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Towards Explainable Harmful Meme Detection through
Multimodal Debate between Large Language Models

Anonymous Author(s)∗

ABSTRACT

The age of social media is flooded with Internet memes, necessitat-
ing a clear grasp and effective identification of harmful ones. This
task presents a significant challenge due to the implicit meaning
embedded in memes, which is not explicitly conveyed through the
surface text and image. However, existing harmful meme detection
methods do not present readable explanations that unveil such im-
plicit meaning to support their detection decisions. In this paper, we
propose an explainable approach to detect harmful memes, achieved
through reasoning over conflicting rationales from both harmless
and harmful positions. Specifically, inspired by the powerful ca-
pacity of Large Language Models (LLMs) on text generation and
reasoning, we first elicit multimodal debate between LLMs to gen-
erate the explanations derived from the contradictory arguments.
Then we propose to fine-tune a small language model as the debate
judge for harmfulness inference, to facilitate multimodal fusion
between the harmfulness rationales and the intrinsic multimodal
information within memes. In this way, our model is empowered
to perform dialectical reasoning over intricate and implicit harm-
indicative patterns, utilizing multimodal explanations originating
from both harmless and harmful arguments. Extensive experiments
on three public meme datasets demonstrate that our harmful meme
detection approach achieves much better performance than state-
of-the-art methods and exhibits a superior capacity for explaining
the meme harmfulness of the model predictions.

KEYWORDS

harmful meme detection, explainability, multimodal debate, LLMs

1 INTRODUCTION

The increasing prevalence of social media has led to the emergence
of a novel multimodal entity: meme. A meme consists of a picture
combined or embedded with a concise textual component. Due to
their ease of dissemination, memes have the capability to rapidly
proliferate across various online media platforms. While memes
are often humorously perceived, they become a potential source of
harm when the amalgamation of the image and text is strategically
employed to foster political and socio-cultural divisions.

Harmful memes1 are generally defined as “multimodal units
consisting of an image and accompanying text that has the potential
to cause harm to an individual, an organization, a community, or the
whole society” [48]. For instance, during the COVID-19 pandemic,
a widely circulated meme shown in Figure 1 was produced by
anti-vaccination groups via spoofing the image of Bill Gates. The
widespread circulation of such multimodal scaremongering content
about COVID-19 vaccines inflicted significant damage on both
1
Disclaimer: This paper contains content that may be disturbing to some readers.
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Surrender their firearms, and the confinement 
of people in "virus relocation centres"

Figure 1: Example of trending memes on social media. Meme

text: Surrender their firearms, and the confinement of people
in “virus relocation centres”.

Bill Gates’ personal reputation and the efforts to establish strong
immune defenses2. Therefore, it becomes imperative to develop
automatic approaches for harmful meme detection to effectively
unveil the dark side of memes on the Web. This task, as suggested
in [40], extends beyond mere analysis of meme images and texts
in isolation. It demands a comprehensive examination, aiming not
only to decipher their intrinsic semantics but also to provide the
explainability of prediction results from the detection models.

Previous studies [22, 40] straightforwardly utilized pre-trained
vision-language models [28, 34] to classify harmful meme by train-
ing additional task-specific classification layers. Pramanick et al.
[41] proposed a multimodal framework to achieve state-of-the-art
performance on harmful meme detection by modeling the deep
multimodal interactions from the global and local perspectives.
More recently, Cao et al. [5] proposed a prompt-based method with
the meme text and image caption as the prompt for masked lan-
guage modeling [10, 33] to predict whether the meme is harmful.
A follow-up study [4] tailored additional hand-crafted questions as
the prompt of frozen pre-trained vision-language models, to further
improve image captioning for better meme classification perfor-
mance. However, these approaches for harmful meme detection
only capture superficial harmfulness patterns for classification in
a black-box manner [15], which often overlooks or oversimplifies
the supportive basis to explain the final harmfulness prediction.

Generally, understanding and analyzing memes poses a signifi-
cant challenge due to their implicit meaning that is not explicitly
conveyed through the surface text and image. Providing expla-
nations for why a particular meme is deemed harmful, is crucial
to the content moderation process on social media, as both mod-
erators and users may want to comprehend the harmful content

2https://www.bbc.com/news/55101238
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behind a flagged meme [21]. Nevertheless, a comprehensive expla-
nation requires a deep understanding of commonsense and cultural
context. For example, to explain the harmfulness of the meme in
Figure 1, a human checker needs the socio-cultural knowledge that
the character with a vaccine gun represents Bill Gates from Mi-
crosoft, who is often the target of anti-vaccination campaigners’
memes due to his promotion of vaccine development; and also
should know that the “Ctrl Alt Delete” key combination makes
reference to the mandatory reboot function in Microsoft Windows,
satirizing vaccine injection when combating the virus. In contrast,
conventional detection models lack such natural sentences with
multimodal reasoning chains, hindering their ability to provide
informative explanations for harmfulness predictions.

We contend that the challenge lies in delivering clear and accu-
rate explanations that consistently assist in deciphering the con-
cealed semantics within the multimodal nature of memes. In this
paper, we consider the following key principles in the design of
our approach: 1) To capture implicit meanings of memes, we elicit
and harness the rich prior knowledge embedded in Large Language
Models (LLMs) [3, 6, 51]; 2) As the knowledge elicited directly
from LLMs may exhibit variation and bias, we resort to a core
element of human problem-solving, i.e., debate, to stimulate di-
alectical thinking [2] among LLMs, thereby facilitating complex
reasoning for enhancing the accuracy and explainability of harmful
meme detection; 3) The semantic interaction between the meme
and the harmfulness rationales extracted from the LLM debate
could serve to augment multimodal feature representation, thereby
fostering a deeper contextual understanding of the model in the
context of harmfulness inference. To all these ends, we propose an
Explainable approach for Harmful Meme detection, ExplainHM,
by leveraging the powerful text generation capacity of LLMs via
Chain-of-Thought (CoT) prompting [24, 58]. Specifically, we inspire
LLMs for divergent thinking by conducting a multimodal debate
between two LLM debaters, to generate the rationales derived from
harmless and harmful perspectives. Based on the generated harmful-
ness rationales, we fine-tune a small language model as the debate
judge for harmfulness prediction, to align the multimodal features
between the meme and the harmfulness rationales. In this manner,
our model can effectively focus on contrasting and implicit signals
that indicate harmfulness in the debated arguments, while avoiding
excessive attention to trivial samples that lack inherent controversy.
Our contributions are summarized as follows in three folds:

• To our best knowledge, we are the first to study harmful
meme detection from a fresh perspective on harmfulness ex-
plainability in natural texts, by harnessing advanced LLMs.3

• We propose an explainable approach to conduct a multi-
modal debate between LLMs on memes for explanation
generation from harmless and harmful arguments, which
facilitates harmfulness inference with multimodal fusion.

• Extensive experiments conducted on three meme datasets
confirm that our universal framework could yield superior
performance than previous state-of-the-art baselines for
harmful meme detection, and provide informative explana-
tions for better dialectical thinking on meme harmfulness.

3We will release all the source codes once published.

2 RELATEDWORK

2.1 Harmful Meme Detection

Harmful meme detection is a rapidly growing area in the research
community, driven by the recent availability of large meme bench-
marks [20, 40, 49]. The Hateful Memes Challenge organized by
Facebook [22] further encouraged researchers to develop solutions
for detecting harmful memes in hate speech [9]. More recently, Pra-
manick et al. [40] formally defined the harmful meme concept and
demonstrated its dependence on contextual factors. The complex
nature of memes, which often rely on multiple modalities, makes
them challenging to yield good performance only using unimodal
detection methods like BERT [10] or Faster R-CNN [14, 45]. There-
fore, recent studies attempted to apply multimodal approaches on
the harmful meme detection task.

Previous studies have employed classical two-stream models
that integrate text and vision features, which are learned from
text and image encoders, typically using attention-based mecha-
nisms and multimodal fusion techniques for classifying harmful
memes [20, 22, 49]. Another branch was to fine-tune pre-trained
multimodal models specifically for the task [16, 30, 36, 55]. Recent
efforts have also sought to explore the use of data augmentation
techniques [63, 65], ensemble methods [46, 55, 66] and harmful
target disentanglement [26]. Lately, Pramanick et al. [41] proposed
a multimodal framework by using global and local perspectives
to detect harmful memes, which achieves state-of-the-art perfor-
mances. The follow-up prompt-based approaches [5, 18] attempted
to concatenate the meme text and extracted image captions and
fine-tune masked language models [33] for harmful meme detec-
tion. A more recent study [4] further improved the image captions
with pre-trained vision-language models. However, existing solu-
tions only focused on performing harmful meme classification (i.e.,
predicting if a meme is harmful) with limited explanations for its
prediction [15]. In this paper, we delve into the explainability of
harmful meme detection, aiming to convey the accuracy of predic-
tive models using natural language and assisting users in gaining a
better understanding.

2.2 Large Language Models

LLMs have demonstrated remarkable capabilities in complex rea-
soning [3, 6, 43, 51], such as generating intermediate inference pro-
cedures with CoT prompting before the final output [24, 37, 58, 60].
Advanced sampling strategies have been explored to improve CoT
by generating diverse reasoning paths, e.g., Self-Consistency [57],
Auto-CoT [60], Complexity-based Consistency [13], Multi-Chain
Reasoning [59], and Progressive-Hint Prompting [62]. More re-
cently, some vision LLMs [8, 31, 64] have emerged, showing ex-
cellent generalization performance in multimodal tasks. Specifi-
cally, LLaVA [31] projects the output of a visual encoder as input to
LLaMA [52] and trains both the alignment network and the LLM on
synthetic data. Unfortunately, the large size of LLMs restricts their
deployment on detecting harmful memes with different modalities,
regardless of how they are enhanced with strategic text prompt-
ing [61]. In this work, we conduct a multimodal debate between
LLMs by using the potential labels as prompting arguments, which
further advocates an explainable paradigm to fine-tune smaller
language models (LMs) for boosting harmful meme detection.

2
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Meme Text: 
the original scarecrow

... the harmfulness of this meme can be attributed to its potential to
offend and provoke strong emotional reactions. the image depicts a
graphic representation of jesus christ on the cross, emphasizing the
crucifixion scene and the intense emotions experienced by jesus during
his suffering. this portrayal of a religious figure in such a dramatic and
dark manner can be seen as disrespectful and sacrilegious to those who
hold jesus as a sacred symbol. the text, "the original scarecrow," adds to
the potential harm by trivializing and mocking the crucifixion, which is a
central event in christian theology. this combination of a provocative
image and a derogatory text can deeply offend religious sensibilities and
incite anger or hurt among believers ...

... the meme, titled "the original scarecrow," is classified as harmless. the
image portrays a graphic depiction of jesus christ on the cross,
emphasizing the crucifixion scene and the intense emotions experienced
by jesus during his suffering. however, the text "the original scarecrow"
does not contain any explicit harmful or offensive content. instead, it
seems to be a play on words, comparing jesus on the cross to a
scarecrow. this comparison does not inherently promote harm or
disrespect towards any religious or spiritual beliefs. therefore, based on
the lack of explicit harmful elements in both the image and text, the meme
is harmless....

...
Multimodal Debate between LLMs

HARMLESS

LM Decoder

HARMFUL

Multimodal Judge
with Small LM

Harmful

Multimodal
Judge

with LLM

Fine-tuned Params

Figure 2: The overall pipeline of our method. We first conduct the multimodal debate between LLMs, to generate the conflicting

rationales from the harmless (green) and harmful (lilac) positions. Then the generated rationales are used to train a small

task-specific LM judge with multimodal inputs of memes.

3 OUR APPROACH

3.1 Problem Statement

We define a harmful meme detection dataset as a set of memes,
where each meme 𝑀 = {I,T } is a tuple representing an image
I that is associated with a text sequence T . Following previous
work [3, 5, 32], to better transfer and utilize the knowledge learned
in pre-trained LMs, this task is formulated as a natural language
generation problem, where ourmodel takes thememe textT and the
meme image I as input and generates a textual output of the label
𝑦 ∈ {harmful, harmless} to clearly express whether the meme is
harmful or not.

Our core idea is to facilitate reasoning in the model for harmful
meme detection with conflicting rationales and dialectical think-
ing [2], which involves arguments holding different points of view
about a subject and strives to arrive at a higher level of resolution,
by leveraging LLMs to elicit textual rationales from harmless and
harmful perspectives as additional knowledge of the model. The
LLM rationale corresponding to the harmfulness prediction of our
model could be naturally output as the explanatory basis of the
model’s decision.

The overview of our framework is shown in Figure 2. It consists
of the Multimodal Debate module between LLMs (§3.2), the Multi-
modal Judge module with LLM (§3.3), and the Multimodal Judge
module with Small LM (§3.4).

3.2 Multimodal Debate between LLMs

With the aid of LLMs, it becomes plausible to generate natural
language rationales that delve into the implicit meaning of memes,
facilitating the determination of whether they have harmful implica-
tions and serving as a basis to evaluate their harmfulness. However,
it is very likely that the rationales generated directly from LLMs can
be biased by preconceptions, potentially leading to wrong labels and
hampering detection performance [19]. Taking the harmful meme

in Figure 2 as an example, directly prompted with “Is this meme
harmless or harmful?”, the LLM tends to perceive it as harmless
with the rationale that it is a playful comparison between the sur-
face image of Jesus and scarecrows while ignoring the depth of its
relevant cultural and religious background. In this paper, we resort
to a fundamental characteristic of human problem-solving, i.e., de-
bate, to encourage divergent thinking for harmful meme detection.
Fostering the model to explore different viewpoints and reasoning
pathways, we design a method to inspire a multimodal debate about
the memes between LLMs, in which two agents express their own
arguments in the state of “tit for tat” from harmless and harmful
perspectives. And then, based on such a bipartisan type of thought
chains, a judge agent will be able to infer meme harmfulness by
indicating which rationale is more reasonable. In this section, we
focus on the prompting method for debate generation.

Given a meme sample𝑀 = {I,T }, we curate a prompt template
𝑝∗ that consists of the meme text T and the potential harmfulness
label ∗ ∈ {ℎ𝑙, ℎ𝑓 }4 that denotes “harmless” or “harmful” as ob-
served attributes to prompt the vision LLMs, i.e., LLaVA [31]. Each
debater will generate a rationale 𝑟∗, which elicits the reasoning
knowledge about how to infer a given harmfulness label ∗ based
on the interplay of the meme text T and the meme image I.

Specifically, we design the prompt template 𝑝∗ as follows:
“Given the meme, with the Text: [T ] embedded in the Image, please

provide a streamlined explanation associated with the text and the

image by using the contextual background commonsense knowledge,

to explicitly explain how the harmfulness of the meme is reasoned as

[∗].”.
Based on the template, each LLaVA debater employs a variant of

texts, i.e., either 𝑝ℎ𝑙 or 𝑝ℎ𝑓 , as the prompt to generate a correspond-
ing rationale 𝑟ℎ𝑙 or 𝑟ℎ𝑓 , derived from the harmless and harmful
positions, respectively. As we provide the potential harmfulness

4Here the potential harmfulness labels are just used to formalize two opposite stand-
points to argue regardless of what the ground-truth label is.

3
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label as part of the attributes in each specific prompt, the rich con-
textual background knowledge could be activated to generate a
rationale for supporting the argument that intends to promote the
potential harmfulness label separately in each debate. In this way,
the contextual nuances of memes that contribute to the respec-
tive candidate harmfulness categories could be better presented
and contrasted, so that the true harmfulness will be revealed and
reasoned by the rest of the model from dialectical views.

3.3 Multimodal Judge with LLM

Inspired by the CoT prompting [58], we exploit the competing
arguments from the multimodal debate to provide dialectical rea-
soning chains for an LLM judge with emergent abilities, enabling
it to decide whether memes are harmful or not. Thus, we feed the
conflicting rationales as reasoning steps into the LLM judge for
inferring the predicted harmfulness label.

While the judge can be implemented using any LLM with com-
parable or even stronger capabilities as the debaters, we opt to
employ the same LLM for the judge to ensure that no additional
variates, such as different kinds of inductive biases, are introduced.
Specifically, we cast the rationales 𝑟ℎ𝑙 and 𝑟ℎ𝑓 into a conflicting
thought chain using the CoT prompting method [58, 60], acting as
the textual prompt of the LLM judge:

“Given the meme, with the Text: [T ] embedded in the Image, and

the following two meme rationales: (1) Harmless: [𝑟ℎ𝑙 ]; (2) Harmful:

[𝑟ℎ𝑓 ], is this meme harmless or harmful? ”
Following the input prompt, the LLM judge infers the harm-

fulness label, which actually provides its preference over the two
labels indicating which corresponding explanation from the debate
is more reasonable than the other one. This could be either taken
as the final output alone, or used as an extra reference for a more
accurate prediction model described in the subsequent section.

3.4 Multimodal Judge with Small LM

Although the LLM judge is enhanced by the multifaceted informa-
tion provided from the multimodal debate, its inference still could
be unreliable due to the inherent limitations of LLMs [1, 17]. On the
other hand, it is impractical to fine-tune the LLM judge for this task
due to the huge amount of model parameters. For a more reliable
judgment, we propose to fine-tune a smaller LM judge that classifies
memes as harmful or harmless, by leveraging the rationales derived
from the contradictory harmfulness arguments as prior knowledge.
This design strives to facilitate multimodal interactions, allowing
the rationales from the LLM debaters to effectively synergize with
the intrinsic multimodal information present in memes.

For a meme sample𝑀 = {I,T }, we first concatenate the meme
text T and the harmfulness rationales as the input text of our Small
LM judge. Similar to the fixed input order of rationales in the LLM
judge, we initialize the input text T̂ of the Small LM judge as:

T̂ = [T , 𝑟ℎ𝑙 , 𝑟ℎ𝑓 ], (1)

where [·, ·, ·] denotes the concatenation operation.
Alternatively, we can refer to the harmfulness inference result

given by the LLM judge when fine-tuning the Small LM judge. In
this setting, we place the one rationale that the LLM judge deems
more reasonable in front of the other one. Specifically, we prepare

the input text T̂ as:

T̂ = [T , 𝑟 (1) , 𝑟 (2) ], (2)

where (1) ≻ (2), denoting that the LLM judge prefers 𝑟 (1) to 𝑟 (2) ,
and (1), (2) ∈ {ℎ𝑙, ℎ𝑓 }. Compared to a fixed sequence of rationales
in Equation 1, adjusting the rationale order based on the prior
from the LLM judge aims to implicitly leverage LLM knowledge
and insights. This adjustment helps the Small LM judge prioritize
challenging training examples that were misjudged by the LLM
judge, while avoiding excessive attention to trivial examples that
have already been correctly detected by the LLM judge. By standing
upon the shoulders of giants, we hypothesize that the model can
better refine its understanding of the memes while learning to
rectify the misperception of the LLM judge with the training data.

Then we encode the input text T̂ and the meme image I to
obtain their embedding vectors as follows:

𝐻0
T̂
= TE(T̂ ), 𝐻I = VE(I), (3)

where TE(·) denotes the text embedding layer of the LM Encoder.
And𝐻0

T̂
∈ R𝑚×𝑑 is the token embeddings output by the embedding

layer of Transformer encoder [54], where𝑚 is the text length of
T̂ and 𝑑 is the size of the hidden states. Benefiting from the Rela-
tive Position Encoding of LMs [44], the judgment by LLM could be
injected into the Small LM judge based on the relative position in-
formation of the input sequence. VE(·) is the Vision Extractor based
on a pre-trained vision Transformer [42] with frozen parameters. It
is used to fetch the patch-level features of the image with 𝑛 patches,
which is projected into the visual representations 𝐻I ∈ R𝑛×𝑑 .

To support semantic alignment between the meme sample and
the harmfulness rationales for better cross-modal context under-
standing, we exploit a cross-attention mechanism to attend the
visual representations to the textual ones, for Multimodal Fusion
of the textual and visual information in our Small LM judge:

𝐻 𝑖I = softmax

(
𝑄 T̂𝐾

⊤
I√︁

𝑑𝑘

)
𝑉I , (4)

where the query, key and value are defined as {𝑄 T̂ , 𝐾I ,𝑉I } =

{𝐻 𝑖
T̂
𝑊 𝑖
𝑄
, 𝐻I𝑊

𝑖
𝐾
, 𝐻I𝑊

𝑖
𝑉
}, {𝑊 𝑖

𝑄
,𝑊 𝑖

𝐾
,𝑊 𝑖

𝑉
} ∈ R𝑑×𝑑𝑘 are trainable

weights, 𝐻 𝑖
T̂

is the input hidden states of the 𝑖-th LM Encoder

layer and 𝐻 𝑖I is the attended visual features. Then we can fuse 𝐻 𝑖I
with 𝐻 𝑖

T̂
to attain the interplay representations for a meme:

𝐻 𝑖+1
T̂

= LME𝑖
(
𝐻 𝑖
T̂

)
+ 𝐻 𝑖I𝑊

𝑖
𝑂 , (5)

where LME𝑖 (·) is the 𝑖-th layer of the LM Encoder,𝑊 𝑖
𝑂
denotes the

linear projection, and 0 ≤ 𝑖 ≤ 𝐿−1 given the total 𝐿 layers in the LM
Encoder. We denote 𝐻 = 𝐻𝐿

T̂
as the final interplay representations.

Model Training. We feed the interplay representations 𝐻 ∈ R𝑚×𝑑

into the LM Decoder, implemented as a Transformer-based decoder,
to generate the predicted label. With the generative objective [44]
adapted to pre-trained LMs, the Small LM judge could leverage
prior reasoning knowledge absorbed in the pre-training stage to
better deduce harmfulness prediction. Specifically, our Small LM

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards Explainable Harmful Meme Detection through Multimodal Debate between Large Language Models Conference WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Harmful meme detection results on three datasets. The accuracy and macro-averaged F1 score (%) are reported as the

metrics. The best and second test results are in bold and underlined, respectively. (𝑝 < 0.05 under t-test)

Dataset Harm-C Harm-P FHM

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Text BERT [10] 70.17 66.25 80.12 78.35 57.12 41.52
Image-Region [14] 68.74 62.97 73.14 72.77 52.34 34.19
Late Fusion [40] 73.24 70.25 78.26 78.50 59.14 44.81
MMBT [20] 73.48 67.12 82.54 80.23 65.06 61.93
VisualBERT COCO [28] 81.36 80.13 86.80 86.07 61.48 47.26
ViLBERT CC [34] 78.70 78.09 87.25 86.03 64.70 55.78
MOMENTA [41] 83.82 82.80 89.84 88.26 61.34 57.45
MaskPrompt [5] 84.47 81.51 88.17 87.09 72.98 65.24
Pro-Cap [4] 85.01 83.17 89.32 87.91 74.95 71.68
ExplainHM 87.00 86.41 90.73 90.72 75.60 75.39

judge denoted as 𝑓 (I, T̂ ) is trained by minimizing the loss:

L = CE
(
𝑓 (I, T̂ ), 𝑦

)
, (6)

where CE(·) denotes the cross-entropy loss [50] between the gen-
erated label token and the ground-truth harmfulness label 𝑦.

When the LLM judge is not considered, the relative positions
between the harmfulness rationales are invariant. Thus, the order
information might not affect the model’s learning much. When
integrated with the LLM judge, our model can be aware of the vari-
ation of relative positions between the harmfulness rationales given
the prior preference of the LLM judge, which would encourage the
model to learn by contrasting with the ground-truth labels. To this
end, we utilize the T5 encoder-decoder architecture [7, 44] with
Relative Position Encoding to initialize our model. In this manner,
during the task-specific fine-tuning process, our Small LM judge
is able to attend over the implicit harm-indicative patterns in the
rationales that were incorrectly inferred by the LLM judge, thus
improving the overall detection performance. Meanwhile, the ra-
tionale indicated by the final prediction could serve as a supportive
basis to explain the decision in natural language.

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We use three publicly available meme datasets for evalu-
ation: (1) Harm-C [40], (2) Harm-P [41], and (3) FHM [22]. Harm-C
and Harm-P consist of memes related to COVID-19 and US politics,
respectively. FHMwas released by Facebook as part of a challenge to
crowd-source multimodal harmful meme detection in hate speech
solutions. Different from FHM that each meme was labeled as harm-

ful or harmless, Harm-C and Harm-P were originally labeled with
three classes: very harmful, partially harmful, and harmless. For a
fair comparison, we merge the very harmful and partially harm-

ful memes into the harmful class, following the setting of recent
work [4, 5, 41].

Baselines. We compare our model with several state-of-the-
art (SoTA) harmful meme detection systems: 1) Text BERT [10];
2) Image-Region[14, 45]; 3) Late Fusion [40]; 4) MMBT [20];
5) VisualBERT COCO [28, 29]; 6) ViLBERT CC [34]; 7) MO-

MENTA [41]; 8) MaskPrompt [5]; 9) Pro-Cap [4]. We use the
accuracy and macro-averaged F1 score as the evaluation metrics.

The data statistics, baseline descriptions and model implementa-
tion are detailed in Appendix §A, §B and §C, respectively.

4.2 Harmful Meme Detection Performance

Table 1 demonstrates the performance of our proposed method Ex-
plainHM versus all the compared harmful meme detectionmethods
on the Harm-C, Harm-P and FHM datasets. It is observed that 1)
The performance of the baselines in the first group is significantly
lower, primarily because they only utilize unimodal features such
as either text or image. On the other hand, the remaining base-
lines effectively leverage the multimodal features extracted from
both text and image parts of memes. 2) The multimodal models in
the second group outperform the unimodal ones. The early-fusion
models with multimodal pre-training (i.e., VisualBERT COCO and
ViLBERT CC) outperform the simple fusion with unimodal pre-
training (i.e., Late Fusion and MMBT) on Harm-C and Harm-P
datasets, while MOMENTA performs relatively better in the sec-
ond group by considering global and local information of memes,
especially on the Harm-P dataset. 3) However, as the images in
FHM datasets are more informative and high-quality, MaskPrompt
outperforms MOMENTA by incorporating additional extracted en-
tities and demographic information of the image into the masked
language models, besides just captioning the image into the prompt.
Based on MaskPrompt, Pro-Cap further improves image captioning
with pre-trained vision-language models [27], which leads to the
best performance among all the baselines.

Under the full setting (i.e., with the integration of the LLM judge
and Small LM judge), our ExplainHM improves over the best base-
lines by 3.24%, 2.46%, and 3.71% in terms of Macro-F1 score on
Harm-C, Harm-P, and FHM datasets, respectively. We observe that
1) The improvements observed on the Harm-P dataset are rela-
tively subdued compared to the advancements made on the other
two datasets. Moreover, there are minimal discrepancies in the per-
formance of all the baselines on the Harm-P dataset. This can be
attributed to the scale of the Harm-P dataset, which not only has
the smallest volume of data but also exclusively comprises politics-
related harmful memes. 2) A similar phenomenon is evident in
the Harm-C and FHM datasets, where ExplainHM demonstrates
greater performance improvements as the scale and the difficulty of
the dataset increase. ExplainHM showcases consistent and adapt-
able performance across all benchmark datasets for harmful meme
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Table 2: Ablation studies by removing components from our

proposed framework.

Dataset Harm-C Harm-P FHM

Model Acc. Mac-F1 Acc. Mac-F1 Acc. Mac-F1

ExplainHM 87.00 86.41 90.73 90.72 75.60 75.39
w/o MD 83.33 81.44 88.17 88.17 73.60 73.41
w/o LLMJ 85.59 84.80 88.44 88.43 71.40 70.94
w/o SLMJ 58.19 56.17 56.11 52.59 57.00 56.61
w/o HlD 82.20 81.76 89.06 89.05 70.60 69.55
w/o HfD 85.31 84.78 88.75 88.74 72.60 72.26
w/o MF 83.90 83.30 88.44 88.43 72.80 72.20
w/o UR 85.59 84.80 89.38 89.37 73.40 73.24

Table 3: Ablation studies by adding paradigms on LLMs.

Dataset Harm-C Harm-P FHM

Model Acc. Mac-F1 Acc. Mac-F1 Acc. Mac-F1

LLaVA 50.28 49.70 49.84 34.86 51.20 46.51
w/ MD_CoT 58.19 56.17 56.11 52.59 57.00 56.61
w/ ExplainHM 87.00 86.41 90.73 90.72 75.60 75.39

ChatGPT 70.06 64.05 59.87 58.02 56.20 55.50
w/ MD_CoT 68.08 65.82 62.07 61.69 62.00 61.62
w/ ExplainHM 86.16 85.22 90.00 89.98 76.60 76.39

detection, thanks to its astute discernment of harmful memes. The
key differentiator lies in the fact that while all the baselines solely
focus on recognition, our model is equipped with rationales from
multimodal debate, which empowers our model to unveil harm-
ful content by leveraging seemingly unrelated textual and visual
elements within memes.

4.3 Ablative Studies

We perform ablative studies on several variants of ExplainHM:
1) w/o Multimodal Debate (MD): Simply fine-tune the Smaller LM
judge with the multimodal fusion of the meme text and the meme
image without the stage of multimodal debate between LLMs; 2)w/o
LLM Judge (LLMJ): Simply concatenate the harmfulness rationales
into the input text in a fixed order as Equation 1 without pre-ranked
by the LLM judge; 3) w/o Small LM Judge (SLMJ): Simply use the
output of the LLM judge as the final prediction, as depicted in §3.3;
4) w/o Harmless Debater (HlD): Only concatenate the rationale from
the harmful argument together with the meme text as the input
text of the Small LM judge; 5) w/o Harmful Debater (HfD): Only
concatenate the rationale from the harmless argument together
with the meme text as the input text of the Small LM judge; 6)
w/o Multimodal Fusion (MF): Instead of the fusion mechanism on
the multimodal features in our Small LM judge, we only append
the linguistic features from image captioning together with the
input text during encoding; 7) w/o Unpreferred Rationale (UR): Only
concatenate the rationale preferred by the LLM judge and the meme
text as the input text of the Small LM judge.

As demonstrated in Table 2, the ablative models suffer different
degrees of performance degradation, indicating the effectiveness
of our proposed components for harmful meme detection by mul-
timodal debate between LLMs and multimodal fusion with small
LM. Specifically, the performance of ExplainHM largely decreases

in the ‘w/o MD’ setting due to the lack of multimodal rationales
generated from LLMs about the seemingly uncorrelated modali-
ties in memes. The ‘w/o LLMJ ’ setting also achieves worse perfor-
mance than ExplainHM, suggesting that the prior preference of
the LLM judge on the rationales from different positions plays an
important role and provides positive guidance in identifying the
harm-indicative elements in memes. For ‘w/o SLMJ ’, the decrease is
significant, underscoring the importance of the Small LM judge fine-
tuned specifically for this task. ExplainHM makes improvements
over ‘w/o HlD’ and ‘w/o HfD’, which implies the promoting role
of our multimodal debate mechanism that incorporates rationales
from the harmless and harmful arguments into the language model.
Moreover, the ‘w/o HlD’ setting leads to a larger performance drop
than ‘w/o HfD’, because the amount of the harmless meme samples
in the training data is more than that of the harmful ones. Compared
with ExplainHM, the performance of ‘w/o MF ’ also significantly
decreases, highlighting the importance of the cross-attention fu-
sion mechanism to mitigate the possible misalignments, like the
information loss about the meme images in the rationales. In the
‘w/o UR’ setting, we further remove the rationale not preferred by
the LLM judge in the input text of the Small LM judge, which also
results in performance degradation. This reaffirms the usefulness
of the conflicting rationales appended in the input text that make
our model hardly compromised when there could be discrepancies
between the LLM judge and the ground truth.

To enhance the robustness of the detection performance evalua-
tion, we further conduct the ablative studies by adding the paradigms
on LLMs to draw more insightful comparisons among variants of
LLMs, as shown in Table 3. LLaVA and ChatGPT are selected as the
representative LLMs from the vision and language perspectives. We
devise three variants of paradigms based on LLMs for the harmful
meme detection task: 1) LLaVa/ChatGPT : Directly prompt a repre-
sentative LLM, to infer harmfulness for harmful meme detection; 2)
w/ MD_CoT : The LLM judge with Multimodel Debate CoT reason-
ing but without the presence of Small LM judge, the similar setting
to ‘w/o SLMJ ’ in Table 2; 3) w/ ExplainHM : Our proposed paradigm
ExplainHM under full setting based on the integration of the LLM
judge and Small LM judge, where LLMs are LLaVA or ChatGPT.

We have the following observations: 1) The direct deployment
of both LLaVA and ChatGPT struggles since the models are not
specifically designed for this task, highlighting the necessity of our
Multimodal Debate mechanism to alleviate the issues of directly
promoting LLMs for harmfulness prediction. 2) The ‘w/ MD_CoT ’
prompting strategy could effectively enhance the detection perfor-
mance of LLMs, especially LLaVA, which suggests that the con-
flicting rationale generation from the Multimodal Debate stage
is a reasonable way to optimize the reasoning chains for LLMs
applied to the harmful meme detection task. 3) Besides using the
‘w/ MD_CoT ’ prompting strategy in the LLM judge, our proposed
paradigm ‘w/ ExplainHM’ further improves the model’s perfor-
mance by focusing on the fine-tuning of the Small LM judge to
avoid impractical fine-tuning of the LLM judge while considering
the prior preference given by the LLM judge. Furthermore, the
‘w/ ExplainHM’ setting achieves excellent performance based on
both LLaVA and ChatGPT, which demonstrates that the choice of
LLMs is orthogonal to our proposed paradigm that can be easily
augmented with existing LLMs without any other change.
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Table 4: Automatic GPT-4 evaluation of the explanation qual-

ity on harmful memes in FHM dataset.

Explanations LLaVA ChatGPT Human

Informativeness 4.07 4.94 2.27
Readability 4.71 4.98 2.36
Soundness 4.25 4.87 2.99
Conciseness 3.93 3.19 4.07
Persuasiveness 4.03 4.82 2.64

Table 5: Human evaluation of the explanation quality on

harmful memes in FHM dataset.

Explanations LLaVA ChatGPT Human

Informativeness 4.05 4.01 2.64
Readability 3.99 3.95 3.96
Soundness 3.81 3.97 2.94
Conciseness 3.25 3.12 4.30
Persuasiveness 3.75 3.76 2.78

4.4 Evaluation of Explainability

Automatic Evaluation. Generally, there is no gold explanation
about memes for the harmful meme detection task due to the di-
verse forms of textual expression. Devising reliable metrics without
reference is not a straightforward task and can also be problem-
atic. Furthermore, different types of text necessitate the evaluation
of distinct aspects, such as informativeness, fluency, soundness,
etc. [11, 35], which makes it hard to design metrics for each type of
text and dimension separately. Nowadays, GPT-4 [38] has revolu-
tionized the field of LLMs with a more powerful expressive capacity.
In this subsection, we present a new automatic evaluation using
GPT-4 in a reference-free mode, to evaluate the text quality of the
explanations generated by our approach from LLaVA and ChatGPT.

We randomly selected 3,000 harmful samples from the FHM
dataset. For a more comprehensive comparison, we further pro-
vide GPT-4 with human-written explanations in hate speech by
drawing the practice of previous literature [15] for the sampled
memes. Specifically, GPT-4 is prompted to score the explanations
w.r.t. each meme according to the following criteria: 1) Informative-

ness: the explanation provides new information, such as explaining
the background and additional context; 2) Readability: the explana-
tion follows proper grammar and structural rules; 3) Soundness: the
explanation seems valid and logical; 4) Conciseness: the explanation
contains less redundant information; 5) Persuasiveness: the expla-
nation seems convincing. For each criterion, a 5-point Likert scale
was employed, where 1 meant the poorest quality and 5 the best.

Table 4 demonstrates the averaged scores of the explanation
evaluation by GPT-4 on the three sources (i.e., LLaVA, ChatGPT,
and Human) regarding the five criteria. We could observe that: 1)
Compared with LLaVA and ChatGPT, the explanations written by
human beings [15] are generally scored the highest in Conciseness
but the lowest in the other aspects, because the mean explanation
length is 13.62 which is shorter than that of LLaVA (125.37) and
ChatGPT (180.82). 2) Interestingly, althoughGPT-4 ismore powerful
than LLaVA and ChatGPT, it tends to give higher scores to ChatGPT
overall than LLaVA. We speculate the reason for such a bias is that
both GPT-4 and ChatGPT are developed as successors of the LLM

(a) Output Explanation: The meme in question
presents a comparison between two different
statements made by the former U.S. President,
Donald Trump. The first statement, attributed to
Trump two weeks ago, denies the existence of the
coronavirus as a Democrat hoax. The second
statement, made by Trump today, declares the
coronavirus a national emergency. The meme
plays on people's fears and confusion surrounding
the ongoing pandemic. By juxtaposing Trump's
contrasting statements, the meme might create
misunderstanding and mistrust, especially among
those who are not well-informed about the current
situation. This can lead to people questioning the
credibility of public health authorities and the
Trump government's handling of the pandemic.

Meme text: TRUMP 2 WEEKS AGO:
"The Coronavirus is a Democrat
Hoax!" TRUMP TODAY: "I'm
declaring the Coronavirus a National
Emergency."

(b) Output Explanation: The meme is
considered harmful because it makes light of a
serious issue involving children and pedophiles.
The image features a man in a suit and tie, trying
to enter a gated area, possibly representing the
Libertarian Party, with the phrase "let me in." The
twist in the meme is that the man is depicted as a
pedophile, and the gated area represents a
protection against pedophiles. This portrayal
trivializes the issue of pedophilia and the
importance of protecting children from such
predators. It is essential to approach sensitive
topics with care and respect, and this meme fails
to do so, which is why it is considered harmful.

Meme text: THE LIBERTARIAN
PARTY. LIBERTARIAN PARTY HAS
SOMETHING TO OFFER EVERYONE!
Unregulated child labor laws.
PEDOPHILES. LET ME IN
PEDOPHILES. LET ME INNNNNN!!!

(c) Output Explanation: The meme featuring the
image of a man in a military uniform and the text
'best gamer ever 6 million kills, 1 death' is
considered harmful because it trivializes and
makes light of a serious and tragic historical event
- the Holocaust. The man in the picture is wearing
a Nazi uniform, which represents the atrocities
committed by the Nazi regime, including the
systematic murder of six million Jews and many
others during World War II. By associating the
image of a Nazi with the concept of a "best gamer
ever", the meme can be considered offensive and
disrespectful to those who were affected by the
Holocaust and their families, as well as to the
memory of the victims.

Meme text: best gamer ever 6 million
kills, 1 death

Figure 3: Examples of correctly predicted harmful memes in

(a) Harm-C, (b) Harm-P, and (c) FHM datasets.

InstructGPT [39], so that the generated explanations by ChatGPT is
more to the taste of GPT-4. 3) The performance of LLaVA evaluated
by GPT-4 achieves an excellent balance between Conciseness and
Persuasiveness, which implies that the LLaVA-generated explana-
tions could succinctly impress GPT-4. We provide more results on
the Harm-C and Harm-P data, and details on the reproducibility of
the automatic GPT-4 evaluation in Appendix §G and §C.5.

Human Evaluation. Considering that automatic evaluation
cannot realistically measure the quality of the chosen explanations
generated by the multimodal debate between LLMs, we further
conduct the human subjects study to evaluate the overall quality of
explainability. 50 harmful samples are randomly selected from the
FHM test set and 10 professional linguistic annotators are asked to
evaluate the explanations of our model from LLaVA [31] and Chat-
GPT [39], further with those written by Human [15]. The metrics
of human evaluation are the same as the automatic evaluation.

The scores of human evaluation are shown in Table 5. Note that
the intra-class agreement score is 0.625. The average Spearman’s
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Figure 4: The performance of our ExplainHM and other multimodal baselines with respect to the parameter size.

correlation coefficient between any two annotators is 0.682. We
can observe that: 1) The readability scores of all sources are high,
which is because LLMs can generate fluent sentences as human
beings towards the harmful meme explanation with commonsense
knowledge. Compared with the automatic GPT-4 evaluation, the
readability score of human-written explanations largely improved
in human evaluation. 2) Except for the readability scores, the scores
of human-written explanations in the other four metrics are similar
in both human evaluation and automatic GPT-4 evaluation. 3) It
is worth noting that although the explanations generated by our
framework from the multimodal debate on ChatGPT received rel-
atively lower scores in the human evaluation compared to those
under automatic GPT-4 evaluation, it still, along with LLaVA, both
achieved an overall superior performance to the human-written
explanations from previous work [15], which do not explicitly ex-
plain the complex and integrated semantic information present in
the memes. 4) According to the feedback of the evaluators, LLaVA
can efficiently generate more concise explanations with correct key
contents than ChatGPT which tends to generate lengthy and inclu-
sive sentences. Overall, although there is still room for developing
a more comprehensive metric for evaluating harmfulness expla-
nations, the results reveal that it is feasible and reasonable for us
to devise such a universal framework for harmful meme detection
and explanation, by leveraging the impressive abilities of text gen-
eration in LLMs. More human subject studies and broader ethical
statements are provided in Appendix §H and §L, respectively.

4.5 Case Study

One key advantage of our model is that the rationales generated in
the multimodal debate between LLMs could serve as the output ex-
planations for predicted results. For the correctly predicted harmful
meme test samples, the output explanation refers to the rationale
from the harmful argument, to understand the model predictions
more transparently and intuitively, as exemplified in Figure 3.

From the explanations in natural text, we observe that 1) the
multimodal information related to the meme text and image could
be well understood with commonsense knowledge. For example, in
Figure 3(a), the character in the image is recognized as “the former
U.S. President”, which could be linked to the “TRUMP” in the text;
in Figure 3(b), the recognized “gated area” in the image could be
recognized as protection against “PEDOPHILES” to satire “THE
LIBERTARIAN PARTY” in the text; and in terms of Figure 3(c), the

man in the image could be associated with “the Nazi regime” related
to “gamer” in the text. 2) Furthermore, the interplay of multimodal
information could be cognized with advanced reasoning. Benefit-
ting from the rich multimodal understanding of the memes, the
“comparison between two different statements” in Figure 3(a) can
be reasoned to cause harmful consequences like “misunderstanding
and mistrust”; the juxtaposition of a political party with the harm-
ful topics “involving children and pedophiles” could be reasoned
as trivializing such a serious issue in Figure 3(b); and the meme
in Figure 3(c) shows disrespects to “those who were affected by
the Holocaust and their families”. In this way, the rich but implicit
correlations between the meme text and image could be explained
in readable snippets, which are also potentially valuable for aiding
human checkers to verify the model predictions. We further provide
more case studies and error analysis in Appendix §J and §I.

4.6 Impact of Model Size and Backbones

Weprovide a comparison of performance on the threememe datasets
with regard to the number of trainable parameters for ExplainHM
and the other multimodal baselines in Figure 4. We can observe
that our model (ExplainHM_TB) has already achieved outstanding
performance on the three benchmarks with T5Base as the Small LM
judge, which has a smaller size than the SoTA baseline Pro-Cap_RL
based on RoBERTaLarge (over 300M parameters). For a more com-
prehensive comparison, we revise our Small LM judge with the
backbone of Pro-Cap_RL to build the ExplainHM_RL model. We
observed that ExplainHM_RL still outperforms all the baselines on
Harm-C and FHM datasets by a large margin, yet is competitive on
Harm-P due to the smaller data scale. In general, the results demon-
strate that ExplainHM is effective and not overly dependent on
the parameter size of the Small LM judge to enhance performance.

5 CONCLUSION AND FUTUREWORK

We proposed an explainable approach for harmful meme detec-
tion. We first conducted a multimodal debate between LLMs about
the meme to generate contradictory rationales from harmless and
harmful arguments. Then utilizing these rationales, we designed a
tunable language model as the judge to infer meme harmfulness.
Our proposed framework is evaluated on three meme benchmarks,
demonstrating its effectiveness in both detection and explainabil-
ity. Moving forward, we plan to further enhance the automatic
evaluation of the explanation quality as part of our future work.
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Table 6: Statistics of Datasets.

Datasets Train Test
#harmful #harmless #harmful #harmless

Harm-C 1064 1949 124 230
Harm-P 1486 1534 173 182
FHM 3050 5450 250 250

A DATASETS AND METRICS

The statistics of the three datasets are shown in Table 6. We use the
accuracy and macro-averaged F1 score as the evaluation metrics of
harmful meme detection, where the macro-averaged F1 is the more
important metric owing to the imbalanced class prevalence (see
Table 6), to capture competitive performance beyond the majority
class.

B BASELINES

We compare our model with several state-of-the-art harmful meme
detection systems: 1) Text BERT: BERT [10] is utilized as the un-
omodal text-only model; 2) Image-Region: a unimodal visual-only
model that processes meme images using Faster R-CNN [45] with
ResNet-152 [14] to feed into a classification layer; 3) Late Fusion: a
multimodal model uses the average prediction scores of BERT and
ResNet-152 for harmful meme detection [40]; 4)MMBT: a multi-
modal Bi-Transformer [20] that captures the intra-modal and inter-
modal dynamics of the two modalities; 5) VisualBERT COCO: Vi-
sual BERT [28] pre-trained on the COCO dataset [29]; 6) ViLBERT
CC: Vision and Language BERT [34] trained on an intermediate
multimodal objective [47] for task-agnostic joint representations
of image and text; 7) MOMENTA: a multimodal harmful meme
detection system [41] that takes the global and local information in
two modalities of memes into account; 8) MaskPrompt: a prompt
learning approach [5] that concatenates the meme text and the
image caption as the prompt for masked language modeling [33]; 9)
Pro-Cap: a caption-enhanced version [4] of MaskPrompt, by lever-
aging pre-trained vision-language models with probing queries, to
improve the image caption in the text prompt.

C IMPLEMENTATION DETAILS

C.1 Prompting LLaVA for Multimodal Debate

and Judge

As depicted in §3.2 and §3.3, we utilize the vision LLM, i.e., LLaVA [31],
specifically the “llava-13b-v1-1” version5 as the implementation
of the debaters and the judge. The detailed prompting design is
exemplified in §D. To ensure our results are reproducible, we set
the temperature as 0 and the maximum length as 256 without any
sampling mechanism.

C.2 Prompting ChatGPT Debaters for

Multimodal Debate

We have introduced the prompting design for LLaVA to conduct
the multimodal debate. Here we would introduce how to prompt

5https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1
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ChatGPT [39], a widely used LLM developed by OpenAI, specif-
ically utilizing the “gpt-3.5-turbo” version, as another variant of
our approach in the ablative studies. To prompt ChatGPT for the
multimodal debate, we need to convert the meme’s image into an
acceptable textual input for ChatGPT. We first in-paint the memes
by combining MMOCR [25] with SAM [23] to extract the text and
pure image in memes. Then for a fair comparison with LLaVA, we
apply LLaVA to generate textual descriptions about the dominant
objects or events in the memes’ image. To make our results repro-
ducible, we set the temperature as 0 and the maximum length as
256 in ChatGPT.

For the system prompt to ChatGPT Debaters, we design the
message as follows:

“You have been specially designed to perform abductive reasoning

for the harmful meme detection task. Your primary function is that,

according to a harmfulness label about an image with a text embedded,

please provide a streamlined rationale, without explicitly indicating

the label, for how it is reasoned as the given harmfulness label. The

image and the textual content in the meme are often uncorrelated,

but its overall semantic information is presented holistically. Thus it

is important to note that you are prohibited from relying on your own

imagination, as your goal is to provide the most accurate and reliable

rationale possible so that people can infer the harmfulness according

to your reasoning about the background context and relationship

between the given text and image caption.”.
Moreover, to prompt ChatGPT to generate reasonable rationales

with the triplet {∗, Ĩ,T } as observed attributes, where Ĩ is the
image caption, we design the template 𝑝∗ for the user prompt as:

“Given a Text: [T ], which is embedded in an Image: [Ĩ]; and
a harmfulness label [∗], please give me a streamlined explanation

associated with the meme, without explicitly indicating the label, to

explain how the harmfulness of the meme is reasoned as [∗].”.

C.3 Prompting ChatGPT to Judge Multimodal

Debate

For prompting a ChatGPT Judge, we design the message as follows:
“Suppose you are a harmful meme detector. There will be two

debaters involved in a meme explanation competition for harmful

meme detection. As there must be a winner and a loser in a debate,

your job is to determine whether a meme is harmful or harmless by

evaluating their stated explanations on different positions (harmful

or harmless). The image and the text may not be harmful when

considered in isolation, but are harmful when taken as a whole and

vice versa. Thus it is important to note that you are prohibited from

relying on your own imagination and being affected by exaggerated

or misinterpreted explanations, as your goal is to provide the most

accurate and reliable judgment possible.”.
Moreover, to prompt ChatGPT to make a judgment with the

tuple {Ĩ,T } as observed attributes, where Ĩ is the image caption,
we design the user prompt as:

“Given a Text: [T ], which is embedded in an Image: [Ĩ]; with the

following two rationales: (1) Harmless: [𝑟ℎ𝑙 ]; (2) Harmful: [𝑟ℎ𝑓 ], is

this meme harmless or harmful?”.
For the input order of the harmless and harmful rationales, we

found there is not much difference between the judgment results for

Table 7: Hyper-parameters.

Hyper-Parameter Harm-C Harm-P FHM

epoch 20 20 20
batch size 32 32 32
Learning Rate 5e-5 5e-4 1e-4
Warmup Step 0.1 0.1 0.1
Warmup Strategy Linear Linear Linear
Image Size 224 224 224

the input of the different order into the LLM judge using ChatGPT
or LLaVA.

C.4 Implementation of Small LMs

Our ExplainHM model utilizes the T5 encoder-decoder architec-
ture [7, 44] as its foundational framework, specifically utilizing
the “flan-t5-base” version. For the extraction of image features, fol-
lowing previous work [41], we adopted the state-of-the-art vision
Transformer known as CLIP-ViT-B/32 [42], and thismodule remains
static throughout the training process. To effectively integrate the
multimodal information, we incorporated a simple one-head cross-
attention mechanism in each layer of the T5 encoder. The maximum
length of textual input is set as 512. During the fusion process, the
text features are utilized as the query, while the image features act
as the key and value. It is noteworthy that these fusion modules
were initialized randomly. The dimension 𝑑 of the hidden states is
set as 768, and 𝑑𝑘 is set as 384. For the training phase, we provide a
comprehensive list of the hyper-parameters in Table 7. Results are
averaged over ten random runs. All experiments were conducted
using a single V100 32GiB GPU.

C.5 Prompting GPT-4 for Automatic Evaluation

of Explainability

Different from the LLM judge for the detection purpose, as we
need to evaluate the quality of the explanations generated from
different LLMs like LLaVA and ChatGPT, to avoid the automatic
evaluator showing a preference to the side with the same LLM [56],
currently the more powerful LLM than LLaVA and ChatGPT, i.e.,
GPT-4, is the best choice to conduct the explanation evaluation.
During the period of this work, the GPT-4 API could be utilized in
the language-only modality, similar to ChatGPT, so we extracted
the text caption of the meme image by LLaVA as the meme caption
to describe the image in the user prompt. For the system prompt to
the GPT-4 model, we design the message as follows:

“Suppose you have been specially designed to perform an explana-

tion evaluation for the harmful meme detection task, you are required

to score the provided explanations given the meme text and image.

The image and the textual content in the meme are often uncorrelated,

but its overall semantic information is presented holistically. Thus it

is important to note that you are prohibited from relying on your own

imagination, as your goal is to provide the most accurate and reliable

score possible.”.
11
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LLaVA

Prompt: Given the meme, with the Text: 'the original
scarecrow' embedded in the image, please provide a
streamlined explanation associated with the text and the
image by using the contextual commonsense knowledge, to
explicitly explain how the meme is reasoned as harmful.

Debate from the HARMFUL argument: 
... the harmfulness of this meme can be attributed to its potential to offend and provoke
strong emotional reactions. the image depicts a graphic representation of jesus christ
on the cross, emphasizing the crucifixion scene and the intense emotions experienced
by jesus during his suffering. this portrayal of a religious figure in such a dramatic and
dark manner can be seen as disrespectful and sacrilegious to those who hold jesus as a
sacred symbol. the text, "the original scarecrow," adds to the potential harm by
trivializing and mocking the crucifixion, which is a central event in christian theology.
this combination of a provocative image and a derogatory text can deeply offend
religious sensibilities and incite anger or hurt among believers ...

Figure 5: Prompting LLMs from the harmful argument in the multimodal debate stage, regarding the potential harmfulness

label as part of the observed attributes of the textual prompt.

Moreover, to prompt GPT-4 for the automatic explanation eval-
uation in each criterion, we designed the template for the user
prompt as:

“Given a Text: [Meme_text], which is embedded in an Image:

[Meme_caption], with a harmfulness label ‘harmful’, please assign

the three explanations respectively with three corresponding score

values in Integer, on a rating scale from 1 (worst) to 5 (best) with

respect to the [Criterion]: 1) [Explanation_chatgpt]; 2) [Expla-
nation_llava]; 3) [Explanation_human].”.

D PROMPTING LLAVAWITH HARMFULNESS

LABELS

Figure 5 illustrates the details of prompting LLaVA from the harm-
ful argument in the multimodal debate stage. We conduct abductive
reasoning with LLMs to extract harmfulness rationales (lilac) by the
prompt consisting of the meme text (brown), and the label (blue),
together with the meme image. Additionally, during our detailed
examination of data samples, we discovered a few instances of
contentious annotations. More specifically, in the rare instances
of incorrect or disputable annotations, even though we engage
in abductive reasoning with the incorrect golden label as part of
the conflicting rationales in the multimodal debate phase, the con-
tent generated by LLMs fails to clearly articulate the reasoning,
behind categorizing the meme as the gold truth. It often tends to
produce vague statements like "the meme seems to be promoting
a harmful and potentially harmful message" without providing
a well-structured logical reasoning chain leading to the conclu-
sion. However, on a brighter note, this phenomenon underscores
the LLMs’ deficiency in logical reasoning knowledge when faced
with incorrect annotations. This insight also contributes to a bet-
ter understanding of our approach’s robustness, particularly when
dealing with inaccurately annotated data.

E EFFECT OF RATIONALE ORDER

We can see from Table 8 that the fixed order of the harmful and
harmless rationales has not much effect on the harmful meme
detection performance of the Small LM judge, under the setting
without integration with the LLM judge.

F PERFORMANCE OF DIFFERENT LM SIZES

To assess the extent to which our approach benefits different ver-
sions of the backbone in the Small LM judge, we modify the under-
lying language models to various variants of different sizes. This
allows us to test the generalizability of our approach across differ-
ent configurations and evaluate its effectiveness in diverse settings,
as shown in Table 9.

G AUTOMATIC EVALUATION OF

EXPLAINABILITY ON HARM-C/P DATA

We further provide the results of automatic GPT-4 evaluation on
Harm-C and Harm-P data, as shown in Table 10. Note that as there
are no existing human-written explanations for the Harm-C and
Harm-P data, we only evaluate the text quality of the explana-
tions generated by our model variants from LLaVA and ChatGPT.
Although previous work [15] has presented human-written expla-
nations6, it is labor-intensive and limited that only focuses on the
FHM dataset and explains why the meme is harmful or not but with-
out the reasoning thought chains for how the two multimodalities
of memes interact with each other to derive the harmfulness. More-
over, the explanations automatically generated from LLMs could
provide new benchmarks for future studies about explainable harm-
ful meme detection and automatic evaluation of the explanation
quality.

H HELPFULNESS OF CONFLICTING

RATIONALES ON HUMAN SUBJECTS

We have evaluated the detection performance and the text quality
of the output explanations, respectively, in the main paper. We
further design a human subject study to evaluate the helpfulness
of the conflicting rationales for human beings to make correct
harmfulness predictions. Specifically, we first randomly selected
100 samples (50 harmful samples and 50 harmless samples) from
Harm-C, Harm-P and FHM datasets. Then ten English-speaking
evaluators are asked to test on the selected samples. Their average
detection performance was 58.50% accuracy. Afterward, we provide
the same samples with conflicting rationales from both harmless
and harmful arguments for each sample. The average detection
performance of the evaluators improved to 77.52% accuracy. The
study shows that, by considering both the positive and negative

6https://github.com/Social-AI-Studio/HatRed
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Table 8: Effect of the rationale order in the input sequence of the Small LM judge.

Dataset Harm-C Harm-P FHM

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Harmless&Harmful 85.59 84.80 88.44 88.43 71.40 70.94
Harmful&Harmless 85.03 84.51 90.17 90.17 71.00 70.00

Table 9: Detection Performance with different backbone sizes of the Small LM judge.

Dataset Harm-C Harm-P FHM

Model Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Small 88.42 87.44 90.08 90.07 71.40 71.07
Base 87.00 86.41 90.73 90.72 75.60 75.39
Large 86.44 84.99 91.56 91.56 75.80 75.15

Table 10: Automatic GPT-4 evaluation of the explanation

quality on Harm-C/P test sets, where the explanations are

generated by LLaVA and ChatGPT.

Data Harm-C Harm-P

Explanations LLaVA ChatGPT LLaVA ChatGPT

Informativeness 3.70 4.64 3.97 4.74
Readability 4.29 4.96 4.56 4.99
Soundness 3.71 4.83 3.92 4.83
Conciseness 3.70 3.38 3.91 3.23
Persuasiveness 3.63 4.71 3.83 4.69

aspects of harmfulness, the conflicting rationales can provide hu-
man users or checkers with dialectical thinking that allows them
to better decode the underlying meaning of memes and mitigate
the harmful information.

I ERROR ANALYSIS

To better understand the behavior of our harmful meme detection
model and facilitate future studies, we conduct an error analysis on
the wrongly predicted memes by our proposed explainable frame-
work. Tomake the analysis more intuitive, we provide each example
with both the output explanation for the wrong prediction and the
alternative explanation for the ground truth, as shown in Figure 6.

We can analyze that: 1) For the first example in Figure 6(a), we
can find that the model was not aware that the “potato” in the meme
text is a reference to the people with intellectual disabilities in the
image; the same phenomenon is observed in the second example
of Figure 6(b), where the females in the meme image are dehuman-
ized as lesser humans that are useful for making sandwiches and
ironing clothes related to the words like “sandwich maker” and
“ironing board” in the text. The phenomenon shows that, for a few
specific vulnerable target types like disabilities and women, there
is still room for improvement in understanding how the seemingly
uncorrelated texts and images of memes interact;

2) We also presented the third example in Figure 6(c) to inves-
tigate the impact of visual artifacts like image quality, occlusion,
obscurity, etc. In the example, the girl dressed in red is in obscurity
on her face, and the image is also low-quality, which leads to the
wrong recognition of “a man in a red hat” in the output explana-
tion. From the alternative explanation for the gold truth, we can
also find that the implicit relationships between the rulers and the
people of the country, which the occlusion of the Trump avatar and
the American flag is intended to express, were not captured. This
causes the explanation from the harmful argument to be relatively
far-fetched. A similar implication could be observed in the fourth
error example in Figure 6(d), which demonstrates that the harmful
meme target like race in the image is not actively recognized to
build an association with the “cotton”. Thus we argue that design-
ing better prompts in the multimodal debate stage, to guide more
complete and correct image recognition would further improve the
multimodal reasoning between the two modalities of memes;

3) The fifth example in Figure 6(e) illustrates a drawback com-
monly found in most models designed to detect harmful content -
they can be biased. During the training phase, if the model is ex-
posed to harmful content targeting race or religion, it may develop
a tendency to label any content related to Muslims as harmful. To
address this issue, it may need to employ debiasing techniques in
the future.

J MORE EXAMPLES OF OUTPUT

EXPLANATIONS

We further summarize the following interesting observations about
the utility of LLMs’ rationales on harmful meme target subcat-
egories: 1) The LLMs could reason well for the offensiveness or
hatefulness about the religion, migrant, and LGBT community, since
the correlations of the text and images of the aforementioned target
subcategories are easy to reason with commonsense knowledge in
LLMs. 2) It is slightly poor for LLMs to generate rationales about
racism, because there could be some mistakes in recognizing the
skin color in the images, resulting from the image color being black
and white in a few data examples. 3) In the case of correctly rec-
ognizing image features, LLMs can have overall excellent results
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Output explanation for the wrong prediction (harmless): 
The meme with the text "our dad is a potato farmer" and two people laughing in the image can be considered harmless because it is a lighthearted and playful depiction. It
does not intend to mock or belittle individuals with intellectual or physical disabilities. Instead, it uses humor to portray a connection between the two people, likely
siblings, and their father's occupation as a potato farmer. The context of the meme is based on a shared joke or bonding moment between the individuals, which is not
harmful. It is essential to consider the intent behind the meme and the context in which it is being shared, rather than solely focusing on the text or the image itself.
Alternative explanation for the gold truth (harmful): 
The meme featuring the text 'our dad is a potato farmer' and two people laughing in the image can be considered harmful as it plays on stereotypes and mocks people with
intellectual or developmental disabilities, including Down syndrome. The implication is that the father's disability is something to laugh about or is less dignified than
other occupations. This kind of humor perpetuates negative stereotypes and can be hurtful to the individuals and their families who may be affected by such disabilities. It
is essential to promote empathy, understanding, and inclusivity by treating all individuals with respect and dignity, regardless of their abilities or disabilities.

Meme text: our dad is a potato farmer

(a)

Output explanation for the wrong prediction (harmless): 
The meme is a lighthearted and humorous take on the concept of multitasking, as it shows a woman lying down on a sandwich maker, which is also doubling as an ironing
board. The meme implies that the woman is not only enjoying her sandwich but also using the opportunity to get some ironing done simultaneously. The phrase "and just
like that... this sandwich maker doubles as an ironing board" highlights the idea of repurposing everyday objects for different tasks. The meme is considered harmless
because it is meant to entertain and make people laugh, rather than intending to offend or harm anyone. The contextual background and commonsense knowledge of the
meme's viewers allow them to understand the humor in the situation and not take it seriously.
Alternative explanation for the gold truth (harmful): 
The meme in the image is considered harmful because it makes light of a serious issue related to domestic violence. The woman in the picture is depicted as lying down
on a sandwich maker, which is being used as an ironing board, while the text suggests that it is a sandwich maker doubling as an ironing board. The meme trivializes the
importance of providing a safe and supportive environment for victims of domestic abuse. Ironically, the meme uses an everyday household appliance like a sandwich
maker to make light of a serious situation, which can be interpreted as insensitive and inappropriate. It is essential to be mindful of the content we share and how it might
be perceived by others, especially when discussing sensitive topics like domestic violence.

Meme text: and just like that... this sandwich maker doubles as an ironing board

(b)

Output explanation for the wrong prediction (harmless): 
The meme in the image is a distracted-boyfriend meme, which features a man in a red hat (possibly resembling President Trump) looking at a girl who is being ignored
while she is talking about a golf game. The text within the meme implies that the boyfriend is more interested in watching a golf game on TV than paying attention to his
girlfriend. The harmfulness of this meme is considered 'harmless' because it is a light-hearted and comical portrayal of a common scenario in relationships, where one
person becomes engrossed in an activity or interest while the other person seeks attention. It does not intend to cause offense or harm to the individuals portrayed in the
meme or their respective groups. The meme relies on humor and exaggeration to entertain and communicate its message, which is to highlight the boyfriend's lack of
attention to his girlfriend.
Alternative explanation for the gold truth (harmful): 
The meme in the image is considered harmful because it makes light of a serious situation, specifically the COVID-19 pandemic. The text within the meme, "Going
golfing & ignoring pandemic", implies that the people depicted in the image are not taking the pandemic seriously and are engaging in leisure activities, such as golfing,
instead of focusing on the health crisis. This kind of humor can be seen as insensitive and disrespectful to those who have been affected by the pandemic or those who
have lost loved ones. It is important to be mindful of the impact that memes and social media content can have on public perception and the emotional well-being of
individuals touched by such serious issues.

Meme text: Going golfing & ignoring pandemic

(c)

Output explanation for the wrong prediction (harmless): 
The meme is a playful and lighthearted depiction of a young boy eating cotton candy, with the text "you mean i don't have to pick it?!?" embedded in the image. This text
is likely referencing the common expectation that one must pay for and actively participate in the selection process when purchasing cotton candy at fairs or amusement
parks. The meme suggests that the boy is pleasantly surprised to discover that he doesn't have to pick it, implying that he is enjoying a carefree and hassle-free experience.
The harmfulness of this meme is reasoned as 'harmless' because it is a light-hearted and comical portrayal, rather than containing any offensive or harmful content. It does
not target any specific individual or group, and its humor is derived from a relatable and playful scenario. The meme is likely meant to bring a smile to the viewer's face,
rather than causing any distress or harm.
Alternative explanation for the gold truth (harmful): 
The meme in the image is a playful and lighthearted depiction of a young boy with cotton candy on his face, seemingly surprised or excited about it. The text
accompanying the meme says, "you mean i don't have to pick it?!?", which adds to the humor and sarcasm of the scene. The harmfulness of the meme cannot be reasoned
as 'harmful' as it is a harmless, fun, and comical representation. It is not intended to cause offense or distress, but rather to entertain and bring a smile to the viewer's face.
The meme relies on the viewer's understanding of the playful context and the boy's apparent enjoyment of the cotton candy to create a humorous effect.

Meme text: you mean i don't have to pick it?!?

(d)

Output explanation for the wrong prediction (harmful): 
The meme is considered harmful because it mocks and belittles the idea of cultural sensitivity and understanding. By using a picture of a bearded man with an ethnic
appearance and incorporating it with a text that appears to make light of the situation, the meme perpetuates stereotypes and promotes intolerance. This kind of content
can be offensive to people from different cultural backgrounds and can contribute to a negative atmosphere by promoting divisiveness and undermining the importance of
respectful communication across different communities. It is essential to approach sensitive topics with care and empathy, and sharing such harmful memes only serves to
hinder meaningful conversations and understanding.
Alternative explanation for the gold truth (harmless): 
The meme is a playful and harmless depiction of a man with a beard, possibly of Muslim origin, welcoming someone to his country. It is important to note that the meme
is not intended to be taken seriously and is meant to be humorous. The statement "now we need to talk about the things that need to change around here to accommodate
my beliefs" is a lighthearted and exaggerated way of expressing the idea of cultural exchange and understanding. The meme is not promoting any harmful or
discriminatory views, but rather, it is a playful and satirical commentary on the idea of adapting to a new culture. It is essential to consider the context and intent behind
the meme before jumping to conclusions or interpreting it negatively.

Meme text: thank you for allowing me into your country now we need to talk about the things that need to change around here to accommodate my beliefs

(e)

Figure 6: Examples of wrongly predicted memes by our proposed framework with the ground truth (a) harmful, (b) harmful, (c)

harmful, (d) harmful and (e) harmless.
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in rationale generation with our proposed prompting mechanism
(Figure 5). Except for those generated from LLaVA, more case ex-
amples related to the output explanations generated from ChatGPT
can be found in Figure 7.

K LIMITATIONS AND FUTUREWORK

There are multiple ways to further improve this work:
• Overall, the explainability of this work focuses on that the

model’s decision is explainable with the rationales. How-
ever, there might be a deeper level of explainability of the
model that is not touched on in this paper, which is to
explain how a neural model works internally. We would
further improve our research to facilitate the interpretabil-
ity of the model architecture.

• We heuristically designed the prompt of LLMs for the multi-
modal debate in only one turn. But in some error examples,
the generated text may miss the details of the meme like the
race. We would further update our prompt for the design
of multi-turn debates with LLMs, to activate the common-
sense reasoning knowledge related to vulnerable targets in
harmful content, improve the visual feature extraction for
exploring better multimodal reasoning thoughts, and avoid
several common deficiencies of existing language models
including hallucination and limited generalization as much
as possible.

• Despite this work utilizing GPT-4 for the automatic eval-
uation of explanation quality, the evaluation results still
have minor gaps with the human subject study, like GPT-4
tends to judge the explanations from ChatGPT with higher
scores than those from other sources or models. Moreover,
if GPT-4 is incorporated into the multimodal debate stage,
we need to seek more powerful language models to evaluate
the explanations generated by GPT-4. Thus more accurate
automatic evaluation of the explanation quality is needed,
meanwhile, more comprehensive human subject studies
could be conducted on a larger crowd of evaluators in an
organized manner.

• Generally, the distribution drift in datasets over time is
a potential limitation for almost all data-driven tasks, es-
pecially for the memes on the Web. However, one of the
contributions of this work is proposing a novel paradigm
to leverage commonsense reasoning knowledge in LLMs
for the harmful meme detection task. The proposed frame-
work is general enough, which should still work with newly
released stronger LLMs or new meme data appearing on
the Web. For example, in the future, we could publish a
plug-and-play interface to incorporate a broader range of
LLMs into our framework for the multimodal debate stage,
even the GPT-4V7 if there is sufficient financial support for
some users.

• Although harmfulness is defined much broader than hate-
fulness or offensiveness in previous literature [40], we have
evaluated and analyzed our approach on the meme dataset
related to hate speech [22]. In the future, we would try to
incorporate more of the related meme datasets beyond our

7https://openai.com/research/gpt-4v-system-card

task to further broaden the boundaries of this research, such
as offensiveness [49], sexism [12], or cyberbullying [53],
etc.

L ETHICS AND BROADER IMPACT

The purpose of this work is to prevent the spread of harmful meme
information and to ensure that people are not subjected to prej-
udice or racial and gender discrimination. Nevertheless, we are
aware of the potential for malicious users to reverse-engineer and
create memes that go undetected or misunderstood by ExplainHM-
trained AI systems. This is strongly discouraged and condemned.
Intervention with human moderation would be required in order to
ensure that this does not occur. Research indicates that evaluating
harmful or hateful content can have negative effects. To protect
our human evaluators, we establish three guidelines: 1) ensuring
their acknowledgment of viewing potentially harmful content, 2)
limiting weekly evaluations and encouraging a lighter daily work-
load, and 3) advising them to stop if they feel overwhelmed. Finally,
we regularly check in with evaluators to ensure their well-being.
Another consideration is the usage of Facebook’s meme dataset;
users will have to agree with Facebook’s usage agreement to gain
access to the memes. The usage of Facebook’s memes in this study
is in accordance with its usage agreement. All the datasets only
include memes and do not contain any user information.
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Output explanation: 
The harmfulness of this meme is reasoned as harmful due to the potential negative impact it may have on certain individuals or communities. the image depicts two
women in wedding dresses sharing an intimate moment, possibly celebrating their recent marriage. the text states, "scientists are working hard to cure them all." this
combination of image and text can be interpreted as mocking or belittling same-sex relationships, suggesting that being gay or lesbian is something that needs to be
"cured." this perpetuates harmful stereotypes and discrimination against the lgbtq+ community. by associating the image of a loving same-sex couple with the idea of
needing a cure, the meme promotes a harmful and offensive message. it is important to recognize and reject such harmful content to foster inclusivity and respect for all
individuals.

Meme text: scientist are working hard to cure them all
Label: Harmful

(a)

Output explanation: 
The harmfulness of this meme can be reasoned based on the derogatory and offensive nature of the embedded text. the text implies a strong negative sentiment towards a
specific group of people, suggesting that they are disgusting and deserving of hatred. this kind of language promotes discrimination, prejudice, and animosity towards
individuals based on their religious or ethnic background. the image itself adds to the harmfulness by depicting a man wearing religious attire associated with the jewish
faith in a church setting. this combination of elements can be seen as mocking or disrespectful towards both the jewish and christian communities. it may perpetuate
stereotypes, fuel religious tensions, and contribute to the spread of hate speech. overall, the text and image together create a harmful message that promotes hatred and
intolerance towards a particular religious group. it is important to recognize and address such harmful content to foster a more inclusive and respectful online
environment.

Meme text: imagine being so disgusting there have to be laws to try to stop normal people from hating you
Label: Harmful

(b)

Output explanation: 
The harmfulness of this meme can be reasoned as harmful due to the combination of the text and the image. the text mentions an event that occurred "just under 17 and a
half years ago" where "19 people were allowed into the us who should not have been." it implies that this event has had long-lasting consequences. the image
accompanying the text depicts the twin towers of the world trade center collapsing due to a massive explosion, with flames and a huge fireball. the text and image together
evoke the tragic events of 9/11, a terrorist attack that resulted in the loss of thousands of lives. the mention of people being allowed into the us who should not have been
suggests a critique of immigration policies. the meme implies that allowing everyone into the country, as a response to safety concerns, is a flawed approach. the
harmfulness of this meme lies in its potential to exploit a tragic event for political or ideological purposes. it may evoke strong emotions and perpetuate negative
stereotypes or biases towards certain groups of people. additionally, it can be distressing and triggering for individuals who have personal connections to the 9/11 attacks.
overall, the combination of the text referencing immigration and the image depicting the 9/11 attacks creates a harmful and potentially divisive message.

Meme text: just under 17 and a half years ago, 19 people were allowed into the us who should not have been all these years later, we are told that the answer to safety is to allow
everyone in
Label: Harmful

(c)

Output explanation: 
The harmfulness of this meme can be reasoned based on the combination of the text and image. the text, "the original scarecrow," does not directly relate to the image of
jesus christ on the cross. however, when considering the overall semantics, the image depicts a graphic and intense scene of the crucifixion, emphasizing the suffering and
intense emotions experienced by jesus during his crucifixion. the use of the term "scarecrow" in the text could be seen as disrespectful or mocking towards the religious
significance of jesus' crucifixion. this could potentially offend and upset individuals who hold religious beliefs related to jesus' sacrifice and the crucifixion. furthermore,
the graphic nature of the image, with a dark and dramatic sky in the background, may contribute to the harmfulness of the meme. it could be perceived as insensitive or
offensive, as it portrays a sacred and deeply meaningful event in a potentially disturbing or sensationalized manner. considering these factors, the combination of the text
and image in this meme could be seen as harmful due to its potential to offend religious sensibilities and its graphic depiction of a sacred event.

Meme text: the original scarecrow
Label: Harmful

(d)

Output explanation: 
The meme is classified as harmless because it combines a popular quote with an image depicting a celebration of diversity and inclusivity. the text, "you either die a hero,
or live long enough to become the villain," is a well-known line from the movie "the dark knight." in the context of the meme, it suggests that individuals have the
potential to change over time. the image shows two men holding a colorful rainbow flag, which is commonly associated with lgbtq+ pride. the flag represents the diverse
identities and experiences within the lgbtq+ community. the festive atmosphere and the presence of a hat indicate a celebration or event related to lgbtq+ pride. by
combining the quote with the image, the meme conveys a positive message about embracing one's true self and the journey of personal growth. it promotes acceptance,
inclusivity, and the celebration of diversity. there is no harmful or offensive content present in the meme, making it harmless overall.

Meme text: you either die a hero, or live long enough to become the villain
Label: Harmless

(e)

Figure 7: Examples of output explanations generated from ChatGPT.
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