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Abstract—1In this study, we concentrate on the task of
hanging crumpled garments on a rack. This context presents
two primary challenges: (1) perceiving and grasping the struc-
tural regions of garments that exhibit severe deformations
and self-occlusions; (2) adjusting the configuration of garments
to fit the supporting components of the rack. We propose a
confidence-guided grasping strategy that actively seeks garment
collars through handovers between dual robotic arms. The
exact grasping pose is determined through depth-aware contour
extraction, and its success is evaluated based on a specially
designed metric. Furthermore, we formulate the hanging task as
one-shot imitation learning with an egocentric view. We propose
a two-step hanging strategy that involves coarse approaching
followed by fine transformation. We perform comprehensive
experiments and show that our framework notably enhances
the success rate compared to existing methods.

I. INTRODUCTION

Manipulating garments is challenging due to their infinite
state spaces and complex dynamics [1]. Most studies [2]-
[4] make strong assumptions about task specifications. such
as ideal pre-grasping [4]-[6] and nearly flattened config-
uration [7], [8]. However, garments often undergo severe
self-occlusions due to their deformable nature, complicating
accurate state estimation. In addition, hanging a garment on a
rack is a common household scenario. Current methods [7],
[9] assume prior knowledge of the rack’s positions, which
limits their practical applications. Thus, we seek to address
the task of autonomously hanging a crumpled, collared
garment on a rack while imposing only minimal assumptions
regarding either the garment’s or the rack’s configuration.

In this work, we introduce a novel system for robust
garment manipulation, utilizing wrist cameras for active
perception, as shown in Fig. 1. First, handovers between
the dual arms are employed to actively locate the collar of
garments with a learned detection model, thereby facilitating
a confidence-guided grasping strategy. Second, a two-step
active sensing strategy is implemented to adjust the config-
uration of the grasped garment for alignment with the rack,
allowing for the reproduction of the demonstrated interac-
tion trajectory afterward. Extensive real-world experiments
validate the robustness and superiority of our methods.
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Fig. 1. The complete pipeline for the garment hanging task.

II. METHODS

A. Confidence-guided Grasping

Dual arms handover with random grasping position to
capture diverse garment configurations. Fig. 2(a) illustrates
the autonomous labeling process. The masked depth image D
and the collar mask M are fed into Yolo-v8 [10] model for
detection. During deployment, the model fp takes images of
garments as input and outputs the bounding box B; and the
confidence score S, as illustrated in Fig. 2(b). The angle with
the highest confidence is selected for the following grasping
pose determination.

We develop a depth-aware strategy for computing the
grasping pose, as shown in Fig. 2(c). The principle is to
identify the collar’s contour and designate the center of
this contour as the grasping position. First, we establish a
planar polar coordinate frame in the cropped depth image.
Then, the pixels with minimum depth are extracted in each
partitioned patches. Identifying the largest interval, we find
out the center of the contour as the grasp position.

The grasping success is evaluated through comparing the
depth value between each element ¢; € @ and the center
C' of bounding box D’. The geometry interpretation of this
evaluation is to determine whether the hole structure has been
grasped appropriately.

B. Two-step Hanging

The hanging task is to align the current pose to the
recorded situation in the demonstration. However, directly
learning the 6-DoF transformation is challenging due to
the real-world measurement noise and the coupling effect
between translation and rotation. Thus, we propose a two-
step reaching strategy that consists of a coarse approaching
fc and a fine alignment f4, as shown in Fig. 3. Firstly,
we adjust the camera’s viewpoint to effectively capture the
key structure of the supporting item. Secondly, the rack’s
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Fig. 2. The details of the confidence-guided grasping strategy. (a) The
data processing pipeline. (b) The wrist camera captures several images from
different angles. The angle with highest confidence is selected for grasping.
(c) The collar region is cropped to determine the grasping pose.
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Fig. 3.

The procedures of the two-step hanging alignment.
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Fig. 4. The typical examples of collar detection across various kinds of
garments. (a) TPL. (b) NPL. (c) SS. (d) LS.

(d)

Fig. 5. The typical examples of grasping across various kinds of garments.
(a) TPL. (b) NPL. (c) SS. (d) LS.

TABLE I
PERCEPTION EVALUATION RESULTS OF SEEN AND UNSEEN GARMENTS

TPL NPL SS LS
Precision 0.957 0.762 0.750 0.667
Recall 0.815 0.800 0.750 1.000
Fitness 0.880 0.781 0.750 0.800
Hiou 0.832 0.694 0.751 0.715
Tiou 0.130 0.130 0.074 0.151

Wiow and ;o are the mean and variance of IoU.

keypoints are detected to minimize the position error with
the demonstration.

We generate a synthetic dataset in simulation [11], cov-
ering various observations of the rack, as shown in Fig. 3.
For the coarse model, the label corresponds to the relative
displacement to percept the rack. For the fine model, the
label corresponds to the keypoints of the rack. Since the
supporting point and direction are critical in the hanging task
[12], the endpoint of the supporting part and the connection
point to the standing part are chosen. In deployment, the
camera first moves to a new position guided by the coarse
model. Then, the keypoints are detected based on the fine
model and used for pose alignment. The cost function C' in
the minimization process consists of two components: (1) the
distance error associated with the keypoint of the base pp;
(2) the directional error of the vector from the base keypoint
pp to the tip keypoint pp, computed by fy . In addition to
the alignment error, we also regularize the rotation.

Following the coarse-to-fine alignment strategy, the end-
effector replicates the interaction trajectory demonstrated.

ITI. RESULTS
A. Recognition

We include three kinds of shirts to assess the robustness
of the recognition model, as shown in Fig. 4. Table I
presents the optimal performance regarding fitness in relation
to confidence. These findings indicate that our algorithm
is resilient across various garments. Typically, there are
two typical recognition failures: 1) the model occasionally
misidentifies the sleeve as the collar; and 2) it sometimes
fails to detect collars with a small area.



Fig. 6. Two typical examples of the complete pipeline.

TABLE 11
SUCCESS RATE FOR GRASPING PHASE

TABLE III
SUCCESS RATE FOR HANGING PHASE

B. Grasping

The grasping process starts with crumpled configurations
[13] and proceeds until either the evaluation criteria are sat-
isfied or the maximum number of handovers is reached. Two
typical baselines (GCSR [9] and GPGM [14]) are involved
in the comparisons. Success is defined as instances where
the collar regions are grasped and lifted stably in space. As
shown in Table II, our confidence-guided grasping strategy
outperform the other baseline methods. GCSR operates at
the pixel level, requiring a significant amount of training data.
GPGM identifies the grasping position through supervised
learning, ignoring the structural regions of the garment.

Our enhanced performance can be attributed to the active
search for the structural region and compensating for false
detection through closed-loop evaluation. Fig. 5 illustrates
several successful examples across various kinds of gar-
ments. The grasping pose is designed to insert into the hole
of the collar to achieve a stable grasp. There are two kinds
of common failures, including incorrect detection and wrong
feedback from the evaluation.

C. Hanging

To assess the effectiveness of our proposed method, we
implement two standard baseline approaches (DINO [15])
and KOVIS [16]). Success is only counted when the gar-
ment remains stably positioned on the rack after the hands
are released. As shown in Table III, our two-step hanging
strategy outperforms the other baselines. Both DINO and
KOVIS perform the task using a single-step alignment,
which restricts their effectiveness to situations where the
initial configuration is close to the desired pose. There are
generally two common failure modes in the hanging process:
1) the coarse model may output a displacement vector that

TPL NPL SS LS Left (%) Right (%) All (%)
GCSR [9] 53.3 46.7 333 36.7 Dinobot [15] 36.7 40.0 38.3
GPGM [14] 46.7 46.7 26.7 20.0 KOVIS [16] 333 30.0 31.7
Ours 93.3 93.3 90.0 86.7 Ours 90.0 93.3 91.7
TABLE IV

COMPLETE PIPELINE EVALUATION RESULTS

Close-loop grasping ~ Two-step hanging  Success Rate (%)
v X 70.0
X v 36.7
v v 83.3

exceeds the arm’s reachability; and 2) the keypoint detection
provided from the fine model may be inaccurate due to
measurement noise from the depth camera.

D. Ablation Study

We examine the contributions of the confidence-guided
grasping and the two-step hanging strategy. We eliminate
the close-loop evaluation during the grasping phase and the
coarse approaching stage in the hanging phase respectively.
As shown in Table IV, our algorithm shows a lower success
rate when either of the key modules is removed. On one
hand, without the closed-loop evaluation, the arm occasion-
ally grasps the incorrect region of the garment. On the other
hand, when the coarse approaching stage is omitted, the arm
struggles to achieve the desired predefined pose in certain
challenging scenarios.

Two typical complete episodes are shown in Fig. 6.
Handovers are terminated when the grasp is successful. After
grasping the collar, the hanging algorithm guides the end-
effector to approach and interact with the rack. One limitation
of our algorithm is that a random element of the garment
is selected for grasping during each handover. Taking into
account the complete structure of the garment to determine
the optimal handover point could potentially expedite the
search for the collar in challenging scenarios [17].
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