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ABSTRACT

The development of hyperparameter optimization (HPO) algorithms constitutes
a key concern within the machine learning domain. While numerous strategies
employing early stopping mechanisms have been proposed to bolster HPO effi-
ciency, there remains a notable deficiency in understanding how the selection of
early stopping criteria influences the reliability of early stopping decisions and,
by extension, the broader outcomes of HPO endeavors. This paper undertakes a
systematic exploration of the impact of metric selection on the effectiveness of early
stopping-based HPO. Specifically, we introduce a set of metrics that incorporate
uncertainty and highlight their practical significance in enhancing the reliability of
early stopping decisions. Through a series of empirical experiments conducted on
HPO and NAS benchmarks, we substantiate the critical role of metric selection,
while shedding light on the potential implications of integrating uncertainty as a
criterion. This research furnishes empirical insights that serve as a compass for
the selection and formulation of criteria, thereby contributing to a more profound
comprehension of mechanisms underpinning early stopping-based HPO.

1 INTRODUCTION

Hyperparameter Optimization (HPO) plays an important role in machine learning (ML) (Bischl et al.,
2023; Yang & Shami, 2020; Feurer & Hutter, 2019). The selection of hyperparameters, such as
learning rate, batch size, and network architecture, is essential for models’ performance. HPO is
time-consuming as it typically involves the trainings of many candidate ML models with different
hyperparameters (Wu et al., 2019; Turner et al., 2021). Early stopping is a method commonly used
in HPO to make HPO fit into an acceptable time budget (Akiba et al., 2019; Nguyen et al., 2020;
Makarova et al., 2022). It achieves that by halting the trainings of certain candidate models before
their convergence if they are considered not promising by some early stopping metrics. In an HPO
scheme (e.g., Hyperband (Li et al., 2017)), early stopping is often applied repeatedly throughout
the HPO process such that more unpromising models are terminated as the process goes. These
methods, also known as multi-fidelity optimization algorithms, introduce varying levels of resources
or computational costs into the optimization process (Falkner et al., 2018; Awad et al., 2021; Swersky
et al., 2013; Wu et al., 2020; Takeno et al., 2020). Early stopping is essential for those methods to
strike a good balance between HPO cost and the effectiveness of the final models (Forrester et al.,
2007; Klein et al., 2017; Kandasamy et al., 2017; Li et al., 2017).

While prior studies have explored various early stopping-based HPO algorithms (Eggensperger et al.,
2021; Bansal et al., 2022; Wistuba et al., 2022; Yan et al., 2021; Meng et al., 2021), early stopping
criterion, particularly the performance metrics used therein for model ranking, remains preliminary
understood. Early stopping metrics directly determines what models to keep and what models to
discard. Despite its pivotal role for HPO, no prior studies have systematically explored it. Existing
HPOs have been using either training loss/accuracy or validation loss/accuracy as the early stopping
metric; which one to use is based on the practitioners’ personal preferences, with validation loss
being a more frequent choice.

Some fundamental questions on early stopping metric remain open:

(1) How reliable are the commonly used performance metrics for HPO? How do they compare to
one another?

(2) How to explain the reasons for the different effectiveness of the metrics? More fundamentally,
what are the nature of early stopping and the key factors for its effectiveness?

(3) Besides the commonly considered measures, are there any other measures worth considering
for early stopping metrics? More specifically, ML models have inherent uncertainty. How
would model uncertainty impact early stopping? Would it be worthy to incorporate it into early
stopping metrics for HPO?
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This paper aims to answer these fundamental questions, and advance the principled understanding of
early stopping in HPO. We do that through a three-fold exploration. (i) We first conduct an empirical
study on nine HPO tasks in two widely used HPO benchmarks (Nas-Bench-201 and LCBench) over
nine datasets, and systematically examine the effectiveness of the popular early stopping metrics for
HPO. We use the concept of reliability to assess if a specific performance metric shows statistically
significant superiority over others. (ii) From the data, we distill a set of insights on the relative
effectiveness of the popular early stopping metrics, theoretically analyze the inherent nature of early
stopping, and reveal the reasons for the pros and cons of those metrics. (iii) We further study the
impact of model uncertainty - the variations in model predictions - on early stopping, propose a set of
metrics that integrate model uncertainty, and uncover the potential of incorporating model uncertainty
into early stopping metrics for HPO.

To the best of our knowledge, this work is the first that gives a systematic exploration on early stopping
metric for HPO. By addressing some fundamental open questions, it advances the understanding
of early stopping for HPO, provides novel insights and empirical guidelines for metric design and
selection, and paves the way for further advancing the field of HPO.

In the rest of the paper, we will first report our empirical studies on the effectiveness of the popular
early stopping metrics (Section 2), and then provide our theoretical analysis of early stopping and
the reasons for the observed results (Section 3). We finally report our investigations of the impact
from model uncertainty and some possible ways to incorporate model uncertainty into early stopping
metrics (Section 4).

The main observation of this paper is as follows:

(i) Different metrics may have significantly different impacts on the HPO performance, and training
loss tends to suit complex tasks better than validation loss.
(ii) The risk bound of early stopping can be well formulated, and metrics on large datasets with a
more discerning capability have a lower risk bound.
(iii) Model uncertainty has some important impact on the effectiveness of early stopping.
(iv) Careful combination of model uncertainty with conventional early stopping metrics can yield
significant benefits for HPO, especially when dynamic trends of the training process are considered.

2 EMPIRICAL STUDY ON EARLY STOPPING METRICS FOR HPO

In early stopping-based HPO, performance metrics play a critical role in assessing each configuration’s
capability at a specific fidelity level, informing the early stopping decision for filtering. An effective
metric should consistently reflect a model’s present performance and its potential for improvement.
Despite extensive research on early stopping-based HPO methods, there is a notable absence of
consensus regarding the selection and reliability of metrics for guiding early stopping decisions.
In this section, we address this gap by empirically comparing commonly used metrics to unveil
underlying differences. We start by detailing the experimental setup applied across all experiments
throughout this paper.

2.1 EXPERIMENTAL SETUP

Methodology. We assess the reliability of common metrics within single-objective classification tasks
using Hyperband, BOHB, and Sub-sampling (SS) algorithms. The results on Hyperband, representing
our primary findings, are presented in the main text. Additional details on Hyperband, BOHB, and
SS can be found in Appendix A, and their respective results are elaborated in Appendices B and E.

The early stopping metrics we examine include training accuracy, training loss, validation accuracy,
and validation loss. To validate the reliability of these metrics, we conduct experiments across
various benchmarks, budget constraints (R), and filtering ratios (η) within the Hyperband algorithm,
as described in Appendix A. For each setting, we perform 1000 repetitions with different random
seeds, each including a randomly selected subset of model configurations. We compare the outcomes
of early stopping decisions guided by different metrics, and we employ the Wilcoxon signed-rank
test (Woolson, 2007) to determine the presence of significant differences among the metrics. For
significantly different groups, we quantify the difference between their group means by using
standardized effect size called Cohen’s d (Cohen, 2013), as defined in Eq. A.1. To report results,
we consider indicators such as final performance, performance over time, and performance regret
(defined as the discrepancy between the best-found value and the best-known value) (Eggensperger
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et al., 2021). Additionally, we count the number of wins, ties, and losses of each metric across the
1000 repetitions.

Benchmarks. To ensure the broad applicability of our findings, we undertake comprehensive testing
across two widely recognized benchmarks of varying scales: LCBench (Zimmer et al., 2021) and
Nas-Bench-201 (Dong & Yang, 2020). LCBench comprises six lightweight HPO tasks, drawn from
MLPs trained on established OpenML datasets such as Fashion-MNIST, jasmine, and vehicle. Nas-
Bench-201 encompasses three heavyweight NAS tasks, derived from cell-based architectures trained
on CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets. Details related to these benchmarks are
provided in Appendix A. In subsequent discussions, we utilize the dataset names to represent each
respective benchmark.

2.2 OBSERVED RELIABILITY OF COMMON METRICS

We present in Figure 1 the average test accuracy (top row) achieved using diverse metrics across
various budget constraints, along with the average regret (bottom row) of the remaining model
configurations subsequent to decisions made by different metrics during the HPO progresses. Opposite
to the common inclinations towards the use of validation metrics, in Nas-Bench-201, characterized
by high task complexity, the use of training metrics consistently outperforms the use of validation
metrics across all budget constraints, exhibiting an average difference of 0.72% and a maximum
difference of 6.54% in test accuracy. Conversely, in LCBench, where complexity is lower, validation
metrics tend to outperform training metrics in most scenarios, with an average difference of 0.39%
and a maximum difference of 10.64%. Furthermore, we observe that the disparity between early
stopping decisions made by different metrics increases as model training progresses. In Nas-Bench-
201, training metrics, particularly training loss, exhibit a preference for retaining superior model
configurations. Additionally, we investigate the impact of budget constraints, noting that in LCBench,
exemplified by the jasmine benchmark, higher budget constraints tend to have a detrimental effect on
the efficacy of training metrics.
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Figure 1: Mean accuracy across 1000 repetitions of optimal configurations selected with commonly
used early stopping metrics under diverse budget constraints (upper row). Mean optimal regret-over-
time filtered with commonly used metrics (lower row). “Fraction of budget” denotes the proportion
of allocated budget used during training. See Appendix B.1 for other datasets.

In conjunction with qualitative assessments, we employ a sign test to quantitatively measure the extent
of variability among different metrics. We tally their respective wins, ties, and losses, presenting the
detailed results in Table 1 (comprehensive results are available in Appendix B). Notably, significant
disparities are evident among nearly all pairs of metrics, with training loss demonstrating a higher
likelihood of success in complex tasks, while validation loss prevails in simpler tasks.

Table 1: P-value from a Wilcoxon signed-rank test for the hypothesis that training loss and validation
loss outperform commonly used metrics. We also give the number of wins and losses of each metric
against training loss and validation loss over 1000 repetitions.

CIFAR-10 CIFAR-100 ImageNet-16-120

Against train. loss Train. acc. Valid. loss Valid. acc. Train. acc. Valid. loss Valid. acc. Train. acc. Valid. loss Valid. acc.
P-values 0.04 7.1e−133 5.4e−106 0.17 1.1e−98 2.9e−66 0.18 1.4e−66 1.2e−46

Wins/losses 46/75 156/631 225/447 30/31 120/770 209/403 24/30 146/382 143/338

Fashion-MNIST jasmine vehicle

Against valid. loss Valid. acc. Train. loss Train. acc. Valid. acc. Train. loss Train. acc. Valid. acc. Train. loss Train. acc
P-values 4.7e−22 2.4e−14 3.5e−32 0.99 0.03 0.008 2.1e−4 0.44 2.1e−6

Wins/losses 39/139 76/241 69/315 267/160 164/643 176/604 248/140 54/77 133/231
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We distill these observations into the following insight:

Insight 1: For complex tasks (which take many epochs to converge), training metrics outperform
validation metrics in serving for early stopping in HPO.

3 THE REASONS AND THEORETICAL ANALYSIS

This section examines the reasons for the observed differences in the effectiveness of the common
metrics, and more importantly, reveals the underlying factors and how they influence the effectiveness
of early stopping metrics.

Before delving into a detailed analysis, it is worthwhile to first examine the models’ performance
throughout the training lifecycles. In Figure 2, we present the performance-over-time curves for
validation and training losses on the ImageNet-16-120 and Fashion-MNIST benchmarks. In the
case of the complex ImageNet-16-120 benchmark, the validation loss curve displays considerable
volatility, whereas the training loss follows a smoother and more consistent trajectory. In contrast,
on the lightweight Fashion-MNIST dataset, model configurations converge in only several epochs.
As a result, early stopping decisions guided by training metrics beyond this point may select model
configurations that already overfit. This observation sheds light on the reason why early stopping
decisions based on training metrics tend to yield sub-optimal results on LCBench as budget constraints
become more lenient, contributing to the improved variability in outcomes. Next, we undertake a
theoretical analysis to uncover its underlying causes.
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Figure 2: Evolution of validation and training losses across epochs for 10 random configurations.

We start by analyzing the probability for an early stopping strategy to make a sub-optimal decision
before convergence. Consider an HPO task under a supervised learning scenario where a machine
learning model M is trained on a set of data points DT = {(xi, yi)}ni=1, sampled i.i.d. from some
unknown data distribution U . Let there be K hyperparameter candidates γ1, γ2, . . . , γK ∈ Γ. We
denote the model trained with hyperparameter γ for t epochs as M t

γ and the converged model as M∗
γ .

Given some loss function ℓ(·, ·) ∈ [lb, ub] (lb ≥ 0), the expected risks of models M t
γ and M∗

γ with
respect to U are respectively defined as:

f t(γ) = EU

[
ℓ
(
y,M t

γ(x)
)]

, and f∗(γ) = EU

[
ℓ
(
y,M∗

γ (x)
)]

. (3.1)

The main objective of HPO is to identify hyperparameters γo that minimize the expected risk of
converged models, expressed as: γo = argminγ∈Γ f

∗(γ). However, in practice, the expected risk
cannot be directly computed as U is unknown. Consequently, it relies on the estimation of the
expected risk using a finite set D drawn i.i.d. from the distribution U . Thus, practical HPO centers
around minimizing the empirical estimate:

f̂∗(γ) =
1

|D|
∑

xi,yi∈D

ℓ
(
yi,M

∗
γ (xi)

)
. (3.2)

Proposition 1. Consider an early stopping-based HPO that employs model’s loss function as its
early stopping metric. Let f t and f̂ t denote the expected and empirical losses at any epoch t before
convergence, and let f∗ and f̂∗ denote the expected and empirical losses at the convergence time, as
defined in Eqs. 3.1 and 3.2. Assume that f t(γ) ≥ f∗(γ) and f̂ t(γ) ≥ f̂∗(γ) hold for all γ ∈ Γ. Let
γo = argminγ∈Γ f

∗(γ) be the optimal hyperparameter, and let γso denote a candidate solution with
sub-optimality. Then the probability of making an incorrect early stopping decision at epoch t can be
bounded according to Markov’s inequality:

P
(
f̂ t(γo)− Ef̂ t(γso) ≥ 0

)
≤ Ef̂ t(γo)

Ef̂ t(γso)
=

f t(γo)

f t(γso)
. (3.3)

Based on Hoeffding’s inequality Hoeffding (1994) and the relations between f t(γso) and f t(γo), we
derive tighter bounds (see Appendix C for proof):

P
(
f̂ t(γo)− Ef̂ t(γso) ≥ 0

)
≤ e

−
2|D|

(
ft(γso)−ft(γo)

)2
(ub−lb)2 , if f t(γso) > f t(γo)

P
(
f̂ t(γo)− Ef̂ t(γso) ≥ 0

)
≥ 1− e

−
2|D|

(
ft(γso)−ft(γo)

)2
(ub−lb)2 , if f t(γso) ≤ f t(γo).

(3.4)
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This proposition establishes a theoretical basis for bounding the probability of early stopping decision
errors in terms of both the dataset size |D| and expected loss variance. The larger |D| or (f t(γso)−
f t(γo)

)2
is, the smaller the risk bound is. It suggests preference for metrics that are built on larger

datasets and metrics that lead to larger gaps between models at epoch t. It is intuitive: larger
datasets lead to reduced discrepancies between estimates and expectations, increasing the likelihood
of obtaining precise measurements; metrics that effectively differentiate among various models
are more likely to single out the inferior models. These factors collectively explain why, in the
context of Nas-Bench-201, training loss demonstrates higher reliability as an early stopping metric
compared to validation loss. It suggests that while a larger training dataset may contribute, the
primary justification lies in the training loss serving as a superior indicator of model expressiveness,
yielding greater stability and consistent model ranking. In contrast, the validation loss prioritizes
the aspect of generalization and tends to favor models with lower capacities that converge early.
But for simple models that converge fast, in the stage after overfitting, training loss fails to discern
f t(γso) and f t(γo); in light of the proposition, in that case, the training losses of sub-optimal models
may be lower than those of optimal models, contradicting the condition of the proposition that
f t(γ) ≥ f̂∗(γ). It is hence important to discern the cases of overfitting from the general cases, as the
assumptions and implications differ. Note that our discussion pertains to a specific context of “one
early-stopping based HPO”, indicating a consistent DL task, comparable model complexities (varied
hyperparameters), and fixed training, validation, and testing datasets.

From the discussion, we distill the following insight:

Insight 2: metrics that are based on larger datasets and lead to larger gaps in metric values between
different models tend to be more helpful for early stopping in HPO.

Based on our findings, several strategies exist to enhance the reliability of the early stopping approach.
Ideally, we could seek a metric that allows more robust models to consistently exhibit superior values
at any epoch t. However, achieving such a metric is highly challenging, often demanding significant
computational resources to comprehensively understand the behavior of all model configurations in
advance. An alternative approach is to maximize the model’s expressive capacity based on its available
information, thereby generating robust and superior metrics that can serve as a dependable basis for
early stopping. On one hand, if we have prior knowledge about the model’s convergence behavior, one
effective strategy involves integrating both training and validation losses. This integration allows the
model to balance the expressiveness exhibited in the training loss against the model’s generalization
ability as indicated by the validation loss. We conduct some experiments, reported in Appendix D.
On the other hand, by drawing insights from the model’s behavior in terms of training and validation
profiling, as illustrated in Figure 2, the incorporation of model uncertainty into the metric is a viable
strategy. This uncertainty encapsulates both the potential expressiveness of the model and its inherent
instability. Effectively utilizing uncertainty can establish a more robust foundation for early stopping.
We next delve into a more detailed exploration of the implications and effects of uncertainty.

4 MODEL UNCERTAINTY AND EARLY STOPPING IN HPO
This section gives the first known exploration of the effects of model uncertainty on early stopping
and ways to incorporate it into early stopping in HPO. Uncertainty, embodying the inherent variability
in model predictions, represents a double-edged sword in this context. On one hand, it introduces
instability to the model and poses challenges in demonstrating the model’s true capabilities. On the
other hand, it provides valuable insights into the latent potential and capabilities of the model. We
next delve into the manifestations and impacts of model uncertainty, and explore how leveraging
uncertainty can guide the formulation of more reliable early stopping decisions.

4.1 MANIFESTATIONS OF UNCERTAINTY

Uncertainty in machine learning arises from two primary sources: intrinsic noise within the data
and variability in model predictions stemming from limited knowledge (Hüllermeier & Waegeman,
2021; Abdar et al., 2021). While data uncertainty remains a constant, it is the variability in model
predictions, referred to as model uncertainty, that predominantly affects early stopping decisions.

Building upon the research conducted by Zhou et al. (2022) regarding uncertainty in machine
learning, and in alignment with our definitions in Section 3, we assume that the model predictions
adhere to a probability distribution, M̂ t

γ(x) ∼ N (ŷ, σ2
t ), where the distribution centers around the

mean value ŷ = EM̂ t
γ(x). Let y = g(x) + ε be an observation corresponding to a given input
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x ∈ Rd, perturbed by noise ε ∼ N (0, σ2). Therefore, y ∼ N
(
g(x), σ2

)
, where g(x) represents

the ground truth, and σ represents the noise arising from data, which is fundamentally irreducible.
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Figure 3: Decomposition of uncertainty.

Figure 3 shows the probability distribution of ob-
servations and model predictions for a specific x
at epoch t, illustrating the concept of uncertainty
decomposition. The “Bias”, quantifying the gap
between ŷ and g(x), denotes the difference be-
tween estimated and true values. It reflects the
model’s cognitive capacity considering various
training configurations such as hyperparameters,
fidelity, and learning algorithms. On the other
hand, “Variation” is linked to the model’s sensitivity to the training samples. Notably, when comput-
ing the empirical loss of the learned model at epoch t, this value encompasses not only the model’s
current cognitive level but also the uncertainty linked to model stability. Accordingly, optimal early
stopping decisions should primarily rely on the model’s current cognitive capabilities.
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Figure 4: Manifestation of model uncertainty. (a) and (b) showcase three randomly selected models
from the ImageNet benchmark.

The influence of variation on the model’s cognition manifests in two notable aspects: Firstly, model
uncertainty is observable through significant fluctuations in the prediction occurring over a limited
range of epochs. This phenomenon is particularly evident in the validation set when the model has not
yet fully captured the underlying data patterns. This fluctuation is exemplified by the validation loss
curves depicted in Figure 4 (a), where pronounced oscillations occur during the unconverged phase,
typically within the first 100 epochs. These fluctuations tend to diminish as the model approaches
convergence (epochs exceeding 150). An intriguing observation, as illustrated in Figure 4 (c), reveals
a noteworthy pattern: models with greater expressive capacity tend to exhibit higher levels of early-
stage fluctuations. This stems from the fact that stronger models harbor increased uncertainty during
their initial phases when their knowledge has not yet aligned with their expressive capabilities. In
contrast, models with limited expressiveness tend to converge earlier and display reduced uncertainty.
Consequently, if an early stopping decision is made at a point of peak uncertainty, stronger models
may be prematurely terminated. Secondly, model behaviors are notably influenced by various training
settings, including aspects such as initialization and the sequence of data batch loading. These diverse
training settings introduce variations in the model’s learning process, enabling it to capture distinct
facets of the data, thereby leading to varying biases and error patterns. Figure 4 (b) illustrates the
mean and variance of validation losses across three random seeds, illustrating the impact of training
settings on model performance. This variability, when effectively harnessed, will provide a holistic
view of the model’s cognitive capabilities. It is hence helpful to reduce the influence of variance in
early stopping metrics to provide a more precise representation of the model’s competence for HPO.

4.2 IMPLICATIONS OF UNCERTAINTY INTEGRATION

Next, we explore strategies for mitigating the misleading aspects of uncertainty that appear as noise,
and for harnessing the informative aspects of uncertainty that reveal the model’s potential to aid in
making informed early stopping decisions. For that, we propose and experiment with a set of metrics
that incorporate uncertainty in different ways.

4.2.1 RELIABLE MODEL COGNITION

We begin by examining metrics that provide a robust characterization of a model’s cognitive ca-
pabilities. This ensures a reduction in the risk of sub-optimal early stopping decisions that may
arise due to random fluctuations. As depicted in Figure 4 (a) and (b), uncertainty can manifest as
performance fluctuations across epochs and optimization processes. Distinguishing whether these
variations signify actual model improvements or merely result from random noise can be challenging.
To counteract the influence of these transient fluctuations and enhance the stability of early stopping
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decisions, we first experiment with two metrics: performance smoothing and ensemble averaging.
See Appendix E.1 for more technical details.

▶ Performance smoothing. Performance smoothing operates under the premise that performance
fluctuations observed between neighboring epochs primarily stem from uncertainty rather than
significant model improvements or deterioration. This method involves calculating the average
performance over a small window of neighboring epochs, formally expressed as Ĉt

µ(γ) =
1

|W |
∑|W |

i=1 f̂
t−i+1(γ), where |W | denotes window size, and f̂ t−i+1(γ) represents the empirical

loss at epoch (t− i+1) for a specific hyperparameter configuration γ. This metric aims to provide
a stable representation of the model’s performance during training by averaging out short-term,
stochastic fluctuations.

▶ Ensemble averaging. In an effort to further mitigate the impact of these variations, we explore
the widely adopted ensemble learning metrics (Nixon et al., 2020; Fort et al., 2019; Ganaie et al.,
2022a; Rahaman et al., 2021; Ganaie et al., 2022b). An ensemble is composed of independently
trained models, all sharing the same configuration but operating on resampled datasets with
differing initializations (Ovadia et al., 2019). The ensemble averaging metric calculates the
average predictions generated by the ensemble of models at a specific epoch t, formally expressed
as: Ĉt

en(γ) =
1

|E|
∑|E|

i=1 f̂
t
i (γ), where |E| denotes the size of the ensemble, and f̂ t

i (γ) represents
the empirical loss of the ith configuration within the ensemble. The ensemble averaging approach
aims to provide a more stable and reliable measure of the model’s performance by leveraging the
wisdom of multiple optimization processes.
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Figure 5: Effect size across 1000 repetitions of performance smoothing metrics over empirical losses.
R denotes the budget constraint of Hyperband, and p represents the p-value from the Wilcoxon test.

The performance smoothing metric, as a stabilization strategy, offers a robust control over epoch-
wise results. Its objective is to ensure the reliability of performance across epochs, mitigating the
influence of abrupt performance spikes at specific time points. Figure 5 illustrates the impact of
applying performance smoothing to empirical validation losses. The experiment includes a range of
smoothing window sizes (2 to 6) to assess potential enhancements across various task complexities.
The findings in Figure 5 unveil the performance smoothing settings that lead to statistically significant
performance gains or losses, determined through the Wilcoxon test, along with the corresponding
Cohen’s d effect sizes, as defined in Eq. A.1. Positive Cohen’s d values signify an augmented
reliability attributed to the performance smoothing metrics. Notably, the results indicate the following
findings. First, performance smoothing consistently leads to improved results, particularly in complex
tasks characterized by extended convergence times. The most significant enhancements are observed
when we use window sizes around 5 or 6, yielding effect sizes of approximately 0.3. Second, for
tasks with lower complexity, opting for a smaller window size may be more appropriate. Rapid
changes in empirical losses for these tasks suggest that excessive smoothing could potentially lead
to a loss of genuine model performance. Third, when applied to training metrics, the impact of
performance smoothing is less pronounced due to the inherently weak fluctuations in the training loss
curve. Comprehensive details of all performance smoothing results are provided in Appendix E.2.
These results underscore the effectiveness of performance smoothing metrics in mitigating stochastic
fluctuations arising from overly biased results, thereby significantly enhancing the overall reliability
of HPO based on early stopping.

We present in Figure 6 the outcomes of applying ensemble averaging to commonly used metrics.
In this representation, darker colors correspond to the HPO processes employing the commonly
used metrics, while lighter shades represent processes incorporating the ensemble averaging metrics.
The figure highlights the significant distinctions introduced by the ensemble averaging metrics
when contrasted with the original empirical metrics. This underscores the efficacy of the ensemble
averaging metrics in mitigating uncertainty and enhancing the dependability of the early stopping
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Figure 6: Performance across 1000 repetitions of ensemble averaging metrics over empirical losses.
*=p-value<0.05, **=p-value<0.01, ***=p-value<0.001.

strategy. In most instances, the ensemble averaging metrics yield substantial improvements, with
more pronounced effects observed on the validation set. Ensemble averaging adds significant
computational burdens due to the necessity of repeatedly training models. We use it to primarily
examine the potential of uncertainty-awareness for early stopping rather than advocate it as a solution.
Next subsection discusses more practical ways to leverage model uncertainty.

The analysis leads to the following insight:

Insight 3: Mitigating misleading uncertainty can help increase the reliability of early stopping
metrics for HPO.

4.2.2 POTENTIAL EXPLOITATION

In Section 4.2.1, we discussed the reduction of misleading aspects of uncertainty that manifest as noise
to discover more stable cognitive capabilities in models. While this approach enhances reliability, its
performance benefits remain limited. In practice, it is worthwhile to reconsider uncertainty not only
as a hindrance but also as a potential source of exploration and adaptation. This perspective gains
support from the observations in Figure 4 (c), where robust models often exhibit noticeable early-
stage fluctuations. These fluctuations suggest a possible link between early training uncertainty and
latent model potential. Given the computational cost associated with ensemble-based methods, we
investigate whether leveraging uncertainty, in conjunction with the performance smoothing metrics,
can concurrently improve the performance and reliability of early stopping-based HPO.

Standard deviation as a measure of uncertainty. The practice of monitoring performance varia-
tion across consecutive epochs is a well-established early stopping strategy in traditional machine
learning model training. When the performance change over several consecutive epochs remains
below a predefined threshold, the model is considered robust and stable. Building upon this concept,
we explore the standard deviation of model performance as a quantifiable measure of uncertainty.
By calculating the standard deviation within a narrow window of epochs, we gain insights into the
extent of deviation of the performance metric from its mean value within that specific window. A
larger standard deviation indicates greater variability or uncertainty in performance across those
epochs, while a smaller standard deviation suggests greater stability and consistency in the model’s
performance during that epoch window. Leveraging standard deviation, we explore a range of metrics:

▶ Fixed weighting. The fixed weighting metric combines the means and standard deviations
of empirical losses across successive epochs, employing predetermined fixed weights that
remain constant throughout the HPO process. Grounded in Proposition 1, for loss metrics
governed by a minimization objective, we propose a metric that involves subtracting the stan-
dard deviation from the mean, formally expressed as: Ĉt

µ−σ(γ) = µ̂(γ, |W |) − σ̂(γ, |W |),
where |W | denotes window size, µ̂(γ, |W |) = 1

|W |
∑|W |

i=1 f̂
t−i+1(γ) represents the mean, and

σ̂(γ, |W |) =
√

1
|W |

∑|W |
i=1(f̂

t−i+1(γ)− µ̂) represents the standard deviation. In this metric, the
mean component serves to mitigate the influence of noise, thereby offering a stable measurement
of the model’s cognitive capability. Conversely, subtracting the standard deviation aims to uncover
the lower bound of the loss that the model could achieve, offering insights into model’s potential.

▶ Dynamic weighting. The dynamic weighting metrics entail the integration of empirical loss
means and standard deviations across successive epochs using adjustable weights, as expressed by:
Ĉt

θ(γ) = µ̂(γ, |W |)− θ · σ̂(γ, |W |), where θ represents the dynamic weighting parameter. The
dynamics of these weights depend on the fluctuations in the model’s actual performance. Drawing
on the trends reported in the earlier sections on model loss curves and the behavior of uncertainty,
we see that uncertainty can initially serve as an indicator of a model’s potential in the early stages
of training but gradually transform into noise in the later stages. Accordingly, we explore several
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dynamic weighting schemes, including linear, logarithmic, and exponential decays, which are
formally expressed as: θlinear = 1− t

T , θlog = 1− log(t)
log(T ) , and θexp = e−λdecay∗t. Here, t is the

current epoch, T is the total epochs for model convergence, and λdecay is the decay rate.
Table 2: P-value from a Wilcoxon signed-rank test for the hypothesis that uncertainty integrated
metrics outperform training loss and validation loss. We also give the number of wins and losses
of each metric against training loss and validation loss over 1000 repetitions. R denotes the budget
constraint of Hyperband.

Benchmark R
Against training loss Against validation loss

Cµ Cµ−σ Clinear Clog Cexp Cµ Cµ−σ Clinear Clog Cexp

CIFAR-10
81

p-values 0.54 0.15 0.03 0.06 0.36 1.1e−23 1.1e−20 3.0e−33 1.6e−31 2.2e−25

w/l 67/65 61/51 68/49 67/60 68/61 518/272 525/277 541/238 543/253 572/227

150
p-values 1.7e−5 0.03 5.6e−4 2.3e−4 2.0e−5 2.2e−15 5.2e−21 5.8e−24 4.4e−19 9.6e−16

w/l 181/108 128/94 166/110 171/113 180/108 425/272 457/266 457/238 437/248 429/272

CIFAR-100
81

p-values 0.04 0.16 0.008 0.07 0.06 7.6e−17 2.7e−20 9.0e−23 6.4e−20 5.6e−19

w/l 36/27 22/20 24/22 29/24 35/27 436/258 422/228 427/224 424/237 430/246

150
p-values 0.13 0.27 0.06 0.05 0.07 2.0e−21 4.9e−15 1.4e−27 6.7e−4 4.3e−21

w/l 31/27 20/20 30/23 31/24 31/25 463/246 428/258 474/226 468/238 461/246

ImageNet-
16-120

81
p-values 0.52 0.37 0.55 0.68 0.52 9.6e−27 8.2e−23 3.4e−32 6.8e−30 6.4e−26

w/l 17/17 15/13 15/13 17/16 26/11 356/172 370/159 376/149 382/166 351/176

150
p-values 0.51 0.80 0.35 0.37 0.51 2.1e−17 1.3e−19 2.9e−16 1.4e−17 6.3e−17

w/l 11/9 5/9 7/6 8/7 11/9 308/153 323/158 304/162 312/151 307/154

Utilizing the Wilcoxon test, we conduct a quantitative evaluation to assess the distinction between
metrics incorporating uncertainty as an indicator of model potential and conventional empirical
training and validation losses. The detailed results of this evaluation, including the wins and losses
observed over 1000 repetitions, are presented in Table 2. More detailed results on various budget
constraints are provided in Appendix E.3. Given the rapid convergence of LCBench, the influence
of employing uncertainty is limited. We focus our investigations on the tasks in Nas-Bench-201,
with a spectrum of budget constraints. The results consistently confirm the benefits of integrating
uncertainty as a metric. Our key findings are as follows. (i) Both the fixed and dynamic weighting
metrics exhibit noteworthy performance improvements in comparison to validation loss. Notably, the
metrics incorporating uncertainty consistently outperform validation loss in nearly 70% of the trials,
yielding an average accuracy improvement of 0.38% and maximum improvement of 5.96%. (ii) The
dynamic schemes tend to yield higher improvements than the static schemes over the use of validation
loss as the metric, demonstrated by the smaller p-values of Clinear in most cases. (iii) While the
introduction of uncertainty does not yield a substantial improvement in training loss, it does not
lead to any performance degradation either. This conclusion is substantiated by the win/loss counts,
wherein nearly 98% of the repetitions witness a tie between the metrics incorporating uncertainty and
empirical training loss.

Insight 4: Combining model uncertainty with conventional early stopping metrics is beneficial,
especially when the combination adopts dynamic decays to align with the evolving influence of
uncertainty in the training process.

5 DISCUSSION AND FUTURE WORK

This paper gives the first known systematic study on early stopping metrics in HPO, and introduces
model uncertainty into early stopping in HPO. Our study yields several guidelines for metric selection,
benefiting both users and HPO tools: (i) employing training loss for tasks with slow convergence;
(ii) utilizing validation loss to address overfitting concerns; (iii) balancing the expressive power
of training loss and the generalization power of validation loss by combining both metrics; (iv)
introducing model uncertainty into metric design.

Our investigation opens up some future research opportunities. Possible directions include the
development of more precise and efficient techniques for characterizing model uncertainty, the
creation of more effective approaches for incorporating uncertainty as a metric to guide early stopping
decisions, and the integration of uncertainty as a criterion beyond metrics (e.g., becoming part of the
inner design of HPO algorithms). Such endeavors hold promise for delivering deeper insights into
model selection and budget allocation. Furthermore, this study suggests that it is important to carefully
consider the early stopping metrics in future evaluation and design of new early stopping-based HPO
algorithms.
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A MORE DETAILS ON EXPERIMENTAL SETUP

In addition to the main paper, here we provide supplementary details on the experimental setup.

HPO algorithms. To investigate the impact of different metrics under various early stopping
configurations, we execute the Hyperband, BOHB, and Sub-sampling (SS) algorithms across a range
of budget constraints and filtering ratios.

Hyperband Li et al. (2017). An early stopping-based HPO algorithm. It operates by randomly
sampling new configurations and allocating more resources to those with promising potential through
repeatedly calling successive halving (Jamieson & Talwalkar, 2016), where early stopping takes
place.

BOHB Falkner et al. (2018). An early stopping-based HPO algorithm that combines Hyperband with
Bayesian optimization. BOHB efficiently navigates the hyperparameter space by using both bandit-
based resource allocation and Bayesian model-based learning, aiming to find the best hyperparameter
configurations for machine learning models.

Sub-sampling Huang et al. (2022). An early stopping based HPO algorithm. It evaluates the potential
of the configurations based on the sub-samples of observations. Instead of discarding configurations
at each early stopping point, It retains model candidates through early stopping stages, enabling
potential resumption of training in subsequent phases.

All the three HPO algorithms involve early stopping configurations. As presented in Table 3, the
filtering ratios (η) considered include 2, 3, and 4, corresponding to the selection of 1/2, 1/3, and 1/4
of the models to continue training at each early stopping iteration, respectively. The budget constraint
(R) denotes the maximum resources allocated to a single configuration, determined based on the
maximum number of epochs in the respective benchmark.

Table 3: Parameter settings for Hyperband, BOHB, and SS. R - the maximum amount of resource that
can be allocated to a single configuration. η - an input that controls the proportion of configurations
discarded in each round of Successive Halving (Li et al., 2017).

Nas-Bench-201 LCBench LogReg MLP

R 20, 50, 81, 120, 150 3, 6, 10, 15, 30 37, 111, 333 9, 27, 81
η 2, 3, 4 2, 3, 4 3 3
metrics Training/validation accuracy/loss
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Benchmarks. Table 4 compiles information on the datasets, hyperparameters, fidelity, and dataset
sizes for Nas-Bench-201, LCBench, LogReg, and MLP.

LCBench. A benchmark composed of funnel-shaped MLP networks evaluated across diverse
OpenML datasets, as outlined in Table 4. Each model candidate is derived through random sampling
of seven hyperparameters. Each model is trained for 50 epochs and the training, validation and
testing information is recorded for all epochs. It employs cross-entropy as the loss function for model
training.

Nas-Bench-201. This benchmark introduces a fixed cell search space illustrated in Figure 7, featuring
a DAG composed of only 4 nodes defining the cell architecture. The architecture’s search space
encompasses approximately 15k distinct configurations. All models are evaluated on the Cifar10,
Cifar100, and ImageNet-16-120 datasets, where the number of instances per category is the same in
Cifar10 and Cifar100. The training loss function is the cross-entropy.

LogReg. This benchmark has two hyperparameters: learning rate and regularization, applied to
logistic regression models trained via SGD optimizer. It comprises 625 model configurations
evaluated on AutoML datasets.

MLP. This benchmark has five hyperparameters: two controlling network depth and width,
and three governing batch size, L2 regularization, and Adam’s initial learning rate. Following
HPOBench Eggensperger et al. (2021), each hyperparameter is discretized into 10 segments. The
evaluation involves a grid of 1,000 configurations for each of 30 distinct architectures on the AutoML
datasets.

convImage cell ×N residual block
(stride=2) cell ×N residual block

(stride=2) cell ×N
global 

avg. pool

Architecture

cell cell

……
zeroize
skip-connect

1×1 conv
3×3 conv

3×3 avg pool
predefined operation set

Figure 7: Network architecture in Nas-Bench-201.

Table 4: Details of the benchmarks.

Benchmark Hyperparameters Fidelity # Confs # Training set # Validation set # Test set

N
as

-B
en

ch
-2

01

CIFAR-10
(Krizhevsky et al., 2009)

1←− 0

2←− {0, 1}∗
3←− {0, 1, 2}∗
Range: {none, skip connect, nor conv 1x1,
nor conv 3x3, avg pool 3x3}

1-200 15625
25K images 25K images 10K images

CIFAR-100
(Krizhevsky et al., 2009)

50K images 5K images 5K images

ImageNet-16-120
(Chrabaszcz et al., 2017)

151.7K images 3K images 3K images

L
C

B
en

ch

Fashion-MNIST Batch size: [16, 512], log-scale
Learning rate: [1e−4, 1e−1], log-scale
Momentum: [0.1, 0.99]
Weight decay: [1e−5, 1e−1]
Number of layers: [1, 5]
Maximum number of units per layer: [64, 1024], log-scale
Dropout: [0.0, 1.0]

1-50 2000

“Whenever possible, we use the given
test split with a 33% test split and ad-
ditionally use fixed 33% of the training
data as validation split. In case there is
no such OpenML task with a 33% split
available for a dataset, we create a 33%
test split and fix it across the configura-
tions.” (Zimmer et al., 2021)

adult
higgs

jasmine
vehicle
volkert

(Vanschoren et al., 2014)
(Gijsbers et al., 2019)

Ta
bu

la
r

LogReg alpha: [1e−5, 1.0] 1000 441
eta0: [1e−5, 1.0]

MLP alpha: [1e−8, 1.0] 243 30k
batch size: [4, 256]
depth: [1, 3]
learning rate init: [1e−5, 1.0]
width: [16, 1024]

Significance test. For each benchmark, we run 1000 repetitions employing various metrics within
different Hyperband settings. We apply the Wilcoxon signed-rank test, a non-parametric statistical
hypothesis test, to assess the significance of differences between the metrics. For significantly
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different groups, we quantify the difference between their group means by using standardized effect
sizes called Cohen’s d (Cohen, 2013), which is calculated by

Cohen’s d =
Group A Mean − Group B Mean

Pooled Standard Deviation
. (A.1)

Additionally, we count the number of wins, ties, and losses of each pair of metrics across the 1000
repetitions.

Final objective. We choose test accuracy as the final objective based on several considerations.
First, we use balanced accuracy throughout our experiments, except for ImageNet. However, our
findings demonstrate that using both test loss and test accuracy yields consistent results, especially
for ImageNet. Our analysis revealed a substantial linear correlation between final test loss and
accuracy, showcased in Figure 8. The disparity in accuracy among models with nearly identical losses
(differences smaller than 1e−6) is approximately 3%. Conversely, for models achieving the same
accuracy, the difference in losses remains within 0.4. Specifically, within ImageNet, the observed
differences in accuracy and loss are 1.7e−7% and 0.08, respectively.

Second, the inherent biases and uncertainties within the test dataset render neither test loss nor test
accuracy as definitive assessment metrics. While cross-entropy loss provides a nuanced model ranking
by capturing subtle differences between predicted and true distributions, it might react variably to
minor fluctuations in class probabilities. Although test loss offers depth in assessment, it can also
harbor additional noise or uncertainty. Our experiments conducted with test loss as the final objective
(Table 5) in comparison to those using test accuracy as the final objective (Table 1) demonstrate an
alignment in the significance of differences obtained. Third, test accuracy, due to its simplicity and
intuitive nature, aligns more closely with practical application goals. Real-world scenarios such as
image classfication competitions and LLM leadearboards predominantly favor test accuracy as the
final objective.

2.0 2.5 3.0 3.5 4.0 4.5
0

20

40

Te
st

 a
cc

ur
ac

y

R-value: -0.99
P-value: 0.00

ImageNet

2 3 4
0

50
R-value: -0.97
P-value: 0.00

Cifar100

0.5 1.0 1.5 2.0

25
50
75 R-value: -0.98

P-value: 0.00

Cifar10

0.5 1.0 1.5 2.0
25

50

75

Te
st

 a
cc

ur
ac

y

R-value: -0.94
P-value: 0.00

Fashion-MNIST

0.4 0.5 0.6 0.7
25

50

75

R-value: -0.60
P-value: 0.00

adult

0.55 0.60 0.65 0.70

50

60

70

R-value: -0.91
P-value: 0.00

higgs

0.4 0.5 0.6 0.7 0.8
Test loss

40

60

80

Te
st

 a
cc

ur
ac

y

R-value: -0.83
P-value: 0.00

jasmine

0.4 0.6 0.8 1.0 1.2 1.4
Test loss

25

50

75

R-value: -0.91
P-value: 0.00

vehicle

1.00 1.25 1.50 1.75 2.00 2.25
Test loss

25

50

R-value: -0.93
P-value: 0.00

volkert

Figure 8: Linear regression between test loss and test accuracy. R-value refers to the Pearson
correlation coefficient.

B MORE RESULTS ON THE RELIABILITY OF COMMON METRICS

B.1 MORE RESULTS ON HYPERBAND

As an extension of Figure 1, Figure 9 presents the outcomes of additional tasks within LCBench,
utilizing common metrics. While not as pronounced as observed in Fashion-MNIST and jasmine,
these tasks also indicate a slight superiority of validation metrics over training metrics. This trend
aligns with the analysis outlined in Section 3, suggesting a correlation with the rapid convergence of
the models.
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Table 5: P-value from a Wilcoxon signed-rank test for the hypothesis that training loss and validation
loss outperform commonly used metrics. We also give the number of wins and losses of each metric
against training loss and validation loss over 1000 repetitions. We use test loss as the final objective
in this set of experiment.

CIFAR-10 CIFAR-100 ImageNet-16-120

Against train. loss Train. acc. Valid. loss Valid. acc. Train. acc. Valid. loss Valid. acc. Train. acc. Valid. loss Valid. acc.
P-values 0.08 4.9e−80 2.6e−40 0.59 1.3e−30 1.4e−46 0.17 4.3e−35 6.7e−25

Wins/losses 28/35 188/601 189/683 40/30 389/281 307/251 25/27 120/332 114/279

Fashion-MNIST jasmine vehicle

Against valid. loss Valid. acc. Train. loss Train. acc. Valid. acc. Train. loss Train. acc. Valid. acc. Train. loss Train. acc
P-values 4.7e−23 6.4e−17 3.2e−35 1.7e−17 4.3e−66 1.2e−57 6.0e−14 9.2e−5 2.7e−21

Wins/losses 9/124 45/159 36/244 131/335 61/463 69/444 61/165 34/80 48/178
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Figure 9: Mean accuracy across 1000 repetitions of optimal configurations selected with commonly
used early stopping metrics under diverse budget constraints (upper row). Mean optimal regret-over-
time filtered with commonly used metrics (lower row).

We present additional results on the comparison of commonly used metrics. First, we report
the significance p-values denoting the differences between the metrics in each benchmark under
distinct Hyperband settings, along with a tabulation of wins, ties, and losses, presented in Ta-
bles 6, 7, 8, 9, 10, 11, 12, 13, and 14. Subsequently, we provide Figures 10 and 11, illustrating the
final test accuracy derived from the aggregated results obtained by employing these commonly used
metrics across various settings.

Table 6: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on CIFAR-10. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Tloss vs. Vloss Tloss vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 4.8e−88 1.1e−128 5.0e−131 1.1e−131 9.1e−85 1.1e−73 2.2e−105 1.4e−91 2.4e−73 2.9e−12

wins/losses 588/91 762/73 798/89 796/78 689/189 498/82 644/86 644/135 582/158 425/298

3
p-values 8.7e−52 6.6e−109 7.1e−133 8.8e−120 4.4e−85 5.7e−39 7.4e−89 5.4e−106 5.4e−80 8.4e−30

wins/losses 436/117 683/84 803/80 761/96 631/156 359/112 571/84 682/115 608/134 447/225

4
p-values 1.4e−61 9.7e−89 1.8e−129 9.4e−113 3.9e−86 5.6e−41 7.22e−68 3.6e−103 9.4e−113 3.9e−86

wins/losses 494/116 583/93 780/52 708/86 609/140 373/110 475/91 654/87 551/103 421/179

η
Tacc vs. Vloss Tacc vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 8.8e−90 4.7e−129 1.6e−129 1.2e−129 1.5e−77 8/3e−76 2.7e−105 1.1e−88 1.3e−70 3.6e−7

wins/losses 593/87 769/72 792/92 781/82 661/214 501/75 648/88 632/143 569/163 395/318

3
p-values 5.5e−49 1.7e−110 6.0e−132 1.3e−117 6.1e−82 1.2e−35 8.4e−91 1.7e−104 4.5e−76 2.3e−24

wins/losses 434/112 687/84 799/81 749/104 615/159 357/117 574/81 673/117 596/140 434/234

4
p-values 4.0e−60 1.8e−90 2.0e−128 1.5e−112 8.8e−84 8.8e−39 7.6e−70 1.7e−101 2.4e−76 1.5e−26

wins/losses 495/118 582/87 776/164 709/88 601/137 368/113 479/84 648/98 553/112 411/190
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Table 7: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on CIFAR-100. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Tloss vs. Vloss Tloss vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 2.8e−26 1.9e−89 2.2e−103 1.3e−114 3.0e−134 3.5e−52 8.5e−70 2.6e−73 9.0e−64 5.6e−33

wins/losses 447/88 598/85 663/105 716/103 826/88 377/80 499/97 529/124 504/120 441/183

3
p-values 1.8e−27 7.0e−79 1.1e−98 1.9e−109 1.0e−114 9.1e−29 1.5e−61 2/9e−66 1.9e−64 7.5e−32

wins/losses 323/130 530/94 645/92 698/97 770/120 293/102 442/93 518/115 506/131 403/209

4
p-values 2/7e−41 1.2e−57 1.1e−94 3.3e−104 8.5e−106 2.4e−36 6.3e−44 3.2e−73 5.8e−59 7.2e−28

wins/losses 371/108 438/100 614/80 664/107 705/122 301/82 342/85 501/89 468/136 391/183

η
Tacc vs. Vloss Tacc vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 2.2e−60 2.9e−88 3.2e−105 1.4e−114 .5e−135 3.9e−50 7.0e−68 2.6e−75 1.6e−65 5.5e−33

wins/losses 439/87 586/91 668/96 712/102 828/88 372/80 488/103 534/114 500/112 435/186

3
p-values 3.2e−26 3.3e−78 3.3e−97 1.8e−109 2.3e−116 4.4e−27 4.9e−60 1.1e−65 1.6e−64 6.6e−24

wins/losses 318/133 523/91 634/99 696/97 768/116 286/105 438/96 505/116 507/127 393/205

4
p-values 5.6e−39 5.8e−55 3.6e−94 2.6e−104 3.2e−105 2.0e−33 4.6e−41 6.5e−73 4.6e−60 2.0e−37

wins/losses 365/111 432/105 610/81 666/105 702/121 292/85 336/90 498/88 467/130 391/185

Table 8: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on ImageNet-16-
120. A p-value below 0.01 indicates that metric A demonstrates superior performance compared to
metric B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Tloss vs. Vloss Tloss vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 7.3e−46 5.0e−66 1.9e−66 1.7e−37 1.1e−39 7.03−35 9.1e−51 2.9e−52 3.4e−33 8.7e−29

wins/losses 359/84 382/93 429/113 333/119 322/140 297/86 382/93 429/113 333/119 322/140

3
p-values 7.8e−41 2.9e−51 1.4e−66 3.1e−32 7.2e−34 9.6e−33 1.4e−41 1.2e−46 2.6e−24 9.3e−27

wins/losses 320/76 388/82 493/122 384/162 382/146 259/68 332/82 403/116 329/143 338/143

4
p-values 2.7e−38 5.0e−47 1.0e−57 1.3e−43 8.3e−26 4.2e−31 2.7e−40 2.1e−40 2.2e−34 1.1e−24

wins/losses 299/77 351/74 459/97 387/113 326/133 257/75 294/61 370/101 328/111 298/114

η
Tacc vs. Vloss Tacc vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

2
p-values 1.1e−45 4.7e−64 1.4e−63 1.2e−36 3.1e−37 4.7e−34 9.3e−48 8.2e−49 3.4e−32 1.6e−26

wins/losses 357/90 463/89 499/109 358/122 385/134 294/93 384/103 434/119 331/119 320/144

3
p-values 1.9e−37 8.1e−53 2.7e−65 2.1e−30 8.6e−32 1.6e−29 9.2e−43 1.1e−45 1.6e−22 3.8e−25

wins/losses 308/79 396/80 491/126 382/168 384/158 246/71 338/81 402/120 329/148 335/150

4
p-values 1.4e−36 4.1e−46 1.2e−56 7.1e−44 2.4e−23 1.3e−29 3.3e−40 3.2e−39 3.5e−34 6.4e−22

wins/losses 293/80 348/73 455/99 388/115 325/140 247/73 294/59 368/108 334/114 294/119
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Table 9: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on Fashion-
MNIST. A p-value below 0.01 indicates that metric A demonstrates superior performance compared
to metric B in the “A vs. B” comparison. We also give the number of wins and losses where metric
A outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Vloss vs. Tloss Vloss vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 1.7e−3 2.3e−12 3.3e−15 1.1e−16 7.1e−8 9.7e−4 4.7e−30 1.6e−35 2.1e−34 3.9e−19

wins/losses 60/33 145/60 171/49 167/35 165/81 99/53 231/47 262/37 249/29 229/76

3
p-values 1.6e−7 4.8e−9 3.9e−24 2.4e−14 5.0e−21 9.7e−11 1.1e−17 1.0e−41 3.5e−32 6.6e−38

wins/losses 104/42 93/30 180/39 168/48 241/76 139/48 138/27 273/36 251/39 315/69

4
p-values - 2.0e−8 1.9e−8 4.5e−7 9.3e−15 - 4.7e−22 3.0e−18 5.3e−17 5.1e−34

wins/losses - 109/51 92/34 104/36 118/6 - 181/49 143/29 166/32 279/54

η
Vacc vs. Tloss Vacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 0.15 0.81 0.12 3.8e−3 9.2e−5 2.8e−3 5.8e−11 1.9e−16 7.8e−20 8.7e−16

wins/losses 53/49 83/105 104/77 111/74 135/73 69/43 151/69 179/50 176/45 195/63

3
p-values 0.04 0.41 3.7e−3 0.85 1.3e−5 3.1e−5 1.1e−6 2.5e−22 3.0e−10 3.1e−21

wins/losses 70/53 54/56 103/80 92.103 180/94 94/45 86/38 181/49 163/75 248/74

4
p-values - 0.97 0.67 0.93 4.0e−3 - 6.7e−7 1.3e−6 1.6e−5 6.8e−20

wins/losses - 63/96 57/69 57/72 133/83 - 123/76 94/46 100/49 209/54

Table 10: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on adult. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Tloss vs. Vloss Tloss vs. Vacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 0.99 0.27 2.6e−16 1.4e−15 1.3e−31 1.3e−3 3.5e−17 1.1e−54 2.4e−22 2.7e−4

wins/losses 55/87 139/129 252/103 227/97 263/87 164/140 292/149 470/121 329/141 348/227

3
p-values 0.99 0.99 5.7e−6 1.2e−10 4.6e−23 3.9e−3 5.0e−4 1.4e−26 8.3e−27 1.6e−11

wins/losses 66/115 54/94 226/147 201/104 288/112 186/156 198/145 382/160 350/135 387/205

4
p-values - 0.98 0.99 0.28 2.7e−7 - 1.1e−8 4.2e−6 0.03 3.5e−7

wins/losses - 86/105 88/109 88/81 193/125 - 232/136 218/142 178/150 290/189

η
Tacc vs. Vloss Tacc vs. Vacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 0.99 0.98 1.1e−3 1.1e−8 6.5e−36 0.027 1.4e−9 9.7e−40 2.6e−20 1.2e−8

wins/losses 94/140 178/210 275/208 293/172 340/114 154/131 267/173 421/145 322/138 347/168

3
p-values 0.99 0.99 2.5e−3 7.0e−5 1.3e−21 0.61 9.5e−3 1.6e−22 3.7e−22 7.7e−15

wins/losses 111/178 109/161 264/200 263/187 345/164 170/164 178/138 370/162 336/151 369/175

4
p-values - 0.99 0.99 0.47 9.2e−11 - 5.7e−7 4.3e−3 0.07 1.3e−11

wins/losses - 116/153 312/174 142/135 265/164 - 218/126 191/138 162/138 285/151
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Table 11: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on higgs. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Vloss vs. Tloss Vloss vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 4.2e−11 3.1e−14 3.1e−10 1.6e−13 5.4e−6 6.5e−8 1.3e−5 2.5e−7 1.4e−3 9.7e−3

wins/losses 73/13 82/18 105/36 98/23 83/39 108/42 123/74 146/91 131/95 112/77

3
p-values 9.6e−14 5.3e−13 3.4e−9 2.6e−12 0.01 1.2e−13 5.0e−10 2.7e−4 7.7e−3 1.5e−3

wins/losses 120/34 75/13 106/28 82/28 75/39 134/43 107/43 151/107 115/108 123/78

4
p-values - 1.1e−13 2.0e−11 1.5e−6 1.9e−13 - 4.2e−14 1.8e−9 0.01 5.9e−4

wins/losses - 88/19 81/18 45/12 95/23 - 147/58 124/48 93/43 151/24

η
Vacc vs. Tloss Vacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 2.2e−4 5.0e−26 2.0e−18 1.3e−22 1.1e−11 1.2e−4 1.3e−22 1.4e−17 3.6e−16 5.0e−11

wins/losses 113/80 219/75 189/71 187/50 121/45 98/53 166/44 147/42 128/32 108/34

3
p-values 3.5e−5 4.8e−9 1.1e−19 1.2e−25 5.4e−8 8.5e−7 3.6e−11 6.2e−15 1.2e−17 1.3e−11

wins/losses 119/103 131/71 220/77 195/62 122/52 105/80 108/48 159/53 121/42 137/45

4
p-values - 1.1e−8 3.5e−11 9.4e−10 2.6e−26 - 1.6e−14 2.4e−13 1.4e−9 4.4e−20

wins/losses - 153/93 151/77 136/81 200/33 - 147/58 124/48 93/43 151/24

Table 12: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on jasmine. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Vloss vs. Tloss Vloss vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 1.5e−4 0.99 9.7e−5 1.2e−17 1.5e−92 0.44 0.99 2.9e−3 3.6e−18 1.6e−87

wins/losses 71/35 94/135 286/244 366/251 692/155 70/69 108/145 276/242 365/230 670/161

3
p-values 1.9e−3 0.065 0.42 0.028 3.1e−82 0.78 0.99 0.50 8.0e−3 2.1e−72

wins/losses 100/67 74/57 188/211 247/268 643/164 88/100 78/96 189/211 250/246 604/176

4
p-values - 0.94 0.13 0.75 5.6e−30 - 0.96 0.83 0.85 1.0e−34

wins/losses - 65/70 98/92 101/140 448/229 - 86/98 107/127 112/149 463/225

η
Vacc vs. Tloss Vacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 0.031 0.14 2.9e−3 3.6e−18 1.6e−87 0.90 0.37 1.7e−46 3.0e−53 9.4e−139

wins/losses 125/94 165/142 427/140 466/165 836/46 84/93 155/127 426/125 473/155 827/54

3
p-values 0.046 2.6e−4 1.7e−17 1.7e−21 1.7e−129 0.98 0.18 1.4e−17 4.6e−23 2.7e124

wins/losses 131/118 170/106 292/163 337/188 793/75 81/121 134/105 288/144 333/168 767/93

4
p-values - 0.73 8.3e−4 3.8e−7 3.7e−89 - 0.95 0.047 8.7e−7 5.9e95

wins/losses - 118/138 171/126 166/129 620/99 - 114/141 140/118 150/110 623/92
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Table 13: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on vehicle. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Vloss vs. Tloss Vloss vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 3.0e−8 4.7e−10 6.3e−4 0.053 0.54 6.1e−10 1.3e−19 3.3e−11 3.3e−7 0.004

wins/losses 114/62 80/23 61/41 56/40 53/55 178/89 152/39 154/76 150/85 191/151

3
p-values 1.4e−15 8.5e−9 1.1e−6 0.44 8.6e−3 3.0e−14 4.2e−16 8.2e−19 2.1e−6 1.7e−9

wins/losses 177/59 99/41 82/41 45/48 77/54 235/102 172/54 178/60 133/83 231/133

4
p-values - 8.5e−9 1.1e−10 4.6e−3 0.048 - 6.4e−14 1.8e−18 .8e−9 5.2e−6

wins/losses - 88/34 82/28 44/22 53/40 - 174/66 160/44 114/45 162/101

η
Vacc vs. Tloss Vacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 2.2e−6 0.063 0.99 0.99 6.4e−25 2.5e−12 1.6e−10 0.069 0.99 4.1e−33

wins/losses 127/78 98/90 98/150 123/171 328/136 125/44 139/68 127/141 157/154 349/117

3
p-values 1.1e−12 0.019 0.32 0.99 1.7e−9 2.4e−22 5.1e−10 3.5e−9 0.1 4.7e−24

wins/losses 190/92 100/89 110/115 91/138 274/143 170/49 120/57 170/100 138/129 331/128

4
p-values - 6.9e−3 9.9e−4 0.38 2.1e−8 - 8.6e−11 6.1e−15 1.3e−7 8.3e−16

wins/losses - 109/83 96/67 72/81 200/103 - 138/62 130/46 98/54 251/104

Table 14: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on volkert. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η
Vloss vs. Tloss Vloss vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 2.0e−4 1.8e−9 1.5e−6 7.9e−8 9.1e−4 3.7e−4 3.7e−8 1.7e−7 5.9e−11 3.5e−3

wins/losses 50/23 120/47 151/86 160/92 150/81 73/46 148/79 195/115 185/102 152/96

3
p-values 1.1e−5 8.8e−5 1.8e−11 2.0e−8 7.0e−9 1.2e−4 1.3e−3 1.7e−19 6.9e−9 6.3e−11

wins/losses 65/31 62/28 157/71 137/76 171/72 86/43 71/48 181/105 167/105 192/86

4
p-values - 2.6e−5 2.3e−7 2.3e−3 3.8e−5 - 5.5e−7 1.1e−5 6.7e−3 8.7e−6

wins/losses - 81/41 75/29 63/38 150/78 - 102/55 96/54 84/58 184/115

η
Vacc vs. Tloss Vacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

2
p-values 0.42 0.21 0.39 0.63 0.04 0.13 0.17 0.14 0.22 0.12

wins/losses 91/79 144/132 165/165 165/166 135/92 88/73 127/119 165/150 154/157 122/96

3
p-values 0.51 0.99 0.014 0.99 0.064 0.47 0.99 8.4e−3 0.96 0.99

wins/losses 82/90 75/100 198/161 125/165 168/108 83/77 65/99 175/142 128/169 163/101

4
p-values - 0.99 0.69 0.93 0.78 - 0.95 0.73 0.91 0.56

wins/losses - 91/127 104/99 91/110 149/142 - 79/106 94/94 89/104 146/145
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Table 15: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on LogReg. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η = 3
Tloss vs. Vloss Tloss vs. Vacc

R = 37 R = 111 R = 333 R = 37 R = 111 R = 333

p-values 1.7e−3 7.2e−39 0.99 2.0e−3 1.1e−39 0.99

wins/losses 59/57 424/113 6/33 59/58 434/114 6/31

η = 3
Tacc vs. Vloss Tacc vs. Vacc

R = 37 R = 111 R = 333 R = 37 R = 111 R = 333

p-values 2.0e−3 1.1e−39 0.99 1.7e−3 7.2e−39 0.99

wins/losses 59/57 424/113 6/32 59/58 434/114 6/30

Table 16: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on MLP. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of Hyperband, and η denotes
the filtering ratio used by early stopping in Hyperband.

η = 3
Tloss vs. Vloss Tloss vs. Vacc

R = 9 R = 27 R = 81 R = 9 R = 27 R = 81

p-values 5.6e−59 6.6e−54 2.6e−40 5.7e−59 1.5e−54 8.3e−41

wins/losses 654/238 675/252 632/299 655/239 677/249 634/296

η = 3
Tacc vs. Vloss Tacc vs. Vacc

R = 9 R = 27 R = 81 R = 9 R = 27 R = 81

p-values 6.7e−63 1.0e−56 8.8e−38 7.1e−63 3.4e−57 6.1e−38

wins/losses 650/226 672/250 620/301 648/225 674/249 619/301
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Figure 10: Final test accuracy achieved using different metrics with Hyperband (η = 3) across diverse
budgets (R) on Nas-Bench-201. *=p-value<0.05, **=p-value<0.01, ***=p-value<0.001.
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Figure 11: Final test accuracy achieved using different metrics with Hyperband (η = 3) across diverse
budgets (R) on LCBench. *=p-value<0.05, **=p-value<0.01, ***=p-value<0.001.
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B.2 RESULTS ON BOHB

We illustrate the average test accuracies and regret values achieved under different budget constraints
using the BOHB algorithm in Figures 12 and 13. The top row demonstrates the average test accuracies,
while the bottom row showcases the regret values of remaining model configurations after employing
various metrics during the HPO process. The experimental configurations are identical to Hyperband.
The results align closely with the insights presented in Section 2.2. In Nas-Bench-201, marked by high
task complexity, the training metrics consistently outperform the validation metrics in test accuracy,
exhibiting an average difference of 0.70% and a maximum difference of 18.37%. Conversely, in
LCBench with lower complexity, the validation metrics tend to outperform the training metrics in
most cases, with a mean difference of 0.28% and a maximum difference of 15.53%.
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Figure 12: Mean accuracy across 1000 repetitions of optimal configurations selected with commonly
used early stopping metrics under diverse budget constraints (upper row). Mean optimal regret-over-
time filtered with commonly used metrics (lower row). “Fraction of budget” denotes the proportion of
allocated budget used during training. This set of experiments is conducted on the BOHB algorithm.
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allocated budget used during training. This set of experiments is conducted on the BOHB algorithm.
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Table 17: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on LogReg. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of BOHB, and η denotes the
filtering ratio used by early stopping in BOHB.

η = 3
Tloss vs. Vloss Tloss vs. Vacc

R = 37 R = 111 R = 333 R = 37 R = 111 R = 333

p-values 1.1e−4 3.2e−4 1.0 1.3e−5 2.5e−5 1.0

wins/losses 85/55 109/86 79/208 93/57 114/82 74/198

η = 3
Tacc vs. Vloss Tacc vs. Vacc

R = 37 R = 111 R = 333 R = 37 R = 111 R = 333

p-values 2.9e−5 1.0e−4 1.0 2.4e−6 2.3e−6 1.0

wins/losses 85/55 109/86 79/208 98/53 118/80 73/196

Table 18: P-value from a Wilcoxon signed-rank test for commonly used metric pairs on MLP. A
p-value below 0.01 indicates that metric A demonstrates superior performance compared to metric
B in the “A vs. B” comparison. We also give the number of wins and losses where metric A
outperforms or lags behind metric B. R denotes the budget constraint of BOHB, and η denotes the
filtering ratio used by early stopping in BOHB.

η = 3
Tloss vs. Vloss Tloss vs. Vacc

R = 9 R = 27 R = 81 R = 9 R = 27 R = 81

p-values 9.5e−63 1.8e−54 1.8e−48 1.8e−62 2.1e−54 3.6e−49

wins/losses 657/220 665/265 662/281 654/222 665/263 672/273

η = 3
Tacc vs. Vloss Tacc vs. Vacc

R = 9 R = 27 R = 81 R = 9 R = 27 R = 81

p-values 1.0e−66 4.0e−49 2.4e−53 1.7e−66 1.8e−48 1.1e−53

wins/losses 656/220 647/287 697/255 655/219 647/286 688/262

23



Under review as a conference paper at ICLR 2024

B.3 RESULTS ON SS

We illustrate the average test accuracies and regret values achieved under different budget constraints
using the SS algorithm in Figures 14 and 15. The top row demonstrates the average test accuracies,
while the bottom row showcases the regret values of remaining model configurations after employing
various metrics during the HPO process. The experimental configurations are identical to Hyperband.
The results align closely with the insights presented in Section 2.2. In Nas-Bench-201, marked by high
task complexity, the training metrics consistently outperform the validation metrics in test accuracy,
exhibiting an average difference of 0.73% and a maximum difference of 15.47%. Conversely, in
LCBench with lower complexity, the validation metrics tend to outperform the training metrics in
most cases, with a mean difference of 0.17% and a maximum difference of 5.02%.
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Figure 14: Mean accuracy across 1000 repetitions of optimal configurations selected with commonly
used early stopping metrics under diverse budget constraints (upper row). Mean optimal regret-over-
time filtered with commonly used metrics (lower row). “Fraction of budget” denotes the proportion
of allocated budget used during training. This set of experiments is conducted on the SS algorithm.
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C PROOF OF PROPOSITION 1

Proof. First, by utilizing Markov’s inequality, we can establish a general upper bound:

P
(
f̂ t(γo)− Ef̂ t(γso) ≥ 0

)
= P

(
f̂ t(γo) ≥ Ef̂ t(γso)

)
≤ Ef̂ t(γo)

Ef̂ t(γso)
=

f t(γo)

f t(γso)
.

To formulate a tighter bound, we introduce the expected risk f t,

P
(
f̂ t(γo)− Ef̂ t(γso) ≥ 0

)
= P

(
f̂ t(γo)− f t(γo) + f t(γo)− Ef̂ t(γso) ≥ 0

)
= P

(
f̂ t(γo)− f t(γo) ≥ f t(γso)− f t(γo)

)
.

Based on Hoeffding’s inequality (Hoeffding, 1994), the probability that the average of bounded
independent variables f̂ t(γo) deviates its expected value f t(γo) satisfy

P
(
f̂ t(γo)− f t(γo) ≥ ϵ

)
≤ e

− 2|D|ϵ2

(ub−lb)2 , ∀ϵ > 0.

For the case of f t(γso)− f t(γo) > 0, let ϵ = f t(γso)− f t(γo), the probability becomes

P
(
f̂ t(γo)− f t(γo) ≥ f t(γso)− f t(γo)

)
≤ e

−
2|D|

(
ft(γso)−ft(γo)

)2
(ub−lb)2 .

For the case of f t(γso)− f t(γo) ≤ 0, we have

P
(
f̂ t(γo)− f t(γo) ≥ f t(γso)− f t(γo)

)
= 1− P

(
f̂ t(γo)− f t(γo) ≤ f t(γso)− f t(γo)

)
.

Similarly, based on Hoeffding’s inequality, the probability satisfy

P
(
f̂ t(γo)− f t(γo) ≤ −ϵ

)
≤ e

− 2|D|ϵ2

(ub−lb)2 , ∀ϵ > 0.

Let ϵ = f t(γo)− f t(γso), we derive

P
(
f̂ t(γo)− f t(γo) ≥ f t(γso)− f t(γo)

)
≥ 1− e

−
2|D|

(
ft(γso)−ft(γo)

)2
(ub−lb)2 .

This proposition establishes a theoretical basis for bounding the probability of early stopping decision
errors in terms of both the dataset size |D| and expected loss variance. First, larger datasets tend
to reduce discrepancies between estimates and expectations, thereby increasing the likelihood of
obtaining precise measurements. Second, the magnitude of loss discrepancies between different
model configurations over the overall data distribution U inversely impacts the likelihood of making
incorrect early stopping decisions on a given dataset D. The specific expectation of the loss metric
on the overall distribution U depends on the characteristics of the chosen loss metric function. In
essence, the expectations drawn from the overall distribution U are contingent on the particular loss
metric function in use. A metric that effectively captures model capabilities and can distinguish
variations among different model configurations is bound to result in higher reliability in early
stopping decisions.

D EFFECT OF COMBINING TRAINING AND VALIDATION METRICS

In this part, we examine metrics that integrate both training and validation information as a foundation
for early stopping. We adopt the same linear weighting approach as detailed in Section 4.2.2. Our
objective is to offer insights into the potential performance enhancements achievable through this
metrics integration. Specifically, we take into consideration the stability and reliability of training
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information during the model’s unconverged phase, as well as the role of validation information
as an indicator of generalization during the later stages of model training. To achieve this, we
progressively decrease the weight assigned to the training information using the formula wt = 1− t

T ,
while concurrently increasing the weight assigned to the validation information with wv = 1− wt.
We denote the metrics that combine both training and validation losses as Closs, and metrics that
combine both training and validation accuracy as Cacc. We present their performance improvements
in Tables 19 and 20. Our observations reveal that this novel metric, which linearly combines and
weighs the contributions of both metrics, produces effects that lie between the two individual metrics.
We posit that a more refined approach to combining these sources of information may lead to even
more stable and superior results.

Table 19: P-value from a Wilcoxon signed-rank test for the combined metrics against commonly
used metrics on Nas-Bench-201. A p-value below 0.01 indicates that metric A demonstrates superior
performance compared to metric B in the “A vs. B” comparison. We also give the number of wins
and losses where metric A outperforms or lags behind metric B. R denotes the budget constraint of
Hyperband.

Benchmark
Closs vs. Vloss Cacc vs. Vacc

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

CIFAR-10
p-values 7.6e−49 9.4e−85 2.7e−89 2.1e−52 3.7e−38 3.1e−37 1.4e−71 4.9e−81 9.6e−43 1.9e−29

wins/losses 392/91 524/71 564/73 454/114 368/137 329/90 438/57 512/81 390/114 310/127

CIFAR-100
p-values 7.9e−28 2.2e−66 1.5e−73 2.9e−63 7.8e−31 2.5e−27 5.3e−54 1.0e−54 6.6e−44 1.2e−26

wins/losses 290/109 427/60 486/78 437/96 336/119 66/91 372/64 402/77 337/88 272/95

ImageNet-12-160
p-values 2.7e−39 6.0e−46 1.6e−45 3.8e−19 3.0e−24 1.7e−24 3.9e−37 1.0e−34 9.5e−15 7.2e−16

wins/losses 288/63 314/48 343/77 236/101 239/88 220/55 276/55 289/80 196/87 194/97

Table 20: P-value from a Wilcoxon signed-rank test for the combined metrics against commonly
used metrics on LCBench. A p-value below 0.01 indicates that metric A demonstrates superior
performance compared to metric B in the “A vs. B” comparison. We also give the number of wins
and losses where metric A outperforms or lags behind metric B. R denotes the budget constraint of
Hyperband.

Benchmark
Closs vs. Tloss Cacc vs. Tacc

R = 3 R = 6 R = 10 R = 15 R = 30 R = 3 R = 6 R = 10 R = 15 R = 30

Fashion-MNIST
p-values 1.1e−3 0.045 1.3e−6 1.4e−6 2.2e−16 0.5 0.03 3.3e−5 2.6e−5 1.8e−17

wins/losses 12/0 6/1 33/5 42/4 107/19 2/2 6/1 29/8 49/15 123/25

adult
p-values 0.22 0.26 0.51 0.96 0.99 0.47 0.1 0.98 0.98 0.99

wins/losses 6/3 6/3 33/32 35/50 66/119 9/11 22/18 326/131 66/90 99/215

higgs
p-values 0.022 8.6e−3 7.8e−5 0.021 0.071 0.18 0.026 6.2e−15 6.9e−4 3.5e−8

wins/losses 5/0 7/1 24/4 15/10 17/8 7/7 11/7 18/7 25/15 49/7

jasmine
p-values 0.062 0.18 0.44 0.99 7.2e−51 0.20 0.10 0.32 0.037 2.5e−40

wins/losses 5/3 6/4 27/19 30/56 340/69 6/7 10/5 25/17 47/29 241/26

vehicle
p-values 2.6e−3 0.022 0.014 0.45 0.069 4.5e−9 1.4e−3 2.8e−3 1.4e−3 4.1e−34

wins/losses 16/4 12/5 12/6 11/10 31/22 30/3 11/1 20/9 45/26 245/31

volkert
p-values 0.072 1.4e−3 6.7e−6 8.8e−8 6.8e−12 0.70 0.91 3.7e−3 9.3e−4 2.3e−5

wins/losses 3/1 12/2 35/9 50/12 80/10 1/2 5/10 32/16 56/36 65/29
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E MORE RESULTS ON THE INTEGRATION OF UNCERTAINTY

E.1 TECHNICAL DETAILS

In this set of experiments, we test the impact of performance smoothing and ensemble averaging
metrics derived from training and validation losses on HPO results. The experimental setup aligns
with Appendix A.

Specifically, the performance smoothing metrics experiments encompass a range of window sizes
(2 to 6), probing potential improvements across varying task complexities. Figure 5 shows the
discrepancy between HPO outcomes utilizing different window sizes for calculating performance
smoothing metrics and the original empirical losses. Cohen’s d, described in Eq. A.1, quantifies
this gap across five benchmarks with distinct budget settings. The dot shape denotes the Wilcoxon
signed-rank test’s significance, showcasing the difference between performance smoothing metrics
and original empirical losses; the absence of dots signifies an insignificant difference. A positive
Cohen’s d implies the superiority of performance smoothing metrics over original empirical losses.

In evaluating ensemble averaging, we aggregate results from three runs with distinct random seeds.
Once again, the Wilcoxon signed-rank test validates the significance of differences between ensemble
averaging metrics and the original empirical losses, as illustrated in Figure 6.

E.2 PERFORMANCE SMOOTHING

We present the results of applying performance smoothing metrics to both training loss and validation
loss. These experiments include various window sizes and are conducted across different benchmarks
while adhering to distinct budget constraints. We collect results for Hyperband in Tables 21 and 22,
BOHB in Tables 23 and 24, and SS in Tables 25 and 26. Our findings within the Nas-Bench-201
benchmark reveal that the performance smoothing metrics yield only a marginal improvement when
compared to training loss, with nearly 95% of repetitions resulting in a tie. However, a noteworthy
enhancement is observed when we contrast it with validation loss, with the most substantial gains
occurring around window sizes 5 and 6. In contrast, for LCBench, the performance smoothing
metrics exhibit minimal effectiveness, and its performance diminishes as the window size increases.
This phenomenon can be attributed to the rapid convergence of models in LCBench, leading to
significant fluctuations between neighboring epochs. Consequently, the foundational assumption
of the performance smoothing metrics, which posits that variations in successive epochs primarily
reflect uncertainties, is not met in this particular context.
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Table 21: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on Nas-Bench-201. A p-value below 0.01 indicates that metric A demon-
strates superior performance compared to metric B in the “A vs. B” comparison. We also give the
number of wins and losses where metric A outperforms or lags behind metric B. R denotes the
budget constraint of Hyperband, and # window denotes the window size.

Benchmark # window
Cµ vs. Tloss Cµ vs. Vloss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

CIFAR-10

2
p-values 0.93 0.32 0.11 1.1e−5 0.13 0.31 0.001 9.4e−4 0.015 1.2e−4

wins/losses 10/22 34/32 72/57 112/58 109/87 199/189 328/271 373/312 370/310 323/279

4
p-values 0.99 0.28 0.54 1.3e−6 7.9e−3 0.04 4.3e−11 1.7e−12 9.1e−15 2.3e−11

wins/losses 30/45 44/40 69/67 140/82 157/118 264/211 392/279 460/311 447/289 400/269

6
p-values 0.99 0.65 0.64 5.3e−7 2.2e−5 8.4e−4 1.8e−16 1.4e−25 1.2e−18 2.3e−23

wins/losses 39/69 43/47 73/75 147/82 184/116 282/201 417/274 523/273 488/288 460/251

CIFAR-100

2
p-values 0.99 0.97 0.22 0.072 0.049 0.035 3.2e−7 2.5e−3 3.2e−13 0.013

wins/losses 5/19 12/12 23/18 24/10 21/19 187/150 259/182 312/286 367/227 335/273

4
p-values 0.99 0.99 0.037 0.29 0.25 0.089 1.2e−13 3.0e−9 1.8e−28 1.1e−19

wins/losses 15/40 14/28 34/25 30/27 28/27 215/191 324/181 386/279 469/247 454/252

6
p-values 0.99 0.99 0.19 0.09 0.15 0.05 3.2e−15 7.6e−17 2.1e−32 2.0e−21

wins/losses 18/69 16/34 34/30 33/28 33/28 223/194 311/205 426/261 501/242 471/232

ImageNet-
16-120

2
p-values 0.99 0.43 0.51 0.56 0.39 0.17 1.6e−6 8.2e−10 4.7e−4 8.1e−8

wins/losses 3/11 7/6 12/12 7/7 11/8 152/128 208/141 280/177 241/191 232/148

4
p-values 0.99 0.77 0.69 0.5 0.77 3.3e−3 3.3e−12 3.9e−22 5.7e−6 9.4e−11

wins/losses 6/9 9/12 18/19 7/5 9/11 191/120 261/144 340/171 273/199 298/173

6
p-values 0.99 0.99 0.64 0.36 0.79 0.05 9.7e−16 2.2e−28 3.8e−8 1.4e−14

wins/losses 13/15 9/18 15/17 6/5 11/12 185/135 290/139 381/182 70/191 299/167
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Table 22: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on LCBench. A p-value below 0.01 indicates that metric A demonstrates
superior performance compared to metric B in the “A vs. B” comparison. We also give the number
of wins and losses where metric A outperforms or lags behind metric B. R denotes the budget
constraint of Hyperband, and # window denotes the window size.

Benchmark # window
Cµ vs. Tloss Cµ vs. Vloss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

Fashion-
MNIST

2
p-values 0.99 0.99 0.85 0.99 0.89 0.99 0.99 0.94 0.99 0.78

wins/losses 53/76 10/51 46/71 4/50 36/43 57/101 13/47 61/78 19/50 44/58

4
p-values 0.99 0.99 0.99 0.99 0.67 1.0 1.0 1.0 1.0 1.0

wins/losses 83/179 32/80 113/157 27/98 52/64 66/198 37/119 100/151 18/95 53/60

6
p-values 0.99 0.99 0.99 0.99 0.93 0.99 1.0 0.99 0.99 0.60

wins/losses 83/179 43/157 111/178 51/149 52/72 66/198 38/163 99/159 33/134 56/70

adult

2
p-values 0.99 0.99 0.99 0.99 0.95 0.99 0.99 0.023 2.9e−3 9.2e−5

wins/losses 44/66 10/44 26/61 23/51 38/48 44/91 32/64 132/107 99/75 168/112

4
p-values 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.95 0.088 2.6e−7

wins/losses 70/139 16/83 36/157 36/97 37/100 69/142 35/101 165/194 128/110 216/126

6
p-values 0.99 1.0 1.0 1.0 0.99 0.99 1.0 0.99 0.61 3.8e−8

wins/losses 28/83 24/64 36/127 41/142 36/91 69/142 38/148 166/200 132/138 222/132

higgs

2
p-values 0.99 0.99 5.8e−3 0.99 1.4e−6 0.99 0.99 2.0e−4 0.99 7.0e−12

wins/losses 99/214 17/65 109/120 6/29 74/35 114/220 10/38 123/116 28/31 85/26

4
p-values 1.0 0.99 2.0e−7 0.1 2.0e−8 0.99 0.99 2.0e−4 0.99 7.0e−12

wins/losses 141/318 94/206 167/133 76/106 82/33 165/292 85/173 165/119 76/73 91/28

6
p-values 1.0 0.99 2.2e−4 1.6e−5 6.6e−5 0.99 0.99 2.0e−6 1.4e−5 2.0e−11

wins/losses 141/318 97/242 164/152 108/103 73/44 165/292 91/199 162/128 106/78 97/34

jasmine

2
p-values 1.0 0.85 0.99 0.028 0.99 0.99 0.09 0.50 2.2e−4 0.014

wins/losses 27/130 23/25 61/93 35/21 41/58 30/93 20/16 75/69 68/34 64/38

4
p-values 1.0 0.99 0.99 3.9e−9 0.79 0.99 0.74 0.99 1.8e−7 0.14

wins/losses 49/176 56/84 79/117 90/34 57/56 43/133 74/99 157/220 64/183 607/168

6
p-values 1.0 0.97 0.92 9.8e−6 0.32 0.99 0.25 0.98 4.3e−4 0.18

wins/losses 49/176 80/92 103/122 94/50 68/55 43/133 67/59 113/138 145/94 107/92

vehicle

2
p-values 0.99 0.99 0.99 0.99 0.36 0.99 0.99 0.99 0.92 0.95

wins/losses 22/71 12/28 17/41 10/21 28/30 9/80 2/17 13/24 6/12 10/14

4
p-values 1.0 0.99 0.99 0.99 0.42 0.99 0.99 0.99 0.92 0.95

wins/losses 25/130 16/48 23/61 20/39 47/47 16/117 5/46 24/34 29/28 15/26

6
p-values 1.0 0.99 0.99 0.99 0.56 1.0 0.99 0.99 0.86 0.97

wins/losses 25/130 16/59 27/68 23/46 55/59 16/117 6/56 32/44 46/48 25/41

volkert

2
p-values 0.98 0.99 0.99 0.99 0.99 0.99 0.91 0.77 0.79 0.16

wins/losses 29/42 5/35 27/46 1/28 13/45 37/52 15/27 71/83 51/45 64/59

4
p-values 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.77 0.79 0.16

wins/losses 40/81 20/56 46/106 12/88 25/95 42/72 30/56 72/99 57/93 61/87

6
p-values 0.99 0.99 1.0 0.99 0.99 0.99 0.91 0.77 0.79 0.16

wins/losses 40/81 33/110 45/129 25/124 24/110 42/72 39/96 77/111 70/117 58/99
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Table 23: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on Nas-Bench-201. A p-value below 0.01 indicates that metric A demon-
strates superior performance compared to metric B in the “A vs. B” comparison. We also give the
number of wins and losses where metric A outperforms or lags behind metric B. R denotes the
budget constraint of BOHB, and # window denotes the window size.

Benchmark # window
Cµ vs. Tloss Cµ vs. Vloss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

CIFAR-10

2
p-values 0.60 0.09 0.25 0.36 0.46 0.072 0.081 4.7e−4 0.13 0.02

wins/losses 502/494 512/482 511/480 482/506 506/482 530/467 507/487 533/460 514/482 531/463

4
p-values 0.76 0.14 0.21 0.28 0.42 4.5e−3 4.8e−7 9.4e−11 8.1e−10 1.5e−6

wins/losses 497/500 511/483 508/484 492/493 509/481 549/449 554/441 584/407 562/432 561/434

6
p-values 0.90 0.17 0.22 0.44 0.34 0.02 7.3e−9 1.2e−15 2.3e−13 2.5e−11

wins/losses 490/506 512/483 506/486 487/499 508/480 535/464 560/435 602/389 585/411 583/412

CIFAR-100

2
p-values 0.91 0.36 0.063 0.37 0.054 0.41 3.9e−4 0.10 1.7e−4 0.68

wins/losses 473/527 501/497 524/475 506/493 513/485 499/501 544/455 519/479 554/444 504/493

4
p-values 0.96 0.33 0.061 0.41 0.076 0.14 2.1e−7 4.7e−4 1.2e−12 9.3e−5

wins/losses 468/532 504/494 524/475 502/497 512/486 508/492 568/432 542/456 596/401 557/441

6
p-values 0.99 0.43 0.071 0.34 0.079 0.41 3.9e−4 0.10 1.7e−4 0.68

wins/losses 462/538 498/500 526/473 506/493 512/486 519/481 560/440 572/427 618/379 587/413

ImageNet-
16-120

2
p-values 0.94 0.77 0.09 0.77 0.62 0.18 0.012 0.011 0.22 0.22

wins/losses 518/481 500/498 480/519 510/487 506/492 503/496 536/464 524/476 503/495 502/495

4
p-values 0.96 0.78 0.13 0.81 0.61 0.16 6.0e−5 3.1e−8 0.17 0.015

wins/losses 517/482 497/501 515/484 485/512 494/504 504/495 549/451 558/439 504/494 520/477

6
p-values 0.98 0.81 0.11 0.82 0.71 0.14 1.3e−6 1.0e−8 0.056 0.003

wins/losses 481/518 496/502 488/509 491/507 504/495 567/433 562/435 507/491 538/459 460/251

30



Under review as a conference paper at ICLR 2024

Table 24: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on LCBench. A p-value below 0.01 indicates that metric A demonstrates
superior performance compared to metric B in the “A vs. B” comparison. We also give the number
of wins and losses where metric A outperforms or lags behind metric B. R denotes the budget
constraint of BOHB, and # window denotes the window size.

Benchmark # window
Cµ vs. Tloss Cµ vs. Vloss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

Fashion-
MNIST

2
p-values 0.99 0.99 0.95 0.99 0.93 0.99 0.99 0.99 0.99 0.98

wins/losses 57/95 6/56 39/66 7/53 34/48 56/125 16/49 47/85 21/49 40/63

4
p-values 0.99 0.99 0.99 0.99 0.99 1.0 1.0 1.0 1.0 0.94

wins/losses 87/188 35/104 88/158 13/112 50/75 68/217 40/116 83/179 37/101 45/60

6
p-values 0.99 0.99 0.99 0.99 1.0 0.99 1.0 0.99 0.99 0.63

wins/losses 87/188 47/172 91/168 36/176 46/93 68/217 41/158 82/188 57/140 57/65

adult

2
p-values 0.99 0.99 0.99 0.99 0.078 0.99 0.99 0.032 0.056 0.95

wins/losses 52/73 15/52 26/55 11/30 62/51 56/85 49/60 117/93 99/88 96/117

4
p-values 0.99 0.99 1.0 0.99 0.89 0.99 0.99 0.95 0.53 0.32

wins/losses 68/136 20/90 36/157 22/79 59/67 70/153 48/106 138/163 124/118 127/123

6
p-values 0.99 1.0 1.0 1.0 0.92 0.99 0.99 0.90 0.97 0.16

wins/losses 68/136 27/153 38/176 34/156 68/79 70/153 53/162 141/160 141/158 140/114

higgs

2
p-values 0.99 0.99 0.27 0.99 0.72 0.99 0.99 2.0e−3 0.99 0.58

wins/losses 115/178 25/48 104/145 15/37 43/41 128/201 9/40 110/116 26/38 43/41

4
p-values 0.99 0.99 0.026 0.40 0.68 0.99 0.99 2.3e−3 0.092 0.25

wins/losses 161/285 115/187 141/169 85/112 59/74 174/280 99/164 139/148 88/84 58/57

6
p-values 0.99 0.99 0.23 4.4e−3 0.84 0.99 0.99 0.073 8.4e−4 0.84

wins/losses 161/285 125/226 139/184 105/110 64/85 174/280 100/184 134/160 113/86 57/76

jasmine

2
p-values 1.0 0.99 0.99 2.8e−4 0.69 0.99 0.90 0.13 0.066 0.98

wins/losses 30/140 16/31 59/96 31/12 48/52 36/99 20/25 87/70 62/54 69/80

4
p-values 1.0 0.99 0.99 3.9e−9 0.79 0.99 0.74 0.99 1.8e−7 0.14

wins/losses 48/183 47/78 81/127 87/26 55/53 72/216 71/117 222/235 282/264 242/487

6
p-values 1.0 0.99 0.99 3.2e−10 0.49 0.99 0.99 0.99 3.2e−3 0.29

wins/losses 48/183 57/81 101/133 91/40 87/65 48/137 61/78 117/142 122/105 129/116

vehicle

2
p-values 0.99 0.99 0.99 0.96 0.57 0.99 0.99 0.98 0.97 0.33

wins/losses 23/91 11/41 23/36 10/13 39/36 11/62 2/25 18/23 8/13 36/30

4
p-values 0.99 0.99 0.99 0.99 0.62 0.99 0.99 0.99 0.97 0.10

wins/losses 27/124 16/76 30/59 19/38 50/48 14/100 6/69 26/36 18/22 38/38

6
p-values 1.0 0.99 0.99 0.99 0.82 1.0 0.99 0.99 0.99 0.78

wins/losses 27/127 18/87 33/63 21/48 56/60 14/100 13/81 28/42 20/35 49/55

volkert

2
p-values 0.98 0.99 0.99 0.99 0.69 0.99 0.95 0.98 0.99 0.93

wins/losses 17/47 6/31 17/47 4/29 40/35 32/66 17/22 59/98 37/57 59/71

4
p-values 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.86

wins/losses 26/96 19/43 31/113 13.82 41/61 30/98 29/48 64/108 46/99 67/84

6
p-values 0.99 0.99 1.0 0.99 0.99 0.99 0.99 0.99 0.99 0.95

wins/losses 26/96 29/102 31/125 24/134 49/73 30/98 35/96 69/124 59/125 63/89
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Table 25: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on Nas-Bench-201. A p-value below 0.01 indicates that metric A demon-
strates superior performance compared to metric B in the “A vs. B” comparison. We also give the
number of wins and losses where metric A outperforms or lags behind metric B. R denotes the
budget constraint of SS, and |W | denotes the window size.

Benchmark R
Cµ vs. Tloss Cµ vs. Vloss

|W | = 2 |W | = 4 |W | = 6 |W | = 2 |W | = 4 |W | = 6

CIFAR-10 20
p-values 0.34 7.3e−5 2.5e−7 0.70 0.033 1.3e−3

wins/losses 512/484 554/442 572/424 511/487 519/479 534/464

CIFAR-100 20
p-values 0.19 1.7e−5 3.6e−10 0.51 3.3e−3 1.2e−3

wins/losses 519/481 558/442 581/419 505/495 531/469 532/468

ImageNet-
16-120

20
p-values 0.12 1.7e−6 2.2e−10 0.56 0.41 0.26

wins/losses 518/481 500/498 519/480 510/487 506/492 503/496

Table 26: P-value from a Wilcoxon signed-rank test for the performance smoothing metrics against
commonly used metrics on LCBench. A p-value below 0.01 indicates that metric A demonstrates
superior performance compared to metric B in the “A vs. B” comparison. We also give the number
of wins and losses where metric A outperforms or lags behind metric B. R denotes the budget
constraint of SS, and # window denotes the window size.

Benchmark # window
Cµ vs. Tloss Cµ vs. Vloss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

Fashion-
MNIST

2
p-values 0.17 0.022 1.0 1.0 0.99 0.17 0.022 1.0 1.0 0.99

wins/losses 507/491 535/465 319/677 306/693 453/541 507/491 535/465 256/742 239/760 381/616

adult 2
p-values 0.78 0.15 1.0 1.0 0.99 0.78 0.15 1.0 1.0 1.0

wins/losses 489/507 494/499 386/609 380/613 448/542 490/503 496/497 307/689 328/665 383/607

higgs 2
p-values 0.23 0.30 0.99 0.99 0.82 0.22 0.29 0.99 0.99 1.0

wins/losses 497/480 487/480 420/578 390/605 482/512 497/480 487/480 423/574 396/598 374/621

jasmine 2
p-values 0.72 0.18 0.99 1.0 0.66 0.70 0.17 1.0 1.0 0.83

wins/losses 479/506 521/469 379/588 376/595 451/475 479/506 521/469 350/608 333/620 442/490

vehicle 2
p-values 0.84 0.42 0.99 0.99 0.98 0.80 0.41 0.98 0.99 0.99

wins/losses 465/515 510/479 441/537 449/536 435/535 465/515 510/479 451/524 423/555 412/540

volkert 2
p-values 0.77 0.72 1.0 1.0 0.94 0.75 0.70 1.0 1.0 0.99

wins/losses 493/505 496/504 349/647 329/671 480/517 493/505 496/504 299/698 268/731 39/607
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E.3 DYNAMIC WEIGHTING

We evaluate the outcomes of metrics that incorporate uncertainty from successive epochs using both
fixed and dynamic weighting approaches, compared to empirical training loss and validation loss on
Nas-Bench-201. The results are presented in Table 27.

Table 27: P-value from a Wilcoxon signed-rank test for the fixed and dynamic weighting metrics
against training loss and validation loss on Nas-Bench-201. A p-value below 0.01 indicates that
metric A demonstrates superior performance compared to metric B in the “A vs. B” comparison.
We also give the number of wins and losses where metric A outperforms or lags behind metric B.
Window size is 5 in this set of experiment. R denotes the budget constraint of Hyperband.

Benchmark metrics
Against training loss Against validation loss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

CIFAR-10

Cµ−σ
p-values 0.72 0.49 0.15 3.2e−5 0.03 2.9e−14 5.0e−16 1.1e−20 8.1e−29 5.2e21

wins/losses 39/69 43/47 73/75 147/82 184/116 282/201 417/274 523/273 488/288 460/251

Clinear
p-values 0.87 0.30 0.16 8.9e−8 5.6e−4 5.7e−17 1.4e−28 3.0e−33 1.3e−23 5.8e−24

wins/losses 16/20 40/36 68/58 135/73 166/110 29/148 446/224 541/238 484/270 457/238

Clog
p-values 0.99 0.26 0.29 4.5e−7 2.3e−4 9.6e−13 2.5e−27 1.6e−31 2.5e−20 4.4e−19

wins/losses 24/35 42/37 67/60 139/82 171/113 288/155 442/233 543/253 477/273 437/248

Cexp
p-values 0.99 0.30 0.36 2.0e−7 2.0e−5 8.0e−6 1.5e−19 2.2e−25 7.9e−16 9.6e−16

wins/losses 26/41 44/39 68/61 145/84 180/108 281/188 423/252 522/263 458/287 429/272

CIFAR-100

Cµ−σ
p-values 0.99 0.56 0.16 0.12 0.27 0.05 3.2e−15 7.6e−17 2.1e−32 2.0e−21

wins/losses 6/17 15/13 22/20 19/14 20/20 196/156 341/184 422/228 509/210 428/258

Clinear
p-values 0.99 0.86 0.11 0.25 0.06 4.1e−4 2.9e−22 9.0e−23 1.1e−39 1.4e−27

wins/losses 6/20 14/18 24/22 23/19 30/23 196/154 348/164 427/224 507/221 474/226

Clog
p-values 0.99 0.98 0.073 0.12 0.054 1.6e−3 1.1e−18 6.4e−20 4.6e−39 6.7e−24

wins/losses 9/30 14/26 29/24 26/22 31/24 202/162 344/183 424/237 488/224 468/238

Cexp
p-values 0.99 0.99 0.062 0.15 0.067 0.029 5.6e−15 5.6e−19 2.8e−33 4.3e−21

wins/losses 16/47 14/30 35/27 40/23 31/25 213/178 334/191 430/246 476/240 461/246

ImageNet-
16-120

Cµ−σ
p-values 0.99 0.19 0.37 0.39 0.30 4.2e−8 3.3e−22 2.1e−30 1.8e−9 1.3e−19

wins/losses 3/14 6/4 15/13 9/6 5/9 210/119 288/123 370/159 270/179 323/158

Clinear
p-values 0.99 0.44 0.55 0.54 0.35 3.5e−8 6.2e−24 3.4e−32 1.4e−7 2.9e−16

wins/losses 4/18 6/6 15/13 6/5 7/6 211/115 287/114 363/156 272/191 304/162

Clog
p-values 0.99 0.82 0.68 0.54 0.37 1.1e−5 3.4e−19 6.8e−30 2.9e−8 1.4e−17

wins/losses 5/27 7/10 16/17 6/5 8/7 196/112 285/127 354/161 281/184 312/151

Cexp
p-values 0.99 0.78 0.52 0.54 0.51 3.5e−3 3.0e−15 6.4e−26 2.9e−7 6.3e−17

wins/losses 7/33 10/13 17/17 6/5 11/9 194/123 275/139 351/176 271/192 307/154
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Table 28: P-value from a Wilcoxon signed-rank test for the fixed and dynamic weighting metrics
against training loss and validation loss on Nas-Bench-201. A p-value below 0.01 indicates that
metric A demonstrates superior performance compared to metric B in the “A vs. B” comparison.
We also give the number of wins and losses where metric A outperforms or lags behind metric B.
Window size is 5 in this set of experiment. R denotes the budget constraint of BOHB.

Benchmark metrics
Against training loss Against validation loss

R = 20 R = 50 R = 81 R = 120 R = 150 R = 20 R = 50 R = 81 R = 120 R = 150

CIFAR-10

Cµ−σ
p-values 0.76 0.31 0.17 1.4e−3 5.3e−3 5.6e−13 5.5e−14 1.5e−18 9.9e−28 4.4e−23

wins/losses 15/19 28/24 47/33 85/50 79/56 15/21 27/22 52/36 90/53 93/58

Clinear
p-values 0.90 0.21 0.17 7.7e−4 5.6e−5 5.2e−14 9.5e−25 4.9e−28 9.7e−30 1.3e−24

wins/losses 16/20 40/36 68/58 135/73 166/110 297/160 431/216 462/240 471/212 394/211

Clog
p-values 0.99 0.47 0.34 6.8e−3 0.083 1.2e−11 5.5e−18 4.8e−22 1.3e−28 3.4e−23

wins/losses 473/523 489/506 502/492 526/474 483/514 498/501 539/458 568/427 539/459 494/502

Cexp
p-values 0.99 0.65 0.37 4.3e−3 0.072 4.6e−6 7.2e−14 6.8e−14 2.1e−20 8.0e−19

wins/losses 458/538 479/516 500/494 524/476 481/516 501/497 524/473 545/452 516/482 476/520

CIFAR-100

Cµ−σ
p-values 0.99 0.43 0.20 0.84 0.49 6.4e−4 9.5e−15 4.4e−14 9.2e−28 2.1e−12

wins/losses 6/17 12/10 31/27 21/27 16/22 196/156 327/186 356/225 422/204 374/237

Clinear
p-values 0.99 0.78 0.08 0.49 0.54 4.1e−4 1.0e−17 1.9e−15 3.9e−32 1.2e−16

wins/losses 6/20 11/15 34/26 22/23 25/28 196/154 330/173 359/215 428/195 400/231

Clog
p-values 0.99 0.77 0.23 0.91 0.60 3.3e−7 2.0e−15 5.7e−14 2.7e−24 7.2e−17

wins/losses 472/528 513/487 508/492 490/510 503/496 496/503 541/459 518/480 516/484 514/485

Cexp
p-values 0.99 0.68 0.33 0.15 0.83 1.0e−4 1.0e−9 2.9e−9 9.3e−23 8.8e−17

wins/losses 453/547 507/493 502/498 487/513 501/498 497/503 532/468 503/495 501/499 508/491

ImageNet-
16-120

Cµ−σ
p-values 0.96 0.16 0.52 0.23 0.74 4.1e−12 9.8e−27 1.1e−20 1.2e−10 2.4e−16

wins/losses 4/34 11/11 22/19 25/19 25/14 215/94 322/126 304/136 223/122 229/109

Clinear
p-values 0.98 0.062 0.61 0.059 0.37 6.0e−11 1.7e−26 3.0e−22 3.0e−7 1.4e−12

wins/losses 1/6 12/5 19/17 3/14 11/11 218/97 314/120 303/127 214/136 229/124

Clog
p-values 0.99 0.99 0.87 0.83 0.35 1.1e−8 1.2e−14 3.2e−23 9.3e−8 1.6e−6

wins/losses 464/536 497/502 495/503 487/513 506/493 503/497 512/486 544/454 518/482 547/452

Cexp
p-values 0.99 0.99 0.58 0.65 0.70 2.3e−4 6.9e−12 3.2e−16 5.2e−7 8.8e−5

wins/losses 446/554 489/510 481/518 487/513 507/492 499/501 510/488 525/473 504/496 532/467
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Table 29: P-value from a Wilcoxon signed-rank test for the fixed and dynamic weighting metrics
against training loss and validation loss on Nas-Bench-201. A p-value below 0.01 indicates that
metric A demonstrates superior performance compared to metric B in the “A vs. B” comparison.
We also give the number of wins and losses where metric A outperforms or lags behind metric B.
Window size is 5 in this set of experiment. R denotes the budget constraint of SS.

Benchmark metrics
Against training loss Against validation loss

R = 20 R = 50 R = 81 R = 120 R = 20 R = 50 R = 81 R = 120

CIFAR-10

Cµ−σ
p-values 0.99 0.99 0.99 0.31 0.98 0.30 0.017 9.9e−4

wins/losses 488/508 489/509 507/487 527/473 501/498 508/490 533/462 526/471

Clinear
p-values 0.99 0.99 0.99 0.22 0.87 3.0e−5 7.2e−9 1.8e−14

wins/losses 485/511 488/507 506/488 527/473 506/493 539/459 564/431 567/429

Clog
p-values 0.99 0.99 0.99 0.72 0.98 6.2e−5 1.1e−7 6.6e−6

wins/losses 473/523 489/506 502/492 526/474 498/501 539/458 568/427 539/459

Cexp
p-values 0.99 0.99 0.87 0.52 0.026 0.044 4.4e−3 0.26

wins/losses 524/473 479/516 500/494 524/476 532/465 524/473 545/452 516/482

CIFAR-100

Cµ−σ
p-values 0.99 0.99 0.99 0.99 9.5e−15 4.4e−14 9.2e−28 2.1e−12

wins/losses 482/518 512/479 521/479 492/508 491/508 524/476 502/496 500/500

Clinear
p-values 0.99 0.99 0.99 0.95 0.89 0.67 0.22 0.082

wins/losses 482/518 522/478 522/478 496/504 491/508 540/460 519/479 538/462

Clog
p-values 0.99 0.99 0.99 0.99 0.80 0.065 6.0e−4 2.5e−4

wins/losses 472/528 513/487 508/492 490/510 528/472 576/424 544/456 528/472

Cexp
p-values 0.99 0.99 0.99 0.99 4.5e−3 0.28 0.05 0.096

wins/losses 453/547 507/493 502/498 487/513 533/467 532/468 503/495 501/499

ImageNet-
16-120

Cµ−σ
p-values 0.99 0.99 0.65 0.79 0.067 0.11 0.017 0.27

wins/losses 486/514 505/494 502/496 500/500 502/498 506/492 522/476 506/494

Clinear
p-values 0.99 0.99 0.85 0.92 0.028 0.095 8.0e−7 9.5e−8

wins/losses 485/515 505/494 502/496 500/500 481/519 485/514 510/487 526/474

Clog
p-values 0.99 0.99 0.99 0.99 0.06 0.077 3.6e−5 6.0e−3

wins/losses 464/536 497/502 495/503 487/513 480/520 488/511 504/493 507/493

Cexp
p-values 0.99 0.99 0.99 0.99 0.14 0.33 6.7e−5 0.50

wins/losses 507/493 489/510 481/518 487/513 507/493 512/486 544/454 506/494
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