Retrieval-Augmented Generation with Knowledge
Graphs: A Survey

Abstract—Retrieval-Augmented Generation (RAG) has re-
cently emerged as a powerful framework to enhance Large
Language Models (LLMs) by leveraging external knowledge
sources. However, traditional RAG systems relying on flat data
structures often struggle with complex relationships and semantic
reasoning. This survey explores the integration of knowledge
graphs (KGs) into RAG systems, which offers structured infor-
mation storage, enhanced semantic understanding, and dynamic
update capabilities. We systematically review current method-
ologies across the stages of graph construction, graph retrieval,
and augmented generation, highlighting key innovations and
challenges. Additionally, we examine datasets, evaluation metrics,
and experimental frameworks, and propose future research
directions to advance RAG systems. This paper serves as a
comprehensive resource for understanding the state-of-the-art
and identifying open problems in this emerging field.

Index Terms—Retrieval-Augmented Generation, Large Lan-
guage Models, Knowledge Graphs

I. INTRODUCTION

HILE Large Language Models (LLMs) have demon-

strated remarkable capabilities in understanding and
generating human language, they also have some limitations.
When LLMs encounter queries for which they do not have
a definitive answer based on their training data, they may
generate plausible but inaccurate or fabricated information.
This phenomenon is referred to as “hallucination” [1]. Mean-
while, LLMs cannot always grasp the latest information and
domain-specific knowledge. The introduction of Retrieval-
Augmented Generation (RAG) [2]] partially mitigates these
issues by combining retrieval and generation, allowing LLMs
to leverage external knowledge bases to enhance their response
capabilities. The fundamental principle of RAG is to retrieve
the most relevant text chunks in external knowledge bases
according to the query, and then input them into LLMs
together with the query as prompts, which leads to an appro-
priate generation. RAG technology improves the timeliness
and accuracy of LLMs’ responses, and enables LLMs to
acquire additional knowledge without retraining, thus making
it receive widespread attention.

Despite the impressive performance and convenience of
RAG, it still faces several challenges. First of all, external
documents may contain information that is not completely
relevant to the query. Simply retrieving relevant documents
and adding all of them to the prompts will introduce noise,
resulting in decreased accuracy of LLMS [3| i4]. Noisy in-
formation may also make the retrieved documents too long
to exceed the limits of LLM context windows. In addition,
most external data in traditional RAG are stored as flat data
representations, restricting the ability of LLMs to understand
the complex relationships between entities. Similarly, RAG
cannot summarize global information between documents as

well, and hence struggles with Query-Focused Summarization
(QFS) tasks [3]. Finally, incremental update to large text
databases is also a challenge.

Knowledge Graphs (KGs) have been considered in recent
studies to address the above challenges. In these studies,
unlike flat data representations in traditional RAG, external
data is summarized into a knowledge graph structure by
applying some knowledge extraction techniques. Then, in the
retrieval stage, specific graph structures instead of text chunks
are retrieved based on the query. After that, retrieved graph
structures will be converted into text formats which LLMs can
accept and input into LLMs together with the query as prompts
to generate an answer. Knowledge graphs show the following
advantages in this process: (1) Structured information storage:
The knowledge graph stores external textual information in the
form of a graph, making the data more structured, removing
unnecessary noise, and reducing the amount of text input into
the LLMs context window. (2) Enhanced semantic understand-
ing: By leveraging entities and relations in knowledge graphs,
LLMs can gain a deeper understanding of the semantics of
queries and improve the relevance and accuracy of generated
answers. LLMs can also better perform tasks such as multi-
hop reasoning and QFS based on the graph structure. (3)
Support for dynamic updates: Knowledge graphs can usually
be updated dynamically, allowing RAG systems to obtain the
latest information in real time and ensure that the generated
content reflects the latest knowledge.

This paper aims to investigate the application technology of
knowledge graphs in RAG systems, build a complete work-
flow architecture, summarize and classify existing methods
according to different principles in each stages of RAG. Our
contributions are as follows:

o We summarize and divide the general workflow of RAG
with knowledge graph based on the current state-of-the-
art methods.

« We investigated the principles of current methods and
organized them into categories in stages of graph con-
struction, graph retrieval and augmented generation.

o We discuss related experimental benchmarks and metrics,
and provide prospects for future research directions.

II. BACKGROUND

In this section, we introduce relevant background knowledge
to better understand the following content.

A. Large Language Models

Large Language Models (LLMs) represent a significant
advancement in the field of natural language processing (NLP).
These models, which are trained on vast amounts of text data,



User

2

QA System

Query

Answer

Buiyoren

B A
m Construction Retrieval
@

Knowledge

Local Data Graph

Generation

g Augmentation

Graph
Structure

Pretrained
Data

S—

LLMs

@ Pretraining

Input

Prompts

Fig. 1: Overview of knowledge graph RAG systems.

leverage deep learning techniques to understand and generate
human-like language. By capturing intricate patterns and re-
lationships within the data, LLMs can perform a wide range
of tasks, including text completion, translation, summarization,
and question-answering. Their ability to generate coherent and
contextually relevant responses has opened new avenues for
applications in various domains, from automated customer
service to creative writing, thereby transforming the landscape
of human-computer interaction.

B. Knowledge Graphs

Knowledge Graphs (KGs) are structured representations of
data, usually denoted as G = (V, &, {xy}vev,{€i;}tijee)s
where V is a set of nodes representing concept entities, and
E CV x Vis the set of edges representing the relationships
between these entities [6]. Additionally, each node or edge
may posses a set of textual attributes, represented as {X, }yev
and {e; ;}i jee, respectively.

Nodes/edges and attributes can also be organized into key-
value pairs, where the key is the name of the entity/relationship
and the value is the corresponding textual description. This can
make it more convenient for retrieval and generation stage of
RAG [7]].

C. Graph Neural Networks

Graph Neural Networks (GNNs) have become a funda-
mental tool in handling graph-structured data. GNNs mainly
consist of two parts: message passing and aggregation, which
obtain node and graph representations by aggregating graph
structure information:

;) (M

L]

h{ = AGG,cny (Y, MSG (!

()" denotes node representations in the [-th layer,

where h;

N (i) represents the neighbors of node i, and egf) denotes
information of edge between node ¢ and node j. MSG and
A GG represent the message passing function and aggregation
function, respectively, and their implementations can vary

significantly across different GNNs. For instance, GCN [8]

utilizes convolutional neural networks to aggregate informa-
tion from neighboring nodes, while GAT [9] employs attention
mechanisms for node information aggregation. Finally, graph
representations can be obtained by pooling the node represen-
tations [10].

In knowledge graph RAG systems, GNNs can be utilized to
model graph structure retrieved, which can well combine the
semantic and structural information of the knowledge graph
in the augmented generation stage.

III. ARCHITECTURE

In this section, we introduce the overall architecture of RAG
with knowledge graph. We show the architecture overview of
it in Figure (1} We divide this architecture into three essential
stages: graph construction, graph retrieval and augmented
generation. In graph construction stage, various types of local
files are constructed into a knowledge graph through specific
methods. Then, in the retrieval stage, the user query and
the knowledge graph are matched according to the semantic
relevance, and the most relevant graph structures will be
selected, which can be in the form of different granularity.
Finally, in the augmented generation stage, the retrieved graph
structures are first converted into data formats acceptable to
LLMs, and then input into LLMs together with the query as
prompts to generate the answer.

In the rest of this section, we will discuss the specific details
of each stage, categorize and summarize the various methods
that have been employed. The categorization is shown in Table

ik

A. Graph Construction

The quality of the knowledge graph directly influences the
performance of RAG. Therefore, how to construct a dynamic
knowledge graph from multi-source data and maintain its
timeliness and accuracy is the key to this stage.

1) Graph Categories: As described in Section 2, the tra-
ditional entity-relation knowledge graph consists of a set of
nodes and edges, where nodes represent entities and edges



° © °
° ° o
° o e ¢ e
. °
° °
® °
o © °
° 5 ° ° °
° ° °
° °-o % o0 o °
® -0
o:o:
° ° ¢, °
k e °
® °
° ° °

Fig. 2: An example of entity-relation knowledge graph, which is constructed from the novel A Christmas
Carol. The left picture shows the complete knowledge graph, which includes all entities and relationships
in the novel. The right picture shows the central part of the knowledge graph, which shows the
interpersonal relationships of the protagonist Scrooge. We utilize the gwen2 [11] language model and the
nomic-embed-text [12] embedding model to assist the construction of this graph.

represent the relationships between entities. Knowledge ex-
traction is applied to obtain usable knowledge units, including
entities, relations, and attributes from natural language text
input. There are many automated or semi-automated extraction
technologies available. Hearst et al. [L13] utilize rule-based
methods to manually extract knowledge from text, most of
which are formulated by domain experts. Brin et al. [14]]
exploit statistical features and machine learning algorithms
to automatically learn knowledge from data. More common
approaches is to utilize pre-trained language models (such
as BERT, GPT) for knowledge extraction [5| [7, [15]. We
give an example of an entity-relationship knowledge graph
in LightRAG [7], which utilizes LLMs to extract all entities
and relationships in novel A Christmas Carol. We visualizes
them through the neo4j database in Figure [2]

Knowledge extraction can’t be completly precise, leading
to proposals for other kind of knowledge graphs. Typical
one of them is document-structure graph. Wang et al. [16]]
directly utilize text passages as nodes and builds edges based
on whether there is semantic similarity between passages.
They use co-occurring words, paragraph embedding matching,
and common Wikipedia entities to determine whether there is
semantic similarity between passages. Li et al. [17] utilize
structural information and shared keywords to construct the
graph of passages. Munikoti et al. [18] regard documents
as nodes and construct edges based on the co-citation, co-
topic, co-location, and co-institution relationships between
documents. These methods can quickly build a knowledge
graph without meeting extraction errors.

2) Index Storage: After construction of knowledge graph,
graph structures should be retrieved according to the index.
Diverse index types have been employed in current methods.
Some directly utilize the graph as index and employ traditional
graph traversal algorithms for retrieval [16} [19].

Other methods convert graph data into vector representa-

tions and store them in vector database for fast retrieval. For
example, He et al. [20] encode textual information of each
node and edge using LLMs while Li et al. [21] encode triples
into text embeddings. Hu et al. [22]] embed each k-hop ego
graph into indexes. Edge et al. [S]] utilize community detection
algorithms to partition the knowledge graph into different
communities, and LLMs are employed to generate textual
summaries for each community, which are then embedded into
a vector space. Guo et al. [[7] organize nodes/edges and their
text attributes into key-value pairs and store the keys in vector
space.

3) Knowledge Update: In rapidly changing data environ-
ments, it’s crucial to update the knowledge database efficiently.
Current methods are divided into non-incremental update and
incremental update. Non-incremental update means that at
each time new data is added, the knowledge graph or index
needs to be rebuilt, while incremental update only requires
minor adjustments. Methods that directly ultilize the graph as
an index or retrieve nodes/edges generally support incremental
update, while methods that retrieve subgraphs usually are non-
incremental update. For instance, GraphRAG [5] generates
community summaries for each graph community and index
them, when the knowledge graph is updated, the community
needs to be re-divided and the above process needs to be
repeated. GRAG [22] encodes all k-hop ego graphs into
indexes, and updates require re-searching all k-hop ego self-
graphs. LightRAG [/] support incremental update for it only
requires adding new nodes and edges to the knowledge graph
and embedding them into the vector database.

B. Graph Retrieval

Graph retrieval refers to the process of finding the most
semantically relevant graph structures from the knowledge
graph based on the user query. Next, we will categorize



TABLE I: Summary of Existing Methods

Method Knowledge Graph Type Index Type Retrieval Granularity Retrieval Process
GraphRAG [5] entity-relation vector subgraphs multi-stage
LightRAG [7] entity-relation vector subgraphs multi-stage
KG-RAG [15] entity-relation graph paths iterative

KGP [16] document-structure graph nodes iterative
GNN-Ret [17] document-structure vector nodes iterative

ATLANTIC [18] document-structure vector nodes iterative
GraphCoT [19] entity-relation graph paths iterative
G-Retriever [20] entity-relation vector subgraphs multi-stage
Li et al. [21] entity-relation vector triplets one-time
GRAG [22] entity-relation vector subgraphs multi-stage
GNN-RAG [23] entity-relation vector triplets iterative
HippoRAG [24] entity-relation vector nodes one-time
Pullnet [25] entity-relation graph nodes iterative

CPR [26] entity-relation vector paths multi-stage

ToG [27] entity-relation graph paths iterative
KG-GPT [28] entity-relation graph nodes multi-stage

and summarize the retrieval granularity, retrieval level, and
retrieval process of various methods.

1) Retrieval Granularity: Retrieval granularity refers to the
smallest unit of the graph structure retrieved in response to
a query. It is influenced by the type of indexing employed
and the retrieval algorithm utilized. Each level of retrieval
granularity possesses distinct characteristics and is suited to
specific application scenarios. We divide the granularity into
nodes/edges, triplets, graph paths and subgraphs.

Retrieving nodes and edges is primarily for obtaining de-
tailed information. For instance, Sun et al. [25] retrieved
entities from a knowledge graph constructed from an open-
domain dataset to solve simple problems in open-domain
QA. Specifically, for the document-structure graph mentioned
earlier, the retrieval granularity is generally a node because
different passages rarely form a meaningful overall structure.
For example, Wang et al. [16], Li et al. [17] and Munikoti
et al. [18] retrieve passage nodes in the document-structure
graph as text prompts directly.

The retrieval of triplets and paths granularity can capture
distant relationships between different entities in the query, en-
hancing contextual understanding and reasoning capabilities,
which is often used in reasoning tasks. Li et al. [21] utilize a
specific template to convert triples into texts, and then stored
them into vector indexing for retrieval. Retrieving paths is an
NP-hard problem, because the number of possible paths grows
exponentially as the size of the graph increases. One solution
is to utilize depth-limited search such as CPR [26] and GNN-
RAG [23]], and another solution is to use beam search like
ToG [27]].

The retrieval of subgraphs granularity is the most commonly
utilized due to its ability to offer comprehensive understanding
to the contextual information. Like paths, retrieving subgraphs
is also an NP-hard problem. Therefore, many methods seek to
approximatly optimal subgraphs instead of optimal subgraphs.
Guo et al. [7] construct one-hop ego graph around retrieved
nodes. Hu et al. [22] directly retrieve k-hop ego graph and then
implement soft-pruning to remove irrelevant nodes and edges.
He et al. [20] design an approximate Prize-Collecting Steiner
Tree (PCST) algorithm to construct subgraphs with retrieved
nodes and edges. Edge et al. [S]] retrieve community summary

of relevant subgraphs.

2) Retrieval Level: Retrieval level refers to which level
of the knowledge graph the retrieval focuses on. It can be
categorized into local-level retrieval and global-level retrieval,
which is generally related to the retrieval granularity and
downstream tasks.

Local-level retrieval focuses on extracting fine-grained in-
formation from the graph. It aims to identify specific nodes,
edges, or attributes that are directly relevant to the query. This
approach is particularly useful in scenarios where precise and
rich data is required, such as in knowledge-based question
answering or when generating highly specific content. Global-
level retrieval, on the other hand, operates at a higher abstrac-
tion level, focusing on broader concepts or themes represented
in the graph. This level seeks to capture the overarching
context or narrative associated with a set of related entities
or events. This method is beneficial for generating summaries
or overviews, like QFS tasks. Some methods support both
levels of retrieval, which retrieve both local details and global
thematic information. For instance, LightRAG [7]] first extracts
the local and global keywords of the query, then utilize the
local keywords to retrieve entities and the global keywords
to retrieve relationships, respectively, forming a dual-level
retrieval paradigm.

3) Retrieval Process: After query matching, some meth-
ods directly utilize the retrieved content as retrieval results,
while some methods process these contents to generate better
retrieval results, and some methods utilize these contents
to perform new retrieval on the graph. According to these
retrieval processes, we divide current methods into one-time
retrieval, multi-stage retrieval, and iterative retrieval.

One-time retrieval involves comparing the knowledge graph
content with the query just once, and then retrieving all
graph structures as results. This process is highly efficient
and preserves the effective information of the graph, but it
may also contain a lot of irrelevant redundancy. They usually
embed the retrieval object into the vector space in advance,
and then directly retrieve the most relevant information based
on the embedding similarity between the query and the re-
trieval object. For instance, Gutierrez et al. [24] extract node
information directly from the graph database and Li et al. [21]]



directly extract triplets information from a pre-constructed text
index.

Multi-stage retrieval refers to adjusting the structure or
content of the retrieved information rather than directly using
it as the retrieval result. GraphRAG [5] utilizes LLMs to
score the retrieved community summaries and sort them in
descending order, removing those with lower scores. GRAG
[22] performs soft-pruning on all retrieved k-hop subgraphs,
applying deep learning methods to mask irrelevant nodes and
edges in the subgraphs. G-Retriever [20] retrieves the nodes
and edges most relevant to the query and assign weights to
them, and then designs an approximate PCST optimization
algorithm to extract the most relevant subgraph. LightRAG
[7] gathers neighboring nodes within the local subgraphs of
the retrieved graph elements to enhance the query with higher-
order relatedness.

Iterative retrieval refers to re-searching the information de-
pending on the results of prior retrievals to improve relevance.
Differences between iterative retrieval and multi-stage retrieval
may be that the query is reused by subsequent processes in
iterative retrieval. For example, KGP [16]] first extracts the
passage nodes most relevant to the query, then feeds the
passage words and the query into LLMs to generate a new
description, based on which it retrieves the next possible
passage node. ToG [27] utilizes LLMs to select possible
reasoning paths, and then feeds them and the query into the
same LLM for further selecting until the model believes that
current path can infer the answer to the query. GNN-RAG [23]]
first obtains the subgraph containing the query entity through
dense retrieval, then utilizes GNNs to label possible answer
entities according to query relevance, and finally retrieves
paths between the query entity and the answer entities.

C. Augmented Generation

After retrieving the graph structures related to the query, the
last step is to convert them into proper input formats acceptable
to LLMs and then input them into LLMs together with the
query as prompts to generate the answer. In this process, there
are various methods to convert graph structures into textual
formats, and many augmented generation techniques have been
proposed to improve the quality of the output.

1) Text Conversion: Graph structures such as nodes/edges,
triples, paths and subgraphs obtained in the retrieval stage
cannot be directly input into LLMs, so they need to be
converted into texts while retaining the structural information
of the graph. The most direct way is to express the graph
structure in natural language, using serial numbers plus texts
to express the relative positions of nodes and edges, such as
G-Retriever [20]]. For methods with retrieval granularity of
triples or paths, a common conversion method is to utilize
node sequences [23} [27], where reasoning paths are verbalized
as “{entity} — {relation} — {entity} -+ — ---
{entity} \n”. It is also very efficient to directly add the
text attributes corresponding to the retrieved graph structure
to prompts [7, [16].

It is difficult to determine whether LLMs really under-
stand the topology information in above methods. Another

approaches include the topological structure of the graph
in the text through summarization. Edge et al. [5] generate
summaries of subgraphs by LLMs and then integrate results
of different community summaries. Hu et al. [22] introduce
a novel prompting method based on graph and tree traversals
to convert textual subgraphs into hierarchical text descriptions
without losing both textual and topological information.

2) Augmentation Methods: During the generation stage, in
addition to converting the graph structures into text formats,
the contents could also be optimized and enhanced to improve
the quality of the output. There are several reasons for this
procedure. For instance, the volume of information retrieved
may exceed the LLM’s context window, or lengthy contexts
may make it difficult for the LLM to capture distant entity re-
lationships. Additionally, the graph may contain low-relevance
content, which can hinder the LLM’s ability to focus on key
information. Edge et al. [5] generate summaries for each graph
community and generate answers for each summary based on
the query during the retrieval process. Then they utilize LLMs
to score each community answer to reflect whether it can well
answer the query, and add community answers to prompts in
descending order of score until the context window limit of
LLMs is reached. Hu et al. [22]] apply deep learning algorithm
to mask retrieved results, thereby reducing the influence of less
relevant entities and relations on LLMs.

In addition to directly adjusting the textual information
in prompts (i.e., hard prompts), some methods also apply
soft prompts to enhance the output of LLMs. Soft prompt-
ing refers to a technique where continuous embeddings are
prepended to the input sequence to guide LLMs’ behavior.
These embeddings are often learned or optimized specifically
for a task, enabling the model to incorporate task-relevant
information without modifying the parameters of LLMs. Soft
prompts can be generated randomly, but common methods
obtain soft prompts by encoding the graph in order to offer
the structural information of the graph to LLMs. For example,
He et al. [20] and Hu et al. [22] utilize GNNs to encode the
retrieved subgraph as soft prompt and train them on a specific
dataset. During the training process, the parameters of LLMs
are frozen and only the parameters of the GNNs are updated.

IV. EVALUATION

Evaluating knowledge graph RAG systems requires a robust
framework to assess both retrieval and generation quality, as
well as the effectiveness of incorporating knowledge graphs.
This section outlines the benchmarks, metrics, experimental
setups and methods utilized in the evaluation of current
methods.

A. Benchmarks

Benchmarks are divided into downstream task datasets and
special tests. The most common downstream task of the RAG
system is question answering (QA). For open-domain question
answering, where data can be obtained from open web pages
and documents, there are datasets such as WikiQA [29],
ODSQA [30] and IfQA [31]], etc. And for knowledge base
question answering (KBQA), where questions usually belong



to a specific knowledge graph, and answers usually involve
operations between entities, relations, or entity sets in the
knowledge graph, some public knowledge graphs have been
established such as Freebase [32]. There are also many KBQA
datasets based on these knowledge graphs, such as WebQSP
[33], HotpotQA [34] and FreebaseQA [35]], etc. Benchmark
tests are performance tests designed specifically for RAG
systems. For example, He et al. [20] introduce a diverse
benchmark targeted at real-world graph question answering,
filling a crucial research gap. Jin et al. [19] construct a bench-
mark dataset called GRBENCH to support the development
of methodology and facilitate the evaluation of the proposed
models. It contains 1,740 questions that can be answered by
10 graphs from 5 domains.

B. Metrics

The evaluation metrics for the knowledge graph RAG sys-
tems can be divided into three parts: retrieval evaluation, gen-
eration evaluation, and graph evaluation. In terms of retrieval,
metrics such as Recall@k, Mean Reciprocal Rank (MRR),
and Normalized Discounted Cumulative Gain (NDCG) are
standard for assessing how well relevant knowledge graph
nodes or triples are retrieved based on a query. Some studies
evaluate the performance of retrieval systems by analyzing
the ratio between answer coverage and the size of the re-
trieved subgraph. For generation, standard metrics like BLEU,
ROUGE, and METEOR are used to evaluate the fluency and
relevance of generated responses. For open-domain tasks, F1
score and Exact Match (EM) are often utilized. In CSQA,
Accuracy is the most commonly used evaluation metric. Spe-
cific to knowledge graph RAG systems, evaluating the model’s
effective use of graph structure is essential. Metrics like Graph
Coverage (percentage of retrieved nodes that contribute rele-
vant context) and Graph Relevance Score (weighting relevant
entities higher) are increasingly utilized.

C. Evaluation Mode

The evaluation modes are mainly divided into manual eval-
uation and automatic evaluation. Manual evaluation usually
refers to the subjective evaluation of some semantic indica-
tors of LLM answers by humans, such as the completeness,
comprehensiveness, and whether hallucinations occur in the
answers. For example, Xu et al. [36] recruited graduate stu-
dents to manually annotate the responses generated by LLMs
identifying indicators that cannot be automatically derived,
such as explain completeness, explain redundancy, perspective
mistake, and process mistake.

In terms of automatic evaluation, in addition to the indi-
cators in diverse benchmarks, many works utilize LLMs to
evaluate the quality of RAG systems. For instance, GraphRAG
[S] and LightRAG [7] utilize LLMs to evaluate the answers
generated by RAG in terms of comprehensiveness, diversity,
empowerment, and directness. Specifically, they group the
answers generated by different RAGs into two groups, and
then utilize the same model to determine which group of
answers is better in these four metrics, and count the winning
rates of different RAG systems.

V. PROSPECTS

Although knowledge graphs have greatly improved the
performance of RAG systems, there are still some challenges
to be faced in this field. This section will discuss some of the
current problems in this field and point out possible research
directions in the future.

A. Construction Flaws of KGs

Undoubtedly, the performance of RAG is greatly affected
by the quality of the knowledge graph. In recent studies, con-
structing knowledge graphs by prompting LLMs has become a
common approach. However, this method can sometimes result
in suboptimal graph structures, including ungrammatical entity
names, multiple entities representing the same concept, and
relationships with incorrect semantics. Therefore, optimizing
the knowledge extraction process or exploring appropriate
post-filtering and entity linking techniques is essential. An
alternative solution involves utilizing document-relation graphs
to bypass the knowledge extraction process. In this scenario, it
is crucial to investigate methods for more effectively retrieving
query-relevant entities from documents.

B. Exploration of Heterogeneous and Dynamic Graphs

Heterogeneous graphs, characterized by multiple types of
nodes and edges, are common in domains like social networks,
biomedical research, and recommendation systems. Extending
RAG to handle such graphs could enable more nuanced rea-
soning by incorporating the semantics of diverse relationships
and entities. For instance, incorporating node and edge type
information directly into the retrieval and generation processes
could improve the contextual relevance of outputs. Dynamic
graphs, which evolve over time with changing nodes, edges,
and attributes, introduce challenges such as maintaining con-
sistency and capturing temporal patterns. RAG can be adapted
to these scenarios by integrating temporal graph models or
incremental graph retrievers, allowing it to handle evolving
knowledge bases or streaming data effectively. This could
be particularly impactful in real-time applications like event
analysis, financial modeling, or adaptive question answering
systems.

C. Multimodal Integration

Integrating multimodal data into RAG frameworks offers
opportunities for richer and more comprehensive reasoning.
By incorporating textual, visual, auditory, and other data
modalities, RAG systems can address complex, cross-modal
questions, such as interpreting diagrams or analyzing multi-
media content. Challenges include designing retrieval mech-
anisms and generative models that effectively fuse hetero-
geneous data formats while maintaining semantic coherence.
Future research could focus on cross-modal embeddings and
multimodal graph structures to unify diverse data represen-
tations, enabling RAG to deliver contextually enriched and
modality-aware responses, with applications in fields like med-
ical diagnosis, interactive learning, and multimedia generation.



VI. CONCLUSION

This survey provides a comprehensive overview of inte-
grating knowledge graphs into Retrieval-Augmented Gener-
ation systems, addressing their workflow and advantages in
handling complex relationships, reducing noise, and enabling
dynamic updates. Despite these benefits, challenges remain in
constructing high-quality graphs, designing scalable retrieval
mechanisms, and effectively utilizing graph structures during
generation. Future research should focus on optimizing graph
construction, exploring retrieval techniques for diverse graphs,
and incorporating multimodal data, paving the way for more
robust and versatile RAG systems.

REFERENCES

[1] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang,
Q. Chen, W. Peng, X. Feng, B. Qin et al., “A survey on
hallucination in large language models: Principles, tax-
onomy, challenges, and open questions,” arXiv preprint
arXiv:2311.05232, 2023.

[2] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai,
J. Sun, M. Wang, and H. Wang, “Retrieval-augmented
generation for large language models: A survey,” arXiv
preprint arXiv:2312.10997, 2023.

[3] J. Chen, H. Lin, X. Han, and L. Sun, “Benchmarking
large language models in retrieval-augmented genera-
tion,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, vol. 38, no. 16, 2024, pp. 17754—
17762.

[4] Y. Kuratov, A. Bulatov, P. Anokhin, D. Sorokin,
A. Sorokin, and M. Burtsev, “In search of needles in a
10m haystack: Recurrent memory finds what llms miss,”
arXiv preprint arXiv:2402.10790, 2024.

[5] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao,
A. Mody, S. Truitt, and J. Larson, “From local to global:
A graph rag approach to query-focused summarization,”
arXiv preprint arXiv:2404.16130, 2024.

[6] B. Peng, Y. Zhu, Y. Liu, X. Bo, H. Shi, C. Hong,
Y. Zhang, and S. Tang, “Graph retrieval-augmented
generation: A survey,” arXiv preprint arXiv:2408.08921,
2024.

[71 Z. Guo, L. Xia, Y. Yu, T. Ao, and C. Huang, “Lightrag:
Simple and fast retrieval-augmented generation,” arXiv
preprint arXiv:2410.05779, 2024.

[8] T. N. Kipf and M. Welling, “Semi-supervised classifica-
tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[9] P. Velickovié, G. Cucurull, A. Casanova, A. Romero,
P. Lio, and Y. Bengio, “Graph attention networks,” arXiv
preprint arXiv:1710.10903, 2017.

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chem-
istry,” in International conference on machine learning.
PMLR, 2017, pp. 1263-1272.

[11] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou,
C. Li, C. Li, D. Liu, F. Huang et al., “Qwen2 technical
report,” arXiv preprint arXiv:2407.10671, 2024.

[12] Z. Nussbaum, J. X. Morris, B. Duderstadt, and A. Mul-
yar, “Nomic embed: Training a reproducible long context
text embedder,” arXiv preprint arXiv:2402.01613, 2024.

[13] M. A. Hearst, “Automatic acquisition of hyponyms from

large text corpora,” in COLING 1992 volume 2: The 14th

international conference on computational linguistics,

1992.

S. Brin, “Extracting patterns and relations from the world

wide web,” in International workshop on the world wide

web and databases. Springer, 1998, pp. 172-183.

[15] D. Sanmartin, “Kg-rag: Bridging the gap between knowl-

edge and creativity,” arXiv preprint arXiv:2405.12035,

2024.

Y. Wang, N. Lipka, R. A. Rossi, A. Siu, R. Zhang,

and T. Derr, “Knowledge graph prompting for multi-

document question answering,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 38,

no. 17, 2024, pp. 19206-19214.

[17] Z. Li, Q. Guo, J. Shao, L. Song, J. Bian, J. Zhang,
and R. Wang, “Graph neural network enhanced re-
trieval for question answering of 1lms,” arXiv preprint
arXiv:2406.06572, 2024.

[18] S. Munikoti, A. Acharya, S. Wagle, and

S. Horawalavithana, “Atlantic: Structure-aware retrieval-

augmented language model for interdisciplinary science,’

arXiv preprint arXiv:2311.12289, 2023.

B. Jin, C. Xie, J. Zhang, K. K. Roy, Y. Zhang, S. Wang,

Y. Meng, and J. Han, “Graph chain-of-thought: Augment-

ing large language models by reasoning on graphs,” arXiv

preprint arXiv:2404.07103, 2024.

[20] X. He, Y. Tian, Y. Sun, N. V. Chawla, T. Laurent,

Y. LeCun, X. Bresson, and B. Hooi, “G-retriever:

Retrieval-augmented generation for textual graph un-

derstanding and question answering,” arXiv preprint

arXiv:2402.07630, 2024.

S. Li, Y. Gao, H. Jiang, Q. Yin, Z. Li, X. Yan, C. Zhang,

and B. Yin, “Graph reasoning for question answering

with triplet retrieval,” arXiv preprint arXiv:2305.18742,

2023.

Y. Hu, Z. Lei, Z. Zhang, B. Pan, C. Ling, and L. Zhao,

“Grag: Graph retrieval-augmented generation,” arXiv

preprint arXiv:2405.16506, 2024.

[23] C. Mavromatis and G. Karypis, “Gnn-rag: Graph neural

retrieval for large language model reasoning,” arXiv

preprint arXiv:2405.20139, 2024.

B. J. Gutiérrez, Y. Shu, Y. Gu, M. Yasunaga, and

Y. Su, “Hipporag: Neurobiologically inspired long-term

memory for large language models,” arXiv preprint

arXiv:2405.14831, 2024.

H. Sun, T. Bedrax-Weiss, and W. W. Cohen, “Pull-

net: Open domain question answering with iterative

retrieval on knowledge bases and text,” arXiv preprint

arXiv:1904.09537, 2019.

P-C. Lo and E.-P. Lim, “Contextual path retrieval: A

contextual entity relation embedding-based approach,”

ACM Transactions on Information Systems, vol. 41, no. 1,

pp. 1-38, 2023.

[27] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H.-Y.

[22]

[24]

[26]



(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Shum, and J. Guo, “Think-on-graph: Deep and respon-
sible reasoning of large language model with knowledge
graph,” arXiv preprint arXiv:2307.07697, 2023.

J. Kim, Y. Kwon, Y. Jo, and E. Choi, “Kg-gpt:
A general framework for reasoning on knowledge
graphs using large language models,” arXiv preprint
arXiv:2310.11220, 2023.

Y. Yang, W.-t. Yih, and C. Meek, “Wikiqa: A challenge
dataset for open-domain question answering,” in Pro-
ceedings of the 2015 conference on empirical methods
in natural language processing, 2015, pp. 2013-2018.
C.-H. Lee, S.-M. Wang, H.-C. Chang, and H.-Y.
Lee, “Odsqa: Open-domain spoken question answering
dataset,” in 2018 IEEE Spoken Language Technology
Workshop (SLT). 1EEE, 2018, pp. 949-956.

W. Yu, M. Jiang, P. Clark, and A. Sabharwal,
“Ifqa: A dataset for open-domain question answering
under counterfactual presuppositions,” arXiv preprint
arXiv:2305.14010, 2023.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Tay-
lor, “Freebase: a collaboratively created graph database
for structuring human knowledge,” in Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, 2008, pp. 1247-1250.

W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and
J. Suh, “The value of semantic parse labeling for knowl-
edge base question answering,” in Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), 2016, pp.
201-206.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen,
R. Salakhutdinov, and C. D. Manning, “Hotpotqa: A
dataset for diverse, explainable multi-hop question an-
swering,” arXiv preprint arXiv:1809.09600, 2018.

K. Jiang, D. Wu, and H. Jiang, “Freebaseqa: A new
factoid ga data set matching trivia-style question-answer
pairs with freebase,” in Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), 2019, pp.
318-323.

F. Xu, Q. Lin, J. Han, T. Zhao, J. Liu, and E. Cam-
bria, “Are large language models really good logi-
cal reasoners? a comprehensive evaluation from de-
ductive, inductive and abductive views,” arXiv preprint
arXiv:2306.09841, 2023.



	Introduction
	Background
	Large Language Models
	Knowledge Graphs
	Graph Neural Networks

	Architecture
	Graph Construction
	Graph Categories
	Index Storage
	Knowledge Update

	Graph Retrieval
	Retrieval Granularity
	Retrieval Level
	Retrieval Process

	Augmented Generation
	Text Conversion
	Augmentation Methods


	Evaluation
	Benchmarks
	Metrics
	Evaluation Mode

	Prospects
	Construction Flaws of KGs
	Exploration of Heterogeneous and Dynamic Graphs
	Multimodal Integration

	Conclusion

