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Abstract
In this paper, we focus on the out-of-distribution
(OOD) generalization of self-supervised learning
(SSL). By analyzing the mini-batch construction
during the SSL training phase, we first give one
plausible explanation for SSL having OOD gen-
eralization. Then, from the perspective of data
generation and causal inference, we analyze and
conclude that SSL learns spurious correlations
during the training process, which leads to a re-
duction in OOD generalization. To address this
issue, we propose a post-intervention distribution
(PID) grounded in the Structural Causal Model.
PID offers a scenario where the spurious vari-
able and label variable is mutually independent.
Besides, we demonstrate that if each mini-batch
during SSL training satisfies PID, the resulting
SSL model can achieve optimal worst-case OOD
performance. This motivates us to develop a batch
sampling strategy that enforces PID constraints
through the learning of a latent variable model.
Through theoretical analysis, we demonstrate the
identifiability of the latent variable model and val-
idate the effectiveness of the proposed sampling
strategy. Experiments conducted on various down-
stream OOD tasks demonstrate the effectiveness
of the proposed sampling strategy.

1. Introduction
Self-supervised learning (SSL) has emerged as a powerful
paradigm for training models without relying on labeled
data. Meanwhile, SSL models have achieved competitive
or superior performance on various downstream tasks com-
pared to supervised learning approaches (Chen et al., 2020;
Grill et al., 2020a; Zbontar et al., 2021; He et al., 2022; Tong
et al., 2022). However, despite their superior performance,
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SSL models face significant challenges in generalizing to
out-of-distribution (OOD) data. Understanding and improv-
ing the OOD generalization capabilities of SSL is crucial
for deploying these models in real-world scenarios where
the data distribution can shift over time.

To investigate the OOD generalization properties of SSL,
we propose examining the batch construction process during
SSL training. SSL methods are generally categorized into
two main types: discrimination-based SSL (D-SSL) (Chen
et al., 2020; Grill et al., 2020a) and generation-based SSL
(G-SSL) (He et al., 2022; Tong et al., 2022). The core
principle of D-SSL is augmentation invariance, ensuring that
the feature representations of two different augmentations
of the same sample are similar. In contrast, G-SSL focuses
on the mask and reconstruction principle, where a portion of
a sample is masked and then reconstructed using an encoder-
decoder structure. Leveraging these principles, augmented
samples derived from the same original sample, as well
as samples before and after masking, can be considered
anchor-related pairs. During SSL training, each pair is
treated as a distinct class, effectively framing each mini-
batch as a multi-class learning task. Consequently, the SSL
training process can be perceived as learning a distribution
over tasks based on discrete training tasks, enabling the
trained SSL model to generalize to new, unseen tasks, thus
demonstrating its OOD generalization capability. However,
machine learning is prone to learning spurious correlations
that vary between classes or environments (Wang et al.,
2023a; 2022). Therefore, although SSL is highly effective
in OOD generalization, it may still face the challenge of
mitigating spurious correlations.

Building upon the analysis in Section 3, we examine the
aforementioned challenge from the perspectives of data gen-
eration and causal inference. First, we conclude that the
similarity or reconstruction between samples within a pair
is affected by several unobservable factors, such as back-
ground or texture information independent of the foreground.
We also find that the spurious correlation between the anchor
and the unobservable variable can vary with the tasks, mak-
ing it difficult to eliminate it using the unified causal crite-
rion proposed by (Pearl et al.; Pearl, 2009). Furthermore, we
demonstrate that, under these circumstances, the SSL model
learns to measure similarity or reconstruct using spurious
causal factors. This reliance leads to a lack of discriminabil-
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ity within each mini-batch task, preventing the SSL model
from effectively learning the true task distribution and con-
sequently resulting in diminished OOD generalization. To
address this issue, we define a new distribution called the
post-intervention distribution (PID), characterized by mu-
tual independence between the unobservable variable and
the anchor. We demonstrate that when the task distribution
adheres to PID, the SSL model trained under this condition
achieves the lowest worst-case risk, thereby attaining opti-
mal worst-case OOD performance. This insight motivates
us to design a new mini-batch sampling strategy that ensures
the resulting mini-batches satisfy PID constraints, thereby
enhancing the OOD generalization capability of SSL.

Based on the above analysis and discussion, we propose a
novel mini-batch sampling strategy consisting of two stages.
In the first stage, we aim to learn a latent variable model
to capture the correlations between different variables, i.e.,
conditional distributions. We prove the identifiability and
uniqueness of the resulting latent variable model under a
given equivalence relation. In the second stage, we propose
a sufficient condition to obtain the balancing score. Using
this, we obtain the mini-batch samples through balancing
score matching. We also provide a theoretical guarantee
that the mini-batches obtained by the proposed sampling
strategy approximately satisfy the PID.

In summary, we make the following contributions: 1) Anal-
ysis of SSL Batch Construction: We provide a detailed anal-
ysis of how mini-batch construction in SSL influences OOD
generalization; 2) Causal Framework for SSL: We introduce
a causal framework to understand and mitigate the impact
of spurious correlations on SSL models; 3) PID-Based Sam-
pling Strategy: We propose a theoretically grounded mini-
batch sampling strategy that ensures the generated batches
conform to PID, improving OOD performance; 4) Empirical
Validation: We validate our approach through extensive ex-
periments, demonstrating significant improvements in OOD
generalization across multiple tasks. The whole logical
structure of this paper is further clarified in Appendix I

2. Revisiting SSL from a Pairwise Perspective
In the training phase, the training data is structured into mini-
batches, with each mini-batch denoted as Xtr = {xi}Ni=1,
where xi represents the i-th sample and N is the total num-
ber of samples. In D-SSL methods such as SimCLR (Chen
et al., 2020) and Barlow Twins (Zbontar et al., 2021), each
sample in Xtr undergoes stochastic data augmentation to
generate two augmented views, e.g., for xi ∈ Xtr, the
augmented samples can be represented as x1i and x2i . For
G-SSL methods, like MAE (He et al., 2022) and VideoMAE
(Tong et al., 2022), xi is first divided into multiple small
blocks, with some blocks masked, and the remaining blocks
reassembled into a new sample, denoted as x1i . The origi-
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Figure 1: The SCM for
Equation (1).
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Figure 2: The SCM for
pPI(x+, xlabel, s).

nal sample is then referred to as x2i . Thus, the augmented
dataset in SSL (whether D-SSL or G-SSL) is represented as
Xaug
tr = {x1i , x2i }Ni=1. The pair {x1i , x2i } forms the i-th pair,

and SSL aims to learn a feature extractor f from these pairs.

The objective of D-SSL methods typically consists of two
components: alignment and regularization (Wang & Isola,
2020; Chen et al., 2021a). The alignment part is to maxi-
mize the similarity between samples that share the same pair
in the embedding space, and the regularization part aims to
constrain the learning behavior via inductive bias, e.g., Sim-
CLR (Chen et al., 2020) constrains the feature distribution to
satisfy a uniform distribution. Meanwhile, G-SSL methods
(He et al., 2022) can be regarded as implementing alignment
of samples within a pair based on an encoding-decoding
structure, by inputting sample x1i into this structure to gen-
erate a sample, and making it as consistent as possible with
sample x2i . It is noteworthy that “alignment” in D-SSL is
often implemented based on anchor points, that is, viewing
one sample in a pair as an anchor, the training process of
such SSL methods can be seen as gradually pulling the other
sample in this pair towards the anchor. The concept of an-
chor is also applicable to G-SSL, where x2i is viewed as the
anchor, and thus the training process of such SSL methods
can be viewed as gradually constraining x1i to approach x2i .

Regardless of whether it is G-SSL or D-SSL, the anchor can
be regarded as a learning target. Specifically, SSL can be
interpreted as follows: In a data augmentation pair, one sam-
ple (the anchor) is designated as the target. By constraining
the other augmented sample in the feature space to move
toward this anchor, consistency in feature representations is
achieved. This dynamic adjustment causes samples within
the same pair to become tightly clustered, thereby forming
an effect similar to a local cluster center. In traditional clas-
sification problems, the common approach is to first project
samples into a label space and then constrain them to move
toward their corresponding one-hot labels to achieve super-
vision. In contrast, SSL directly applies constraints in the
feature space, which means that the anchor effectively takes
on the role of a “label.” In this unsupervised setting, the an-
chor provides a supervisory signal similar to that of a label.
Therefore, it can be argued that labels manifest differently
across various scenarios, and in SSL scenarios, the anchor
represents this “implicit label”.

Based on the above discussion, when we consider the anchor
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as the label or the center of clustering, each mini-batch in the
training phase can be viewed as a multi-class classification
task. Specifically,Xaug

tr = {x+i , xanchor
i }Ni=1 consists of data

from N categories, where x+i is the positive sample of the i-
th category whose clustering center is xanchor

i . Furthermore,
the variability of data across mini-batches implies that each
mini-batch corresponds to a distinct training task or domain.

3. Motivation and Causal Analysis
In this section, we first offer a plausible explanation for the
OOD generalization capability of SSL models from a task
distribution perspective (the training tasks and the test task
is different, this is the key concept of the OOD general-
ization). Next, based on causal inference, we demonstrate
that 1) during the training phase, SSL exploits spurious
correlations to learn certain tasks, thereby degrading its
OOD generalization performance; 2) the tasks addressed in
SSL training are difficult to model with a single Structural
Causal Model, thus, it is challenging to eliminate the con-
founding factors involved in learning different tasks through
one unified method. Finally, through theoretical analysis,
we present that even in the case of spurious associations,
we can further improve the OOD generalization of SSL by
constraining the data distribution.

3.1. Formation of the Problem: Causal Perspective

According to Section 2, we can infer that different mini-
batches correspond to distinct classification tasks. There-
fore, the training process of SSL can be described as follows:
given a distribution over tasks and the corresponding data
distribution of each task (refer to Appendix E for more
details about the definitions of task distribution and data
distribution), the SSL model can be regarded as be learned
based on various training tasks and their corresponding data.
The performance of the SSL model is then evaluated on test
tasks that are disjoint from the training tasks. This learn-
ing paradigm can be regarded as estimating the true task
distribution from discrete training tasks, enabling the SSL
model to generalize to new, unseen tasks (i.e., test tasks).
This also explains well why the SSL model exhibits good
performance in transfer tasks (Chen et al., 2020; Grill et al.,
2020a; Zbontar et al., 2021), i.e., it has good OOD gener-
alization (refer to Appendix E for more details about the
relation between OOD generalization and generalization on
task distributions). However, machine learning models are
prone to learning spurious correlations during the training
phase (Wang et al., 2023a; 2022). For example, compared
to the foreground features of input data, researchers have
found that machine learning models tend to rely on the su-
perficial texture information or background information of
the data for decision-making (Geirhos et al., 2018; Qiang
et al., 2022; Xu et al., 2020). Therefore, although the SSL

models have been effective in OOD generalization, it may
still face the challenge of spurious correlations.

We further analyze the above challenge from the perspective
of data generation and causal inference. Without loss of
generality, for each pair in the SSL training process, we
denote the anchor as xlabel and the other sample as x+.
Based on (Zimmermann et al., 2021; Von Kügelgen et al.,
2021), x+ can be regarded as caused by anchor xlabel, an
unobserved latent variable s ∈ Rn and an independent noise
variable ϵ with the following formulation:

x+ = F (s, xlabel) + ϵ, (1)

where F is a reversible injective function. From a causal per-
spective, Equation (1) can be reformulated as the Structural
Causal Model (SCM) shown in Figure 1. The solid arrow
indicates that there is a direct causal relationship between
the two variables, e.g., xlabel → x+ states that xlabel is the
direct cause of obtaining x+. The dotted line indicates that
the relationship between the variables is not clear and varies
with different environments. Notably, this paper focuses
exclusively on scenarios where the semantic information
within x+ is related only to xlabel, that is, s does not contain
any causal semantics related to the task. Next, we exam-
ine two examples illustrated in Figure 3. In Figure 3 (a), s
represents the assigned color, for example, the color of num-
bers varies by category, as in the ColoredMNIST dataset
(Arjovsky et al., 2019). Here, eid denotes the class index.
Consequently, within a mini-batch during training, samples
from different classes may have a different texture color. In
Figure 3 (b), s indicates assigned stylistic attributes, e.g.,
sketches, cartoon styles, or photographs, and eid denotes
the batch index. This scenario commonly occurs in multi-
view or domain generalization contexts, like the tasks in the
PACS dataset (Li et al., 2017). Therefore, during training,
different batches may exhibit different styles, with samples
under each style possessing unique appearance attributes.
In both figures, s does not capture the foreground semantics
between xlabel and x+, and the correlation between xlabel

and x+ may vary depending on the settings.

Based on Figure 3 (a) and (b), we obtain that the causal
relationship between xlabel and s changes with unknown en-
vironmental variations, making it difficult to eliminate based
on a unified causal criterion proposed in (Pearl et al.). From
Figure 3 (a), due to the existence of path “xlabel ····s→ x+”,
the following proposition states that the correlation between
xlabel and x+ is influenced by s.

Proposition 3.1. Revisiting SSL from a pairwise perspective
and assuming that the two samples in each pair satisfy
Equation (1), we can obtain that the learned SSL model will
use non-causal factor, i.e., the unobserved latent variable s,
to measure the similarity or reconstruct in a pair.

Detailed proof of Proposition 3.1 is provided in Appendix
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Figure 3: Two specific instances illustrate the variability in the causal relationship between xlabel and s due to environmental
changes. The black squares are variables and the arrows indicate causality.

A.1. Notably, when SSL models measure the similarity or
reconstruct between paired elements using non-causal fac-
tors and we can not use one unified method to eliminate the
non-causal factors for all related tasks, the extracted repre-
sentations may incorporate semantics irrelevant to the task.
From the pairwise perspective, this may result in SSL failing
to effectively learn each specific task, thereby hindering the
modeling of the task distribution and ultimately reducing
the OOD generalization ability of SSL.

3.2. Motivation: Post-Intervention Distribution

As shown in Figure 3, regardless of the correlation between
s and xlabel, the generation mechanism of x+ is invariant.
Because SCMs can be considered as a joint probability dis-
tribution, we use the following distribution set to represent
the joint probability distribution related to Figure 1:

D =

{
p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s|xlabel)

∣∣∣∣p(xlabel), p(s|xlabel) > 0

}
. (2)

Instead of exploring what the specific structure of “xlabel · · ·
·s→ x+”, we propose to consider using Post-Intervention
Distribution (PID) to model p(x+, xlabel, s), defined as:

Definition 3.2. If the distribution p(x+, xlabel, s) =
p(x+|xlabel, s)p(xlabel)p(s), then p(x+, xlabel, s) is de-
fined as PID. xlabel and s are independent in PID.

We use pPI to denote distributions belonging to the PID
family. As we can see, p(x+|xlabel, s) is both a component
of pPI(x+, xlabel, s) and a result of the unchanged causal
mechanism “s → x+ ← xlabel” in Figure 1. Then, the
SCM of pPI(x+, xlabel, s) is shown as Figure 2. In this new
distribution, because there are no paths between s and xlabel,
we can obtain that x+ and xlabel are only correlated through
the stable causal relation x+ ← xlabel. Then, from a proba-
bilistic perspective, what we argue is that compared to SSL
models trained on batches satisfying other distribution con-
straints in D, SSL models trained on batches that meet the
PID distribution constraint have the lowest worst-case risk.
To support this, we build upon (Pearl, 2009) by introducing
an assumption regarding the invertibility of functions:

Assumption 3.3. There exist functions Fxlabel , Fs, and
noise variables ϵxlabel , ϵs, such that the pair (xlabel, s) can

be recovered from the latent variable x+ via the inverse
mapping:(xlabel, s) = F−1(x+ − ϵ) =

(
Fxlabel(x+ −

ϵxlabel), Fs(x
+− ϵs)

)
, where ϵ denotes the combined noise

introduced in the transformation process.

Assumption 3.3 implies that xlabel⊥⊥PIs|x+, and the intu-
itive explanation of Assumption 3.3 can be found in Ap-
pendix F. Based on Section 2 and Section 3.1, both D-SSL
and G-SSL share a common objective: aligning the positive
sample in a pair with its corresponding anchor. Thus, the
learning objectives of D-SSL and G-SSL can be unified
as maximizing pf (xlabel|x+). The difference lies in how
they achieve pf (xlabel|x+). For example, the training data
is first projected to the feature space by f , then SimCLR
uses a contrastive loss to achieve pf (xlabel|x+), while MAE
employs the L2-norm achieve pf (xlabel|x+). We obtain:

Theorem 3.4. From a Bayesian perspective, the align-
ment component of the SSL objective, i.e., encouraging
paired samples to be similar in the feature space, can
be interpreted as maximizing the conditional likelihood
pf (x

label | x+). Given a model f , the risk over a
mini-batch drawn from environment e ∈ D, treated as
a distributional constraint, can be defined as: Le(f) =
Epe(x+,xlabel)

[
− log pf (x

label | x+)
]
, where pe(x+, xlabel)

denotes the joint distribution in environment e. Under As-
sumption 3.3, if f∗ = argminLe(f) for all e ∈ PID, then
f∗ is minimax optimal across all environments in D, that is,
f∗ = argminf maxe∈D Le(pf (xlabel | x+)).

Detailed proof of Theorem 3.4 is provided in Appendix
A.2. Theorem 3.4 implies that when D is sufficiently large
and diverse, no other f obtained from training on any distri-
bution can achieve better worst-case OOD performance than
the PID (refer to Appendix H for more detail about why
the worst-case OOD performance is effective). Notablely,
transferring Figure 1 to Figure 2 is similar to backdoor ad-
justment in causal inference (Pearl et al.). However, from
backdoor adjustment pespective, it is straightforward to
explain why PID can improve the OOD performance of
D-SSL: during the learning of each task, PID eliminates the
influence of background semantic confounding (Qiang et al.,
2022). However, for G-SSL, regardless of the relationship
between s and xlabel, due to the generation purpose, G-SSL
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inherently requires encoding background semantics. Thus,
explaining the improvement of OOD performance of G-
SSL from the backdoor adjustment perspective is incorrect.
Therefore, Theorem 3.4 is provided to explain why PID can
improve the OOD performance of both D-SSL and G-SSL
simultaneously. Also, an intuitive explanation of Theorem
3.4 is shown in Appendix F. Moreover, Theorem 3.4 mo-
tivates us to design a new mini-batch sampling strategy to
ensure that the resulting mini-batches satisfy PID, thereby
improving the OOD generalization of SSL.

4. The Proposed Method
In this section, we present the proposed method which con-
sists of two stages. In the first stage, we use a regularized
latent variable model (RLVM), e.g., variational autoencoder
(VAE) (Kingma & Welling, 2013b), to learn the under-
lying distribution p(x+, xlabel, s) for each batch task. In
the second stage, based on commonly used instruments in
causal effect estimation (Rosenbaum & Rubin, 1981; King
& Nielsen, 2019; Austin, 2011), we first introduce a way to
calculate the propensity score. Then, we use the learned dis-
tribution and propensity score to obtain a sampling strategy
that can create a PID based on training data.

4.1. Learning Regularized Latent Variable Model

As shown in Equation (2), to learn the underlying joint distri-
bution p(x+, xlabel, s) for each batch task, we need to know
p(x+|xlabel, s), p(xlabel), p(s|xlabel) in each batch task.
Because that p(x+|xlabel, s) is the unchanged causal mech-
anism, so we can use a unified f to model p(x+|xlabel, s) in
all tasks. Based on the discussion in Section 2, we obtain
that xlabel is regarded as the label. So, p(xlabel) can be
regarded as the label distribution, and we can represent it
with the same uniform distribution in all tasks. Based on the
mean-field approximation (Blei et al., 2017; Sriperumbudur
et al., 2013) which can be expressed as a closed form of
the true prior, we obtain that when the causal relationship
between the latent covariate and the label changes with the
tasks, an exponential family distribution has the ability to
model the conditional distribution p(s|xlabel), thus, we have
the following assumption for each batch task:

Assumption 4.1. Denote the mini-batch task index as e,
the correlation between xlabel and s in the data distribution
pe(x+, xlabel, s) of a task can be characterized by:

peT,λe(s|xlabel) =
n∏
i=1

Qi(si)
Ke

i (x
label)

exp[
k∑
j=1

Tij(si)λ
e
ij(x

label)], (3)

where n is the dimension of the latent variable s, k is the
dimension of each sufficient statistic, si is the i-th element of
s, Q = [Qi]: s→ R

n is the base measure, T = [Tij ]: s→
R
nk is the sufficient statistics, Ke = [Ke

i ]: x
label → R

n is
the normalizing constraint, and λe = [λeij ]: x

label → R
nk.

Note that k, Q, and T are determined by the type of chosen
exponential family distribution and thus independent of e,
this guides us to constrain all batch tasks to share these pa-
rameters during the training phase. For ease of calculation,
we setQi(·) = exp(·/−2) and Ke as the feature normaliza-
tion operator. For λe, since it varies with e, we implement it
as the output of a network. Specifically, we first average all
the data of a batch, then feed it into a learnable network g,
and output the corresponding λe. For T, we need to guaran-
tee it to be a sufficient statistic, one simple way to implement
this is the constant transformation. Considering the identifia-
bility of the parameters, we implement it as Tij(·) = aij×·,
where A = [aij ] is a learnable parameter. Up to this
point, we obtain the implementation of peT,λe(s|xlabel) as
pg,A(s|xlabel). Then, we implement the conditional genera-
tive model in each e ∈ D with parameters θ = (f, g,A) as:
peθ(x

+, s|xlabel) = pf(x
+|s, xlabel)pg,A(s|xlabel).

Motivated by the VAE, we estimate the above conditional
generative model with the following regularized evidence
lower bound (ELBO) in each batch distribution e:

Leθ,ϕ = Eqϕ(s|x+,xlabel)[log pf(x
+|s, xlabel)]

−KL(qϕ(s|x+, xlabel) || pg,A(s|xlabel))− α
∑

i,j
A·,i·A·,j︸ ︷︷ ︸

Regularizer

, (4)

where A·,i is the column vector of A, KL(·) is the
KL-divergence, and α is a hyperparameter. As for
qϕ(s|x+, xlabel), it is implemented by a learnable network
ϕ that outputs the mean and variance, and we use reparame-
terization trick (Kingma & Welling, 2013a) to deal with it
during training. The last term of Equation (4) is to constrain
the column vector orthogonality of A. The training process
of Equation (4) is similar to meta-learning, e.g., Prototype
Networks (Snell et al., 2017), because we construct a series
of tasks in the training phase. Thus, from a meta-learning
perspective, training with Equation (4) also indicates that
the learned θ can be adaptable for all available tasks.

We further show that we can uniquely recover the model
parameter θ up to an equivalence relation. Specifically, we
first give the definition of the equivalence relation based on
(Motiian et al., 2017):

Definition 4.2. (f, g,A)∼W(f ′, g′,A′), if and ony if there
exists an invertible matrix W ∈ Rnk×nk and a vector b ∈
R
nk, A(f−1(x)) = WA′(f ′

−1
(x)) + b,∀x ∈ Xaug

tr .

Then, motivated by (Khemakhem et al., 2020), the identifia-
bility condition of θ can be presented as:

Theorem 4.3. Suppose that peθ(x
+, s|xlabel) =

pf(x
+|s, xlabel)pg,A(s|xlabel) and the generation pro-

cess of X+ can be represented by the SCM depicted
in Figure 1, a sufficient condition for θ = (f, g,A)
to be ∼A-identifiable is given as: 1) Suppose that
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pϵ(x
+ − f(xlabel, s)) = pf(x

+|xlabel, s), ϕε is the char-
acteristic function of pϵ(x+ − f(xlabel, s)), and the set
{x+|ϕε(x+) = 0} has measure zero; 2) The sufficient statis-
tics T are differentiable almost everywhere, and [Tij ]1≤j≤k
are linearly independent on any subset of X+ with measure
greater than zero; 3) There exist nk + 1 distinct pairs
(xlabel0 , e0), · · · , (xlabeln k, enk) such that the nk × nk
matrix L = (λe1(xlabel1 )−λe0(xlabel0 ), · · · , λenk(xlabelnk )−
λe0(xlabel0 )) is invertible.

Detailed proof of Theorem 4.3 is provided in Appendix
A.3. In Equation (4), we constrain the column vector or-
thogonality of A, this can lead to the linearly independence
of elements of T, thus, the second assumption of Theorem
4.3 holds. Meanwhile, according to Section 2, we can ob-
tain that each ancestor training sample can be regarded as
a class, by combining different classes with each other, we
can construct adequate tasks, thus, the third assumption of
Theorem 4.3 can easily holds. Therefore, based on The-
orem 4.3, we can obtain that θ can be uniquely recovered.
Moreover, we do not theoretically prove that the latent vari-
able model can directly identify the spurious variable s. In
this paper, the identification of s is based on Assumption
4.1. Theorem 4.3 is also based on Assumption 4.1. The
key result of Theorem 4.3 is that we can uniquely identify ϕ
and (f, g,A), thus, s is conditionally identified (the detailed
explanation of the identifiability of spurious variable s is
provided in Appendix G).

According to Assumption 3.3, both xlabel
i and s can be

obtained through an invertible neural network. Training
such an invertible neural network typically requires training
data in the form of {(xlabel

i , si, x
+
i )}Ni=1. However, we do

not adopt this mechanism directly because we do not have
access to such training data. In particular, we are unable to
provide the corresponding si for each pair. Therefore, we
opt to use a RLVM approach instead.

4.2. The Proposed Mini-Batch Sampling Strategy

As shown in (Rosenbaum & Rubin, 1981), balancing score
matching has become a useful tool in the average treatment
effect estimation. One of its purposes is to reveal the true
causal relationship from the observational data, defined as:

Definition 4.4. A balancing score ba(s) is a function of
covariate s that satisfies: s⊥⊥xlabel|ba(s).

From (Rosenbaum & Rubin, 1981), we can obtain that many
functions can be used as a balancing score, among them,
propensity score p(xlabel|s) is the coarsest one. Motivated
by this, given the batch task with “nu” pairs, we define the
propensity score under the SSL scenario as:

Definition 4.5. The propensity score for a batch task in SSL
scenario is mi(s) = [p(xlabelj |s)]nuj=1.

Then, given a function ba(s), we present a sufficient condi-
tion that it can be the balancing score:

Corollary 4.6. Let ba(s) be a function of s, a sufficient
condition that ba(s) can be regarded as a balancing score is
that there exists a function ψ such that mi(s) = ψ(ba(s)).

The proof of Corollary 4.6 can be obtained based on Theo-
rem 1 and Theorem 2 in (Rosenbaum & Rubin, 1981). We
use bae(s) to denote the balancing score for a specific batch
task e of SSL. Then, the corresponding propensity score can
be represented as mie(s) = [pe(xlabelj |s)]nuj=1, which can
be derived from peT,λe(s|xlabel) as defined in Equation (3):

pe(xlabelj |s) =
pg,A(s|xlabelj )pe(xlabelj )∑nu
j=1 pg,A(s|xlabelj )pe(xlabelj )

, (5)

where pe(xlabelj ) = 1/nu, because that pe(xlabelj ) is defined
empirically as a uniform distribution.

Based on Corollary 4.6, we set ψ as identical transforma-
tion and propose to use the propensity score computed from
Equation (5) directly as our balancing score, e.g., ba(s) =
mie(s). Next, we derive the proposed sampling strategy.
When given the training data Xtr = {x+i , xlabeli }mu

i=1 with
“mu” pairs, we can obtain λe of Equation (5) based on the
mean of the entire dataset. Then, for each pair, we firstly
take one s based on the learned qeϕ(s|x+, xlabel) and sec-
ondly obtain ba(s) by setting nu = mu in Equation (5)
(please refer to the Step 3 in Appendix G for the explanation
of the spatial structure of s and the rationale for sampling
s from qeϕ(s|x+, xlabel)). Finally, we match ba(s) of the
selected pair with 1 ≤ a ≤ N − 1 different pairs that have
the same/closest balancing score. The detailed sampling
strategy is shown in Algorithm 1. Meanwhile, we set the
distance metric d(·) in Algorithm 1 as the measurement of
distribution distance, e.g., JS-divergence (Endres & Schin-
delin, 2003), because that the propensity score itself can be
seen as a distribution. Denote the distribution obtained from
Algorithm 1 as p̂(x+, xlabel, s), then we have:

Theorem 4.7. If d(ba(sj), ba(si)) = 0 in Algorithm 1, the
obtained mini-batch is regarded as sampling from a PID,
e.g., p̂(x+, xlabel, s) = pPI(x+, xlabel, s).

Detailed proof and high-level explanation of Theorem
4.7 is provided in Appendix A.4 and F. Based on The-
orem 4.7, if at each step, we achieve perfect matching (i.e.,
ba(sj) = ba(si)), and the obtained mini-batch samples can
be regarded as sampled from the PID. It is worth noting that
concepts such as the balancing score, propensity score, and
Equation (5) are not novel to this work, because they have
been extensively studied by previous researchers (Rosen-
baum & Rubin, 1981; King & Nielsen, 2019; Austin, 2011).
However, what we aim to highlight is that the novelty of
our approach lies in the proposed sampling strategy, e.g.,
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Algorithm 1 Proposed Mini-Batch Sampling Strategy

Input: Training dataset Xtr = {x+i , xlabeli }mu
i=1, balancing

score function ba(·), distance metric d : ba(·)× ba(·)→ R
Output: Mini-batch data DPI consisting of a+1 examples

1: DPI ← ∅; i← 0
2: while i = 0 do
3: Randomly sample (x+i , x

label
i ) from Xtr

aug, add to
DPI; Compute ba(si) from (x+i , x

label
i )

4: i← i+ 1
5: end while
6: for 1 ≤ i ≤ a do
7: j ← argminx+

j ∈Xtr
aug\DPI d(ba(sj), ba(si))

8: Add (x+j , x
label
j ) to DPI

9: i← i+ 1
10: end for

Algorithm 1, which enables direct sampling of a mini-batch
that satisfies the post-intervention distribution under perfect
matching conditions, i.e., when d(ba(sj), ba(si)) = 0.

As shown in Section 4.2 and Section 4.1, the proposed
method has two main phases with the following complexity
analysis per mini-batch (mini-batch size B, dataset size
D): 1) Regularized Latent Variable Model Training: (a)
qϕ(s|x+, xlabel): Each sample requires a forward pass with
cost O(Cϕ), totaling O(B ·Cϕ). (b) pf (x+|s, xlabel): Each
sample incurs a costO(Cf ), totalingO(B ·Cf ). (c) g for λe:
Computed once per mini-batch with cost O(Cg). (d) KL-
Divergence: Involves operations over the latent dimension n
and sufficient statistic dimension k, contributingO(B ·n ·k).
(e) Orthogonality Regularization: RequiresO(n ·k2), which
is constant when n and k are small. Thus, the training
phase complexity is approximately: O(B · (Cϕ + Cf + n ·
k) + Cg + n · k2); 2) Algorithm 1: (a) Propensity Score
Calculation: For each sample, computing scores across the
D candidates costs O(D ·n ·k), leading to a total of O(D2 ·
n · k) for the mini-batch. (b) Matching Operation: A brute-
force matching over D samples yields an additional O(D2).
Therefore, the sampling phase has an overall complexity of
approximately: O(D2 · n · k); 3) Overall Complexity: The
combined complexity per mini-batch is: O(B · (Cϕ +Cf +
n · k)+Cg +n · k2+D2 ·n · k). The symbols Cϕ, Cf , and
Cg represent the computational cost for a single forward
pass (or operation) of each respective network module.

5. Experiments
In this section, we first introduce the datasets used in exper-
iments. Next, we evaluate our method1 on multiple tasks,
including unsupervised learning, semi-supervised learning,

1Codes of the proposed Sampling Strategy can be found in
https://github.com/ML-TASA/PID-SSL

transfer learning, and few-shot learning. We introduce the
experimental setups in the corresponding sections. Finally,
we perform ablation studies. All results reported are the av-
erages of five runs performed on NVIDIA RTX 4090 GPUs.
More experiments are shown in Appendix C.

5.1. Benchmark Datasets

For unsupervised learning, we select ImageNet-100 (Tian
et al., 2020) and ImageNet (Deng et al., 2009). For semi-
supervised learning, we select ImageNet (Deng et al., 2009)
for evaluation. For transfer learning, we select PASCAL
VOC (Everingham et al., 2010) and COCO (Lin et al., 2014).
For few-shot learning, we evaluate the proposed method on
Omniglot (Lake et al., 2019), miniImageNet (Vinyals et al.,
2016), and CIFAR-FS (Bertinetto et al., 2018).

5.2. Empirical Analysis

In this article, we primarily address the OOD generalization
of SSL. Our experimental design consists of the follow-
ing steps: First, we validate that the proposed sampling
strategy enhances the performance of SSL methods in in-
distribution scenarios using unsupervised tasks. Second, we
classify OOD tasks by difficulty into semi-supervised tasks,
transfer learning tasks, and few-shot learning tasks, and sub-
sequently evaluate the proposed sampling strategy on these
tasks. Meanwhile, we conduct experiments on generative
SSL, the evaluation is provided in Appendix C.1.

Experimental setup. Our proposed sampling strategy is
compatible with any D-SSL or G-SSL model. In the stan-
dard training procedure of SSL, a mini-batch is randomly
sampled from the training data before each iteration. In con-
trast, our method replaces this random sampling step with
a structured mini-batch construction process defined by Al-
gorithm 1. Specifically, our approach integrates seamlessly
into existing SSL frameworks by substituting the mini-batch
sampling component with Algorithm 1, while leaving all
other aspects of the SSL training pipeline unchanged. As
a result, the overall training procedure and hyperparame-
ter settings remain identical to those used in the baseline
methods. Therefore, for all our experiments, we retain the
original hyperparameter configurations to ensure a fair and
consistent comparison.

Results on unsupervised learning tasks. Table 1 shows
the top-1 and top-5 linear classification accuracies on
ImageNet-100 and ImageNet for unsupervised learning task.
We can observe that applying the proposed method achieves
stable performance improvement, and significantly outper-
forms the state-of-the-art (SOTA) methods on all datasets.

Results on semi-supervised learning tasks. Table 2 shows
the results on ImageNet for semi-supervised learning task.
No matter 1% or 10% of the labels are available in 1000
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Table 1: The Top-1 and Top-5 classification accuracies of
linear classifier on the ImageNet-100 dataset and the Top-1
results for ImageNet dataset with ResNet-50.

Method
ImageNet-100 ImageNet

Top-1 Top-5 400 Epochs 1000 Epochs

SimCLR (Chen et al., 2020) 70.15 ± 0.16 89.75 ± 0.14 69.24 ± 0.21 70.45 ± 0.30
MoCo (He et al., 2020) 72.80 ± 0.12 91.64 ± 0.11 69.76 ± 0.14 71.16 ± 0.23
SimSiam (Chen & He, 2021) 73.01 ± 0.21 92.61 ± 0.27 70.86 ± 0.34 71.37 ± 0.22
Barlow Twins (Zbontar et al., 2021) 75.97 ± 0.23 92.91 ± 0.19 70.22 ± 0.15 73.29 ± 0.13
SwAV (Caron et al., 2020) 75.78 ± 0.16 92.86 ± 0.15 70.78 ± 0.34 75.32 ± 0.11
DINO (Caron et al., 2021) 75.43 ± 0.18 93.32 ± 0.19 71.98 ± 0.26 73.94 ± 0.29
RELIC v2 (Tomasev et al., 2022) 75.88 ± 0.15 93.52 ± 0.13 71.84 ± 0.21 72.17 ± 0.20
VICRegL (Bardes et al., 2022) 75.96 ± 0.19 92.97 ± 0.26 72.14 ± 0.20 75.07 ± 0.23

SimCLR + Ours 73.32 ± 0.15 91.74 ± 0.18 72.24 ± 0.20 73.66 ± 0.25
MoCo + Ours 74.71 ± 0.22 93.89 ± 0.17 72.04 ± 0.21 74.06 ± 0.20
SimSiam + Ours 75.66 ± 0.18 95.02 ± 0.21 72.96 ± 0.22 73.67 ± 0.17
Barlow Twins + Ours 77.77 ± 0.18 94.99 ± 0.20 73.08 ± 0.21 75.89 ± 0.17
SwAV + Ours 76.99 ± 0.11 95.03 ± 0.20 73.25 ± 0.24 77.42 ± 0.21
DINO + Ours 77.47 ± 0.15 96.01 ± 0.17 74.21 ± 0.20 75.99 ± 0.17
VICRegL + Ours 78.20 ± 0.14 95.07 ± 0.21 74.91 ± 0.14 77.77 ± 0.21

Table 2: The semi-supervised learning accuracies (± 95%
confidence interval) on the ImageNet dataset with the
ResNet-50 pre-trained on the ImageNet dataset.

Method Epochs
1% 10%

Top-1 Top-5 Top-1 Top-5

MoCo (He et al., 2020) 200 43.8 ± 0.2 72.3 ± 0.1 61.9 ± 0.1 84.6 ± 0.2
BYOL (Grill et al., 2020b) 200 54.8 ± 0.2 78.8 ± 0.1 68.0 ± 0.2 88.5 ± 0.2

BYOL + Ours 200 46.5 ± 0.2 74.4 ± 0.2 63.6 ± 0.3 85.6 ± 0.2
MoCo + Ours 200 57.4 ± 0.2 80.1 ± 0.2 71.4 ± 0.2 90.2 ± 0.1

SimCLR (Chen et al., 2020) 1000 48.3 ± 0.2 75.5 ± 0.1 65.6 ± 0.1 87.8 ± 0.2
MoCo (He et al., 2020) 1000 52.3 ± 0.1 77.9 ± 0.2 68.4 ± 0.1 88.0 ± 0.2
BYOL (Grill et al., 2020b) 1000 56.3 ± 0.2 79.6 ± 0.2 69.7 ± 0.2 89.3 ± 0.1
Barlow Twins (Zbontar et al., 2021) 1000 55.0 ± 0.1 79.2 ± 0.1 67.7 ± 0.2 89.3 ± 0.2
RELIC v2 (Tomasev et al., 2022) 1000 55.2 ± 0.2 80.0 ± 0.1 68.0 ± 0.2 88.9 ± 0.2
VICRegL (Bardes et al., 2022) 1000 54.9 ± 0.1 79.6 ± 0.2 67.2 ± 0.1 89.4 ± 0.2

SimCLR + Ours 1000 50.8 ± 0.2 77.8 ± 0.2 67.3 ± 0.1 89.9 ± 0.2
MoCo + Ours 1000 53.9 ± 0.2 78.9 ± 0.2 71.2 ± 0.1 89.5 ± 0.1
BYOL + Ours 1000 58.9 ± 0.2 81.9 ± 0.2 72.1 ± 0.2 91.2 ± 0.1
Barlow Twins + Ours 1000 57.6 ± 0.2 80.6 ± 0.1 68.9 ± 0.2 91.8 ± 0.2

epochs, the improvement brought by the proposed method
reaches more than 3% on Top-1 and 2% on Top-5 results.
This further demonstrates the effectiveness of our method.

Results on transfer learning tasks. Table 3 shows the
results on the most commonly used object detection and
instance segmentation protocol (Chen et al., 2020; Zbontar
et al., 2021) for transfer learning, where introducing our
method achieves stable improvements in all tasks.

Results on few-shot learning tasks. Table 4 shows the
effect of the proposed sampling strategy on standard few-
shot transfer learning tasks. Compared to the original base-
lines, introducing our proposed method achieves remark-
able performance improvement, achieving more than 5%
improvement. These results demonstrate the superiority of
the proposed method under data-scarce conditions.

In summary, we can observe that when the SSL methods
are trained based on mini-batches generated by our pro-
posed sampling strategy, they all further improve their per-
formance and by at least 2%. This shows that our sampling
strategy is effective in reducing the spurious correlations in
the distribution of the mini-batch task, which leads to better
causal learning and improves the OOD generalization.
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5.3. Ablation Study

Influence of the batch size hyperparameter a. As shown
in Theorem 4.7, a suitable a is important. To explore
whether the SSL model is more sensitive to original batch
size or a, we conduct experiments using ImageNet and
BYOL. Figure 4 shows that the performance of BYOL
rapidly deteriorates with batch size, while BYOL+Ours
remains stable over a wide range of batch sizes. Thus,
although the proposed sampling strategy has a high require-
ment on a, the SSL method is less sensitive to a.

Influence of α. In Equation 4, α as a hyperparameter,
controls the weight of the term that constrains the orthogo-
nality of the column vectors in the matrix A. It prevents the
model from learning redundant or interdependent features,
enhancing its generalization. To evaluate its impact, we
assess the model performance with varying α (ranging in
[0.001, 0.01, 0.1, 1, 10]) on ImageNet-100. Figure 5 show
that performance peaks at α = 1, which is also our setting.

6. Related work
SSL is an effective unsupervised representation learning
paradigm, aimed at learning general representations suitable
for various downstream tasks. From (Jaiswal et al., 2020;
Kang et al., 2023), existing SSL models can be divided into
D-SSL and G-SSL. The D-SSL methods, e.g., SimCLR
(Chen et al., 2020), BYOL (Grill et al., 2020a), and Mocov3
(Chen et al., 2021b), are modeled based on the augmentation
invariance principle. The G-SSL methods, e.g., MAE (He
et al., 2022), iBOT (Zhou et al.), SMA (Xie et al., 2024),
are modeled based on the mask and reconstruction principle.
In real-world scenarios, the data distribution can shift over
time. Thus, improving the OOD generalization of SSL
is crucial. While various methods (Ni et al., 2021; Bai
et al., 2023; Liu et al., 2022; Qiang et al., 2024; Guo et al.,
2024; Li et al., 2022; Song et al., 2024) have been proposed
with impressive performance, a remaining challenge is they
have to contend with trade-offs between inductive biases or
approaches without theoretical guarantees. In this paper, we
extend the understanding of SSL from the perspective of
task learning and analyze its OOD generalization through
causal inference and batch construction.

Causality Analysis in SSL plays a crucial role by helping
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Table 3: Transfer learning on object detection and instance segmentation with C4-backbone. “AP” is the average precision,
“APN” represents the average precision when the IoU (Intersection and Union Ratio) threshold is N%.

Method
VOC 07 detection VOC 07+12 detection COCO detection COCO instance segmentation

AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75

Supervised 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR (Chen et al., 2020) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo (He et al., 2020) 77.1 46.8 52.5 82.5 57.4 64.0 58.9 39.3 42.5 55.8 34.4 36.5
BYOL (Grill et al., 2020b) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SimSiam (Chen & He, 2021) 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7
SwAV (Caron et al., 2020) 75.5 46.5 49.6 82.6 56.1 62.7 58.6 38.4 41.3 55.2 33.8 35.9
VICRegL (Bardes et al., 2022) 75.9 47.4 52.3 82.6 56.4 62.9 59.2 39.8 42.1 56.5 35.1 36.8

SimCLR + Ours 77.6 50.1 51.7 85.3 58.4 63.9 59.2 40.6 43.9 57.1 35.9 37.1
MoCo + Ours 79.4 50.2 54.9 86.1 60.2 66.1 614 42.1 44.9 59.2 36.9 38.8
BYOL + Ours 79.1 50.4 51.9 83.9 58.7 64.1 60.6 39.9 43.7 56.2 35.1 38.6
SimSiam + Ours 80.5 50.8 54.4 85.2 59.5 66.1 62.3 42.5 43.9 58.1 37.2 39.8
SwAV + Ours 77.9 49.3 51.8 84.9 58.1 65.8 62.1 40.2 43.9 56.9 37.3 37.9
VICRegL + Ours 77.9 50.4 53.9 85.2 58.8 65.3 63.1 42.2 45.3 59.1 37.8 39.9

Table 4: Few-shot transfer learning accuracies (± 95% confidence interval) on miniImageNet, Omniglot, and CIFAR-FS.

Method Omniglot miniImageNet CIFAR-FS

(5,1) (5,5) (20,1) (5,1) (5,5) (20,1) (5,1) (5,5) (20,1)

SimCLR (Chen et al., 2020) 90.83 ± 0.21 97.67 ± 0.21 81.67 ± 0.23 42.32 ± 0.38 51.10 ± 0.37 36.36 ± 0.36 49.44 ± 0.30 60.02 ± 0.29 39.29 ± 0.30
MoCo (He et al., 2020) 87.83 ± 0.20 95.52 ± 0.19 80.03 ± 0.21 40.56 ± 0.34 49.41 ± 0.37 36.52 ± 0.38 45.35 ± 0.31 58.11 ± 0.32 37.89 ± 0.32
SwAV (Caron et al., 2020) 91.28 ± 0.19 97.21 ± 0.20 82.02 ± 0.20 44.39 ± 0.36 54.91 ± 0.36 37.13 ± 0.37 49.39 ± 0.29 62.20 ± 0.30 40.19 ± 0.32

SimCLR + Ours 95.05 ± 0.22 98.96 ± 0.16 91.15 ± 0.20 47.14 ± 0.21 62.88 ± 0.21 39.97 ± 0.16 53.18 ± 0.24 67.91 ± 0.14 46.94 ± 0.21
MoCo + Ours 93.22 ± 0.21 97.93 ± 0.19 88.93 ± 0.22 46.93 ± 0.21 61.22 ± 0.21 41.12 ± 0.24 51.76 ± 0.22 66.42 ± 0.21 44.93 ± 0.23
SwAV + Ours 96.24 ± 0.26 98.76 ± 0.22 91.96 ± 0.21 49.15 ± 0.21 64.28 ± 0.29 42.22 ± 0.21 52.64 ± 0.24 70.18 ± 0.21 48.19 ± 0.14

to identify and understand the underlying relationships be-
tween variables. Recent works (Sontakke et al., 2021; Zuo
et al., 2021; Qiang et al., 2022; Wang et al., 2024a; Qiang
et al., 2023) have focused on developing methods that lever-
age causal inference to extract more robust feature represen-
tations. For instance, (Song et al., 2023) used causal invari-
ance to obtain causal SSL representations; (Von Kügelgen
et al., 2021) studied the identifiability of latent represen-
tations, aiming to improve efficiency. However, most of
them build causal analysis on in-distribution, but ignore the
influence of spurious correlations under OOD generaliza-
tion settings. In this paper, we explore the essential reasons
for spurious correlations in SSL and propose a method that
makes the relationships between variables free from spuri-
ous correlations. Meanwhile, duo to the limited space in
the following, we have discussed the content of Spurious
Correlation in Appendix D.

7. Conclusion
In this paper, we first establish the connection between
mini-batches formed during the SSL training phase and
multi-class tasks. Next, we explain the rationale for OOD
generalization of SSL from a multi-task learning perspective.
We then analyze how existing SSL models, when learning
mini-batch tasks, rely on spurious correlations to measure
sample similarity, leading to suboptimal performance. This
reliance affects the SSL model’s approximation of the task
distribution, resulting in reduced OOD generalization. We

provide a causal analysis of this issue and theoretically
examine the intrinsic reasons for incorporating spurious cor-
relations during the learning process. Based on our causal
analysis, we demonstrate that when mini-batches satisfy a
specific distribution, e.g., PID, SSL models achieve optimal
worst-case OOD performance. This insight guides us to
propose a new sampling strategy that ensures the resulting
mini-batches satisfy the PID constraints. Extensive theoreti-
cal and empirical analyses demonstrate its effectiveness.
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Appendix
The Appendices provide additional details that support the main findings and methods proposed in this paper. It is organized
into the following sections:

• Appendix A contains the proofs of the presented theorems.

• Appendix B provides details for the experimental settings for each experiment.

• Appendix C showcases additional experiments that were omitted in the main text due to page limitations.

• Appendix D provides the related works for spurious correlation in SSL.

• Appendix E explains the differences and connections between task distribution and data distribution.

• Appendix F provides the intuitive explanation of several concepts, assumption, and theorems mentioned in the proposed
methodology.

• Appendix G provides explanation of the identifiability of spurious variable.

A. Proofs
This section provides the complete proof of Proposition and Theorem in the main text.

A.1. Proof of Proposition 3.1

Before giving the detailed proofs of Proposition 3.1, we first provide the problem definition. Given multiple pairs of samples
in an SSL task, let xlabel be the anchor of a specific pair, then the remaining samples involving two classes of being xlabel

and not xlabel. Let xlabel and x̄label represent the label variables of being xlabel and not xlabel, since these are binary
classification tasks, xlabel and x̄label belong to the set ±1. Note that any multi-classification task can be decomposed into
binary tasks.

We assume that the labels are drawn from two different probabilities, with balanced sampling probabilities for label values,
i.e., P (xlabel = 1) = P (xlabel = −1) = 0.5. Our conclusions also hold for imbalanced distributions. Next, we consider
two d-dimensional factors Fx+ and Fs representing the knowledge to tackle the two labels. Both are drawn from the
Gaussian distribution:

Fx+ ∼ N (xlabel · µlabel, σ
2
labelI)

Fs ∼ N (x̄label · µs, σ2
sI)

where µlabel, µs ∈ RNs denote the mean vectors, while σ2
label and σ2

s denote the covariance vectors. We examine the
spurious correlations in SSL. To simplify our analysis, we define psc as the varying correlations that result from different
spurious correlations across batches.

Training a single model will result in the optimal model for the target, incorporating non-causal features from the other
sample pairs. To substantiate this, we derive the optimal SSL model as follows:

P (xlabel|Fx+ , Fs) =
P (xlabel, Fx+ , Fs)

P (Fx+ , Fs)
=

P (xlabel, Fx+ , Fs)∑
xlabel∈{−1,1} P (x

label, Fx+ , Fs)
.

Using the independence of Fs and Fx+ given xlabel, we rewrite the joint probability P (xlabel, Fx+ , Fs) as:

P (xlabel, Fx+ , Fs) = P (xlabel, Fx+) · P (Fs|xlabel, Fx+)

= P (xlabel, Fx+) · P (Fs|xlabel)

= P (xlabel, Fx+) ·
∑

x̄label∈{−1,1}

P (Fs, x̄
label|xlabel)

= P (xlabel)P (Fx+ |xlabel) ·
∑

x̄label∈{−1,1}

P (Fs|x̄label)P (x̄label|xlabel)
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Assuming that Fx+ and Fs are drawn from Gaussian distributions, and P (Yi/j , Fx+ , Fs) = sigmoid
(
µlabel

σ2
label

Fx+ + µs

σ2
s
Fs

)
,

where µlabel

σ2
label

and µs

σ2
s

are the regression vectors for the optimal Bayesian classifier, we have:

P (xlabel, Fx+ , Fs) = P (xlabel, Fx+) · P (Fs|xlabel, Fx+)

= P (xlabel)P (Fx+ |xlabel) ·
∑

x̄label∈{−1,1}

P (Fs|x̄label)P (x̄label|xlabel)

∝ e
xlabel·µlabel

σ2
label

Fx+

(
psce

xlabel·µs
σ2
s
Fs

+ (1− psc)e
−xlabel·µs

σ2
s
Fs

)
= psce

xlabel·
(

µlabel
σ2
label

Fx++µs
σ2
s
Fs

)
+ (1− psc)e

xlabel·
(

µlabel
σ2
label

Fx+−µs
σ2
s
Fs

)

Let:

β+ =
µlabel

σ2
label

Fx+ +
µs
σ2
s

Fs

β− =
µlabel

σ2
label

Fx+ − µs
σ2
s

Fs

Substituting β+ and β− back into the original equation, we have:

P (xlabel|Fx+ , Fs) =
1

1 + pscex
label·β++(1−psc)exlabel·β−

psce−xlabel·β++(1−psc)e−xlabel·β−

When the samples are easy to distinguish, e.g., the similarity of the augmented sample from different pairs is not 1:

P (xlabel|Fx+ , Fs) =
1

1 + exlabel·(β++β−)

Combining with the expressions for β+ and β−, we get:

P (xlabel|Fx+ , Fs) =
1

1 + e
2xlabel·

(
µlabel
σ2
label

Fx+

)

In this case, the optimal SSL model only utilizes its own factor Fx+ and assigns zero weight to the non-causal factor Fs
from task τj . Thus, if it is difficult to distinguish between the different pairs, the optimal model has non-zero weights for
non-causal factors for each task. When the samples are difficult to distinguish, e.g., in the most extreme case, the similarity
of the augmented sample from different pairs is equal to 1, we have:

P (xlabel|Fx+ , Fs) =
1

1 + e2xlabel·β+

Combining with the expressions for β+ and β−, we get:

P (xlabel|Fx+ , Fs) =
1

1 + e
2xlabel·

(
µlabel
σ2
label

Fx++µs
σ2
s
Fs

)

In this case, the optimal classifier incorporates both factors Fx+ and Fs. Thus, if psc ̸= 0.5, the optimal classifier assigns
non-zero weights to non-causal factors for each task.

A.2. Proof of Theorem 3.4

Proofs. Here, we provide proof of the minimax optimality of the SSL model trained on PID. The SSL model trained on PID
pPI(x+, xlabel) has pf (xlabel|x+) = pPI(xlabel|x+). Now, consider the expected cross-entropy loss of this classifier on an
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unseen test distribution pe:

Le(pPI(xlabel|x+)) = −Epe(x+,xlabel) log p
PI(xlabel|x+)

= −Epe(x+,xlabel) log p
PI(xlabel) + Epe(x+,xlabel) log

pPI(xlabel)

pPI(xlabel|x+)

= Le(pPI(xlabel)) + Epe(X,xlabel,s)

[
log

pPI(xlabel)

pPI(xlabel|x+)

]
= Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(X|xlabel,s)

[
log

pPI(xlabel)

pPI(xlabel|x+)

]]
Consider that xlabel⊥⊥PIs and xlabel⊥⊥PIs|x+, we get:

Le(pPI(xlabel|x+)) = Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(x+|xlabel,s)

[
log

pPI(xlabel|s)
pPI(xlabel|x+, s)

]]
= Le(pPI(xlabel)) + Epe(xlabel,s)

[
EpPI(x+|xlabel,s)

[
log

pPI(x+|s)
pPI(x+|xlabel, s)

]]
= Le(pPI(xlabel))− Epe(xlabel,s)KL[pPI(x+|xlabel, s)||pPI(x+|s)].

Thus we have the cross entropy loss of pPI(x+, xlabel) in any environment e is smaller than that of pPI(xlabel) = 1
m (random

guess):

Le(pPI(xlabel|x+))− Le(pPI(xlabel)) ≤ −Epe(xlabel,s)KL[pPI(x+|xlabel, s)||pPI(x+|s)] ≤ 0,

which means:

max
e′∈E

[
Le

′
(pPI(xlabel|x+))− Le

′
(pPI(xlabel))

]
≤ 0.

where the performance of pPI(x+, xlabel) is at least as good as a random guess in any environment. Since we assume the
environment diversity, that is for any pe with xlabel⊥⊥es, there exists an environment e′ such that pe(xlabel|x+) performs
worse than a random guess. So we have:

max
e′∈E

[
Le

′
(pPI(xlabel|x+))− Le

′
(pPI(xlabel))

]
≤ 0 < max

e′∈E

[
Le

′
(pe(xlabel|x+))− Le

′
(pPI(xlabel))

]
.

This inequality shows that the model trained on PID does not perform worse than the random guess model. The KL
divergence term is non-negative, ensuring that the difference between the loss of the PID-trained model and the random
guess model is non-positive. Now we want to prove that we can obtain pe(xlabel|x+) = pPI(xlabel|x+) for any s ∈ S with
∀e ∈ E , xlabel⊥⊥es, x

label⊥⊥es|x+, pe(xlabel) = 1
m , we have:

pe(xlabel|x+) = pe(xlabel|x+, s) = pe(xlabel)
pe(x+|xlabel, s)

Epe(xlabel|s)[pe(x+|s, xlabel)]

= pPI(xlabel)
pPI(x+|xlabel, s)

EpPI(xlabel)[pPI(x+|s, xlabel)]
= pPI(xlabel|x+, s) = pPI(xlabel|x+).

Thus, we have the following minimax optimality pPI(xlabel|x+) = argminpf∈F maxe∈E Le(pψ(xlabel|x+)).
Based on the above analyses, we have f∗ is the minimax optimal across all elements in D, e.g., f∗ =
argf minmaxe∈DLe(pf (xlabel|x+)).

A.3. Proof of Theorem 4.3

Proofs. We aim to establish the identifiability of the key parameters in the VAE that govern the spuriously correlated
covariate features. The proof proceeds through the following two parts: (i) Introducing Auxiliary Variables: We introduce
both e and xlabel as auxiliary variables to better capture the dependency structure. (ii) Incorporating Causal Mechanism: We
specify the causal mechanism that generates x+ as x = f(xlabel, s) + ϵ = f labelx (x) + ϵ, where ϵ represents the noise term.
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First, we transform the equality of the marginal distributions over the observed data into the equality of a noise-free
distribution. Let us start by considering two sets of model parameters, i.e., θ = (f, g,A) and θ′ = (f ′, g′,A′). Suppose that
the marginal distributions of the observed data are equal across these two parameterizations:

pθ(x
+|xlabel, e) = pθ′(x

+|xlabel, e) ∀e ∈ Etrain.

This condition implies that for each e ∈ Etrain, the distributions of x+ conditioned on xlabel and e must be the same for both
sets of parameters. This leads us to the following equation:∫

Z
pg,A(Z|xlabel, e)pf (x+|Z, xlabel)dZ =

∫
Z
Pg′,A′(Z|xlabel, e)p′f (x+|Z, xlabel)dZ

Now, the noise term pϵ(x
+ − f labelx (Z)) appears in both expressions, as it governs the relationship between x+ and the

latent variable Z. This results in:∫
Z
pg,A(Z|xlabel, e)pϵ(x+ − f labelx (Z))dZ =

∫
Z
pg′,A′(Z|xlabel, e)pϵ(x+ − f

′label
x (Z))dZ

Next, we define the volume of the matrix A as vol(A) :=
√
det(A⊤A) and introduce a change of variables in the integrals.

On the left-hand side, we change variables to x+ = f labelx (Z), while on the right-hand side, we set x̄+ = f̄ labelx (Z). Since
f is injective, we can write f−1(x̄+) = (xlabel, Z), which implies that Z can be recovered from x+ and xlabel. Thus, we
arrive at the following equality:∫

Rd

p̃g,A,f,xlabel,e(x̄
+)pϵ(x

+ − x̄+) dx̄+ =

∫
Rd

p̃g′,A′,f′,xlabel,e(x̄
+)pϵ(x

+ − x̄+) dx̄+.

The key insight here is that both sides describe the same transformation, albeit with different parameterizations.

We now introduce a convolution representation for the probability distributions. Specifically, define:

p̃g,A,f,xlabel,e(x
+) = pg,A(f

label
x

−1
(x+)|xlabel, e)volJf label

x
−1(x+)1§+(x

+),

where Jf label
x

−1(x+) denotes the Jacobian of f labelx
−1. Similarly, we define the corresponding expression on the right-hand

side. We then introduce the convolution operator ∗ and apply the Fourier transform to both sides:

(p̃g,A,f,xlabel,e ∗ pϵ)(x+) = (p̃g′,A′,f′,xlabel,e ∗ pϵ)(x+).

Then, we use ∗ for the convolution operator, and use F [·] to designate the Fourier transform. The characteristic function of ϵ
is then ϕϵ = F [pϵ]. Exploit the properties of the Fourier transform to transform the convolution into a multiplication. This
means that in the Fourier domain, we have F [(p̃g,A,f,xlabel,e ∗ pϵ)(x+)] = F [p̃g,A,f,xlabel,e](ω) · F [pϵ](ω) Meanwhile, we
dropped ϕϵ(ω) from both sides as it is non-zero almost everywhere (by assumption of the Theorem).

p̃g,A,f,xlabel,e(x
+) = p̃g′,A′,f′,xlabel,e(x

+),

which shows that the probability distributions for x+ under the two parameterizations are equal.

Obtaining the above results, we simplify the expression by removing terms that depend on x+, xlabel, or e, and then take the
logarithm of both sides of the equation. This results in:

log volJf−1(x+) +

n∑
i=1

(logQi(f
−1
i (x+))− logW e

i (x
label) +

k∑
j=1

Ti,j(f
−1
i (x+))λei,j(x

label))

= log volJf′−1(x+) +

n∑
i=1

(logQ′
i(f

′−1
i (x+))− logW ′e

i (xlabel) +

k∑
j=1

T ′
i,j(f

′−1
i (x+))λ′ei,j(x

label)).

Next, we evaluate this equation at several points (e0, xlabel0 ), (e1, x
label
1 ), ..., (enk, x

label
nk ) provided by assumption (3) of the

theorem. We evaluate the above equations at these points to obtain k + 1 equations, and subtract the first equation from the
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remaining k equations to obtain:

⟨T (f−1(x+)), λel(xlabell )− λe0(xlabel0 )⟩+
n∑
i=1

log
W e0
i (xlabel0 )

W el
i (xlabell )

=⟨T ′(f−1(x+)), λ′el(xlabell )− λ′e0(xlabel0 )⟩+
n∑
i=1

log
W ′e0
i (xlabel0 )

W ′el
i (xlabell )

.

This creates a system of equations, which will be solved in the next step.

Let L be the matrix defined in assumption (3) and L′ similarly defined for λ′ (L′ is not necessarily invertible). Define

bl =
∑n
i=1 log

W
′e0
i (xlabel

0 )W
el
i (xlabel

l )

W
e0
i (xlabel

0 )W
′el
i (xlabel

l )
and b = [bl]

nk
l=1.

Then, we can obtain the matrix form:

LTT (f−1(x+)) = L′TT ′(f ′−1(x+)) + b.

We multiply both sides of Equation 6 by L−T to get:

T (f−1(x+)) = AT ′(f ′−1(x+)) + c.

Where A = L−TL′ and c = L−T b. To complete the proof, we must demonstrate that A is invertible. By the definition of T ,
its Jacobian exists and is an nk × n matrix with rank n. Consequently, the Jacobian of T ′ ◦ f ′−1 also exists and has rank n,
which implies that A is of rank n as well. We mainly consider two cases: (i) If k = 1, then A is invertible since A ∈ Rn×n;
and (ii) If k > 1, define x̄ = f−1(x) and Ti(x̄i) = (Ti,1(x̄i), . . . , Ti,k(x̄i)).

Suppose for any choice of x̄1i , x̄
2
i , . . . , x̄

k
i , the family

(
dTi(x̄

1
i )

dx̄1
i
, . . . ,

dTi(x̄
k
i )

dx̄k
i

)
is never linearly independent. This implies

that Ti(R) lies within a subspace of Rk with a dimension of at most k − 1. Let h be a non-zero vector orthogonal to Ti(R).
Then for all x ∈ R, we have

〈
dTi(x)
dx , h

〉
= 0. By integrating, we find that ⟨Ti(x), h⟩ = const. Since this holds for all

x ∈ R and h ̸= 0, we conclude that the distribution is not strongly exponential. Thus, by contradiction, there must exist k
points x̄1i , x̄

2
i , . . . , x̄

k
i such that

(
dTi(x̄

1
i )

dx̄1
i
, . . . ,

dTi(x̄
k
i )

dx̄k
i

)
are linearly independent.

Next, collect these points into k vectors (x̄1, . . . , x̄k) and concatenate the k Jacobians JT (x̄l) evaluated at each of those
vectors horizontally into the matrix Q = (JT (x̄

1), . . . , JT (x̄
k)). Similarly, define Q′ as the concatenation of the Jacobians

of T ′(f ′−1 ◦ f(x̄)) evaluated at those points. Then the matrix Q is invertible. By differentiating Equation 6 for each xl, we
get Q = AQ′ The invertibility of Q implies the invertibility of A and Q′. This completes the proof.

A.4. Proof of Theorem 4.7

Proofs. In Algorithm 1, we describe the procedure for uniformly sampling a different labels. Specifically, we define this
process as sampling xlabelalt = {xlabel1 , xlabel2 , ..., xlabela } using the following procedure:

xlabel1 ∼ U{1, 2, ...,mu} \ {xlabele }
xlabel2 ∼ U{1, 2, ...,mu} \ {xlabele , xlabel1 }

...

xlabela ∼ U{1, 2, ...,mu} \ {xlabele , xlabel1 , xlabel2 , ..., xlabela−1 },

Here, U represents the uniform distribution over the specified set, and xlabele is the label selected in the current training
instance, from which we exclude during the sampling of other labels.

Let Dbalanced denote the balanced data distribution, which is drawn from the distribution p̂B(x+, xlabel). On the other hand,
let De be the data distribution corresponding to the environmental distribution p(x+, xlabel). We assume that for every
balancing score match, the labels in the balanced dataset are perfectly matched. Under this assumption, for all environments
e ∈ Etrain, we have:

p̂B(xlabel|bae(s)) = p(xlabel|bae(s)),
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where bae(s) denotes the balancing score specific to environment e and sample s.

By the definition of a balancing score, p(xlabel|s) = p(xlabel|bae(s)) and p̂B(xlabel|s) = p̂B(xlabel|bae(s)), then we have:

p̂B(xlabel|s) = p(xlabel|s).

and thus, by substitution, we have p̂B(xlabel|s) = p̂B(xlabel|bae(s)). Consequently, we conclude:

p̂B(xlabel|s) = p(xlabel|s).

This implies that the balanced distribution p̂B(xlabel|s) is identical to the original data distribution p(xlabel|s). Therefore,
the joint distribution of the balanced data is:

p̂B(x+, xlabel, s) = pB(x+, xlabel, s).

Finally, this shows that the balanced dataset Dbalanced can be regarded as being sampled from a PID (Permuted and Injected
Distribution). The implication is that the balanced dataset behaves in the same manner as the original distribution, but with
some permutations introduced by the balancing procedure.

B. Experimental Settings
In this section, we provide the details of the settings and datasets for each experiment.

Unsupervised Learning Following the widely adopted protocol (Chen et al., 2020; Wang et al., 2024b), we freeze the
feature extractor and train a supervised linear classifier on top of it. The Adam optimizer is used, with Momentum set to
0.8 and weight decay set to 10−4. The linear classifier is trained for 500 epochs, with a batch size of 128. The learning
rate starts at 5× 10−2 and decays to 5× 10−6. For this experiment, we utilize several benchmark datasets to evaluate the
model’s performance. CIFAR-10 and CIFAR-100 are small-scale image classification datasets consisting of 60,000 32×32
color images in 10 and 100 classes, respectively. STL-10 is another small-scale dataset that contains 100,000 unlabeled
images and 5,000 labeled examples from 10 classes, with a higher image resolution (96×96). Tiny ImageNet contains
100,000 64×64 images across 200 classes and serves as a more challenging small-scale benchmark. For these datasets,
we use ResNet-18 as the feature extractor. For larger datasets, we employ ImageNet-100 (a subset of ImageNet with 100
classes) and the full ImageNet dataset, which consists of over 1.2 million images in 1,000 classes, using ResNet-50 as the
feature extractor.

Semi-Supervised Learning In accordance with the standard protocol (Zbontar et al., 2021), we create two balanced subsets
by sampling 1% and 10% of the training dataset. Specifically, we use the ImageNet dataset, a large-scale benchmark for
visual recognition tasks, comprising 1.2 million images in 1,000 categories. The subsets contain 1% and 10% of the labeled
training data, which are used for fine-tuning the model. The models are fine-tuned for 50 epochs, with learning rates set to
0.05 and 1.0 for the classifier and 0.0001 and 0.01 for the backbone on the 1% and 10% subsets, respectively.

Transfer Learning We conduct three transfer learning experiments, including object detection and instance segmentation,
transfer to other domains, and video-based tasks. For object detection, we evaluate the model on two benchmark datasets:
Pascal VOC and COCO. Pascal VOC is widely used for object detection tasks, containing around 20,000 images across
20 categories. We train a Faster R-CNN (Ren et al., 2015) model on the combined VOC 2007 and 2012 datasets (VOC
07+12), which contains around 16,000 images, and adjust the learning rate at 18K and 22K iterations. We also conduct
experiments on a smaller version of Pascal VOC, the VOC 07 set (5K images), with a reduced number of iterations. For
instance segmentation, we use the COCO 2017 dataset, which contains over 118,000 images and covers 80 object categories.
We train a Mask R-CNN (He et al., 2017) with the standard 1× schedule and C4-backbone (Wu et al., 2019), reporting
results on the validation split.

Few-shot Learning The protocol outlined in (Wang et al., 2024b; 2023b) is followed for few-shot learning, where we
evaluate the proposed method on three standard few-shot learning benchmarks: miniImageNet, Omniglot, and CIFAR-FS.
miniImageNet is a widely used few-shot learning benchmark derived from the ImageNet dataset, consisting of 60,000 84×84
images across 100 classes. Omniglot is a dataset designed for character recognition, containing 1,623 different characters
from 50 different alphabets, making it suitable for testing few-shot learning algorithms. CIFAR-FS is a few-shot version of
the CIFAR-100 dataset, specifically adapted for few-shot learning tasks, containing 100 classes with 600 images per class.
For each task, N samples without class-level overlap are randomly selected, and K-times data augmentation is applied to
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create an N -way K-shot task. The model is optimized using stochastic gradient descent (SGD) with momentum and weight
decay values set to 0.9 and 10−4, respectively. The trained model’s performance is then evaluated on unseen samples drawn
from new classes, testing its ability to generalize in few-shot scenarios.

C. Additional Experiments
C.1. Evaluation on Generative SSL

To examine the model’s impact on generating SSL, we conducted a series of experiments using the ImageNet-1K dataset
(Deng et al., 2009). We started with self-supervised pre-training on the ImageNet-1K (IN1K) training set. Next, we evaluated
the representations through supervised training using two methods: (i) end-to-end fine-tuning and (ii) linear probing.
We reported the top-1 validation accuracy for a single 224×224 crop. For these experiments, we employed ViT-Large
(ViT-L/16) (Dosovitskiy et al., 2020) as the backbone. ViT-Large is significantly larger (an order of magnitude bigger) than
ResNet-50 (He et al., 2016) and has a tendency to overfit. The following section provides a comparison of the models.

Table 5: Comparison between models.

Method scratch, original scratch, our impl. baseline MAE MAE + Ours

Top 1 76.5 82.5 84.9 86.4

Table 6: Comparisons with previous results on ImageNet-1K using the ImageNet-1K training set for pre-training, except for
the tokenizer in BEiT, which was pre-trained on 250M DALLE data (Ramesh et al., 2021).

Method pre-train data ViT-B ViT-L ViT-H ViT-H448

DINO IN1K 82.8 - - -
MoCo IN1K 83.2 84.1 - -
BEiT IN1K+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

MAE+Ours IN1K 85.9 87.4 88.6 89.3

Comparisons with self-supervised methods. In Table 6 we compare the fine-tuning results of self-supervised ViT models.
Our method has shown steady improvement from bigger models. We obtain 88.6% accuracy using ViT-H (224 size). The
previous best accuracy, among all methods, using only IN1K data, is 87.1% (512 size) (Yuan et al., 2022), based on
advanced networks. We improve over the state-of-the-art by a nontrivial margin in the highly competitive benchmark of
IN1K (no external data). Our result is based on vanilla ViT, and we expect advanced networks will perform better.

Object detection and segmentation. We fine-tune Mask R-CNN (He et al., 2017) end-to-end on COCO (Lin et al.,
2014). The ViT backbone is adapted for use with FPN (Lin et al., 2017). We apply this approach to all entries in Table
3. We report box AP for object detection and mask AP for instance segmentation. Compared to supervised pre-training,
our MAE performs better under all configurations (Table 7). Meanwhile, we also transfer the learned VideoMAE + Ours
on Kinetics-400 (Kay et al., 2017) to the downstream action detection dataset AVA (Murray et al., 2012). Following the
standard setting, we evaluate on top 60 common classes with mean Average Precision (mAP) as the metric. The results are

Table 7: COCO object detection and segmentation using a ViT Mask R-CNN baseline.

Method pre-train data
APbox APmask

ViT-B ViT-L ViT-B ViT-L

supervised IN1K w/ labels 47.9 49.3 42.9 43.9
MoCo v3 IN1K 47.9 49.3 42.7 44.0
BEiT IN1K+DALLE 49.8 53.3 44.4 47.1
MAE IN1K 50.3 53.3 44.9 47.2

MAE + Ours IN1K 52.5 55.9 46.4 49.7
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Table 8: Performance on for text recognition.

Methods IIIT5K IC03

SimCLR (Chen et al., 2020) 1.7 3.8
SeqCLR (Aberdam et al., 2021) 35.7 43.6

SimCLR + Ours 18.7 19.0
SeqCLR + Ours 38.5 47.4

Table 9: Performance on Kinetics-700. “Extra Labels” denotes that if the pre-trained models are additionally fine-tuned on
the pre-training dataset with labels before being transferred to AVA. T × τ refers to the frame number and sample rate.

Method Backbone Pre-train Dataset Extra Labels T × τ GFLOPs Param mAP

VideoMAE ViT-L Kinetics-700 No 16× 4 597 305 36.1
VideoMAE ViT-L Kinetics-700 Yes 16× 4 597 305 39.3
VideoMAE + Ours ViT-L Kinetics-700 No 16× 4 597 305 38.7
VideoMAE + Ours ViT-L Kinetics-700 Yes 16× 4 597 305 42.1

shown in Table 9. From the results, we can observe that our method achieves stable improvements.

Evaluation for VAE To illustrate without loss of generality, we take SimCLR as a representative SSL method for evaluation.
The results are shown in Figure 6. First, our proposed method only modifies the mini-batch construction process during the
training phase of SimCLR. Even though we train a VAE, it does not affect other components of SimCLR’s training pipeline,
including the training objective, network architecture, and optimization algorithm. Second, training a VAE independently on
ImageNet and using its feature extractor for evaluation yields an accuracy of 35.4%, in contrast to SimCLR’s 70.2%. We
then use the parameters of the VAE’s feature extractor to initialize the feature encoder of SimCLR and retrain SimCLR
from this initialization. The resulting accuracy is 68.7%, which is 1.4% lower than that of SimCLR trained from scratch. In
comparison, SimCLR combined with our method achieves an accuracy of 73.3%. These results demonstrate the fairness of
our evaluation and confirm that the performance gain is not due to the additional VAE.

C.2. Evaluation on More Modalities

The proposed method can be applied in various fields and domains, e.g., instance segmentation, video tracking, sample
generation, etc., as mentioned before. Here, we provide the experiments of the proposed method on text modality-based
datasets, i.e., IC03 and IIIT5K (Yasmeen et al., 2020), which we have conducted before. We follow the same experimental
settings as mentioned in (Aberdam et al., 2021). The results shown in Table 8 demonstrate that the proposed method
achieves stable effectiveness and robustness in various modalities combined with the above experiments.
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Figure 6: Evaluation for the VAE-based components.
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Table 10: Performance comparison on PACS dataset.

Method Photo Sketch Cartoon Painting (Unseen) Average
SimCLR 86.4 85.1 87.2 74.3 80.7
SimCLR+Ours 88.0 87.4 90.1 79.2 85.0
BYOL 83.9 84.6 82.7 64.5 74.2
BYOL+Ours 84.2 86.9 85.0 70.8 78.9

Table 11: Performance comparison on OfficeHome dataset

Method A→ C A→ P A→ R C→ A C→ P C→ R P→ A P→ C P→ R R→ A R→ C R→ P
SimCLR 58.2 63.5 69.8 78.9 69.7 66.8 63.4 52.3 58.4 56.1 72.9 71.0
SimCLR+Ours 61.1 65.2 71.9 81.1 72.0 68.2 67.5 59.1 59.9 61.2 74.8 73.5

C.3. Evaluation on OOD Tasks

In addition to validating the proposed method on standard and few-shot transfer learning scenarios, we also specifically test
it on benchmark datasets targeting the out-of-distribution (OOD) problem, including PACS, OfficeHome, Waterbirds, and
ColoredMNIST. Specifically, we evaluate the performance of SSL baselines before and after introducing the proposed PID
on these three datasets. For PACS, we follow the experimental setup in Section 5.2 to evaluate the most commonly used
SSL baselines (i.e., SimCLR and BYOL) on three domains (i.e., Photo, Sketch, and Cartoon) training on these domains
and testing on all four domains, including Photo, Art, Cartoon, and Sketch, as well as the average performance. The
results are shown in Table 10. For OfficeHome, we randomly select one domain as the source domain for training and
another as the target domain. The labels for the source domain are predefined, whereas the labels for all target domains
are unknown. We then evaluate the performance change of SimCLR before and after introducing PID, with results shown
in Table 11. For the Waterbirds dataset, we adopt the implementation from (Zare & Van Nguyen, 2023). During training,
waterbirds (landbirds) are predominantly paired with water (land) backgrounds. However, at test time, the distribution
of backgrounds is altered, creating a domain shift. In our evaluation, we report both the average performance and the
performance of the worst-performing group. The results are shown in Table 12. From the results, we can observe that
our method consistently yields improvements, with particularly significant gains observed for the worst-performing group,
indicating the effectiveness of our approach in addressing domain shifts. Finally, for the Colored-MNIST dataset, we follow
the experimental settings mentioned in (Huang et al., 2024). In the benchmark, the task involves classifying 10-digit classes,
where 10% of the labels are randomly reassigned to evaluate the model’s robustness to label noise. During training, images
belonging to class ’0’ (or ’1’) are colored red (or green) with a probability of 77.5%, and another random color with a
probability of 22.5%. At test time, the color scheme is reversed, allowing us to assess the model’s reliance on color cues for
classification. The results shown in Table 13 demonstrate that our method enhances out-of-distribution (OOD) test accuracy
by nearly 10%, highlighting the improvement in the model’s generalization ability.

D. Related Works for Spurious Correlation
In the recent work on SSL, there has been growing interest in understanding its vulnerability to spurious correlations
(Hamidieh et al., 2024; Wang et al., 2022; 2023a). These correlations arise when models learn associations from data that do
not truly reflect the underlying causal structure, but instead are coincidental or context-specific patterns (Pearl, 2009). This
susceptibility can undermine the effectiveness of SSL, particularly when dealing with diverse data environments.

Some works have been proposed to alleviate the effects of spurious correlations in SSL. Hamidieh et al. (Hamidieh
et al., 2024) introduced a method that counteracts these correlations by expanding the feature space, thereby providing
more diverse training views to mitigate misleading associations. Park et al. (Park et al., 2024) proposed that spuriously
correlated attributes make neural networks inductively biased towards encoding lower effective rank representations and
used rank regularization to eliminate biased samples. Another notable contribution comes from Chen et al.(Zhu et al.,
2023), who explored the use of a data reweighting strategy to reduce the importance of data samples that may contain
spurious correlations. These methods attempt to eliminate spurious correlations by filtering or enhancing SSL samples at the
sample level. Although this approach has proven effective by excluding samples that may contain spurious correlations, it is
difficult to ensure that the learned features are still reliable due to the partial unobservability of spurious correlations and
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Table 12: Performance comparison on Waterbirds dataset.

Method Test Accuracy Worst Group

SimCLR 76.2 19.2
SimCLR + Ours 78.0 24.9
MAE 74.9 17.6
MAE + Ours 77.2 22.1

Table 13: Performance comparison on ColoredMNIST dataset.

Method Accuracy(%)

SimCLR 12.7
SimCLR + Ours 23.5
MAE 15.1
MAE + Ours 24.9

variable coupling. In contrast, our work directly addresses the impact that spurious correlations might cause, utilizing the
independence between unobserved variables and anchors under post-intervention distributions to ensure the reliability of the
learned representations.

E. Task Distribution & Data Distribution
Task Distribution: Task distribution refers to a set of tasks and their underlying distribution, where each task has its own
specific objectives and associated data distribution. It is often used in meta-learning or multi-task learning scenarios to
describe the diversity and variation across tasks.

For example, in a meta-learning scenario, the task distribution could include:

• A ”cat vs dog” classification task (Task 1).

• A ”car vs airplane” classification task (Task 2).

• A ”bird vs fish” classification task (Task 3).

These tasks form the task distribution, and the meta-learning model is trained across this task space.

Data Distribution: Data distribution refers to the statistical distribution of data samples within a single task, typically
described as the joint distribution P (X,Y ) of input X and labels Y .

Task distribution describes the variability between tasks in a learning system, focusing on generalization across tasks.
Data distribution focuses on the variability within a single task, addressing adaptation to specific data characteristics. The
two concepts are hierarchical: task distribution governs the diversity of tasks, while each task has its own distinct data
distribution.

Reformulation of OOD Generalization as Generalization on Task Distributions: We organize the whole process into the
following steps:

Step 1: First, we provide the formal definition of task distribution.

Without loss of generality, let us use a classification task as an example. We define Xa
tr = {(xai , yai )}Ni=1 as a training

dataset, where xai represents a sample, yai represents the corresponding label, a denotes the dataset index, and N denotes the
number of samples in the dataset. For a classification task, the goal is to learn a classifier pa(yai |xai ), so that for any given
sample xai , the corresponding label can be predicted.

If N → +∞, Xa
tr can be approximated as containing all the information necessary for the classification task and can thus

be regarded as a complete dataset for a classification task. Simply put, the elements of a classification task include: the
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classifier and the dataset. We denote a task as (Xa
tr, p

a(yai |xai )). Then, the discrete distribution of tasks can be expressed as
{Xa

tr, p
a(yai |xai )}Ma=1, where M represents the number of tasks.

Furthermore, when a is different, the label space corresponding to yai is also different. For example, when a = 1, the label
space is {Cat,Dog}, and when a = 2, the label space is {Plane, Train}. If M → +∞, {Xa

tr, p
a(yai |xai )}Ma=1 can be

regarded as a complete task distribution.

Step 2: Next, we reformulate SSL from the perspective of task distribution.

In Section 2 and Section 3.1, we explain why a mini-batch in SSL can be viewed as a task. Simply put, for a given mini-batch,
it can be expressed as: Xaug

tr,a = {xia, xianchor,a}2Ni=1, where N denotes the number of ancestor samples in the mini-batch, a
represents the index of the mini-batch, and xianchor,a can be regarded as the label of the augmented sample. Meanwhile, the
classifier to be learned for each mini-batch is modeled as pa(xianchor,a|xia).

Notably, the classifiers for all tasks in SSL are learned using the same classifier, i.e., the classifiers for all tasks aim to
learn p(xianchor,a|xia). For example, SimCLR models the classifier using a contrastive loss, while MAE models it using the
L2-norm. Therefore, whether D-SSL or G-SSL is used, as M → +∞, {(Xaug

tr,a , p(x
i
anchor,a|xia))}Ma=1 can be approximated

as a task distribution, where M represents the number of tasks.

Step 3: Finally, we reformulate the OOD generalization of SSL as generalization on task distributions.

In traditional machine learning, given training data, the goal is to learn p(y|x). This can be understood as modeling the data
distribution p(x, y) as p(x)p(y|x), where p(y|x) is learned from the training data and transferred to the test data distribution
p(x). This approach assumes that the training and test data are identically and independently distributed, i.e., p(xtrain) =
p(xtest) = p(x), and p(xtrain, ytrain) = p(xtest, ytest) = p(x, y). Consequently, p(x)ptrain(y|x) = p(x)ptest(y|x),
leading to ptrain(y|x) = ptest(y|x).

By analogy, when each data sample is treated as a task, the corresponding learning objective becomes
p(pa(xianchor,a|xia)|X

aug
tr,a ). This learning goal is similar to that in meta-learning [1-2], where the goal is to learn a

function that can output the classifier for a given task dataset. Therefore, when the training data are drawn from a task
distribution, the learning objective is to model the task distribution, i.e., to learn p(pi(y|x)|p(task i)), such that it applies to
both training and test tasks. Since training and test tasks are different, from the perspective of the training tasks, the test
tasks represent OOD scenarios. However, from the perspective of the task distribution, both training and test tasks belong to
the same task distribution.

Thus, from the viewpoint of traditional machine learning, SSL can be considered as training with mini-batches of size
1, where each training sample is a training task. One open problem is how to model p(pi(y|x)|p(task i)). Since we
define the classifier p(xianchor,a|xia) for each SSL training task as identical, p(pi(y|x)|p(task i)) can be directly modeled as
p(xianchor,a|xia), which applies to any sample from any task.

In conclusion, combining Step 1-3, we reformulate OOD generalization as generalization on task distributions.

F. Intuitive Explanations for Assumption 3.3 and Theorem 4.7
Assumption 3.3 illustrates that regardless of whether e ∈ D or e ∈ PID, x+ is generated under the control of two variables,
s and xlabel. Therefore, given x+, s and xlabel are conditionally independent, regardless of the correlation between them.

From Assumption 3.3, the optimal f should be Fxlabel . However, without additional constraints, it is difficult to obtain
this optimal f . Theorem 3.4 provides a way to obtain another good f , defined as f∗ in the theorem. Why is f∗

considered good? This is because Theorem 3.4 implies that when D is sufficiently large and diverse, an optimal f∗ trained
on one distribution will perform worse than random guessing in some other environment. Under such conditions, no
other f obtained from training on any distribution can achieve better worst-case OOD performance than the PID. Why
is focusing on the worst-case scenario better than other cases? During training, we minimize the worst-case scenario,
which involves minimizing: maxe∈DLe(pf (xlabel|x+)).. For any f , the term maxe∈DLe(pf (xlabel|x+)) is always greater
than or equal to Le(pf (xlabel|x+)) for any specific environment e. If we learn an f that minimizes the worst-case term
maxe∈DLe(pf (xlabel|x+)), then we naturally minimize Le(pf (xlabel|x+)) for all e in D. This ensures robustness across
all scenarios, making the worst-case optimization strategy effective for improving OOD performance.

The high-level explanation of Theorem 4.7 can be presented as follows: 1) From Definition 4.4, it follows that if ba(s)
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can be identified, then s and xlabel are conditionally independent given ba(s); 2) In this paper, ba(s) is implemented as
described in Equation (5) in the main text. The key challenge lies in obtaining s. As shown in Section 4.1, we explain the
identifiability of s, as well as how each label is modeled using a distribution for s. During implementation, we sample
from this distribution to generate a series of discrete vectors that approximate s associated with a specific label; 3) From
Equation (2) in the main text, we have: p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s|xlabel). If we select sample pairs
for a mini-batch such that all pairs share the same ba(s), the resulting mini-batch can be considered as constructed under
the same ba(s). In other words, the samples in the mini-batch are conditioned on ba(s). Combined with the argument in
Point 1), we have: p(x+, xlabel, s) = p(x+|xlabel, s)p(xlabel)p(s), which ensures that the mini-batch satisfies PID. The
key to achieving PID is ensuring that all sampled examples in the mini-batch have consistent ba(s), i.e., the background
information is the same. This allows SSL training to focus on foreground information while disregarding background
information.

G. More Explanation for the Identifiability of Spurious Variable
To better address the identifiability of spurious variables in the context of SSL, we organize the response into the following
steps:

Step 1: First, we need to clarify that in Section 2 and Section 3.1, we propose a new perspective for understanding SSL.
Taking classification as an example, under this new perspective, each mini-batch during the training phase of SSL can be
treated as an independent multi-classification task. Different mini-batches correspond to different classification tasks. In
contrast, the traditional perspective of SSL considers the entire dataset as a single task for unsupervised learning.

Therefore, under the new perspective, the training samples in each mini-batch can be considered labeled. Whether these
labels are accurate is not our concern for now, as this falls under the domain of Bayesian error. Consequently, in this sense,
spurious variables can be identifiable.

Step 2: We first explain what we mean by the distribution of tasks, using classification as an example. A learning task can be
narrowly defined as assigning a label to each sample in a dataset, where the label types are finite. This dataset can represent
the task, and the entirety of the dataset can be regarded as the data distribution of that task. Thus, different tasks correspond
to different datasets, with distinct label types (tasks with the same label types are considered the same). In this way, a task
distribution is essentially the distribution over these datasets, with each element of the task distribution corresponding to a
specific dataset.

Step 3: Next, we point out that in this paper, the spurious variable s indeed takes values in an infinite space since it is
represented by a high-dimensional vector. The values of this vector can be arbitrary. We must define s as taking infinite
values because, as discussed in Section 2 and Section 3.1, we reinterpret SSL as learning a task distribution where the label
types involved are infinite.

Different labels may correspond to different latent variables. These differences are represented by different distributions, i.e.,
we model the distribution qϕ(s|x+, xlabel) using a latent variable model. This allows us to derive the distribution of the
spurious variable s for any given label. The values of the probability density can be understood as the degree of correlation
between a specific label and a particular value of the latent variable. Hence, given a label, once its conditional distribution
qϕ(s|x+, xlabel) is determined, we can estimate the corresponding spurious variable s through sampling.

Step 4: We do not theoretically prove that the latent variable model can directly identify the spurious variable s. In this
paper, the identification of s is based on a strong assumption—Assumption 4.1 in the paper. This assumption is justified as
follows:

Based on the literature (Blei et al., 2017; Sriperumbudur et al., 2013), which expresses the true prior in closed form, we
deduce that when the causal relationship between the latent covariate and the label changes with the tasks, an exponential
family distribution is capable of modeling the conditional distribution p(s|xlabel).

Combining Step 1, Step 2, and Step 3, we satisfy the condition that the causal relationship between the latent covariate and
the label changes with the tasks.

Step 5: Theorem 4.3 is also based on Assumption 4.1. The key result of Theorem 4.3 is that we can uniquely identify ϕ
and (f, g,A). However, this strong assumption imposes certain limitations on the accuracy of spurious variable identification,
which is a topic for future research. Despite this strong assumption, our experimental results demonstrate the effectiveness

25



On the Out-of-Distribution Generalization of Self-Supervised Learning

of our method.

H. Explanation on Why Worst-Case is Good for OOD Generalization in SSL
During training, we minimize the loss in the worst-case scenario: maxe∈DLe(pf (xlabel|x+)). For any f , the worst-case loss
maxe∈DLe(pf (xlabel|x+)) is always greater than or equal to the loss in any specific environment e: Le(pf (xlabel|x+)).

If we learn an f that minimizes the worst-case loss maxe∈DLe(pf (xlabel|x+)), then f naturally minimizes
Le(pf (xlabel|x+)) for all e in D. This ensures robust performance across all scenarios, making the worst-case optimization
strategy particularly effective for enhancing OOD generalization.

Therefore, the worst-case can help us to better learning pf (xlabel|x+). A better pf (xlabel|x+) can achieve a less empirical
risk in the training distribution. As shown in Step 3 of “Reformulation of OOD Generalization as Generalization on
Task Distributions” in Appendix E, from the viewpoint of traditional machine learning, SSL can be considered as training
with mini-batches of size 1, where each training sample is a training task. Then, from PAC theory, we can obtain that
minimizing the empirical risk can lead to minimize expected risk, and the expected risk is calculated based on a series of
test tasks. Thus, the worst-case can improve the OOD generalization in SSL.

I. The Logical Structure and Viewpoint
To make it easier for readers to understand, we further clarify the logical structure and viewpoints of this paper in the
following steps:

Step 1: Reformulate SSL from the perspective of task distribution. From the perspective of task distribution, SSL can
be understood as learning a distribution of tasks. Each task during training is a classification task: for G-SSL, the classifier
is modeled using the L2-norm, while for D-SSL, the classifier is modeled using contrastive loss. It is crucial to emphasize
that we unify the concepts of alignment, classifier, and loss function, as they are essentially the same in our formulation.
For further details, please refer to “Reformulation of OOD Generalization as Generalization on Task Distributions” in
Appendix E.

Step 2: Model the learning process of each task using a fuzzy SCM. In our new understanding, we model the learning
process of each task using a fuzzy SCM. It is considered ”fuzzy” because the relationship between s and xlabel is unclear, as
shown in Figure 1. We elaborate on this in Section 3.1, explaining that the relationship between s and xlabel varies across
tasks and cannot be captured using a single SCM.

Step 3: Explain how spurious variables impact OOD generalization in SSL. In Section 3.1, we explain that under
our new understanding, current SSL methods may learn spurious variables, which negatively impact OOD generalization
performance. Specifically, spurious variables affect OOD generalization as follows:

• Spurious variables make it challenging to learn each specific task properly.

• This, in turn, hinders the modeling of the task distribution.

• Consequently, SSL performs poorly on test tasks, where test tasks differ from training tasks.

• This ultimately undermines OOD generalization.

Step 4: Core argument — improving SSL’s OOD performance despite spurious variables. At this point, the core
argument of this paper emerges. Through Theorem 3.4, we demonstrate that even in the presence of spurious variables,
it is possible to propose a method to enhance OOD generalization. From Assumption 3.3, the optimal f∗ should be
Fxlabel . However, without additional constraints, obtaining the optimal f∗ is challenging. Theorem 3.4 implies that when
D is sufficiently large and diverse, an optimal f∗ trained on one distribution will perform worse than random guessing in
some other environments. Under such conditions, no other f obtained from training on any distribution can achieve better
worst-case OOD performance than the PID. In other words, even in the presence of spurious variables, e.g. G-SSL, our
proposed approach can improve the OOD performance of SSL.

Step 5: Why is the worst-case scenario critical for improving SSL’s OOD performance? This is a key insight
into how our approach improves SSL’s OOD performance. During training, we minimize the loss in the worst-case
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scenario: maxe∈DLe(pf (xlabel|x+)). For any f , the worst-case loss maxe∈DLe(pf (xlabel|x+)) is always greater than or
equal to the loss in any specific environment e: Le(pf (xlabel|x+)). If we learn an f that minimizes the worst-case loss
maxe∈DLe(pf (xlabel|x+)), then f naturally minimizes Le(pf (xlabel|x+)) for all e in D. This ensures robust performance
across all scenarios, making the worst-case optimization strategy particularly effective for enhancing OOD generalization.

Step 6: The proposed approach — achieving PID. Our approach achieves PID based on SCM. Why does Algorithm 1
achieve PID? A high level explanation is presented in “Intuitive Explanations for Theorem 4.7” in Appendix F.
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