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Mitigating Exploitation Bias in Learning to Rank with an
Uncertainty-aware Empirical Bayes Approach

Anonymous Author(s)

Abstract
Ranking is at the core of many artificial intelligence (AI) applica-
tions, including search engines, recommender systems, etc. Modern
ranking systems are often constructed with learning-to-rank (LTR)
models built from user behavior signals. While previous studies
have demonstrated the effectiveness of using user behavior signals
(e.g., clicks) as both features and labels of LTR algorithms, we argue
that existing LTR algorithms that indiscriminately treat behavior
and non-behavior signals in input features could lead to subopti-
mal performance in practice. Because user behavior signals often
have strong correlations with the ranking objective and can only be
collected on items that have already been shown to users, directly
using behavior signals in LTR could create an exploitation bias that
hurts the system performance in the long run.

To address the exploitation bias, we propose an uncertainty-
aware empirical Bayes based ranking algorithm, referred to as
EBRank. Specifically, EBRank uses a sole non-behavior feature-
based prior model to get a prior estimation of relevance. In the
dynamic training and serving of ranking systems, EBRank uses the
observed user behaviors to update posterior relevance estimation
instead of concatenating behaviors as features in ranking models.
Besides, EBRank additionally applies an uncertainty-aware explo-
ration strategy to explore actively and collect user behaviors for
empirical Bayesian modeling. Experiments on three public datasets
show that EBRank is effective, practical and significantly outper-
forms state-of-the-art ranking algorithms.

Keywords
Learning to rank, Behavior feature, Exploitation bias

1 Introduction
Ranking techniques have been extensively studied and used in
modern Information Retrieval (IR) systems such as search engines,
recommender systems, etc. Among different ranking techniques,
learning to rank (LTR), which relies on building machine learning
(ML) models to rank items, is one of the most popular ranking
frameworks [28]. In particular, industrial LTR systems are usually
constructed with user behavior feedback/signals since user behav-
iors (e.g., click, purchase) are cheap to get and directly indicate
results’ relevance from the user’s perspective [50]. For example,
previous studies [6, 23, 50] have shown that, instead of using expen-
sive relevance annotations from experts, effective LTR models can
be learned directly from training labels constructed with user clicks.
Besides using clicks as training labels, many industrial IR systems
have also considered features extracted from user clicks for their
LTR models. For example, ranking features extracted from clicks
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are used in search engines like Yahoo and Bing [9, 37]. Agichtein
et al. [4] has also shown that by incorporating such ranking features
in ranking systems, the performance of competitive web search
ranking algorithms can be improved by as much as 31%.

However, without proper treatment, LTRwith user behaviors can
also damage ranking quality in the long term [24, 25, 54]. Specifi-
cally, user behavior signals usually have high correlations with item
relevance labels since behavior signals are direct and strong indica-
tors of relevance from the user’s perspective. Such high correlation
can easily make input features built from user behavior signals,
referred to as the behavior features, overwhelm other features in
training, dominate model outputs, and be over-exploited in infer-
ence. Such an over-exploitation phenomenon would hurt practical
ranking systems when user behavior signals are unevenly collected
on different candidate items [18, 25]. For example, we can only col-
lect user clicks on items already presented to users. Items that lack
historical click data, including new items that have not yet been
presented to users, would be at a disadvantage. The disadvantage,
referred to as the exploitation bias [54], can be more severe when
we use user clicks/behaviors as both labels and features, which is
a common practice in real-world LTR systems [9, 17, 18, 37, 54].
One similar concept is selection bias [32]. Selection bias usually
refers to the bias that occurs when user clicks are used as training
labels. In contrast, exploitation bias goes one step further and con-
siders the bias that arises in a more realistic scenario where user
clicks/behaviors are also used as ranking features.

In this paper, we address the above exploitation bias with an
uncertainty-aware empirical Bayesian based algorithm, EBRank.
Specifically, we consider a general application scenario where a
ranking system is built with user behavior signals (i.e., clicks in
this paper) in both its input and objective functions. We show that,
without differentiating the treatment of behavior signals and non-
behavior signals in input features, existing LTR algorithms could
suffer severely from exploitation bias. By differentiating behavior
signals and non-behavior signals, the proposed algorithm, EBRank,
uses a sole non-behavior feature based prior model to give a prior
relevance estimation. With more behavior data collected from the
online serving process of a ranking system, EBRank gradually up-
dates its posterior relevance estimation to give a more accurate
relevance estimation. Besides, we also proposed a theoretically prin-
cipled exploration algorithm that joins the optimization of ranking
performance with the minimization of model uncertainty. Experi-
ments on three public datasets show that our proposed algorithm
can effectively alleviate exploitation bias and deliver superior rank-
ing performance compared to state-of-the-art ranking algorithms.

2 Related Work
Ranking exploitation with behavior features. As an important
relevance indicator, user behavior signals have been important com-
ponents for constructing modern IR systems [37]. [4, 29] showed
that incorporating user behavior data as features can significantly
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Table 1: A summary of notations.
𝑑,𝑞, 𝐷 (𝑞) For a query 𝑞, 𝐷 (𝑞) is the set of candidates items. 𝑑 ∈

𝐷 (𝑞) is an item to rank.
𝑒, 𝑟, 𝑐 All are binary random variables indicating whether

an item 𝑑 is examined (𝑒 = 1), is relevant (𝑟 = 1) and
clicked (𝑐 = 1) by a user respectively.

𝑅,𝜌 ,𝐸, 𝜋 ,𝑛 𝑅 = 𝑃 (𝑟 = 1) , is the probability an item 𝑑 perceived as
relevant. 𝜌 = 𝑃 (𝑒 = 1) is the examination probability.
𝜋 is a ranklist. 𝐸 is an item’s accumulated examination
probability. 𝑛 is the number of times item 𝑑 has been
presented to users (see Eq.9).

𝑘𝑠 , 𝑘𝑐 Users will stop examining items lower than rank 𝑘𝑠

due to selection bias (see Eq. (3). 𝑘𝑐 is the cutoff prefix
to evaluate Cum-NDCG and 𝑘𝑐 ≤ 𝑘𝑠 .

𝑥𝑏 , 𝑥𝑛𝑏 𝑥𝑏 denotes ranking features derived from user feed-
back behavior, while 𝑥𝑛𝑏 denotes ranking features de-
rived from non-behavior features.

improve the ranking performance of top results. However, incor-
porating behavior features without proper treatments could hurt
the effectiveness of LTR systems by amplifying the problem of
over-exploitation and over-fitting, i.e., exploitation bias [54]. Kve-
ton et al. [24], Li et al. [25], Oosterhuis and de Rijke [34] discussed
the generation problems and cold-start problems. Some strategies
were proposed to overcome the exploitation bias by predicting be-
havior features with non-behavior features [18, 19] or by actively
collecting user behavior for new items [25, 54] via exploration.

Unbiased/Online Learning to Rank. Using biased and noisy
user clicks as training labels for LTR has been extensively stud-
ied in the last decades [7, 35, 45]. Among different unbiased LTR
methods, online LTR chooses to actively remove the bias with in-
tervention based on bandit learning [47, 58] or stochastic ranking
sampling [31]. In contrast, offline LTR methods usually train LTR
models with offline click logs based on techniques such as coun-
terfactual learning [2, 5, 23, 53]. Existing unbiased LTR methods
effectively remove bias when clicks are treated as labels. However,
in this work, we investigate and show that existing unbiased LTR
methods still suffer the exploitation bias.

Uncertainty in ranking. One of the first studies of uncertainty
in IR is Zhu et al. [57], where the variance of a probabilistic language
model was treated as a risk-based factor to improve retrieval per-
formance. Recently, uncertainty estimation techniques for deep
learning models have also been introduced into the studies of
neural IR models [12, 36, 49]. Uncertainty quantification is an im-
portant IR community for many downstream tasks. For example,
[11, 20, 22, 26, 54] proposed uncertainty-aware exploration rank-
ing algorithms. Existing studies have also shown that uncertainty
can help improve query performance prediction [39], query cutoff
prediction [14, 27], and ranking fairness [55].

3 Background
In this section, we introduce some preliminary knowledge.

The Workflow of Ranking Services. In Figure 1, we use web
search as an example to introduce the workflow of ranking service
in detail, but the method we propose in this paper can also be ex-
tended to the recommendation or other ranking scenarios. At time
step 𝑡 , a user issues a query 𝑞𝑡 . Corresponding to this query, there
exist candidate items which include old items and new items intro-
duced at time step 𝑡 . These items are represented as features, which

User 
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Data

Candidates

SystemTimestep t
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(xb,xnb)


Old items Newly entered
items at time step t

RankList t

Feedback behavior
Ranking logs
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Ranking logs

Update xb 

	 yes or no
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6
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NDCG
Uncertainty

Objective 3

Figure 1: Workflow of ranking services.

include behavior signals 𝑥𝑏 and non-behavior features 𝑥𝑛𝑏 (a de-
tailed discussion about features is given in the following paragraph).
Based on the features, an LTR model will predict the relevance of
each candidate item, and the ranking optimization methods will
generate the ranked list by optimizing some ranking objectives. Dif-
ferent ranking objectives can be adopted here, such as maximizing
NDCG (see Eq. (6). After examining the ranked list, the user will
provide behavior feedback, such as clicks. The rank list and user
feedback behavior will be appended to the ranking logs. We need
to decide whether to update the LTR model and behavior features
or not. In practice, such updates are usually conducted periodically
since real-time updating ranking systems are often not preferable.

Features. In this paper, LTR features are categorized into two
groups based on Qin et al. [37]. The first group is non-behavior
features, denoted as 𝑥𝑛𝑏 , which show items’ quality and the degree
of matching between item and query. Example 𝑥𝑛𝑏 can be BM25,
query length, tf-idf, features from pre-trained (large) language mod-
els, etc. Non-behavior features 𝑥𝑛𝑏 are usually stable and static. The
second group is behavior features, denoted as 𝑥𝑏 , which are usu-
ally derived from user behaviors, e.g., click-through-rate, dwelling
time, click, etc. 𝑥𝑏 are direct and strong indicators of relevance
from the user’s perspective since 𝑥𝑏 are collected directly from
the user themselves. Unlike 𝑥𝑛𝑏 , 𝑥𝑏 are dynamically changing and
constantly updated. In this paper, we only focus on one type of user
behavior data, i.e., clicks. Extending our work to other types of user
behaviors is straightforward, and we leave them for future studies.

Partial and Biased User Behavior. Although user behavior is
commonly used in LTR, user behavior is usually biased and partial.
Specifically, a user will provide meaningful feedback click (𝑐 = 1)
only when a user examines (𝑒 = 1) the item, i.e.,

𝑐 =

{
𝑟, if 𝑒 = 1
0, otherwise

(1)

where 𝑟 indicates if a user would find an item 𝑑 as relevant. Here
𝑐, 𝑟, 𝑒 are random binary variables. A detailed summary of notations
is in Table 1. Following [6, 50], we model users’ click behavior as,

𝑃 (𝑐 = 1) = 𝑃 (𝑟 = 1)𝑃 (𝑒 = 1) (2)
For items ranked on different positions in the user interface, the

examination probability 𝑃 (𝑒 = 1) are usually different. In this paper,
we model examination differences with the two most important
biases, i.e., positional bias and selection bias. The position bias [13]
assumes the examination probability of an item 𝑑 in a ranklist 𝜋
solely relies on the rank (position), i.e., 𝑟𝑎𝑛𝑘 (𝑑 |𝜋), and we model it
with 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋 ) = 𝑃 (𝑒 = 1|𝑑, 𝜋) to simplify notation. The selection

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Mitigating Exploitation Bias in Learning to Rank with an Uncertainty-aware Empirical Bayes Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

More clicks


1.5 2.3 0.5 0.8 1.5 2.3 0.5 0.0
Item A New Item G

A
B

C

D

xnb xb xbxnb

High

behaviour 

feature 

value
 Show it!


LTR model
 LTR model


Missing

behaviour 

feature 

value 
Do not

Show it!


No clicks


Figure 2: Toy example to show the exploitation bias. Old item
A and new item G have the same non-behavior (𝑥𝑛𝑏 ) features,
while item G’s behavior features (𝑥𝑏 ) is 0 as it has not been
shown to users before. Item G will be discriminated against
if the LTR model over-exploits and heavily relies on 𝑥𝑏 .

bias [32, 33] exists when not all of the items are selected to be shown
to users, or some lists are so long that no user will examine the
entire lists. The selection bias is modeled as,

𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋 ) = 0 if 𝑟𝑎𝑛𝑘 (𝑑 |𝜋) > 𝑘𝑠 (3)
where 𝑘𝑠 is the lowest rank that will be examined.

Exploitation Bias. In Figure 2, we give a toy example to illus-
trate the exploitation bias. The exploitation bias usually happens
because behavior features in LTR models will overwhelm other
features since behavior features are strong indicators of relevance
and highly correlated with training labels. In this example in Fig-
ure 2, due to the overwhelming importance of behavior features,
newly introduced item G will be discriminated by the LTR model
and ranked low when its user behavior information is missing.

Ranking utility. In this paper, ranking utility is evaluated by
measuring a ranking system’s ability to put relevant items on top
ranks effectively. Firstly, the relevance for a (𝑑, 𝑞) pair is

𝑅(𝑑, 𝑞) = 𝑝 (𝑟 = 1|𝑑, 𝑞) (4)

is defined as the probability of an item 𝑑 being considered relevant
to a given query 𝑞. One widely-used ranking utility measurement is
DCG [21]. For a ranked list 𝜋 corresponding to a query 𝑞, we have

DCG@𝑘𝑐 (𝜋) =
𝑘𝑐∑︁
𝑖=1

𝑅(𝜋 [𝑖], 𝑞)𝜆𝑖 (5)

where 𝜋 [𝑖] indicates the 𝑖𝑡ℎ ranked item in the ranked list 𝜋 ;
𝑅(𝜋 [𝑖], 𝑞) indicates item 𝜋 [𝑖]’s relevance to query 𝑞; 𝜆𝑖 indicates
the weight we put on 𝑖𝑡ℎ rank; cutoff 𝑘𝑐 indicates the top 𝑘𝑐 ranks
we evaluate. In this paper, when cutoff 𝑘𝑐 is not specified, there is
no cutoff. 𝜆𝑖 usually decreases as rank 𝑖 increases since top ranks
are usually more important. For example, 𝜆𝑖 is sometimes set to

1
log2 (𝑖+1)

. In this paper, we follow [43] to choose the 𝑖𝑡ℎ rank’s ex-
amining probability 𝜌𝑖 as 𝜆𝑖 . Then, we can get normalized-DCG
(NDCG ∈ [0, 1]) by normalizing DCG@𝑘𝑐 (𝜋),

NDCG@𝑘𝑐 (𝜋) =
DCG@𝑘𝑐 (𝜋)
DCG@𝑘𝑐 (𝜋∗)

(6)

where 𝜋∗ is the ideal ranked list constructed by arranging items
according to their true relevance. Furthermore, we could define dis-
counted Cumulative NDCG (Cum-NDCG) as ranking effectiveness,

Cum-NDCG@𝑘𝑐 =

𝑡∑︁
𝜏=1

𝛾𝑡−𝜏NDCG@𝑘𝑐 (𝜋𝜏 ) (7)

where 0 ≤ 𝛾 ≤ 1 is the discounted factor, 𝑡 is the current time step.
Note that 𝛾 is a constant number for evaluating ranking perfor-
mance [48]. Compared to NDCG, Cum-NDCG can better evaluate
ranking effectiveness for online ranking services [41].

Uncertainty in relevance estimation. In real-world applica-
tions, the true relevance 𝑅 is usually unavailable. Relevance esti-
mation, denoted as 𝑅, is usually needed for ranking optimization.
However, 𝑅 usually contains uncertainty (variance), denoted as
Var[𝑅]. Furthermore, we introduce the query-level uncertainty,

𝑈 (𝑞) =
∑︁

𝑑∈𝐷 (𝑞)
Var[𝑅(𝑑, 𝑞)] (8)

which will be used to guide ranking exploration. We leave more
advanced query-level uncertainty formulations for future study.

4 Proposed Method
In this section, we propose an uncertainty-aware Empirical Bayes
based learning to rank algorithm, EBRank, which can effectively
mitigate exploitation bias. We formally introduce the proposed al-
gorithm EBRank In Sec .4.1. And we dive into the theoretical parts
of EBRank, which include ranking objectives, Empirical Bayes mod-
eling, and uncertainty reduction in Sec. 4.2, 4.3 and 4.4, repectively.

4.1 The proposed algorithm: EBRank
In this section, we give a big picture of the proposed Empirical
Bayesian Ranking (EBRank) in Algorithm 1. Prior to serving users,
we initialize a list,H , to store ranking logs. At each time step, we
append four elements, [𝑢𝑡 , 𝑞𝑡 , 𝜋𝑡 , 𝑐𝑡 ], to H . Here, 𝑢𝑡 , 𝑞𝑡 , 𝜋𝑡 , 𝑐𝑡 are
the user, the query, the presented ranklist, and the user clicks at
time step 𝑡 . If initial ranking logs exist prior to using EBRank, we
will also append them toH . Besides ranking logs, we initialize a
model 𝑓𝜃 , referred to as the prior model, parameterized by 𝜃 , which
takes non-behavior features as input. 𝑓𝜃 can be any trainable param-
eterized model, such as a vanilla neural network, tree-based model,
etc. When EBRank begins to serve users (𝑡 > 0), new candidates
will be constantly appended to each query’s candidates set, 𝐷 (𝑞𝑡 ).
Then, for each item-query pair (𝑑, 𝑞𝑡 ), we construct an auxiliary
list A(𝑑, 𝑞𝑡 ) = [𝛼, 𝛽, 𝑛,𝐶, 𝐸], where

[𝛼, 𝛽] = 𝑓𝜃
(
𝑥𝑛𝑏 (𝑑, 𝑞𝑡 )

)
𝑛 =

∑︁
𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

1

𝐶 =
∑︁

𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

𝑐 (𝑑 |𝜋𝜏 )
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

𝐸 =
∑︁

𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

𝑇 (𝑡, 𝑑, 𝑞𝑡 ) =
[
𝜏 if I(𝑑 ∈ 𝜋𝜏 )I(𝑞𝜏 = 𝑞𝑡 ) for 0 ≤ 𝜏 < 𝑡

]
(9)

The non-behavior features 𝑥𝑛𝑏 (𝑑, 𝑞𝑡 ) are usually static and the
prior model, 𝑓𝜃 , directly takes 𝑥𝑛𝑏 (𝑑, 𝑞𝑡 ) as the input and exports
two numbers, i.e., [𝛼, 𝛽], for each item-query pair. 𝑇 (𝑡, 𝑑, 𝑞𝑡 ) is a
subset of historical time steps when item 𝑑 is presented in query
𝑞𝑡 ’s ranklists in the past and I is the indicator function. 𝑛 is the
number of times that item𝑑 has been presented for query𝑞𝑡 by time
step 𝑡 −1. 𝑐 (𝑑 |𝜋𝜏 ) indicates whether item 𝑑 is clicked or not.𝐶 is the
sum of weighted clicks on item 𝑑 , and the weight is its examination

3
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probability, 𝐸 is the item’s exposure which is the accumulation of
examination probability.
4.1.1 Relevance estimation. Based onA(𝑑, 𝑞𝑡 ), firstly, we estimate
item’s relevance 𝑅

∧
(𝑑, 𝑞𝑡 ) as,

𝑅
∧
(𝑑, 𝑞𝑡 ) =

𝐶 + 𝛼
𝑛 + 𝛼 + 𝛽 (10)

which is based on our empirical Bayes modeling in Sec. 4.2. The rel-
evance estimation 𝑅

∧
(𝑑, 𝑞𝑡 ) is a blending between 𝐶

𝑛 and 𝛼
𝛼+𝛽 . When

𝑛 > 0, 𝐶𝑛 is an unbiased estimation of true relevance 𝑅(𝑑, 𝑞𝑡 )) (see
Eq. (22). Relevance estimation 𝐶

𝑛 is limited as it requires 𝑛 > 0, i.e.,
item 𝑑 has been selected for query 𝑞𝑡 before. Without this limita-
tion, 𝛼

𝛼+𝛽 , referred to as prior relevance estimation, is solely based
on non-behavior features. Similar to 𝐶

𝑛 ,
𝛼

𝛼+𝛽 also theoretically ap-
proximates the true relevance 𝑅(𝑑, 𝑞𝑡 ) given an perfectly optimized
prior model 𝑓𝜃 (more details is in later sections).

With the blending of the two parts, 𝑅
∧
can overcome exploitation

bias by nature since it will rely more on 𝛼
𝛼+𝛽 when𝑛 and𝐶 are small,

i.e., new items. 𝑅
∧
gradually relies more on 𝐶

𝑛 when 𝑛 and𝐶 increase
and start to dominate, i.e., more user behaviors are observed.
4.1.2 Ranking exploration & construction. Besides relevance, we
introduce an exploration score for item 𝑑 ,

𝑀𝐶 (𝑑, 𝑞𝑡 ) =
𝑅
∧
(𝑑, 𝑞𝑡 )(

𝐸 + 𝛼 + 𝛽
)2 (11)

which boosts candidates that have a higher estimated relevance
𝑅
∧
(𝑑, 𝑞𝑡 ) but a lower exposure 𝐸. The exploration score helps to

gain the greatest certainty at the current time step according to
our ranking uncertainty analysis in Sec. 4.4, With the relevance
estimation and the exploration score, we construct ranklist 𝜋𝑡 by
sorting 𝑅

∧
(𝑑, 𝑞𝑡 ) + 𝜖𝑀𝐶 (𝑑, 𝑞𝑡 ) in descending order, i.e.,

𝜋𝑡 = argsort-k

(
𝑅
∧
(𝑑, 𝑞𝑡 ) + 𝜖𝑀𝐶 (𝑑, 𝑞𝑡 ) |∀𝑑 ∈ 𝐷 (𝑞𝑡 )

)
(12)

where a possible cutoff 𝑘 might exist to show the top results only.
𝜖 is a hyper-parameter to balance the two parts. The ranklist con-
struction is based on the ranking objective proposed in Sec. 4.2.
4.1.3 Prior model optimization. The parameters 𝜃 in 𝑓𝜃 will be
periodically updated with the following loss,

𝑙 (𝑑, 𝑞) = I𝑛>0
(
log𝐵(𝛼, 𝛽) − log𝐵(𝐶 + 𝛼, 𝑛 −𝐶 + 𝛽)

)
(13a)

L =
∑︁
𝑞∈𝑄

∑︁
𝑑∈𝐷 (𝑞)

𝑙 (𝑑, 𝑞) (13b)

where [𝛼, 𝛽, 𝑛,𝐶, 𝐸] ∈ A(𝑑, 𝑞), 𝐵 denotes the beta function. Note
that 𝛼, 𝛽 are 𝑓𝜃 ’s outputs. The loss is based on our Empirical Bayes
modeling in Sec. 4.3. The above loss to train 𝑓𝜃 is based on items
that have been presented to users before (𝑛 > 0) since only those
items could possibly have user clicks, which is the best we can do.
According to our empirical results, 𝑓𝜃 (𝑥𝑛𝑏 ) generalizes well for
items not presented before, i.e., 𝑛 = 0. If there exist some initial
ranking logs, 𝑓𝜃 can also be trained based on them. More analysis
of the loss can be found in Sec. 4.3.3.

4.2 Uncertainty-Aware ranking optimization
In this section, we explain why Eq. 12 is optimal for constructing
ranklists.

Algorithm 1: EBRank
1 𝑡 ← 0;
2 H = [𝑢𝑡 , 𝑞𝑡 , 𝜋𝑡 , 𝑐𝑡 ] ∀𝑡 ∈ ℎ𝑖𝑠𝑡𝑜𝑟𝑦;
3 Initialize the trainable parameters 𝜃 for prior model 𝑓𝜃 ;
4 Initialize hyper-parameter 𝜖 ;
5 while True do
6 𝑡 ← 𝑡 + 1;
7 User 𝑢𝑡 issues a query 𝑞𝑡 ;
8 if New candidates introduced then
9 𝐷𝑞𝑡 .append(new candidates)

10 ∀𝑑 ∈ 𝐷𝑞𝑡 , construct A(𝑑, 𝑞𝑡 ) via Eq. (9);
11 With A(𝑑, 𝑞𝑡 ), get 𝑅

∧
(𝑑, 𝑞𝑡 ) via Eq. (10);

12 With A(𝑑, 𝑞𝑡 ) & 𝑅
∧
(𝑑, 𝑞𝑡 ), get𝑀𝐶 (𝑑, 𝑞𝑡 ) via Eq. (26);

13 With 𝑅
∧
(𝑑, 𝑞𝑡 ) &𝑀𝐶 (𝑑, 𝑞𝑡 ), get 𝜋𝑡 via Eq. (12);

14 Present 𝜋𝑡 to User 𝑢𝑡 and collect user’s clicks 𝑐𝑡 ;
15 H .𝑎𝑝𝑝𝑒𝑛𝑑 ( [𝑢𝑡 , 𝑞𝑡 , 𝜋𝑡 , 𝑐𝑡 ];
16 if Prior-model-update then
17 Train 𝑓𝜃 with loss L in Eq. (13)

4.2.1 The uncertainty-aware ranking objective.As shown in Figure 1,
at time step 𝑡 , a user issues a query 𝑞𝑡 , and we propose the following
uncertainty-aware ranking objective to optimize ranklist 𝜋𝑡 ,

max
𝜋𝑡

Obj = DCG
∧

(𝜋𝑡 ) − 𝜖Δ𝑈 (𝜋𝑡 ) (14)

where Δ𝑈 (𝜋𝑡 ) = 𝑈 (𝑞𝑡 |𝜋𝑡 )−𝑈 (𝑞𝑡 ) is the query-level uncertainty
increment after presenting 𝜋𝑡 to the user. DCG

∧
is the estimated

DCG (see Eq.7) based on the estimated relevance 𝑅
∧
instead of the

unavailable true relevance 𝑅. 𝜖 is the coefficient to balance the
two parts. In Eq. (14), our real goal is to maximize the true DCG,
but we only have the estimated DCG

∧
which is calculated based on

estimated relevance. Hence, to effectively optimize DCG via the
proxy of optimizing DCG

∧
, we need an accurate 𝑅(𝑑, 𝑞𝑡 ), which is

why uncertainty is also minimized in Eq. (14). Here we choose to
minimize the incremental uncertainty at time step 𝑡 since only the
incremental uncertainty is caused by 𝜋𝑡 .
4.2.2 Ranking optimization.To maximize ranking objectives in
Eq. (14) and optimize 𝜋𝑡 , we first reformulate DCG

∧
in Eq. (5) as,

DCG
∧

(𝜋𝑡 ) =
∑︁

𝑑∈𝐷 (𝑞𝑡 )
𝑅(𝑑, 𝑞𝑡 ) · 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) (15)

As for Δ𝑈 (𝜋𝑡 ) in Eq. (14), inspired by [55], we carry out a first-
order approximation by considering incremental exposure Δ𝐸,

Δ𝑈 (𝜋𝑡 ) ≈
∑︁

𝑑∈𝐷 (𝑞𝑡 )

𝜕𝑈 (𝑞𝑡 )
𝜕𝐸 (𝑑, 𝑞𝑡 )

Δ𝐸 (𝑑, 𝑞𝑡 )

=
∑︁

𝑑∈𝐷 (𝑞𝑡 )

𝜕Var[𝑅(𝑑, 𝑞𝑡 )]
𝜕𝐸 (𝑑, 𝑞𝑡 )

𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 )

=
∑︁

𝑑∈𝐷 (𝑞𝑡 )
−𝑀𝐶 (𝑑, 𝑞𝑡 )𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 )

(16)

where Δ𝐸 (𝑑, 𝑞𝑡 ) is the incremental exposure that item 𝑑 will get at
time 𝑡 , i.e., 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) ,𝑀𝐶 (𝑑, 𝑞𝑡 ) is the gradient of minus variance,
denotes Marginal Certainty, the speed to gain additional certainty.
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Since 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) ∈ (0, 1) is relatively small, the first-order ap-
proximation in Eq. (16) should approximate well. In Eq. (16), we
assume that Var[𝑅(𝑑𝑥 , 𝑞𝑡 )] and 𝐸 (𝑑𝑦, 𝑞𝑡 ) are independent for dif-
ferent items 𝑑𝑥 and 𝑑𝑦 , so

𝜕Var[𝑅̂ (𝑑𝑥 ,𝑞𝑡 ) ]
𝜕𝐸 (𝑑𝑦 ,𝑞𝑡 ) = 0. We will introduce

how Var[𝑅(𝑑, 𝑞𝑡 )] and 𝐸 (𝑑, 𝑞𝑡 ) are related in Sec 4.4.
Finally, the ranking objective in Eq. (14) can be rewritten as

max
𝜋𝑡

∑︁
𝑑∈𝐷 (𝑞𝑡 )

(
𝑅
∧
(𝑑, 𝑞𝑡 ) + 𝜖𝑀𝐶 (𝑑, 𝑞𝑡 )

)
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) (17)

By assuming that 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) descends as 𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝑡 ) goes lower,
the optimal 𝜋𝑡 should be generated by sorting items according to(
𝑅
∧
(𝑑, 𝑞𝑡 )+𝜖𝑀𝐶 (𝑑, 𝑞𝑡 )

)
in descending order, which validates Eq. (12).

4.3 Empirical Bayesian relevance model
In this section, we propose an empirical Bayesian relevance model
that leads to relevance estimation Eq. (10) and loss function Eq. (13).
4.3.1 The observation modelling . At time step 𝑡 , users issue the
query 𝑞𝑡 . When there is no position bias and the binary relevance
judgments 𝑟 are directly observable, the probability of observation
of relevance judgments for a (𝑑, 𝑞𝑡 ) pair prior to time step 𝑡 is

𝑃 (𝑟∗ |𝑅) =
∏

𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

(
(𝑅)𝑟 (𝑑 |𝜋𝜏 ) × (1 − 𝑅) (1−𝑟 (𝑑 |𝜋𝜏 ))

)
(18)

where 𝑟∗ denotes users’ relevance judgments. 0 ≤ 𝑅 ≤ 1, and 𝑅 is
a random variable that denotes our estimated probability of 𝑟 = 1.
𝑟 (𝑑 |𝜋𝜏 ) is the observation of random binary variable 𝑟 at time 𝜏 .

However, user relevance judgments are not observable, and we
can only observe user clicks for 𝜏 < 𝑡 , although clicks are biased
indicator of relevance according to Eq. (1). In this paper, based on
observable clicks, we introduce probability 𝑃 (𝑐∗ |𝑅) as a proxy for
𝑃 (𝑟∗ |𝑅),

𝑃 (𝑐∗ |𝑅) =
∏

𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

(
(𝑅)

𝑐 (𝑑 |𝜋𝜏 )
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 ) × (1 − 𝑅)

(1− 𝑐 (𝑑 |𝜋𝜏 )
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

)
)

= (𝑅)𝐶 × (1 − (𝑅))𝑛−𝐶
(19)

where 𝑐∗ denotes users’ clicks. 𝑐 (𝑑 |𝜋𝜏 ) indicates whether item 𝑑 is
clicked or not in ranklist 𝜋𝜏 , and 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 ) is item 𝑑’s examining
probability in presented ranklist 𝜋𝜏 . We use 𝑃 (𝑐∗ |𝑅) as a proxy of
𝑃 (𝑟∗ |𝑅) since we noticed that log 𝑃 (𝑐∗ |𝑅) is an unbiased estimation
of log 𝑃 (𝑟∗ |𝑅) [8, 40],

E𝑒 [log 𝑃 (𝑐∗ |𝑅)]

=
∑︁

𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

(
E𝑒 [𝑐 (𝑑 |𝜋𝜏 )]
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

log(𝑅) + (1 − E𝑒 [𝑐 (𝑑 |𝜋𝜏 )]
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

) log(1 − 𝑅)
)

= log 𝑃 (𝑟∗ |𝑅)

where expectation E𝑒 [𝑐 (𝑑 |𝜋𝜏 )] = 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )𝑟 (𝑑 |𝜋𝜏 ) given Eq. (1)
and Eq. 2. Although the proof above takes a logarithm and the
log-likelihood is unbiased instead of likelihood itself, 𝑃 (𝑐∗ |𝑅) is still
an effective proxy for 𝑃 (𝑟∗ |𝑅), which is validated by our empirical
results. One may note that [8, 40] have similar theoretical analysis
here, but our method is fundamentally different from theirs. They
use − log 𝑃 (𝑐∗ |𝑅) as the final ranking loss function, while we use

𝑃 (𝑐∗ |𝑅) as the observation probability, just one part of the many
components of our Bayes model.
4.3.2 The prior & posterior distribution.Because the formulation
𝑃 (𝑐∗ |𝑅) is similar to a binomial distribution, we choose the binomial
distribution’s conjugate prior, the Beta distribution, as the prior
distribution, i.e., the prior relevance 𝑅 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽),

𝑃 (𝑅 |𝜃 ) = 𝑅𝛼−1 (1 − 𝑅)𝛽−1

𝐵(𝛼, 𝛽)
(20)

where 𝐵 denotes the beta function.1. According to the theory of
conjugate distribution [38], the posterior distribution of 𝑅 also
follows a beta distribution,

𝑅 ∼ 𝐵𝑒𝑡𝑎(𝐶 + 𝛼, 𝑛 −𝐶 + 𝛽) (21)

We use the expectation of the above beta distribution, i.e., 𝐶+𝛼
𝑛+𝛼+𝛽 ,

as the posterior relevance estimation 𝑅
∧
(see. Eq. 10). When 𝑛 > 0,

𝐶
𝑛 is an unbiased estimation of true relevance 𝑅(𝑑, 𝑞𝑡 ))

E𝑐 [
𝐶

𝑛
] = 1

𝑛

∑︁
𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

E𝑐 [𝑐 (𝑑 |𝜋𝜏 )]
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

=
1
𝑛

∑︁
𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )𝑅(𝑑, 𝑞𝑡 )
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

= 𝑅(𝑑, 𝑞𝑡 )
(22)

4.3.3 Update prior distribution with observations . Here, we reveal
how to get the loss in Eq 13a. We perform the maximum a posterior
(MAP) [16] by maximizing the marginal likelihood of the observed
data i.e., 𝑃 (𝑐∗ |𝜃 ).

𝑃 (𝑐∗ |𝜃 ) =
∫
𝑅

𝑃 (𝑐∗ |𝑅)𝑃 (𝑅 |𝜃 )𝑑𝑅

=

∫ 1
0 𝑅𝐶+𝛼−1 (1 − 𝑅)𝑛−𝐶+𝛽−1𝑑𝑅

𝐵(𝛼, 𝛽)

=
𝐵(𝐶 + 𝛼, 𝑛 −𝐶 + 𝛽)

𝐵(𝛼, 𝛽)

(23)

Maximizing the above probability is also equivalent to minimizing
− log 𝑃 (𝑐∗ |𝜃 ), i.e., the loss function in Eq 13a.

To investigate what is the optimal (𝛼, 𝛽) during training, we take
the derivative of the loss function in Eq 13a,

𝜕𝑙 (𝑑, 𝑞)
𝜕𝛼

= 𝜓 (𝛼) −𝜓 (𝛼 + 𝛽) −
(
𝜓 (𝐶 + 𝛼) −𝜓 (𝑛 + 𝛼 + 𝛽)

)
(24)

where𝜓 is the Digamma function. Usually, by setting, 𝜕𝑙 (𝑑,𝑞)𝜕𝛼 = 0,
we could know the optimal (𝛼∗, 𝛽∗). However, to our knowledge,
it is difficult to directly get (𝛼∗, 𝛽∗) from the above equation. Since
𝜓 (𝑥) ≈ log(𝑥) with error𝑂 ( 1

𝑥 )[1], we use log function to substitute
𝜓 in Eq. (24), and set 𝜕𝑙 (𝑑,𝑞)

𝜕𝛼 = 0, and we get,

𝛼∗

𝛼∗ + 𝛽∗ −
𝐶 + 𝛼∗

𝑛 + 𝛼∗ + 𝛽∗ = 0 (25)

It is straightforward to see that the optimal prior estimation should
output (𝛼∗, 𝛽∗) that satisfies 𝛼∗

𝛼∗+𝛽∗ = 𝐶
𝑛 , where

𝐶
𝑛 is an unbiased

estimation of relevance 𝑅 given Eq. (22) as long as 𝑛 > 0. In Eq. (25),
𝛼∗, 𝛽∗ are not unique. To make 𝛼, 𝛽 in Eq. (25) have unique values,
we fix 𝛽 and only learn 𝛼 for simplicity. We leave how to get unique
𝛼, 𝛽 without fixing one of them to future works.
1The beta distribution and the beta function are denoted as 𝐵𝑒𝑡𝑎 and 𝐵 respectively.
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4.4 Estimation of Marginal Certainty.
In this section, we introduce how to get the exploration score in
Eq. 11. As indicated in Eq. (8&16), to get the 𝑀𝐶 (𝑑, 𝑞𝑡 ), we first
need to get the variance of 𝑅

∧
(𝑑, 𝑞𝑡 ). For simplicity, we assume that

the only random variable in 𝑅
∧
(𝑑, 𝑞𝑡 ) is 𝑐 (𝑑 |𝜋𝜏 ), where 𝑐 (𝑑 |𝜋𝜏 ) and

𝑅
∧
(𝑑, 𝑞𝑡 ) are associated via 𝐶 . Firstly, the variance of 𝑐 (𝑑 |𝜋𝜏 ) is

Var[𝑐 (𝑑 |𝜋𝜏 )] = E𝑐 [𝑐2 (𝑑 |𝜋𝜏 )] − E2
𝑐 [𝑐 (𝑑 |𝜋𝜏 )]

= E𝑐 [𝑐 (𝑑 |𝜋𝜏 )] − E2
𝑐 [𝑐 (𝑑 |𝜋𝜏 )]

< 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )𝑅(𝑑, 𝑞𝑡 )
where 𝑐2 (𝑑 |𝜋𝜏 ) = 𝑐 (𝑑 |𝜋𝜏 ) since 𝑐 (𝑑 |𝜋𝜏 ) is a binary random variable.
E𝑐 [𝑐 (𝑑 |𝜋𝜏 )] = 𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )𝑅(𝑑 |𝜋𝑡 ) according to Eq. 2. According to
the linearity of expectation, we can get the variance of 𝑅

∧
(𝑑, 𝑞𝑡 ),

Var[𝑅
∧
(𝑑 |𝑞𝑡 )] =

Var[𝐶]
(𝑛 + 𝛼 + 𝛽)2

=

∑
𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

1
𝜌2
𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

Var[𝑐 (𝑑 |𝜋𝜏 )]

(𝑛 + 𝛼 + 𝛽)2

<
𝑅(𝑑, 𝑞𝑡 )

∑
𝜏 ∈𝑇 (𝑡,𝑑,𝑞𝑡 )

1
𝜌𝑟𝑎𝑛𝑘 (𝑑 |𝜋𝜏 )

(𝑛 + 𝛼 + 𝛽)2
<

𝑅(𝑑, 𝑞𝑡 ) 𝑛
𝜌𝑚𝑖𝑛

(𝑛 + 𝛼 + 𝛽)2

<
𝑅(𝑑, 𝑞𝑡 )1/𝜌𝑚𝑖𝑛

(𝑛 + 𝛼 + 𝛽) ¤=
𝑅(𝑑, 𝑞𝑡 )
𝐸 + 𝛼 + 𝛽

where we assume there exists the smallest examining probability
𝜌𝑚𝑖𝑛 for presented item 𝑑 . In the last step, we ignore the constant
factor, i.e., 1/𝜌𝑚𝑖𝑛 . We use the above upper bound as an approxi-
mation of variance, which works well according to our empirical
results. Given Eq. (16), we can get𝑀𝐶 (𝑑, 𝑞𝑡 ) by taking derivative
of (−Var[𝑅

∧
]) with respect to 𝐸,

𝑀𝐶 (𝑑, 𝑞𝑡 ) =
𝜕(−Var[𝑅

∧
(𝑑 |𝑞𝑡 )])

𝜕𝐸
≈ 𝑅

∧
(𝑑, 𝑞𝑡 )

(𝐸 + 𝛼 + 𝛽)2
(26)

where we use 𝑅
∧
to substitute relevance 𝑅 since 𝑅 is unavailable.

5 Experiments
In this section, we evaluate the effectiveness of the proposedmethod
with semi-simulation experiments on public LTR datasets. To facili-
tate reproducibility, we release our code 2

5.1 Experimental setup
5.1.1 Dataset . In the semi-simulation experiments, we will adopt
three publicly available LTR datasets, i.e., MQ2007, MSLR-10K,
and MSLR-30K, with data statistics shown in Table 2. The dataset
queries are partitioned into three subsets, namely training, vali-
dation, and test according to the 60%-20%-20% scheme. For each
query-document pair of each dataset, relevance judgment 𝑦 is pro-
vided. The original feature sets of MSLR-10K/MSLR-30K have three
behavior features (i.e., feature 134, feature 135, feature 136) collected
from user behaviors. To reliably evaluate our method, we remove
them in advance. MQ2007 only contains non-behavior features.
Thus, at the beginning of our experiments, all datasets only contain
non-behavioral features (i.e., 𝑥𝑛𝑏 ). It is worth mentioning that there
are other widely-used large-scale LTR datasets accessible to the
public, such as Yahoo! Letor Dataset [9] and Istella Dataset [15].
However, they cannot be used in this paper because they contain
behavior features but do not reveal their identity.

2https://anonymous.4open.science/r/EBRank-D039/

Table 2: Datasets statistics. For each dataset, the table be-
low shows the number of queries, the average number of
candidate docs for each query, the number of features, the
relevance annotation𝑦’s range, and the feature id of the BM25
to be used in our experiments.

Datasets # Queries #AverDocs # Features 𝑦 BM25
MQ2007 1643 41 46 0 − 2 25𝑡ℎ

MSLR-10k 9835 122 133 0 − 4 110𝑡ℎ

MSLR-30k 30995 121 133 0 − 4 110𝑡ℎ

5.1.2 Simulation of Search Sessions, Click and Cold-start . Similar
to prior research [7, 23, 46, 47], we create simulated user engage-
ments to evaluate different LTR algorithms. The advantage of the
simulation is that it allows us to do online experiments on a large
scale while still being easy to reproduce by researchers without
access to live ranking systems [33]. Specifically, at each time step,
we randomly select a query from either the training, validation
or test subset and generate a ranked list based on ranking algo-
rithms. Following the methodology proposed by Chapelle et al.
[10], we convert the relevance judgement to relevance probabil-
ity according to 𝑃 (𝑟 = 1|𝑑, 𝑞, 𝜋) = 0.1 + (1 − 0.1) 2𝑦−1

2𝑦𝑚𝑎𝑥 −1 , where
𝑦𝑚𝑎𝑥 is 2 or 4 depending on the dataset. Besides relevance proba-
bility, the examination probability 𝜌𝑟𝑎𝑛𝑘 (𝜋,𝑑) are simulated with
𝜌𝑟𝑎𝑛𝑘 (𝜋,𝑑) =

1
log2 (𝑟𝑎𝑛𝑘 (𝜋,𝑑)+1)

. The 𝜌𝑟𝑎𝑛𝑘 (𝜋,𝑑) is also the same ex-
amination probability used in Eq. 5 to compute DCG. For simplicity,
we follow [33, 52, 54] to assume that users’ examination 𝜌𝑟𝑎𝑛𝑘 (𝜋,𝑑)
is known in our experiment as many existing methods [3, 6, 51]
have been proposed for it. With 𝑃 (𝑟 = 1|𝑑, 𝑞, 𝜋) and 𝜌𝑟𝑎𝑛𝑘 (𝜋,𝑑) ,
according to Equation 2, clicks can sampled. We simulate clicks on
the top 5 items, i.e., 𝑘𝑠 = 5 in Equation 3. User clicks are simulated
and collected for all three partitions. And we only use the sessions
sampled from training partitions to train LTR models and sessions
sampled from validation partitions to do validation. LTR models are
evaluated and compared only based on test partitions. We collect
clicks on validation and test queries in the simulation to construct
the behavior features for their candidate document, which is used
for inference only. In real-world LTR systems, behavior features
are widely used in the inference of LTR models [9, 37].

The cold start scenario in ranking is an important part of our
simulation experiments. We found two factors are essential for
cold start simulation. Firstly, in real-world applications, new doc-
uments/items frequently come to the retrieval collection during
the serving of LTR systems. To simulate new documents/items’
coming, at the beginning of each experiment, we randomly sample
only 5 to 10 documents for each query as the initial candidate sets
𝐷𝑞 and mask all other documents. Then, at each time step 𝑡 , with
probability 𝜂 (𝜂 = 1.0 by default), we randomly sample one masked
document and add it to the candidate set 𝐷𝑞 . Depending on the
averaged number of document candidates and 𝜂, the number of
sessions (time steps) we simulate for each dataset is

#𝑆𝑒𝑠𝑠𝑖𝑜𝑛 =
#𝑄𝑢𝑒𝑟𝑖𝑒𝑠 × (#𝐴𝑣𝑒𝑟𝐷𝑜𝑐𝑠 − 5)

𝜂
(27)

where #𝑄𝑢𝑒𝑟𝑖𝑒𝑠 and #𝐴𝑣𝑒𝑟𝐷𝑜𝑐𝑠 are indicated in Table 2. The second
factor for cold start simulation is that when a ranking algorithm
usually is introduced in an LTR system, some documents/items
already have collected user feedback in history. To simulate this,
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for each query, we simulated 20 sessions according to BM25 scores
to collect initial user behaviors for the initial candidate sets. The
BM25 scores are already provided in the original datasets’ features
(see Table 2).
5.1.3 Baselines.To evaluate our proposed methods, we have the
following ranking algorithms to compare,
BM25: The method to collect initial user behaviors.
CFTopK: Train a ranking model with Counterfactual loss that is
widely used in existing works [30, 40, 54] and create ranked lists
with items sorted by the model scores during ranking service.
CFRandomK: Train a ranking model the same way as CFTopK,
but randomly create ranked lists with items during ranking service.
CFEpsilon: Train a ranking model the same way as CFTopK. Uni-
formly sample an exploration from [0, 1] and add to each item’s
score from the model[54]. Create ranked lists with items sorted by
the score after addition during ranking service.
DBGD[56]: A learning to rankmethod which samples one variation
of a ranking model and compares them using online evaluation
during ranking service.
MGD[42]: Similar to DBGD but sample multiple variations.
PDGD[31]: A learning to rank method which decides gradient via
pairwise comparison during ranking service.
PRIOR[18]: When 𝑥𝑏 = 0, the method will train a behavior feature
prediction model to give a pseudo behavior feature 𝑥𝑏 .
UCBRank[54]: uses relevance estimation from 𝑥𝑛𝑏 when an item is
not presented and uses relevance estimation from 𝑥𝑏 when an item
has been presented. An upper Confidence Bound (UCB) exploration
strategy is used as an exploration strategy.
EBRank: Our method shown in Algorithm 1.

For those baselines, DBGD,MGD, PDGD, CFTopK, CFRankdomK,
CFEpsilon are unbiased learning to rank algorithms that try to learn
unbiased LTR models with biased click signals. We will investigate,
in this paper, whether they can overcome exploitation bias or not.
We compare those methods with two feature settings. The first
setting is that we only use non-behavior features 𝑥𝑛𝑏 , referred to as
W/o-Behav. The second feature setting is that we use both behav-
ior signals and non-behavior features. The feature setting is referred
to as W/-Behav(Concate) when behavior-derived features and
non-behavior features are concatenated together. W/-Behav(Non-
Concate) means behavior signals and non-behavior features are
combined using a non-concatenation way, such as the EB model-
ing used by EBRank. Method BM25 only has W/o-Behav results
since it uses the non-behavior feature BM25 to rank items. CFTopK,
CFRandomK, CFEpsilon, DBGD, MGD, and PDGD have ranking
performance with both W/o-Behav and W/-Behav(Concate) feature
settings, depending on whether behavior features are used or not.
We follow Yang et al. [54] to use relevance’s unbiased estimator
𝑥𝑏 = 𝐶

𝑛 as the behavior feature, with default value as 0 when 𝑛 = 0.
The default value for 𝑥𝑏 has a significant influence on methods
DBGD, MGD, PDGD, CFTopK, CFRankdomK, and CFEpsilon since
those methods will concatenate 𝑥𝑏 and 𝑥𝑛𝑏 . However, how to set
the default 𝑥𝑏 for each method is not within the scope of this work,
and we leave it for future works. PRIOR only has ranking per-
formance with W/-Behav(Concate) because PRIOR is designed to
relieve exploitation bias when behavior features and non-behavior
features are concatenated. For UCBRank and EBRank, they only

have W/-Behav(Non-Concate) results since they have their own
designed non-concatenation way to combine behavior signals and
non-behavior features. However, our method EBRank is fundamen-
tally different from UCBRank. UCBRank treats behavior features
as independent evidence for relevance and linearly interpolates
relevance estimation from 𝑥𝑏 and 𝑥𝑛𝑏 . Besides, UCBRank adopts an
Upper Confidence Bound exploration strategy. However, EBRank
interpolates relevance estimation from 𝑥𝑏 and 𝑥𝑛𝑏 from a Bayesian
perspective and uses the marginal-certainty exploration strategy
derived in Eq. 16 to guide exploration.
5.1.4 Implementation . We retrain and update the prior model
parameters periodically 20 times during the simulation. However,
updating ranking logs, including user behaviors, is relatively easy
and time-efficient, and we update them after each session. When
we train the prior model according to loss in Eq. 13, we only train
𝛼 = 𝑓𝜃 (𝑥𝑛𝑏 ) and fix 𝛽 = 5 for simplicity, which works well across
all experiments. Since DBGD and MGD are proposed to only work
with linear models while other ranking algorithms do not have such
limitations, we use linear models for the prior model of EBRank
and all other baselines for fair comparison.
5.1.5 Evaluation . We evaluate ranking baselines with two standard
ranking metrics on the test set. The first one is the Cumulative
NDCG (Cum-NDCG) (Eq.7) with𝛾 = 0.995 (same𝛾 used in [47, 48])
to evaluate the online performance of presented ranklists. The
second metric is the standard NDCG (Eq.6), where each query’s
ranked list is generated by sorting scores from the final ranking
models (excluding the exploration strategy part of each algorithm).
The NDCG evaluates the offline performance of the learned ranking
model. NDCG is tested in two situations: with (i.e., Warm-NDCG)
or without (i.e., Cold-NDCG) behavior features collected from
click history. In this way, our experiment can effectively evaluate
LTR systems in scenarios where we encounter new queries with
no user behavior history on any candidate documents (i.e., the
Cold-NDCG) and the scenarios where user behavior exists (i.e.,
the Warm-NDCG). For simplicity, we set the rank cutoff to 5 and
compute iDCG in both Cum-NDCG and NDCG with all documents
in each dataset. Significant tests are conducted with the Fisher
randomization test [44] with 𝑝 < 0.05. All evaluations are based on
five independent trials and reported on the test partition only.

5.2 Result
In this section, we will describe the results of our experiments.
5.2.1 How does our method compare with baselines? In Table 3,
EBRank significantly outperforms all other methods and feature
setting combinations on Warm-NDCG and Cum-NDCG, while its
Cold-NDCG is among the best. The discussion in the following
sections will give more insights into EBRank’s supremacy.
5.2.2 Will historical user behavior help ranking algorithms achieve
better ranking quality? As shown in Table 3, not all algorithms can
benefit from incorporating behavior signals. Particularly, in Table 3,
we indeed see that both W/-Behav(Concate) and W/-Behav(Non-
Concate) feature settings help to boost most ranking algorithms to
have betterWarm-NDCG and Cum-NDCG. However, such boosting
on Warm-NDCG and Cum-NDCG does not apply to all ranking
algorithms, and there exist two exceptions. The first one is a trivial
exception regarding CFRandomK. CFRandomK always randomly
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Table 3: The ranking performance. The best performances within each feature setting are bold. ∗ and † indicate statistical
significance over other models in the same or all feature settings, respectively. Cold-NDCG and Warm-NDCG are the same
within the W/o-Behav feature setting since behavior signals are not used in both settings.

Feature
settings

Online
Algorithms

MQ2007 MSLR-10k MSLR-30k
Cold-NDCG Warm-NDCG Cum-NDCG Cold. Warm. Cum. Cold. Warm. Cum.

W/o-Behav

BM25 0.474 0.474 94.38 0.449 0.449 90.39 0.451 0.451 89.98
DBGD 0.557 0.557 110.6 0.488 0.488 98.66 0.498 0.498 99.40
MGD 0.562 0.562 110.9 0.473 0.473 95.72 0.502 0.502 101.3
PDGD 0.599 0.599 115.0 0.525 0.525 105.2 0.525 0.525 106.0
CFTopK 0.591 0.591 116.7 0.510 0.510 102.9 0.506 0.506 101.6
CFRandomK 0.589 0.589 87.69 0.509 0.509 79.59 0.514 0.514 78.63
CFEpsilon 0.589 0.589 94.39 0.510 0.510 84.75 0.518 0.518 83.88

W/-Behav
(Concate)

DBGD 0.514 0.729 144.7 0.451 0.571 114.3 0.462 0.607 118.8
MGD 0.523 0.725 142.1 0.461 0.558 109.0 0.444 0.595 122.5
PDGD 0.574 0.745 147.6 0.466 0.591 117.9 0.480 0.584 116.4
CFTopK 0.385 0.579 113.5 0.369 0.489 97.53 0.366 0.491 97.65
CFRandomK 0.377 0.771 87.11 0.403 0.596 79.82 0.404 0.603 78.91
CFEpsilon 0.387 0.789 143.8 0.355 0.683 116.8 0.354 0.686 116.8
PRIOR 0.597 0.791 158.7 0.507 0.554 110.3 0.503 0.557 111.4

W/-Behav
(non-Concate)

UCBRank 0.593 0.799 158.9 0.514 0.703 140.1 0.509 0.703 140.5
EBRank(ours) 0.596 0.849∗† 171.3∗† 0.513 0.762∗† 151.6∗† 0.513 0.762∗† 152.0∗†
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Figure 3: Ranking performance (MQ2007, W/-Behav setting).

ranks items and shows them to users, so its online performance, i.e.,
Cum-NDCG, can not be boosted. The second one is a non-trivial
exception regarding CFTopK. Incorporating user behaviors even
makes CFTopK degenerate on Warm-NDCG and Cum-NDCG for
all three datasets. Besides CFTopK’s degeneration on Warm-NDCG
and Cum-NDCG, W/-Behav(Concate) feature setting even causes
all ranking algorithms (except PRIOR) to experience a significant
drop in Cold-NDCG, when compared to the W/o-Behav feature
setting. Compared to other algorithms, UCBRank and our algorithm
EBRank can benefit from behavior signals to have better Warm-
NDCG and Cum-NDCG while avoiding drop in Cold-NDCG. In
Table 3, PRIOR also avoids drop in Cold-NDCG but Prior is not as
effective as UCBRank and EBRank in boosting Warm-NDCG and
Cum-NDCG with user behavior. Besides Table 3, we additionally
show ranking performance as time steps increase in Figure 3. As
shown in Figure 3, EBRank consistently outperforms baselines.
5.2.3 EBRank’s robustness to entering probability . To investigate
the item entering speed (𝜂) ’s influence on the ranking performance,
we show the experimental results with different 𝜂 in Figure 4. As
shown in Figure 4, EBRank consistently significantly outperforms
all other algorithms under different item entering speeds.
5.2.4 Ablation Study . In this section, we do an ablation study to
see whether each part of our EBRank is needed. Due to limited
space, we only provide analysis on MQ2007 dataset. As shown in

0.1 0.4 0.7 1.0
New item entering probability η .
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160

180
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m
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DBGD
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PDGD
CFTopK
CFRandomK
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PRIOR
EBRank(Ours)
UCBRank
BM25

Figure 4: Ranking performance with different entering prob-
ability 𝜂 in simulation (see Eq. 27) on MQ2007. We only con-
sider using user behavior situations here (except BM25).
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Figure 5: Ablation Study of EBRank on dataset MQ2007. W/o-
Explo. means excluding 𝑀𝐶 (𝑑) in Eq. 12 when generating
ranklists. Only-Prior means only using the prior model part
𝛼

𝛼+𝛽 of 𝑅 (in Eq. 10) to rank items. Only-Behav. means only

using the behavior part 𝐶
𝑛 of 𝑅 (in Eq. 10) to rank items.

Figure 5, EBRank significantly outperforms the version only using
the Behavior part or the prior model part to rank. Also, from the
ablation study, we observe Bayesian modeling can help a ranking
model reach good ranking quality and be robust to exploitation bias.
The marginal-certainty-aware exploration additionally helps to
discover relevant items, which helps to boost ranking performance
in the long term.
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