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DisControlFace: Adding Disentangled Control to Diffusion
Autoencoder for One-shot Explicit Facial Image Editing

Anonymous Authors

Figure 1: Our DiscontrolFace can edit the input face image based on explicit parametric control and faithfully preserve the
facial semantic appearance under one-shot scenario. Our model can generate realistic and faithful facial image corresponding
to diverse pose, expression and lighting conditions and also supports cross-identity face driving.

ABSTRACT
In this work, we focus on exploring explicit fine-grained control of
generative facial image editing, all while generating faithful facial
appearances and consistent semantic details, which however, is
quite challenging and has not been extensively explored, especially
under an one-shot scenario. We identify the key challenge as the
exploration of disentangled conditional control between high-level
semantics and explicit parameters (e.g., 3DMM) in the generation
process, and accordingly propose a novel diffusion-based editing
framework, named DisControlFace. Specifically, we leverage a Dif-
fusion Autoencoder (Diff-AE) as the semantic reconstruction back-
bone. To enable explicit face editing, we construct an Exp-FaceNet
that is compatible with Diff-AE to generate spatial-wise explicit
control conditions based on estimated 3DMM parameters. Differ-
ent from current diffusion-based editing methods that train the
whole conditional generative model from scratch, we freeze the
pre-trained weights of the Diff-AE to maintain its semantically
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deterministic conditioning capability and accordingly propose a
random semantic masking (RSM) strategy to effectively achieve
an independent training of Exp-FaceNet. This setting endows the
model with disentangled face control meanwhile reducing semantic
information shift in editing. Our model can be trained using 2D
in-the-wild portrait images without requiring 3D or video data and
perform robust editing on any new facial image through a sim-
ple one-shot fine-tuning. Comprehensive experiments demonstrate
that DisControlFace can generate realistic facial images with better
editing accuracy and identity preservation over state-of-the-art
methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Facial image editing, Explicit parametric control, Conditional diffu-
sion model

1 INTRODUCTION
Facial image editing has long been a hot research topic in the fields
of computer vision and computer graphics, where the key challenge
is to effectively achieve fine-grained controllable generation of
realistic facial images while preserving semantic face priors.

3D Morphable Models (3DMMs) [3, 16] have been widely em-
ployed to represent variations in facial shape and texture [4, 16,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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19, 29, 56–59], whereas their ability to capture personalized facial
features is limited and the performance highly depends on the
quality and diversity of the 3D face training data. On top of this,
subsequent learning-based explicit face models [7, 11, 13, 28, 50, 56–
59, 63] achieve controllable generations of dynamic and expressive
facial animations by capturing the nuances of facial features under
different expressions, poses, and lighting conditions, nevertheless,
can neither generate realistic facial appearances that correspond
to the animated 3D face geometries nor model refined geometric
details in non-facial regions, e.g., hair, eyes, and mouth. Follow-up
efforts integrate explicit facial modeling with implicit 3D-aware
representations like Neural Radiance Fields (NeRFs) to reconstruct
animated realistic head avatars [14, 23, 30, 33, 34, 39–42, 51, 52, 66],
which however, heavily rely on 3D consistent data such as monoc-
ular portrait videos and tend to exhibit limited generalization.

In contrast, generative face models enable single image recon-
struction and editing due to the superior capability in learning
rich face priors from in-the-wild portraits. Recent GAN-based ap-
proaches [2, 5, 6, 10, 18, 22, 37, 55, 62] incorporate explicit 3D
facial priors and implicit neural representations to achieve directed
generations of high-resolution, realistic, and view-consistent fa-
cial images without the need of 3D face scans or portrait videos.
However, those methods mainly provide implicit or limited explicit
controls of face generations.

More recently, the diffusion-based framework [21] has emerged
as the predominant choice for various generation tasks, owing
to its impressive performance and diverse conditioning options.
Some approaches have also shown promising enhancements in face
reconstruction and various face editing tasks, such as face relighting
[43], semantic attributes manipulation [44], and explicit appearance
control [12]. Unfortunately, it can be seen that when editing and
modifying some specific facial attributes, other facial attributes or
editing-irrelevant details often occur unexpected and uncontrollable
changes, leading to an incoherent and identity-altered generated
face. This prevalent issue can be attributed to that these generative
face models struggle to effectively perform disentangled control in
the generation process.

In this work, we propose a novel diffusion-based generative
framework, namely DisControlFace to achieve one-shot editing of
facial images. To generate a photo-realistic, high-fidelity facial ap-
pearance corresponding to specific explicit parameters (e.g., 3DMM)
while faithfully preserving high-level semantic priors, we partic-
ularly focus on enhancing the diffusion model with disentangled
conditional control. Specifically, we adopt a Diffusion Autoencoder
(Diff-AE) [44] as the generative backbone, which can enable a deter-
ministic image reconstruction by conditioning Denoising Diffusion
Implicit Model (DDIM)[53] on the semantic information of the in-
put image. We then specially construct an Exp-FaceNet compatible
with the Diff-AE backbone, which further provides multi-scale,
spatial-aware DDIM conditioning corresponding to the facial pa-
rameters of shape, pose, expression, and lighting. Moreover, we
claim that training different DDIM conditoning together, as with
existing methods is not conductive to learning disentangled face
control. We therefore freeze the pre-trained weights of Diff-AE and
accordingly design a random semantic masking (RSM) strategy to
enable the training of Exp-FaceNet, by means of which the model
can learn explicit parameteric face control independently without

affecting semantically deterministic DDIM conditioning. Also ben-
efiting from this disentangled setting, instead of relying on 3D or
video data, we can utilize 2D in-the-wild portrait dataset such as
FFHQ [26] to effectively train Exp-FaceNet to learn a robust and
generalized capability in explicit face editing. Considering there
exists domain gap between the pre-trained face data and the target
new face image, which tends to prevent Diff-AE from perform-
ing near-exact semantic reconstrcution, we finally introduce an
one-shot fine-tuning to Diff-AE so as to restore personal identity
and editing-irrelevant details of the input portrait under a subject-
agnostic scenario. Our approach not only achieves state-of-the-art
(SOTA) qualitative and quantitative results for one-shot explicit
facial image editing, but also supports generating realistic and faith-
ful facial appearance of specific individuals in image inpainting,
semantic attributes manipulations, and cross-identity face driving
(shown in Figure 1).

Our contributions can be summarized as follows:

• We propose a novel diffusion-based generation framework,
consisting of a Diffusion Autoencoder (Diff-AE) backbone
and an explicit face control network (Exp-FaceNet) for syn-
thesizing photo-realistic, high-fidelity portrait images cor-
responding to the editing of explicit facial properties only
trained with 2D in-the-wild images.

• To the best of our knowledge, we are the first to introduce
a weight-frozen pre-trained Diff-AE to explicit face edit-
ing pipeline to provide deterministic semantic conditioning,
meanwhile designing an effective training strategy to enable
the Exp-FaceNet with a disentangled explicit parameteric
(e.g., 3DMM) conditioning.

• Our method achieves SOTA generation performance in ex-
plicit facial image editing, and also supports various one-shot
face editing tasks.

2 RELATEDWORK
Generative Face Modeling. Various GAN-based models [6, 26,
27, 35, 38, 49] have been proposed to synthesize realistic facial
images by learning the underlying data priors from large-scale
in-the-wild images [6, 38, 49]. However, when it comes to precise
control and interpretability, those generative face models fall short
compared to explicit parametric models. Given this, several ap-
proaches [5, 54, 55, 62] go a step further by integrating explicit
parameters and GANs, which can simultaneously generate highly
realistic and coherent portraits and achieve fine-grained control of
facial appearance. Recently, diffusion models [21, 53] have gained
recognition for their superior ability to learn data distributions
compared to GANs, and thus have been widely adopted to generate
realistic and diverse images in various generation tasks, including
facial image synthesis [44, 44]. DiffusionRig [12], a closely related
method, introduces pixel-aligned physical properties rendered from
explicit parameters estimated by DECA [13] to denoising diffusion
process to generate photo-realistic facial images corresponding to
target pose, expression, and lighting conditions, which however,
highly relies on a personalized fine-tuning (around 20 images) to
preserve the facial appearance priors of a specific person . Similar
problems widely exist in most conditional diffusion face models, as
can be observed where identity shifts and unexpected attributes
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alterations may occur during face reconstruction and editing. This
can be attributed to the lack of disentangled control capabilities
when conditioning diffusion models with both facial semantics and
physical information. DisControlFace overcomes this challenge by
leveraging a weight-frozen pre-trained Diff-AE to provide semanti-
cally deterministic DDIM conditioning and independently training
a separate Exp-FaceNet to learn disentangled face control based on
3DMM parameters.
Conditional Diffusion Model. Conditional DDIM enables the
Denoising Diffusion Probabilistic Model (DDPM) [21] to generate
content consistent with specific control signals though various
conditioning manners. Most existing models encode various con-
trol information into global conditional vectors, which can be text
embedding [45] or semantic embedding [43, 44]. To achieve spatial-
aware and precise control of the generation, some approaches (e.g.,
DiffusionRig [12] and SR3 [48] ) concatenate various spatial con-
ditions and denoised images together as the input of the U-Net
noise predictor in each denoising step. However, this form of con-
ditioning requires the U-Net to have a unique input layer, resulting
in the model having limited generalization and making it hard to
reuse existing well-trained diffusion models. Besides, some other
methods specially construct spatial conditioning branches to ex-
tract spatial-aligned conditional features and insert them into the
U-Net [43, 61, 65]. ControlNet [65] has been widely employed to
add various spatial visual guidance (e.g., edge maps, pose maps,
depth maps, etc.) to text-to-image generation models such as Stable
Diffusion [45]. Whereas, it may not suitable for deterministic re-
construction or editing tasks since there still exists uncertainty and
randomness in the generation controlled by visual guidance and
text prompts. In contrast, our Exp-FaceNet is specially designed
to be compatible with a semantic reconstruction DDIM, Diff-AE
[44], aiming to better address facial image editing based on explicit
control information.
Learning Specific Facial Priors. Effectively extracting the facial
appearance priors of the specific person and injecting this global
prior into the generation process is crucial for preserving facial
semantics such as identity, accessories, hairstyle, and background
information in facial image editing. Most existing generative meth-
ods address this issue by fine-tuning the network in various settings
[15, 24, 36, 47], or designing special optimization strategies, such
as identity penalty, face recognition loss, and latent representation
editing [1, 31, 60, 64]. In contrast to previous work like [12, 36]
which collect personal albums to learn personalized facial priors, in
this work, we focus on the subject-agnostic editing scenario, which
is more challenging but practical. On the basis of the inherent and
maintained facial semantics capturing capability of Diff-AE, only a
fast and yet simple fine-tuning using an out-of-domain new face im-
age is needed to faithfully restore the semantic appearance details
of the target image during editing.

3 PRELIMINARIES
3.1 3D Morphable Face Models
FLAME [29] , a popular 3DMMmodel, can be expressed as𝑀 (𝜷, 𝜽 , 𝝍) :
R |𝜷 |× |𝜽 |× |𝝍 | → R3𝑁 , which takes shape 𝜷 , pose 𝜽 , and expres-
sion 𝝍 as inputs and outputs a face mesh with 𝑁 vertices. On this
basis, some off-the-shelf 3D face estimators, such as DECA [13]

and EMOCA [7], achieve 3D face reconstruction by regressing
individual-specific FLAME parameters from in-the-wild images.
We utilize EMOCA to obtain a face mesh corresponding to the
input image with enhanced expression consistency, and render it to
pixel-aligned explicit conditions. Specifically, given a single image
𝐼 , the coarse branch of EMOCA estimate its corresponding 𝜷 , 𝜽 , 𝝍,
albedo 𝜶 , spherical harmonic (SH) illumination coefficient 𝒍 , and
camera 𝑐 , which can be expressed as 𝐸𝑐 (𝐼 ) → (𝜷, 𝜽 , 𝝍,𝜶 , 𝒍, 𝒄). The
detailed branch further outputs a detail vector 𝛿 and computes the
displacement map 𝐷 in UV space, which is specifically expressed
as 𝐸𝑑 (𝐼 ) → 𝜹 and 𝐹𝑑 (𝜹, 𝝍, 𝜽 𝑗𝑎𝑤) → 𝐷 .

3.2 Diffusion Autoencoders (Diff-AE)
Diff-AE [44] reformulates the traditional diffusion generationmodel
into an autoencoder and captures high-level image semantics for
DDIM conditioning, therefore supporting near-exact reconstruction
and attribute manipulation of the input image. Specifically, Diff-
AE uses a semantic encoder to generate a 512-dimentional latent
code 𝑧 with global semantics of the input image 𝑥0. Then, 𝑧 can
be introduced to the reverse deterministic generative process of
DDIM to obtain a noisy map 𝑥

𝑇
which captures the stochastic

variations of 𝑥0. Last, a conditional DDIM model decodes (𝑧, 𝑥
𝑇
) to

achieve a deterministic reconstruction of 𝑥0. By linearly modifying
the semantic latent code 𝑧, Diff-AE can manipulate diverse global
semantic attributes, e.g., age, gender, and hairstyle. We introduce
Diff-AE to our DisControlFace as the reconstruction backbone and
freeze its pre-trained weights to provide semantically deterministic
DDIM conditioning during the training of explicit face control.

4 METHOD
In the pursuit of a robust one-shot explicit facial image editing, we
propose a generative framework, namely DisControlFace, providing
DDIM conditioning on disentangled face control between high-
level semantics and explicit 3DMM parameters (shown in Figure
2). Specifically, we adopt a weight-frozen Diff-AE as a semantic
reconstruction backbone and construct an Exp-FaceNet to provide
explicit parametric face control (Sec. 4.1). Furthermore, we design a
training strategy to effectively enable the training of Exp-FaceNet
(Sec. 4.2). Finally, we adopt an one-shot fine-tuning to improve the
semantic consistency and faithfulness of the generated facial image
under the subject-agnostic editing scenario (Sec. 4.3).

4.1 Exp-FaceNet
On the basis of the adopted Diff-AE reconstruction backbone, an in-
tuitive idea for learning explicit face editing capability is to further
build additional DDIM conditioning on 3DMM parameters. Com-
pared to directly adopting the 3DMMparameters as non-spatial con-
trol conditions, generating pixel-aligned conditional maps based on
those parameters is more conducive and compatible to convolution-
based visual representation, which also helps enable fine-grained
spatial control for the denoising diffusion process. Given this, we
specially construct Exp-FaceNet, an explicit control network com-
patible with the adopted Diff-AE reconstruction backbone to per-
form a disentangled spatial conditioning for DDIM-based genera-
tion. Here we firs estimate 3DMM parameters from facial images
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Figure 2: Pipeline overview. Our DisControlNet leverages Diffusion Autoencoder (Diff-AE) as the reconstruction backbone
freeze its pre-trained weights to maintain the semantic deterministic conditioning capability, which is effective in reducing
semantic information shift during the editing of the input portrait image. Then, an explicit face control network, Exp-FaceNet
compatible with the Diff-AE is constructed, which takes pixel-aligned snapshots rendered from estimated explicit parameters
as inputs and generates multi-scale control features to condition the DDIM decoder. Moreover, a random semantic masking
(RSM) training strategy is accordingly designed to enable a disentangled explicit face control of Exp-FaceNet.

and transfer them to the corresponding visual guidance map. Specif-
ically, we use EMOCA [7] to predict FLAME parameters (including
shape 𝛽 , pose 𝜃 , and expression 𝜓 ), SH illumination parameter 𝑙 ,
and camera parameter 𝑐 from an input portrait. Different from those
previous work [12, 17, 43], here we also adopt the person-specific
detail vector 𝛿 estimated by EMOCA, which can be combined with
𝜃 and𝜓 to generate the expression-dependent displacement map
for refining the face geometry with animatable wrinkle details. To
avoid undesired disturbance to facial appearance priors caused by
inaccurate and unrealistic appearance estimation, we set the albedo
map 𝛼 to a constant gray value, thereby focusing on controlling
the edit of shape, pose, expression, and lighting. We render these
explicit parameters into a surface normal snapshot 𝑛:

𝑛 = R(G(M(𝛽, 𝜃,𝜓 )), 𝑐, 𝛿) (1)

where the FLAME model M is used to calculate the 3D face mesh,
G and R indicate normal calculation function and the Lambertian
reflectance renderer, respectively. By means of this, 𝑛 can reflect
the fine-grained geometry of the input face and is compatible with
pose parameter 𝜃 and expression parameter 𝜓 . Furthermore, we
also generate a shading shape snapshot 𝑠 to illustrate the lighting
conditions associated with the SH illumination parameter 𝑙 :

𝑠 = R(M(𝛽, 𝜃,𝜓 ), 𝛼, 𝑙, 𝑐, 𝛿) (2)

Considering U-Net [46] excels at extracting spatial features from
images for various vision tasks, we construct Exp-FaceNet in a simi-
lar U-shape structure, which takes channel-concatenated snapshots
𝑛 and 𝑠 as the input visual guidance map and generates multi-scale
deep features for spatial-aware conditioning. Then we feed back the

spatial-condition features outputted by each stage of the U-Net’s
decoder back to Diff-AE to provide multi-scale conditional control.
Please see the detailed architecture in the supplement.

4.2 RSM Training Strategy
DisControlFace can be regarded as a DDIM model that is simul-
taneously conditioned by a global semantic code and multi-scale
explicit-control feature maps (see Figure 2). As mentioned before,
we freeze the pre-trained weights of Diff-AE to preserve global
semantics and enable Exp-FaceNet to learn explicit face control
in a disentangled way. However, since Diff-AE backbone already
allows a deterministic image reconstruction under this setting, only
limited gradients can be generated during error back-propagation,
which are far from sufficient to effectively train Exp-FaceNet. Con-
sequently, it is infeasible to train Exp-FaceNet in a traditional con-
ditional DDIM generation form. To address this issue, we design
a random semantic masking (RSM) strategy, not for the purpose
of representation learning like Masked Autoencoders (MAE) [20],
but rather to achieve the training of Exp-FaceNet effectively. Con-
cretely, we divide the input image 𝑥0 into regular non-overlapping
patches and randomly mask different portions of patches to obtain
a masked image 𝑥𝑚0 at different timesteps. By means of this, the
semantic latent code 𝑧𝑚 encoded by the semantic encoder E𝜂 of
Diff-AE only contains fragmented and incomplete content and spa-
tial information of 𝑥0. Meanwhile, the spatial-condition features 𝑓
generated by Exp-FaceNet F𝜙 comprise the fine-grained face shape
as well as the camera parameter and lighting condition of 𝑥0, which
can help to restore the masked face regions in 𝑥𝑚0 in each random
denoising timestep. The overall training objective can thereby be
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Figure 3: Qualitative comparison against baselines in one-shot editing. For each selected image, we use EMOCA [7] to estimate
the corresponding explicit parameters, then synthesize the edited images using different methods based on the modified
parameters of pose, expression, and lighting. We additionally provide the rendered shading shapes in the second row as the
references of explicit control conditions. As can be seen, our DisControlFace can edit images that match well with the target
control conditions while faithfully synthesizing facial appearances and editing-irrelevant details.

parameterized as:

L = E𝑥0,𝑥𝑚0 ,𝑡,𝜖 [∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑧𝑚, 𝑓 )∥22] (3)

where 𝜖𝜃 is the U-Net of Diff-AE which predicts the noise 𝜖 ∼
N(0, I) added in noisy image 𝑥𝑡 . Throughout the generalized train-
ing, we only train F𝜙 and freeze 𝜖𝜃 and E𝜂 with the pre-trained
weights.

4.3 Exploiting One-shot Semantic Priors
At this point, the well-trained Exp-FaceNet is able to explicitly
change pose, expression, and lighting of a facial image. However,
there still exists identity shift or background changes during the
face editing, which is especially evident when the target face for
editing lies outside the domain of the pre-trained Diff-AE. Given
this, it is meaningful to fully exploit the semantic priors of the to-be-
edit image and inject them into the editing process. Concretely, in
this stage, we freeze Exp-FaceNet and only fine-tune Diff-AE with
the input portrait image using the aforementioned RSM training

strategy. As a result, this one-shot fine-tuning enables the model
to faithfully restore the personalized appearance details as well as
editing-irrelevant factors such as background and accessories when
performing explicit face editing.

4.4 Inference Editing
In practice, we first use EMOCA to predict all explicit parameters
(mentioned in Sec. 4.1) of the input portrait 𝑥0, then we modify the
pose parameters 𝜃 , expression parameter𝜓 , and SH light parameter
𝑙 by manually setting target values or directly transferring these
parameters from a driving portrait. After this, we calculate the
rendered shading shape snapshot 𝑠 and surface normal snapshot
𝑛 based on the modified parameters, and further generate explicit
control conditions using Exp-FaceNet. On the other hand, since we
should keep a consistent generative mechanisms in training and
inference, here we also utilized masked input images to provide
high-level semantic conditioning for DDIMdecoder and accordingly
design an intuitive patch masking strategy for inference editing.
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ID ↑ Shape↓ Pose ↓ Exp ↓ Light ↓
GIF [17] 0.22 3.0 5.6 5.0 0.40
DiffusionRig [12] 0.24 4.3 4.2 2.8 0.36
Ours 0.31 2.8 4.5 2.9 0.31

Table 1: Quantitative comparisons against compared base-
lines using identity consistency (ID) and DECA re-inference
errors on shape, pose, expression, and lighting.

Concretely, for each timestep 𝑡 , we generate the masked image 𝑥𝑚𝑡
by randomlymasking the patches of the input image 𝑥0 with a linear
ratio 𝜌𝑡 = 0.75 − 0.5(𝑇 − 𝑡)/𝑇 , where the number of the inference
denoising steps 𝑇 is set to 20 in this work. Under this setting, we
can generate 𝑥𝑚𝑡 with high masking ratios 𝜌𝑡 to emphasize the
facial control of the intermediate denoising result 𝑧𝑡−1 in the early
stage of the inference, and then gradually decrease 𝜌𝑡 to recover
semantic information.

5 EXPERIMENTS
5.1 Implementation Details
We train the proposed Exp-FaceNet on the FFHQ dataset [26], which
consists of 70k in-the-wild facial images. For evaluations, we select
the images of the CelebA-HQ dataset [25] to perform one-shot
fine-tuning and face editing. To balance generation quality and
computational cost, we resize the images to a resolution of 256×256
for both training and inference. Accordingly, we utilize Diff-AE1
pre-trained on FFHQ-256 for all experiments. We train Exp-FaceNet
for 437,500 iterations, with a learning rate of 1𝑒−4 and a batch size
of 32, while during the one-shot fine-tuning stage, we only fine-
tune the pre-trained Diff-AE for 1,500 iterations, with a learning
rate of 1𝑒−5 and a batch size of 4. In all training stages, we use
AdamW [32] as the optimizer and set the denoising timesteps to
1,000.

5.2 Comparison
Baselines. We compare our methods against three generative
methods for parametric face image synthesis and editing: Head-
NeRF [23], GIF [17], and DiffusionRig [12]. Among these, HeadNeRF
is a NeRF-based head model, while GIF and DiffusionRig are both
generative face models built upon GAN and diffusion model, re-
spectively. For a fair comparison, we utilize the models pre-trained
on FFHQ at a resolution of 2562 for each method.
Qualitative comparison. Weevaluate ourDisControlFace against
baselines using images from CelebA-HQ and we perform one-shot
fine-tuning for all methods. The qualitative comparison results are
provided in Figure 3. For all methods, we visualize the editing re-
sults of pose, expression, and lighting on three identities. In order
to intuitively measure the editing performance, we further give
the rendered snapshot 𝑠 of the shading shape corresponding to the
modified explicit parameters as the references of explicit control
conditions. (second row of Figure 3). We can find that compared
to the other methods, our method synthesizes images with overall
best identity consistency and parametric editing accuracy. Specifi-
cally, HeadNeRF cannot generate realistic facial appearance as well
1https://github.com/phizaz/diffae.

Figure 4: Ablation study on one-shot fine-tuning. DisControl-
Face can perform zero-shot explicit editing, where however,
identity shift still exists. On this basis, adopting a simple one-
shot fine-tuning can significantly improve the preservation
of face identity as well as other editing-irrelevant semantic
information.

as the background of the original image. GIF has a good control
ability of parametric face editing, however, is completely unable
to preserve the face identity. DiffusionRig, another diffusion-based
method achieves better editing results than HeadNeRF and GIF,
especially in identity preservation, which can also be attributed to
using one-shot fine-tuning to boost the diffusion model with more
personal facial priors. Nevertheless, since DiffusionRig trains the
whole model together from scratch which prevents the model from
learning robust disentangled control, the edited results still have
visible identity shift (e.g., eyes, skin color, and hair) especially in
lighting editing.

Quantitative comparisons. Table 1 (top part) provides the quan-
titative editing results of all methods on 1000 in-domain images
of FFHQ. Following previous work [9, 12, 17], we apply DECA re-
inference on edited images and calculate the Root Mean Square
Error (RMSE) between the input and re-inferred face vertices as
well as spherical harmonics to evaluate the editing accuracy on
shape, pose, expression, and lighting. We additionally measure the
identity consistency (ID) score by computing the cosine similarity
between the deep features generated by ArcFace [8] of the original
and edited images. The results indicate that our method achieve the
overall best performance on all metrics. Note that DisControlFace
outperforms other methods by a large margin in ID score, which
demonstrates the superiority of our method in identity preservation
during one-shot editing.

5.3 Ablation Study
One-shot fine-tuning. Based on the deterministic semantic re-
construction capability of Diff-AE [44], DisControlFace can extract
global semantics of the input face image. However, since the target
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Figure 5: The necessity of the proposed random semantic
masking (RSM) training. Without RSM training, it is infeasi-
ble to train Exp-FaceNet with explicit face control.

Figure 6: The ablation studies on our disentangled pipeline
(a) and Exp-FaceNet structure (b). The disentangled control
setting in DisControlFace trained with RSM strategy can sig-
nificantly improve the identity preservation in explicit edit-
ing. Compared to adopting ControlNet with a light-weight
decoder and zero convolutions, using our Exp-FaceNet can
improve the explicit control accuracy by a large margin.

portrait image tends to have different face priors with pre-trained
Diff-AE, there still exists semantic information shift under the zero-
shot editing scenario, as shown in Figure 4. Given this, we adopt
a simple one-shot fine-tuning on the pre-trained Diff-AE to fully
exploit the semantic priors of the to-be-edit image and inject them
into the editing process. We can observe that by means of this,
the face identity and other high-level semantic information (e.g.,
background, accessories, and hair) can be well preserved.

Effectiveness of RSM training. In this paper, we achieve a
disentangled training of the proposed Exp-FaceNet by freezing the
pre-trained weights of Diff-AE and according designing a RSM
training strategy. To demonstrate the necessity of the proposed
RSM training, we separately train Exp-FaceNet with and without
random patch masking for the input image of semantic encoder of
the Diff-AE backbone. Figure 5 shows that both training strategies
enable the model to reconstruct the input image. However, only
the model trained with PSM strategy can generate images with
novel poses. This result is consistent with our claim that since the
pre-trained Diff-AE backbone can already allow deterministic im-
age reconstruction, limited gradients can be generated during error

Figure 7: Visualization of disentangled face control. We sepa-
rately utilize the encoded global semantic code of one image
and the estimated 3DMM parameters of another image to
provide semantic conditioning and explicit parametric con-
ditioning in facial image generation.

back-propagation for an effective training of Exp-FaceNet.

Effectiveness of our disentangled pipeline To further demon-
strate the advantages of our method over traditional pipeline in
terms of disentangled control, we train the whole model (Diff-
AE+Exp-FaceNet) from scratch without using RSM training. The
result in Fig. 6 (a) shows that our disentangled pipeline can signifi-
cantly reduce identity shift, both visually and in terms of quantita-
tive metrics.

Exp-FaceNet structure. Our Exp-FaceNet is inspired from Con-
trolNet [65], a popular deep network which has been widely em-
ployed to add various spatial visual guidance (e.g., edge maps, pose
maps, depth maps, etc.) to Stable Diffusion (SD) [45] for text-to-
image generation. However, there exists many differences between
two models. First, ControlNet is specially designed for SD which
can generate specific content based on the input prompts, while
there still exists uncertainty and randomness in the generation
controlled by visual guidance and text prompts. In contrast to this,
this paper focuses on semantics preservation and explicit editing of
the input portrait image. Given this, our Exp-FaceNet is designed
to be compatible with a Diff-AE backbone, aiming to provide se-
mantically deterministic DDIM conditioning. Second, we construct
Exp-FaceNet as a U-Net instead of adopting zero convolutions intro-
duced in ControlNet. With this setting, we can endow Exp-FaceNet
with strong capability of U-shape models in extracting spatial deep
features from pixel-aligned visual guidance map (rendered explicit
snapshots in this work). Here we compare the generation perfor-
mance between using Exp-FaceNet and ControlNet to learn explicit
face control. The results in Fig. 6 (b) show that compared to Con-
trolNet, our Exp-FaceNet can help to edit the face image with less
DECA re-inference error and visualized better identity consistency.
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Figure 8: Synthesis results in semantic manipulation. We
follow Diff-AE [44] to manipulate the global facial attributes
(age, hairstyle, and eyeglasses) by linearly editing 𝑧. Owing
to the disentangled control mechanism, our model can si-
multaneously perform semantic manipulation and explicit
editing of the input facial image.

5.4 Visualization of Disentangled Control.
To further analyze the disentangled conditioning of our DisControl-
Face, we show the synthesis results of mixed conditioning genera-
tion in Figure 7. Specifically, we replace the encoded global semantic
code of facial image 𝐴 with global code extracted from another im-
age 𝐵, while fixing all the estimated all explicit face parameters of
𝐴. We can observe that the synthesis face has the same face shape,
pose, expression, and lighting condition with image 𝐴. Meanwhile,
all facial appearance priors like skin color, eyes, and lips color as
well as non-facial high-level semantics such as background and hair
of image 𝐵 have been successfully transferred to the synthesized
image. Note that we can achieve robust facial semantics transfer
without requiring a few-shot fine-tuning on the personalized im-
ages of an specific individual as adopted by DiffusionRig [12]. This
result can intuitively show the effectiveness of the disentangled
face control capability of DisControlFace. Also benefiting from
this, the proposed DisControlFace can preserve original high-level
semantics while performing fine-grained explicit face editing.

5.5 Applications
Semantic manipulation. Since we adopt Diff-AE [44] as the
reconstruction backbone and freeze the pre-trained weights with-
out tuning, our DisControlFace inherits the encoding capability of
global facial semantics. Therefore, compared to previous diffusion-
based model such as DiffusionRig [12], our model also supports
manipulating face attributes (e.g., hairstyle, age, and accessories) of
the input portrait by linearly editing global semantic codes. The vi-
sualized results of both semantic manipulation and explicit editing
are shown in Figure 8 , which once again demonstrate the effec-
tiveness and flexibility of the proposed disentangled conditional
generation mechanism.

Image inpainting. Benefiting from the proposed RSM training
strategy, our model inherently supports image inpainting. Figure 9
shows the results of zero-shot inpainting on center-masked facial
images as well as the subsequent editing. We can observed that the
restored face in the inpainted image is smooth and natural, also
has good similarity with the original face. Besides, the explicitly
edited image still shows a consistent identity with the restored

Figure 9: Zero-shot inpainting and subsequent explicit edit-
ing on images from CelebA-HQ. DisControlFace can restore
the masked face regions smoothly and naturally. On this
basis, Our method can further edit the restored facial images
based on the modified explicit 3DMM parameters.

facial image. Meanwhile, since it is inappropriate to use masked
images to perform one-shot fine-tuning on Diff-AE, some editing-
irrelevant high-level semantics such as hairstyle and background
might not be well preserved in the generated images.

6 LIMITATIONS AND CONCLUSION
Limitations and future work. In this work, both adopted Diff-
AE and constructed Exp-FaceNet were trained using the FFHQ
dataset, which consisting 70,000 in-the-wild images. However, this
data size is still not sufficient to train the model to learn a more gen-
eralized face priors. It can be expected that collecting much more
face data with abundant face conditions (e.g., pose and expression)
for training can substantially improve the editing performance,
especially for some challenging tasks like zero-shot explicit edit-
ing. We adopt EMOCA to estimate explicit face parameters of the
input image and generate spatial-aware conditions representing
control information based on them. However, EMOCA struggles
to model the detailed geometry of eyeballs as well as some ex-
treme expressions, which could hinder the model from restoring
the corresponding facial details when generating edited images.
Furthermore, our editing framework is constructed as a denoising
diffusion pipeline, which therefore is still unable to compete with
GANs in terms of generation speed. In the future, with the devel-
opment of fast sampling algorithms, we expect the generation time
of our model to further decrease.

Conclusion. We have presented DisControlFace, a novel diffu-
sion framework for one-shot facial image editing. Through exploit-
ing disentangled conditioning on high-level semantics and explicit
3DMM parameters in the generation process, our model excels in
explicit and fine-grained face control while preserving semantic
information and facial priors in face editing. This may boost a se-
ries of related applications including various semantic and explicit
facial image editing, zero-shot image inpainting, and cross-identity
face driving.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DisControlFace: Adding Disentangled Control to Diffusion Autoencoder for One-shot Explicit Facial Image Editing ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah

Goldblum, Jonas Geiping, and Tom Goldstein. 2023. Universal guidance for
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 843–852.

[2] Alexander Bergman, Petr Kellnhofer, Wang Yifan, Eric Chan, David Lindell, and
Gordon Wetzstein. 2022. Generative neural articulated radiance fields. Advances
in Neural Information Processing Systems (NeurIPS) 35 (2022), 19900–19916.

[3] Volker Blanz and Thomas Vetter. 2023. A morphable model for the synthesis of
3D faces. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 157–164.

[4] Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2013. Faceware-
house: A 3d facial expression database for visual computing. IEEE Transactions
on Visualization and Computer Graphics (TVCG) 20, 3 (2013), 413–425.

[5] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini
De Mello, Orazio Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,
et al. 2022. Efficient geometry-aware 3D generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 16123–16133.

[6] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.
2021. pi-gan: Periodic implicit generative adversarial networks for 3d-aware
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 5799–5809.

[7] Radek Daněček, Michael J Black, and Timo Bolkart. 2022. EMOCA: Emotion
driven monocular face capture and animation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 20311–20322.

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:
Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 4690–
4699.

[9] Yu Deng, Jiaolong Yang, Dong Chen, FangWen, and Xin Tong. 2020. Disentangled
and controllable face image generation via 3d imitative-contrastive learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 5154–5163.

[10] Yu Deng, Jiaolong Yang, Jianfeng Xiang, and Xin Tong. 2022. Gram: Generative
radiance manifolds for 3d-aware image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 10673–10683.

[11] Abdallah Dib, Cedric Thebault, Junghyun Ahn, Philippe-Henri Gosselin, Chris-
tian Theobalt, and Louis Chevallier. 2021. Towards high fidelity monocular face
reconstruction with rich reflectance using self-supervised learning and ray trac-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). 12819–12829.

[12] Zheng Ding, Xuaner Zhang, Zhihao Xia, Lars Jebe, Zhuowen Tu, and Xiuming
Zhang. 2023. DiffusionRig: Learning Personalized Priors for Facial Appearance
Editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 12736–12746.

[13] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart. 2021. Learning an
animatable detailed 3D face model from in-the-wild images. ACM Transactions
on Graphics (ToG) 40, 4 (2021), 1–13.

[14] Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias Nießner. 2021. Dynamic
neural radiance fields for monocular 4d facial avatar reconstruction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 8649–8658.

[15] Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. 2023. Encoder-based domain tuning for fast personalization of text-
to-image models. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–13.

[16] Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel
Luthi, Sandro Schönborn, and Thomas Vetter. 2018. Morphable face models-an
open framework. In Proceedings of the IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018). IEEE, 75–82.

[17] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ranjan, Michael J Black,
and Timo Bolkart. 2020. Gif: Generative interpretable faces. In Proceedings of the
2020 International Conference on 3D Vision (3DV). IEEE, 868–878.

[18] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. 2021. Stylenerf:
A style-based 3d-aware generator for high-resolution image synthesis. arXiv
preprint arXiv:2110.08985 (2021).

[19] Shalini Gupta, Kenneth R Castleman, Mia K Markey, and Alan C Bovik. 2010.
Texas 3D face recognition database. In Proceedings of the IEEE Southwest Sympo-
sium on Image Analysis & Interpretation (SSIAI). IEEE, 97–100.

[20] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 16000–
16009.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In Advances in Neural Information Processing Systems (NeurIPS), Vol. 33.
6840–6851.

[22] FangzhouHong, Zhaoxi Chen, LANYushi, Liang Pan, and Ziwei Liu. 2022. EVA3D:
Compositional 3D Human Generation from 2D Image Collections. In Proceedings

of the Eleventh International Conference on Learning Representations (ICLR).
[23] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong Zhang. 2022. Headnerf:

A real-time nerf-based parametric head model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 20374–20384.

[24] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. In Proceedings of the International Conference on Learning Representations
(ICLR).

[25] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. In Proceedings
of the International Conference on Learning Representations (ICLR). https://
openreview.net/forum?id=Hk99zCeAb

[26] Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator ar-
chitecture for generative adversarial networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 4401–4410.

[27] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 8110–8119.

[28] Biwen Lei, Jianqiang Ren, Mengyang Feng, Miaomiao Cui, and Xuansong Xie.
2023. A Hierarchical Representation Network for Accurate and Detailed Face Re-
construction from In-The-Wild Images. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 394–403.

[29] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. 2017. Learn-
ing a model of facial shape and expression from 4D scans. ACM Transactions on
Graphics (ToG) 36, 6 (2017), 194–1.

[30] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and
Christian Theobalt. 2021. Neural actor: Neural free-view synthesis of human
actors with pose control. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.

[31] Yuchen Liu, Zhixin Shu, Yijun Li, Zhe Lin, Richard Zhang, and SY Kung. 2022.
3d-fm gan: Towards 3d-controllable face manipulation. In Proceedings of the
European Conference on Computer Vision (ECCV). Springer, 107–125.

[32] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations.

[33] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and
Andreas Geiger. 2019. Occupancy networks: Learning 3d reconstruction in
function space. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 4460–4470.

[34] B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng.
2020. Nerf: Representing scenes as neural radiance fields for view synthesis. In
Proceedings of the European Conference on Computer Vision (ECCV).

[35] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. 2019. Hologan: Unsupervised learning of 3d representations from natural
images. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). 7588–7597.

[36] Yotam Nitzan, Kfir Aberman, Qiurui He, Orly Liba, Michal Yarom, Yossi Gan-
delsman, Inbar Mosseri, Yael Pritch, and Daniel Cohen-Or. 2022. Mystyle: A
personalized generative prior. ACM Transactions on Graphics (TOG) 41, 6 (2022),
1–10.

[37] Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. 2022. Unsuper-
vised learning of efficient geometry-aware neural articulated representations.
In Proceedings of the European Conference on Computer Vision (ECCV). Springer,
597–614.

[38] Xingang Pan, Xudong Xu, Chen Change Loy, Christian Theobalt, and Bo Dai.
2021. A shading-guided generative implicit model for shape-accurate 3d-aware
image synthesis. In Advances in Neural Information Processing Systems (NeurIPS),
Vol. 34. 20002–20013.

[39] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. Deepsdf: Learning continuous signed distance functions for
shape representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 165–174.

[40] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Gold-
man, Steven M Seitz, and Ricardo Martin-Brualla. 2021. Nerfies: Deformable
neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). 5865–5874.

[41] Sida Peng, Junting Dong, QianqianWang, Shangzhan Zhang, Qing Shuai, Xiaowei
Zhou, and Hujun Bao. 2021. Animatable neural radiance fields for modeling
dynamic human bodies. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). 14314–14323.

[42] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. 2020. Convolutional occupancy networks. In Proceedings of the European
Conference on Computer Vision (ECCV). Springer, 523–540.

[43] Puntawat Ponglertnapakorn, Nontawat Tritrong, and Supasorn Suwajanakorn.
2023. DiFaReli: Diffusion Face Relighting. Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV).

[44] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn
Suwajanakorn. 2022. Diffusion autoencoders: Toward ameaningful and decodable
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision

https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and Pattern Recognition (CVPR). 10619–10629.
[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 10684–10695.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In Proceedings of the Medical Image
Computing and Computer-Assisted Intervention (MICCAI). Springer, 234–241.

[47] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2023. Dreambooth: Fine tuning text-to-image diffusion models for
subject-driven generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 22500–22510.

[48] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and
Mohammad Norouzi. 2022. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 45, 4 (2022),
4713–4726.

[49] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. Graf:
Generative radiance fields for 3d-aware image synthesis. In Advances in Neural
Information Processing Systems (NeurIPS), Vol. 33. 20154–20166.

[50] Matan Sela, Elad Richardson, and Ron Kimmel. 2017. Unrestricted facial geome-
try reconstruction using image-to-image translation. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV). 1576–1585.

[51] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gor-
don Wetzstein. 2020. Implicit neural representations with periodic activation
functions. In Advances in neural information processing systems (NeurIPS), Vol. 33.
7462–7473.

[52] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, GordonWetzstein,
and Michael Zollhofer. 2019. Deepvoxels: Learning persistent 3d feature embed-
dings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2437–2446.

[53] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. In Proceedings of the International Conference on Learning Repre-
sentations (ICLR).

[54] Jingxiang Sun, Xuan Wang, Lizhen Wang, Xiaoyu Li, Yong Zhang, Hongwen
Zhang, and Yebin Liu. 2023. Next3d: Generative neural texture rasterization for
3d-aware head avatars. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 20991–21002.

[55] Keqiang Sun, Shangzhe Wu, Zhaoyang Huang, Ning Zhang, Quan Wang, and
Hongsheng Li. 2022. Controllable 3d face synthesis with conditional generative
occupancy fields. In Advances in Neural Information Processing Systems (NeurIPS),
Vol. 35. 16331–16343.

[56] Ayush Tewari, Florian Bernard, Pablo Garrido, Gaurav Bharaj, Mohamed Elgharib,
Hans-Peter Seidel, Patrick Pérez, Michael Zollhofer, and Christian Theobalt. 2019.
Fml: Face model learning from videos. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 10812–10822.

[57] Ayush Tewari, Hans-Peter Seidel, Mohamed Elgharib, Christian Theobalt, et al.
2021. Learning complete 3d morphable face models from images and videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 3361–3371.

[58] Luan Tran, Feng Liu, and Xiaoming Liu. 2019. Towards high-fidelity nonlinear
3D face morphable model. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 1126–1135.

[59] Luan Tran and Xiaoming Liu. 2019. On learning 3d face morphable model from
in-the-wild images. IEEE Transactions on Pattern Analysis andMachine Intelligence
(TPAMI) 43, 1 (2019), 157–171.

[60] Dani Valevski, DannyWasserman, Yossi Matias, and Yaniv Leviathan. 2023. Face0:
Instantaneously Conditioning a Text-to-Image Model on a Face. arXiv preprint
arXiv:2306.06638 (2023).

[61] Tan Wang, Linjie Li, Kevin Lin, Chung-Ching Lin, Zhengyuan Yang, Hanwang
Zhang, Zicheng Liu, and Lijuan Wang. 2023. DisCo: Disentangled Control for Re-
ferring Human Dance Generation in Real World. arXiv preprint arXiv:2307.00040
(2023).

[62] Yue Wu, Yu Deng, Jiaolong Yang, Fangyun Wei, Qifeng Chen, and Xin Tong.
2022. Anifacegan: Animatable 3d-aware face image generation for video avatars.
In Advances in Neural Information Processing Systems (NeurIPS), Vol. 35. 36188–
36201.

[63] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu Shen, Ruigang Yang,
and Xun Cao. 2020. Facescape: a large-scale high quality 3d face dataset and
detailed riggable 3d face prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 601–610.

[64] Ge Yuan, Xiaodong Cun, Yong Zhang, Maomao Li, Chenyang Qi, Xintao Wang,
Ying Shan, and Huicheng Zheng. 2023. Inserting Anybody in Diffusion Models
via Celeb Basis. arXiv preprint arXiv:2306.00926 (2023).

[65] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional con-
trol to text-to-image diffusion models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 3836–3847.

[66] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C Bühler, Xu Chen, Michael J
Black, and Otmar Hilliges. 2022. Im avatar: Implicit morphable head avatars from

videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 13545–13555.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 3D Morphable Face Models
	3.2 Diffusion Autoencoders (Diff-AE)

	4 Method
	4.1 Exp-FaceNet
	4.2 RSM Training Strategy
	4.3 Exploiting One-shot Semantic Priors
	4.4 Inference Editing

	5 Experiments
	5.1 Implementation Details
	5.2 Comparison
	5.3 Ablation Study
	5.4 Visualization of Disentangled Control.
	5.5 Applications

	6 Limitations and Conclusion
	References

