).

Example 5.2. Following Example 5.1, suppose Ω = {o1, . . . , o4} and we partition it into L1 =
{o3},L2 = {o1, o2}, L3 = {o4}, and η1 = 4, η2 = 1, η3 = 0.25. Let p∗ = 0.95, then we have
ilb = 3 and lb = 0.1 + 0.5 + (0.95− 0.4− 0.5)/0.25 = 0.8.

5.2 Computing the Certified Radius of BagFlip

Computing the certified radius boils down to computing lb in Eq 5 using Theorem 5.1. To compute
lb for BagFlip, we address the following two challenges: 1) The argmin of computing ilb and the
summation of lb in Theorem 5.1 depend on the number of subspaces Lj’s. We design a partition
strategy that partitions Ω into a polynomial number of subspaces (O(k2d)). Recall that k is the size
of the bag sampled from D and d is the number of features. 2) In Theorem 5.1, lb depends on pµ(Lj),
which according to its definition (Eq 8) can be computed in exponential time (O(kd2k)). We propose
an efficient algorithm that computes these two quantities in polynomial time (O(d3 + k2d2)).

We first show how to address these challenges for Fs and then show how to handle FLs and L.

Partition strategy. We partition the large sample space Ω into disjoint subspaces Lc,t that depend
on c, the number of perturbed examples in the sampled dataset, and t, the number of features the
clean data and the perturbed data differ on with respect to the sampled data. Intuitively, c takes care

5

of the bagging distribution and t takes care of the feature-flipping distribution. Formally,

Lc,t = {({(x′wi , ywi)}i,x
′) |

k∑
i=1

1xwi 6=x̃wi
= c, (6)(

k∑
i=1

‖x′wi − xwi‖0 + ‖x′ − x‖0

)
︸ ︷︷ ︸

∆

−

(
k∑
i=1

‖x′wi − x̃wi‖0 + ‖x′ − x̃‖0

)
︸ ︷︷ ︸

∆̃

= t} (7)

Eq 6 means that there are c perturbed indices sampled in o. ∆ (and ∆̃) in Eq 7 counts how many
features the sampled and the clean data (the perturbed data) differ on. The number of possible
subspaces Lc,t, which are disjoint by definition, is O(k2d) because 0 ≤ c ≤ k and |t| ≤ (k + 1)d.

The next theorems show how to compute the likelihood ratio of Lc,t and pµ(Lc,t).
Theorem 5.2 (Compute ηc,t). ηc,t = pµ(Lc,t)/pµ̃(Lc,t) = (γ/ρ)t, where γ and ρ are parameters
controlling the noise level in BagFlip’s smoothing distribution µ.
Theorem 5.3 (Compute pµ(Lc,t)).

pµ(Lc,t) = Pr
o∼µ

(o satisfies Eq 6) Pr
o∼µ

(o satisfies Eq 7 | o satisfies Eq 6),

where Pro∼µ(o satisfies Eq 6) = Binom(c; k, rn) is the PMF of the binomial distribution and

T (c, t) , Pr
o∼µ

(o satisfies Eq 7 | o satisfies Eq 6) =
∑

0≤∆i,∆̃i≤d,∀i∈[0,d]

∆0−∆̃0+...+∆c−∆̃c=t

c∏
i=0

L(∆i, ∆̃i; s, d)γ∆iρd−∆i ,

(8)

where L(∆, ∆̃; s, d) is the same quantity defined in Lee et al. [18].
Remark 5.1. We can compute pµ̃(Lc,t) as ηc,tpµ(Lc,t) by the definition of ηc,t.

Efficient algorithm to compute Eq 8. The following algorithm computes T (c, t) efficiently in
time O(d3 + k2d2): 1) Computing L(u, v; s, d) takes O(d3) (see Appendix C for details). 2)
Computing T (0, t) by the definition in Eq 8 takes O(kd2). 3) Computing T (c, t) for c ≥ 1 by the
following equation takes O(k2d2).

T (c, t) =

min(d,t+cd)∑
t1=max(−d,t−cd)

T (c− 1, t− t1)T (0, t1) (9)

Theorem 5.4 (Correctness of the Algorithm). T (c, t) in Eq 9 is the same as the one in Eq 8.

The above computation still applies to perturbation function FLs and L. Intuitively, flipping the label
can be seen as flipping another dimension in the input features (Details in Appendix B.1).

Practical perspective. For each test input x, we need to estimate p∗ for the smoothed algorithm Ā
given the benign dataset D. We use Monte Carlo sampling to compute p∗ by the Clopper-Pearson
interval. We also reuse the trained algorithms for each test input in the test set by using Bonferroni
correction. We memoize the certified radius by enumerating all possible p∗ beforehand so that
checking Eq 4 can be done in constant time in an online scenario (details in Appendix B.2). We
cannot use floating point numbers because some intermediate values are too small to store in the
floating point number format. Instead, we use rational numbers which represent the nominator and
denominator in large numbers.

6 An Efficient Relaxation for Computing a Certified Radius

Theorem 5.1 requires computing the likelihood ratio of a large number of subspaces L1, . . . ,Lm.
We propose a generalization of the Neyman–Pearson lemma that underapproximates the subspaces
by a small subset and computes a lower bound lbδ for lb. We then show how to choose a subset of
subspaces that yields a tight underapproximation.

6

A relaxation of the Neyman–Pearson lemma. The key idea is to use Theorem 5.1 to examine only
a subset of the subspaces {Li}i. Suppose that we partition the subspaces {Li}i into two sets {Li}i∈B
and {Li}i 6∈B , using a set of indices B. We define a new lower bound lbδ by applying Theorem 5.1 to
the first group {Li}i∈B and underapproximating p∗ in Theorem 5.1 as p∗−

∑
i/∈B pµ(Li). Intuitively,

the underapproximation ensures that any subspace in {Li}i 6∈B will not contribute to the lower bound,
even though these subspaces may have contributed to the precise lb computed by Theorem 5.1.

The next theorem shows that lbδ will be smaller than lb by an error term δ that is a function of the
partition B. The gain is in the number of subspaces we have to consider, which is now |B|.
Theorem 6.1 (Relaxation of the Lemma). Define lb for the subspaces L1, . . . ,Lm as in Theorem 5.1.
Define lbδ for {Li}i∈B as in Theorem 5.1 by underapproximating p∗ as p∗ −

∑
i/∈B pµ(Li), then we

have Soundness: lbδ ≤ lb and δ-Tightness: Let δ ,
∑
i/∈B pµ̃(Li), then lbδ + δ ≥ lb.

Example 6.1. Consider L1,L2, and L3 from Example 5.2. If we set B = {1, 2} and underapproxi-
mate p∗ as p∗ − pµ(L3) = 0.85, then we have lbδ = 0.1 + (0.85− 0.4)/1 = 0.55, which can still
certify Eq. 4. However, lbδ is not close to the original lb = 0.8 because the error δ = 0.4 is large in
this example. Next, we will show how to choose B as small as possible while still keeping δ small.

Speeding up radius computation. The total time for computing lb consists of two parts, (1) the
efficient algorithm (Eq 9) computes T (c, t) in O(d3 + k2d2), and (2) Theorem 5.1 takes O(k2d)
for a given p∗ because there are O(k2d) subspaces. Even though we have made the computation
polynomial by the above two techniques in Section 5.2, it can still be slow for large bag sizes k,
which can easily be in hundreds or thousands.

We will apply Theorem 6.1 to replace the bag size k with a small constant κ. Observe that pµ(Lc,t)
and pµ̃(Lc,t), as defined in Section 5.2, are negligible for large c, i.e., the number of perturbed indices
in the smoothed dataset. Intuitively, if only a small portion of the training set is perturbed, it is unlikely
that we select a large number of perturbed indices in the smoothed dataset. We underapproximate the
full subspaces to {Lc,t}(c,t)∈B by choosing the set of indices B = {(c, t) | c ≤ κ, |t| ≤ (c+ 1)d},
where κ is a constant controlling the error δ, which can be computed as δ =

∑
i/∈B pµ̃(Li) =

1−
∑κ
c=0 Binom(c; k, rn). Theorem 6.1 reduces the number of subspaces to |B| = O(κ2d). As a

result, all the k appearing in previous time complexity can be replaced with κ.
Example 6.2. Suppose k = 150 and r

n = 0.5%, choosing κ = 6 leads to δ = 1.23× 10−5. In other
words, it speeds up almost 625X for computing T (c, t) and for applying Theorem 5.1.

7 Experiments

The implementation of BagFlip is publicly available2. In this section, we evaluate BagFlip against
trigger-less and backdoor attacks and compare BagFlip with existing work. Note that we apply the
relaxation in Section 6 to BagFlip in all experiments and set δ = 10−4.

Datasets. We conduct experiments on MNIST, CIFAR10, EMBER [2], and Contagio (http://co
ntagiodump.blogspot.com). MNIST and CIFAR10 are datasets for image classification. EMBER
and Contagio are datasets for malware detection, where data poisoning can lead to disastrous security
consequences. To align with existing work, we select subsets of MNIST and CIFAR10 as MNIST-17,
MNIST-01, and CIFAR10-02 in some experiments, e.g., MNIST-17 is a subset of MNIST with classes
1 and 7. We discretize all the features when applying BagFlip. We use clean datasets except in the
comparison with RAB [39], where we follow their experimental setup and use backdoored datasets
generated by BadNets [12]. A detailed description of the datasets is in Appendix E.1.

Models. We train neural networks for MNIST, CIFAR10, EMBER and random forests for Contagio.
Unless we specifically mention the difference in some experiments, whenever we compare BagFlip to
an existing work, we will use the same network structures, hyper-parameters, and data augmentation
as the compared work, and we train N = 1000 models and set the confidence level as 0.999 for each
configuration. All the configurations we used can be found in the implementation.

Metrics. For each test input (xi, yi), algorithm Ā will predict a label and the certified radius ri.
Assuming that the attacker had poisoned R% of the examples in the training set, we define certified
accuracy as the percentage of test inputs that are correctly classified and their certified radii are no

2https://github.com/ForeverZyh/defend_framework

7

http://contagiodump.blogspot.com
http://contagiodump.blogspot.com
https://github.com/ForeverZyh/defend_framework

0 1 2
0

20

40

60

80

100

Poisoning AmountR (%)

C
er

tifi
ab

le
A

cc
ur

ac
y

0 0.2 0.4 0.6 0 0.1 0.2 0.3 0 0.1 0.2

Bagging
BagFlip-a

BagFlip-b

(a) MNIST F1

(b) MNIST F∞

(c) EMBER F1

(d) EMBER F∞

Figure 1: Comparison to Bagging on MNIST and EMBER, showing the certified accuracy at different
poisoning amounts R. For MNIST: a = 0.9 and b = 0.8. For EMBER: a = 0.95 and b = 0.9.

Table 1: Certified accuracy on MNIST and EMBER with perturbations F1 and F∞. Note that the
certified accuracies are the same poisoning amount R = 0 because we reuse the trained models.

F1 F∞

M
N

IS
T R 0 0.5 1.0 1.5 2.0 2.5 0 0.13 0.27 0.40 0.53 0.83

Bagging 94.54 66.84 0 0 0 0 94.54 90.83 85.45 77.61 61.46 0
Bagging-0.9 93.58 71.11 0 0 0 0 93.58 89.80 84.92 78.60 68.11 0
BagFlip-0.9 93.62 75.95 27.73 4.02 0 0 93.62 89.45 83.62 74.19 56.65 0
BagFlip-0.8 90.72 73.94 46.20 33.39 24.23 5.07 90.72 84.11 74.50 60.56 39.21 0

E
M

B
E

R R 0 0.07 0.13 0.20 0.27 0.33 0 0.05 0.10 0.15 0.20 0.25

Bagging 82.65 75.11 66.01 0 0 0 82.65 76.30 72.94 61.78 0 0
Bagging-0.95 79.06 75.32 70.19 14.74 0 0 79.06 76.23 73.50 68.45 14.74 0
BagFlip-0.95 79.17 75.93 69.30 57.36 0 0 79.17 76.83 72.41 62.04 30.36 0
BagFlip-0.9 78.18 69.40 62.11 41.21 13.89 1.70 78.18 70.79 63.16 41.24 11.64 0

less than R, i.e.,
∑m
i=1 1Ā(D,xi)=yi∧

ri
n ≥R%. We define normal accuracy as the percentage of test

inputs that are correctly classified, i.e.,
∑m
i=1 1Ā(D,xi)=yi .

7.1 Defending Against Trigger-less Attacks

Two model-agnostic certified approaches, Bagging [15] and LabelFlip [28], can defend against
trigger-less attacks. BagFlip outperforms LabelFlip (comparison in Appendix E.2). We evaluate
BagFlip on the perturbation Fs using MNIST, CIFAR10, EMBER, and Contagio and compare BagFlip
to Bagging. We provide comparisons with Bagging on other perturbation spaces in Appendix E.2.

We present BagFlip with different noise levels (different probabilities of ρ when flipping), denoted as
BagFlip-ρ. When comparing to Bagging, we use the same k, the size of sampled datasets, for a fair
comparison. Furthermore, we tune the parameter k in Bagging to match the normal accuracy with the
BagFlip-ρ setting, and denote this setting as Bagging-ρ. Concretely, we set k = 100, 1000, 300, 30
for MNIST, CIFAR10, EMBER, and Contagio respectively when comparing to Bagging. We tune
k = 80, 280 for Bagging-0.9 on MNIST and Bagging-0.95 on EMBER, respectively. And we set
k = 50 for MNIST when comparing to LabelFlip.

Comparison to Bagging. Bagging on a discrete dataset is a special case of BagFlip when ρ = 1,
i.e., no noise is added to the dataset. (We present the results of bagging on the original dataset
(undiscretized) in Appendix E.2). Table 1 and Fig 1 show the results of BagFlip and Bagging on
perturbations F1 and F∞ over MNIST and EMBER. The results of CIFAR10 and Contagio are similar
and shown in Appendix E.2. F1 only allows the attacker to modify one feature in each training
example, and F∞ allows the attacker to modify each training example arbitrarily without constraint.
For F1 on MNIST, BagFlip-0.9 performs better than Bagging after R = 0.19 and BagFlip-0.8 still
retains non-zero certified accuracy at R = 2.5 while Bagging’s certified accuracy drops to zero after
R = 0.66. We observe similar results on EMBER for F1 in Table 1, except R = 0.13 when compared
to Bagging-0.95. We argue that it is possible to tune a best combination of k and ρ for BagFlip, like
we tune k for Bagging-0.95, and achieve a better result while maintaining similar normal accuracy.
However, we do not conduct hyperparameter-tuning for BagFlip because of its computation cost.
BagFlip achieves higher certified accuracy than Bagging when the poisoning amount is large
for F1.

For F∞ on MNIST, Bagging performs better than BagFlip across all R because the noise added by
BagFlip to the training set hurts the accuracy. However, we find that the noise added by BagFlip helps

8

0 1 2

20

40

60

80

100

Poisoning AmountR (%)

C
er

tifi
ab

le
A

cc
ur

ac
y Bagging

F1
F2
F4
F8

F∞

0 1

20

40

60

80

100

Poisoning AmountR (%)

C
er

tifi
ab

le
A

cc
ur

ac
y

0 1 2

Figure 2: (a) BagFlip-0.8 on MNIST against Fs with different s. s = 8 almost overlaps with s =∞.
(b) BagFlip-0.8 on MNIST and BagFlip-0.9 on Contagio against backdoor attack with F1. Dashed
lines show normal accuracy.

it perform better for F∞ on EMBER. Specifically, BagFlip achieves similar certified accuracy as
Bagging at small radii and BagFlip performs better than Bagging after R = 0.15. Bagging achieves
higher certified accuracy than BagFlip for F∞. Except in EMBER, BagFlip achieves higher
certified accuracy than Bagging when the amount of poisoning is large.

We also study the effect of different s in the perturbation function Fs. Figure 2(a) shows the result
of BagFlip-0.8 on MNIST. BagFlip has the highest certified accuracy for F1. As s increases, the
result monotonically converges to the curve of BagFlip-0.8 in Figure 1(b). Bagging neglects the
perturbation function and performs the same across all s. Bagging performs better than BagFlip-0.8
when s ≥ 8. Other results for different datasets and different noise levels follow a similar trend
(see Appendix E.2). BagFlip performs best at F1 and monotonically degenerates to F∞ as s
increases.

7.2 Defending Against Backdoor Attacks

Two model-agnostic certified approaches, FeatFlip [35] and RAB [39], can defend against backdoor
attacks. We compare BagFlip to FeatFlip on MNIST-17 perturbed using FL1, and compare BagFlip to
RAB on poisoned MNIST-01 and CIFAR10-02 (by BadNets [12]) perturbed using F1. We further
evaluate BagFlip on the perturbation F1 using MNIST and Contagio, on which existing work is unable
to compute a meaningful certified radius.

Table 2: Compared to FeatFlip on FL1 and RAB F1

with normal accuracy (Acc.) and certified accuracy
at different poisoning amount R (CF@R).

M
N

IS
T-

17

Acc. CF@0 CF@0.5 CF@1.0

FeatFlip 98 36 0 0
BagFlip-0.95 97 81 60 0
BagFlip-0.9 97 72 46 4

M
N

IS
T-

01

Acc. CF@0 CF@1.5 CF@3.0

RAB 100.0 74.4 0 0
BagFlip-0.8 99.6 98.4 96.5 84.6
BagFlip-0.7 99.5 98.0 95.8 91.9

C
IF

A
R

10
-0

2 Acc. CF@0 CF@0.1 CF@0.2

RAB 73.3 0 0 0
BagFlip-0.8 73.1 16.8 11.0 6.8
BagFlip-0.7 71.7 41.0 34.6 29.2

Comparison to FeatFlip. FeatFlip scales
poorly compared to BagFlip because its com-
putation of the certified radius is polynomial in
the size of the training set. BagFlip’s compu-
tation is polynomial in the size of the bag in-
stead of the size of the whole training set, and it
uses a relaxation of the Neyman–Pearson lemma
for further speed up. BagFlip is more scalable
than FeatFlip.

We directly cite FeatFlip’s results from Wang
et al. [35] and note that FeatFlip is evaluated
on a subset of MNIST-17. As shown in Ta-
ble 2, BagFlip achieves similar normal accu-
racy, but much higher certified accuracy across
all R (see full results in Appendix E.2) than
FeatFlip. BagFlip significantly outperforms
FeatFlip against FL1 on MNIST-17.

Comparison to RAB. RAB assumes a perturbation function that perturbs the input within an l2-
norm ball of radius s. We compare BagFlip to RAB on F1, where the l0-norm ball (our perturbation
function) and l2-norm ball are the same because the feature values are within [0, 1]. Since RAB targets
single-test-input prediction, we do not use Bonferroni correction for BagFlip as a fair comparison. We
directly cite RAB’s results from Weber et al. [39]. Table 2 shows that on MNIST-01 and CIFAR10-02,
BagFlip achieves similar normal accuracy, but a much higher certified accuracy than RAB for all
values of R (detailed figures in Appendix E.2). BagFlip significantly outperforms RAB against
F1 on MNIST-01 and CIFAR10-02.

9

Results on MNIST and Contagio. Figure 2(b) shows the results of BagFlip on MNIST and
Contagio. When fixing R, the certified accuracy for the backdoor attack is much smaller than
the certified accuracy for the trigger-less attack (Figure 1 and Figure 3 in Appendix E.2) because
backdoor attacks are strictly stronger than trigger-less attacks. BagFlip cannot provide effective
certificates for backdoor attacks on the more complex datasets CIFAR10 and EMBER, i.e., the
certified radius is almost zero. BagFlip can provide certificates against backdoor attacks on
MNIST and Contagio, while BagFlip’s certificates are not effective for CIFAR10 and EMBER.

7.3 Computation Cost Analysis

We discuss the computation cost of BagFlip on the MNIST dataset and compare to other baselines.

Training. The cost of BagFlip during training is similar to all the baselines because BagFlip only
adds noise in the training data. BagFlip and other baselines take about 16 hours on a single GPU to
train N = 1000 classifiers on the MNIST dataset.

Inference. At inference time, BagFlip first evaluates the predictions of N classifiers, and counts how
many classifiers have the majority label (N1) and how many have the runner-up label (N2). Then,
BagFlip uses a prepared lookup table to query the radius certified by N1 and N2. The inference time
for each example contains the evaluation of N classifiers and an O(1) table lookup. Hence, there is
no difference between BagFlip and other baselines.

Preparation. BagFlip needs to prepare a table of size O(N2) to perform efficient lookup at inference
time. The time complexity of preparing each table entry is presented in Sections 5 and 6. On the
MNIST dataset, BagFlip with the relaxation proposed in Section 6 (δ = 10−4) needs 2 hours to
prepare the lookup table on a single core. However, the precise BagFlip proposed in Section 5 needs
85 hours to prepare the lookup table. Bagging also uses a lookup table that can be built in 16 seconds
on MNIST (Bagging only needs to do a binary search for each entry). FeatFlip needs approximately
8000 TB of memory to compute its table. Thus, FeatFlip is infeasible to run on the full MNIST
dataset. FeatFlip is only evaluated on a subset of the MNIST-17 dataset containing only 100 training
examples. RAB does not need to compute the lookup table because it has a closed-form solution for
computing the certified radius.

BagFlip has similar training and inference time compared to other baselines. The relaxation
technique in Section 6 is useful to reduce the preparation time from 85 hours to 2 hours. Even
with the relaxation, BagFlip needs more preparation time than Bagging and RAB. We argue that the
preparation of BagFlip is feasible because it only takes 12.5% of the time required by training.

8 Conclusion, Limitations, and Future Work

We presented BagFlip, a certified probabilistic approach that can effectively defend against both
trigger-less and backdoor attacks. We foresee many future improvements to BagFlip. First, BagFlip
treats both the data and the underlying machine learning models as closed boxes. Assuming a specific
data distribution and training algorithm can further improve the computed certified radius. Second,
BagFlip uniformly flips the features and the label, while it is desirable to adjust the noise levels for
the label and important features for better normal accuracy according to the distribution of the data.
Third, while probabilistic approaches need to retrain thousands of models after a fixed number of
predictions, the deterministic approaches can reuse models for every prediction. Thus, it is interesting
to develop a deterministic model-agnostic approach that can defend against both trigger-less and
backdoor attacks.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and Anna P. Meyer for their thoughtful and generous comments
and Gurindar S. Sohi for giving us access to his GPUs. This work is supported by the CCF-1750965,
CCF-1918211, CCF-1652140, CCF-2106707, CCF-1652140, a Microsoft Faculty Fellowship, and
gifts and awards from Facebook and Amazon.

10

