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Abstract

Multi-modal Knowledge Graph Completion (MMKGC) aims to predict missing
entities, relations, or attributes in knowledge graphs by collaboratively modeling
the triple structure and multimodal information (e.g., text, images, videos) associ-
ated with entities. This approach facilitates the automatic discovery of previously
unobserved factual knowledge. However, existing MMKGC methods encounter
several critical challenges: (i) the imbalance of inter-entity information across
different modalities; (ii) the heterogeneity of intra-entity multimodal information;
and (iii) for a given entity, the informational contributions of different modali-
ties are inconsistent across contexts. In this paper, we propose a novel Large
model-driven Balanced Multimodal Knowledge Graph Completion framework,
termed LBMKGC. Initially, LBMKGC employs the Stable Diffusion XL (a Large
generative vision model) to augment the imbalanced information across modali-
ties. Subsequently, to bridge the semantic gap between heterogeneous modalities,
LBMKGC aligns the multimodal embeddings of entities semantically by using the
CLIP (Contrastive Language-Image Pre-Training) model. Furthermore, LBMKGC
adaptively fuses multimodal embeddings with relational guidance by distinguishing
between the perceptual and conceptual attributes of triples. Finally, extensive exper-
iments conducted against 21 state-of-the-art baselines demonstrate that LBMKGC
achieves superior performance across diverse datasets and scenarios while main-
taining efficiency and generalizability. Our code and data are publicly available at:
https://github.com/guoynow/LBMKGC.

1 Introduction

Multimodal Knowledge Graphs (MMKGs) [14] represent an advanced semantic framework that
extends traditional knowledge graphs. Unlike conventional knowledge graphs, which primarily
consist of structured entity-relation-attribute triples, MMKGs integrate a variety of multimodal data
associated with entities, including textual descriptions, images, audio, and videos. This comprehensive
approach allows MMKGs to capture and describe complex real-world phenomena across multiple
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dimensions. By fusing structural and multimodal information, MMKGs facilitate finer-grained
reasoning in applications such as recommender systems [29], natural language processing [6],
and computer vision [8]. Current mainstream MMKGC [31] methods can be categorized into
two primary approaches. The first focuses on multimodal fusion mechanisms, aiming to achieve
completion by systematically modeling the cross-modal correlations among structural topologies,
visual representations, and textual semantics [24, 1, 35]. The second approach emphasizes negative
sampling optimization algorithms, which enhance completion performance by improving the quality
of negative samples through vision-text joint discrimination [2, 36, 34]. However, existing methods
often overlook following critical challenges.

(1) The imbalance of inter-entity information across different modalities. In real-world MMKGs,
modality distributions are diverse and complex. Some entities may possess rich multimodal informa-
tion (e.g., images and text), while others suffer from modality scarcity (e.g., text-only entities with
missing visual data). This imbalanced distribution complicates knowledge graph completion tasks,
as missing modalities may lead to critical knowledge omissions, thereby compromising accuracy.
Although existing MMKGC methods [38] employ frameworks like adversarial training to mitigate
imbalance issues, they fail to explicitly model latent semantics in modality-missing scenarios.

(2)The heterogeneity of intra-entity multimodal information. Significant disparities exist in
data structures and semantic comprehension across modalities. For instance, visual information is
encoded as 2D pixel matrices in images, while textual modalities convey symbolic logic through
word sequences. This dual gap in both data representation and semantic parsing mechanisms poses
substantial challenges for cross-modal alignment. Existing MMKGC methods predominantly rely on
single-modality pretrained models (e.g., VGG [21] for vision, BERT [5] for text) to independently
extract visual or textual features, thereby neglecting the construction of a cohesive cross-modal
representation space. Consequently, downstream tasks often struggle to fully capture the deep
semantic interdependencies amongst modalities.

Figure 1: The salience of information carried by different modalities varies across different types of
triples.

(3) The inconsistency in the volume of information represented by various modalities for a given
entity. In knowledge graphs, triples can be categorized into perceptual (concrete) and conceptual
(abstract) types. For the same entity, the salience of information carried by different modalities varies
across these two types of triples. Taking the entity "Yale University" as an example, in the MKG-W
dataset, the triple (Yale University, color, blue) is a perceptual triple. In this triple, the visual modality
of Yale University provides discriminative evidence, and thus should be assigned higher weight
during the feature fusion stage. However, the triple (Steven C. Hebert, employer, Yale University) is
a conceptual triple, as it involves an employer relationship, which is a social construct and cannot be
directly perceived. Therefore, Yale University in this context relies more on the structural information
of the knowledge graph, and higher weight should be assigned to structural information during feature
fusion. Similarly, for entities, "blue" is perceptual, where the visual modality provides discriminative
evidence, while "law" is conceptual, relying more on symbolic reasoning from textual modalities.
Existing MMKGC methods struggle to dynamically adjust inter-modal weights for entities based on
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the perceptual or conceptual attributes of triples, leading to inefficient and imprecise utilization of
multimodal information.

To address the aforementioned challenges, we propose a novel Large model-driven Balanced MMKGC
framework, named LBMKGC. LBMKGC comprises three key modules called Large Generative
Visual Model-based Modality Completion (LvMC) module, Cross-Modality Alignment (CMoA)
module, and Context-Guided Adaptive Fusion (CGuAF) module, respectively. To address the
imbalance issue, the LvMC module utilizes the large generative visual model SDXL (Stable Diffusion
XL) [16] to augment the missing modality information. To address the heterogeneity issue, the CMoA
module focuses on aligning the entities between various modalities by employing the pre-trained
CLIP model. To address the inconsistency issue, the CGuAF module adaptively moderates the weight
of each modality with relational guidance to learn joint cross-modality representations. Our major
contributions are summarized as follows.

• We propose a novel MMKGC framework, named LBMKGC, designed to address issues of
modality imbalance, modality heterogeneity, and the inconsistency of information quantity for
entities across different modalities.

• We innovatively tackle the modality imbalance issue in MMKGC by leveraging the capabilities
of the SDXL, a state-of-the-art large generative visual model, instead of relying on conventional
adversarial training methods.

• We propose a CMoA module that dynamically adjusts the alignment of multimodal embeddings,
which effectively mitigates biases arising from data heterogeneity, ensuring sufficient utilization
of multimodal information.

• We first consider the impact of the perceptual and conceptual attributes of triples during joint
cross-modality representation learning, and accordingly propose a novel context-guided adaptive
fusion module.

• To evaluate the performance of LBMKGC, we conduct comprehensive experiments and fur-
ther explorations on three public benchmarks. Empirical results demonstrate that LBMKGC
outperforms 21 recent baselines, achieving new state-of-the-art MMKGC results.

2 Preliminaries

2.1 Problem Statement

MMKGs [14] provide a robust foundation for knowledge representation and reasoning by integrating
structured triples with rich multimodal entity attributes (e.g., images, text, audio, video). In recent
years, significant progress has been made in MMKGC [31], which aims to automatically discover
new knowledge from incomplete MMKGs.

We define a MMKGs as G = (E ,R, T ,M), where E is the set of entities, R is the set of relations,
T = {(h, r, t)|h, t ∈ E , r ∈ R} is the set of triples, and M is the set of modalities, encapsulating
different modalities in MMKGs (such as images, text, videos, audio, etc.). For an entity e ∈ E in a
modality m ∈ M, its modality information is denoted as em, such as text modality denoted as et,
and visual modality denoted as ev .

The MMKGC model embeds entities and relations into a continuous vector space. For each entity
e ∈ E , we define its structure, text, and visual embeddings as eemb

s , eemb
t , eemb

v . For each relation
r ∈ R, we define its structure embedding as remb

s . Additionally, the MMKGC model can use a
scoring function F to measure the plausibility of each triple (h, r, t). F calculates the score through
the embedding representation of triples. In the inference phase of the MMKGC task, for a given
query (h, r, ?) or (?, r, t), the model scores each candidate entity corresponding to the triple and
ranks them to make predictions.

2.2 Related Work

In recent years, numerous KGC methods have been developed. Traditional unimodal approaches,
e.g., TransE [1], TransD [10], RotatE [24], PairRE [4], DistMult [35] and ComplEx [26], learn
knowledge graph embeddings (KGE) by projecting entities and relations into a continuous vector
space that preserves the observed triple structure. To capture heterogeneous graph topology, DGS [9]
first separately embeds the cyclic instance structure and hierarchical ontology structure of two-view
knowledge graphs into spherical and hyperbolic spaces, unifying them via a bridge space.
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On the multi-modal front, IKRL [33] first augments TransE with visual features; TBKGC [19] further
incorporates textual cues. Building on KGE, MMKGC methods such as OTKGE [3], VISTA [11],
RSME [28], TransAE [32], IMF [13] and QBE [30] leverage rich multi-modal signals to refine
entity representations. MMRNS [34] and MANS [36] instead focus on exploiting modalities for
higher-quality negative sampling. Modality-imbalance has also been tackled by generative adversarial
schemes like MMKRL [15] and AdaMF-MAT [38], which synthesize missing-modal features and use
RotatE-style scores as discriminators. Yet these models (i) capture only local semantics and ignore
global cross-modal correlations, and (ii) require separate adversarial networks per modality, aggra-
vating heterogeneity. Consequently, modality imbalance, structural heterogeneity and inconsistent
saliency across modalities remain largely unresolved.

In this work, we propose LBMKGC to tackle these issues and achieve state-of-the-art performance.

3 Method

In this section, we will introduce our MMKGC framework, LBMKGC. An overview of LBMKGC
is shown in the Figure 2. We will introduce the main components in the following paragraphs.
These components are the Large Generative Visual Model-based Modality Completion module,
Cross-Modal Alignment module, Context-Guided Adaptive Fusion module, and MMKGC Module.

Figure 2: Architectural Overview of the LBMKGC Modal.

3.1 Large Generative Visual Model-based Modality Completion

To address the issue of imbalanced multimodal information, we propose a modality completion
module based on SDXL (Stable Diffusion XL) [16] as shown in the Figure 2 (a). In the field
of knowledge graph, obtaining visual information is usually more difficult than obtaining text
information. Therefore, this paper focuses on the problem of multimodal information missing in
visual modality, that is, given an entity e ∈ E , LvMC populates the prompt template with et to
generate ev .

The core component of LvMC is the generative model SDXL. SDXL employs a two-stage generative
process facilitated by two specialized models: a Base model and a Refiner model. The Base model
is primarily responsible for generating a coherent initial image based on the text prompt, ensuring
overall semantic accuracy and composition. Subsequently, the Refiner model operates on the output
(typically in the latent space) of the Base model to enhance fine-grained details and visual fidelity.
For clarity, a simplified representation of the overall generation process is provided as follows:

First, LvMC generates a text embedding vector by combining two CLIP encoders:

ct = W1 · CLIPbigG(et) +W2 · CLIPViT-L(et), (1)

where W1 and W2 are projection matrices, CLIPbigG and CLIPViT-L are respectively OpenCLIP
ViT-bigG [18] and OpenAI CLIP ViT-L [17] encoders.

The image resolution (w, h) is embedded as Fourier features:

fsize = [sin(2kπnw), cos(2
kπnw), sin(2

kπnh), cos(2
kπnh)]

L−1
k=0 , (2)

where nw = w
1024 , nh = h

1024 , and L is the number of frequency bands, and the final combined
embedding vector is: c = ct ⊕ fsize.
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The Base model generates the initial resolution potential through DDIM sampling [22]:

zbase
t−1 =

√
ᾱt−1

(
zbase
t −

√
1− ᾱt · ϵθ(zbase

t , t, c)√
ᾱt

)
+
√
1− ᾱt−1 · ϵθ(zbase

t , t, c), (3)

where the initial noise sampled from a standard Gaussian distribution: zbase
T ∼ N (0, I). Then, at each

reverse step t, the previous state zbase
t−1 is computed by first estimating the predicted noise ϵθ(zbase

t , t, c)
using its UNet, and then applying the DDIM update rule based on the cumulative noise schedule ᾱt

and the conditioning embedding c, which combines text and size information.

The Refiner model adds noise to zbase
0 :

zrefine
trefine

=
√

ᾱtrefinez
base
0 +

√
1− ᾱtrefineϵ, ϵ ∼ N (0, I), (4)

where trefine denotes the running timestep variable in the Refiner’s reverse diffusion process.

The Refiner model refines the image step by step:

zrefined
t−1 =

√
ᾱt−1

(
zrefined
t −

√
1− ᾱt · ϵϕ(zrefined

t , t, c, zbase
0 )√

ᾱt

)
+
√
1− ᾱt−1 · ϵϕ(zrefined

t , t, c, zbase
0 ),

(5)

where ϵϕ is the noise predictor of the Refiner model.

Finally, the high-resolution image in the variable zrefined
0 is decoded through the VAE decoder to the

real image space:
ev = DecoderVAE(z

refined
0 ). (6)

3.2 Cross-Modal Alignment

To address the issue of heterogeneity in multimodal information within a single entity, we proposed
a Cross-Modal Alignment (CMoA) module, as shown in the Figure 2 (b). This module leverages
the pre-trained CLIP [17] model to achieve semantic alignment between an entity’s image and text
representations.

We first extract multimodal feature encodings from the original image and text description of the
entity using a pre-trained model, which is a necessary step for all MMKGC methods. The text
modality is encoded into text features ft = {T1, T2, ..., TN} using BERT [5], and the visual modality
is encoded into visual features fv = {V1, V2, ..., VN} using ViT [7]. The cosine similarity matrix S
between the two is calculated, where Si,j represents the similarity between the i-th visual feature Vi

and the j-th text feature Tj :

Si,j =
Vi · Tj

∥Vi∥ · ∥Tj∥
. (7)

The symmetric contrastive loss function with a learnable temperature parameter τ is defined as:

LCLIP = −1

2

(
1

N

N∑
i=1

log
eSi,i/τ∑N
j=1 e

Si,j/τ
+

1

N

N∑
i=1

log
eSi,i/τ∑N
j=1 e

Sj,i/τ

)
. (8)

Based on the cross-modality feature alignment, we obtain the aligned visual features fv and text
features ft. Subsequently, through a projection layer, each entity e ∈ E in modality m ∈ M is
embedded into a representation eemb

m = Pm(fm). Here Pm is a projection layer for modality m,
aimed at projecting different modality embeddings into the same vector space. Each Pm consists of
two MLP layers with ReLU as the activation function.

3.3 Context-Guided Adaptive Fusion

To address the issue that existing MMKGC methods struggle to adaptively adjust the weights of
different modalities based on the specific characteristics of the three-element entities, leading to the
inability to effectively utilize different modalities, we propose a Context-Guided Adaptive Fusion
(CGuAF) module, as shown in the Figure 2 (c). This mechanism is divided into two stages. The
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first stage performs adaptive fusion of multiple modalities, and the second stage considers the upper
and lower context information to generate a joint embedding representation for each entity in the
three-element set.

The mechanism adjusts the weight ωm of each modality based on the entity’s (perception or concept)
characteristics. For perceptual entities (such as color), if the visual modality can provide strong
evidence, it is assigned a higher weight, and the text modality is assigned a lower weight. Conversely,
for conceptual entities (such as force), it is difficult to express them with images, so a higher weight
is assigned to the text modality, and a lower weight is assigned to the visual modality. Specifically,
the weight of the modality m for entity e, ωm(e), is calculated as follows:

ωm(e) =
exp (V ⊙ tanh (em))∑

n∈M exp (V ⊙ tanh (en))
, (9)

where V is a learnable vector and ⊙ is the point-wise operator.

Based on these weights, we obtain the fused multimodal information hmm:

hemb
mm =

∑
m∈M

ωmeemb
m . (10)

For the same entity, the salience of information carried by different modalities varies across different
types of triples (e.g., perceptual and conceptual). Accordingly, we design a relational temperature ζr
that allows an entity to adapt its joint embedding based on the type of triple, rather than using a static
one, thus providing a more effective relational context.

hemb
joint = ζrh

emb
s + (1− ζr)h

emb
mm . (11)

Similarly, the joint embedding of the tail entity is derived using the same fusion method.

Traditional Multimodal Knowledge Graph Completion (MMKGC) approaches typically rely on static,
entity-level modality fusion strategies, which overlook the specific context of the input triple. In
comparison, our proposed context-guided adaptive fusion module dynamically recalibrates entity
embeddings conditioned on the triple type. This fine-grained adaptive adjustment mechanism
significantly enhances the model’s ability to interact with multimodal features in different relationship
contexts.

3.4 Multimodal Knowledge Graph Completion

As shown in the Figure 2 (d), based on the multimodal joint embedding representation of entities,
we introduce the RotatE [24] score function based on complex space rotation operations to evaluate
the rationality of triples (h, r, t), which has universal modeling capability for complex relationship
patterns in knowledge graphs. Specifically, for a triple (h, r, t), its plausibility score is defined as the
negative distance between the head entity embedding after rotation and the tail entity embedding, that
is:

F(h, r, t) = −||hemb
joint ◦ r − temb

joint||, (12)
where ◦ is the rotation operation in complex space, and a higher score indicates greater rationality of
the triple. In the training process, we use a loss function based on negative sampling to optimize the
parameters, which can be expressed as:

Lkgc =
∑

(h,r,t)∈T

− log σ(γ + F(h, r, t))−
K∑
i=1

p(h′
i, r

′
i, t

′
i) log σ(−F(h′

i, r
′
i, t

′
i)− γ), (13)

where σ is the sigmoid function; γ is a fixed boundary; (h′
i, r

′
i, t

′
i) ∈ T ′, (i = 1, 2, ...,K) are

K negative samples of the triple (h, r, t). Additionally, p(h′
i, r

′
i, t

′
i) is the self-adversarial weight

proposed in RotatE [24].

4 Experiments

In this section, we evaluate our method using a mainstream task in KGC - link prediction task. We
first introduce the experimental setup and then present the results. We mainly explore the following
four research questions (RQs) regarding LBMKGC:
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• RQ1: Can our model LBMKGC surpass the existing baselines and make substantial progress
in the MMKGC task in link prediction?

• RQ2: How much does the design of each module in LBMKGC contribute to performance?
• RQ3: When the multimodal information is imbalanced, can LBMKGC maintain stable

performance in the MMKGC task?
• RQ4: Can LBMKGC adaptively adjust multimodal weights based on different entities?

4.1 Experimental Settings

Datesets. To better explore the MMKGC task in a diverse and complex environment, we conducted
comprehensive experiments and further explorations on three public benchmarks. The DB15K [14]
dataset was built by crawling search engine images and aligning them with DBpedia [12], while
the MKG-W and MKG-Y [34] datasets were created by extracting subsets from Wikidata [27] and
YAGO [23]. We used the pre-trained model of CLIP to extract multimodal features.

Baselines. To demonstrate the effectiveness of our method, we conducted a comprehensive compar-
ison and analysis with 21 different state-of-the-art KGC and MMKGC models as our baselines. They
can be categorized into three types:

(i) Uni-modal KGC methods, this paper employs 6 of the most advanced uni-modal KGC methods,
including TransE [1], DistMult [35], ComplEx [26], RotatE [24], PairRE [4], GC-OTE [25], which
designed elegant scoring functions and considered structural information in model design.

(ii) Multi-modal KGC models, this paper utilizes 12 MMKGC methods that consider multi-modal
information and triple structural information, including IKRL [33], TBKGC [19], TransAE [32],
MMKRL [15], RSME [28], OTKGE [3], IMF [13], AdamF [38], QEB [30], VISTA [11], AdamF-
MAT [38] and MyGO [37].

(iii) Negative sampling methods, this paper compares our method with 3 different negative sampling
methods, including KBGAN [2], MANS [36], MMRNS [34]. Among them, KBGAN is an adversarial
sampling method designed for traditional KGC, applying reinforcement learning to optimize the
model. MMRNS utilizes multi-modal information to enhance the negative sampling process.

Metrics. To evaluate our method, we conducted link prediction tasks on three datasets. Link
prediction is an important task in knowledge graph completion, aiming to predict the missing entity
for a given query (h, r, ?) or (?, r, t). The link prediction task consists of two parts: head prediction
and tail prediction.

Following previous work, we use ranking-based metrics such as Mean Reciprocal Rank (MRR) and
Hit@K (K = 1, 3, 10) to evaluate the results. MRR and Hit@K can be calculated as:

MRR =
1

|Ttest|

|Ttest|∑
i=1

(
1

rh,i
+

1

rt,i

)
, (14)

Hit@K =
1

|Ttest|

|Ttest|∑
i=1

(1(rh,i ≤ K) + 1(rt,i ≤ K)) , (15)

where rh,i and rt,i are the results of head prediction and tail prediction, respectively.

To ensure fair comparisons, the filter setting [1] is applied to all results to remove candidate triples
that already exist in the training set.

Implementation details. We implemented our LBMKGC model based on the famous open-source
KGC library OpenKE. We conducted experiments on a Linux server with Ubuntu 24.04.01 operating
system and a single NVIDIA GeForce 4090 GPU. We reproduced some advanced models, and some
baseline results refer to MyGO [37].

In the LBMKGC, we fix the batch size to 512 and set the training epoch from {1000, 1250, 1500}.
The embedding dimensions are tuned from {300, 400, 500} and the negative sampling number K is
tuned from {32, 64, 128}. The margin γ is tuned from {8, 12, 16, 20, 24} and the temperature β is
set to 4. We optimize the model with Adam and the learning rate is tuned from {1e-5, 2e-5, 5e-5}.
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For baselines, we reproduce the results following the methodology and parameter setting described in
the original papers and their open-source official code.

4.2 Main Results (RQ1)

We conducted link prediction experiments and presented the experimental results in Table 1. Our
method, LBMKGC, achieved superior performance on all evaluation metrics across three public
benchmarks. The experimental results of this method show that our approach enables the model to
capture a richer set of candidate relation patterns, enhancing semantic coverage, and more stably
retaining correct answers in the top region of the candidate set (Hit@3 and Hit@10), while still
maintaining advanced performance in the exact first match metric (Hit@1). It has stronger practicality
in real-world scenarios that require multi-candidate selection (such as recommendation systems,
open-domain question answering).

4.3 Ablation Study (RQ2)

To provide a more detailed demonstration of the effectiveness of each module design and to answer
RQ3, we conducted ablation studies, as shown in Table 2. We replaced the adaptive fusion guided
by the context with mean fusion to verify the effectiveness of CGuAF. Furthermore, to verify the
contribution of different information in MMKGC, we covered visual information (textual informa-
tion/structural information) for link prediction tasks. Additionally, we used uni-modal pre-training
models (VGG16 [21], BERT [5]) to independently extract visual and textual features to verify the
effectiveness of cross-modal feature alignment. Finally, we randomly initialized the missing modal
information to verify the importance of the real missing modal information in explicit modeling.

The results of the ablation study show that when each module or each modal information of our
method is removed, the link prediction results will decrease, which demonstrates their effectiveness.

Table 1: Knowledge Graph Completion Models Comparison
Model DB15K MKG-W MKG-Y

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
TransE 24.86 12.78 31.48 47.07 29.19 21.06 33.20 44.23 30.73 23.45 35.18 43.37
DistMult 23.03 14.78 26.28 39.59 20.99 15.93 22.28 30.86 25.04 19.33 27.80 35.95
ComplEx 27.48 18.37 31.57 45.37 24.93 19.06 26.69 36.73 28.71 22.26 32.12 40.93
RotatE 29.28 17.87 36.12 49.66 33.67 26.80 36.68 46.73 34.95 29.10 38.35 45.30
PairRE 31.13 21.62 35.91 49.30 34.40 28.24 36.71 46.04 32.01 25.53 35.84 43.89
GC-OTE 31.85 22.11 36.52 51.18 33.92 26.55 39.65 46.90 32.95 26.77 38.41 44.08
IKRL 26.82 14.09 34.93 49.09 32.36 26.11 34.75 44.07 33.22 30.37 34.28 38.26
TBKGC 28.40 15.61 37.03 49.86 31.48 25.31 33.98 43.24 33.99 30.47 35.27 40.07
TransAE 28.09 21.25 31.17 41.17 30.00 21.23 34.91 44.72 28.10 25.31 29.10 33.03
MMKRL 26.81 13.85 35.07 49.39 30.10 22.16 34.09 44.69 36.81 31.66 39.79 45.31
RSME 29.76 24.15 32.12 40.29 29.23 23.36 31.97 40.43 34.44 31.78 36.07 39.09
OTKGE 23.86 18.45 25.89 34.23 34.36 28.85 36.25 44.88 35.51 31.97 37.18 41.38
IMF 32.25 24.20 36.00 48.19 34.50 28.77 36.62 45.44 35.79 32.95 37.14 40.63
QEB 28.18 14.82 36.67 51.55 32.38 25.47 35.06 45.32 34.37 29.49 36.95 42.32
VISTA 30.42 22.49 33.56 45.94 32.91 26.12 35.38 45.61 30.45 24.87 32.39 41.53
AdaMF 32.51 21.31 39.67 51.68 34.27 27.21 37.86 47.12 38.06 33.49 40.44 45.48
KBGAN 25.73 9.91 36.95 51.93 29.47 22.21 34.87 40.64 29.71 22.81 34.88 40.21
MANS 28.82 16.87 36.58 49.26 30.88 24.89 33.63 41.78 29.03 25.25 31.35 34.49
MMRNS 32.68 23.01 37.86 51.01 35.03 28.59 37.49 47.47 35.93 30.53 39.07 45.47
AdaMF-MAT 35.14 25.30 41.11 52.92 35.77 28.87 38.85 48.71 38.57 34.34 40.59 45.76
MyGO 37.17 29.62 41.66 51.87 36.09 30.02 38.26 46.89 38.66 34.85 39.96 44.37

Ours 37.23 27.78 42.75 54.71 38.46 31.20 41.78 51.46 40.03 33.89 43.11 50.81
+0.16% - +2.6% +3.38% +6.6% +3.9% +7.5% +5.6% +3.5% - +6.2% +11.0%

Table 2: Ablation Study

Settings DB15K MKG-W MKG-Y
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

LBMKGC 37.23 27.78 42.75 54.71 38.46 31.20 41.78 51.46 40.03 33.89 43.11 50.81

w/o LvMC 36.73 27.19 42.01 53.76 37.12 29.43 40.28 49.16 39.40 33.42 42.47 49.59
w/o CMoA 36.81 27.69 41.56 53.37 38.03 29.88 40.86 49.34 39.34 33.58 42.28 49.37
w/o CGuAF 36.36 26.55 42.39 54.48 37.53 30.51 41.76 50.77 39.29 33.01 42.92 50.86

w/o eemb
s 31.21 16.96 41.12 54.60 34.76 23.84 41.86 51.97 37.79 29.33 42.43 51.02

w/o eemb
t 36.51 27.09 41.45 53.19 36.72 30.01 40.02 48.79 38.33 32.72 40.95 47.67

w/o eemb
v 37.08 27.34 42.01 53.92 37.89 30.63 41.05 50.89 39.24 33.13 41.76 49.73
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4.4 Modality-missing Results (RQ3)

We conducted link prediction experiments with modality dropout on the DB15K dataset. The visual
modality was discarded at rates of η = {0.25, 0.5, 0.75, 1.0}. Specifically, for LBMKGC, we used the
LvMC module to fully compensate for the missing visual modality information. For other models, we
used the commonly used random initialization method [20] to compensate for the missing information.
The experimental results are shown in the Figure 3, as the missing modality rate increases, the baseline
models (TBKGC [19] and AdaMF-MAT [38]) exhibit significant performance degradation, whereas
our proposed LBMKGC demonstrates relatively stable performance. LBMKGC’s explicit modeling of
missing modalities based on large-scale pre-trained models (i.e., generating real modality information)
boosts MMKGC’s performance and robustness more effectively than strategies using adversarial
training or random initialization.

Figure 3: Link prediction results on modality-missing DB15K dataset.

Figure 4: Fusion weights of different modalities.

4.5 Case Study (RQ4)

To intuitively demonstrate the effectiveness of CGuAF, we present the histogram of visual modality
weight distribution for all entities in the MKG-W dataset in Figure 4 (a). Based on this, we randomly
selected some entities’ textual and visual modality weights for comparison in Figure 4 (b), for the
conceptual entity “Power_(1986_film)”, the weight of textual information is 71%, while that of visual
modality is 29%, whereas for the perceptual entity “Australian_National_University”, the weight
of textual information is 47%, and that of visual modality is 53%. This reflects that CGuAF can
dynamically adjust the weight of each modality according to the specific (perceptual) or abstract
(conceptual) characteristics of different triad groups of entities, enhancing and retaining the truly
important parts of multi-modal information, thereby significantly enhancing the model’s ability to
interact with multi-modal features under scenarios of complex relationships.
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5 Conclusion and Future Work

In this paper, we mainly discussed the imbalance of multi-modal information among entities, the
heterogeneity of multi-modal information within entities, and the issue of inconsistent information
quantities across different modalities. We proposed a novel MMKGC framework, LBMKGC, to
address the limitations of existing methods. LBMKGC consists of three core modules: LvMC,
CMoA, and CGuAF, which sequentially solve the issues of imbalance, heterogeneity, and inconsistent
information quantities. We conducted in-depth theoretical analysis to demonstrate the rationality
of our design and comprehensive experiments on 21 benchmarks to show the effectiveness and
robustness of our framework.

However, our study currently focuses on text and image modalities, without integrating semantically
rich information such as audio and video into a unified framework. Additionally, our experiments
have been conducted exclusively on general domain datasets, leaving the adaptability and robustness
in specialized fields like biomedical data and social networks unverified. In the future, MMKGC tasks
should more comprehensively consider these modalities in the real world and design generalizable and
scalable model architectures to adapt to various tasks and modality combinations, thereby enhancing
the ability to model complex relationships.
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Answer: [Yes]
Justification: We provided link to access the code and data in the Abstract and detailed the
experimental settings.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We detailed the experimental settings in the Section 4.1 and provided link to
the code and data.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We utilized three open-source benchmark datasets and conducted train-
ing/testing splits and other initialization tasks in a manner consistent with other papers
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We described the server model and operating system used, along with other
experimental settings, in the Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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research complies with the NeurIPS Code of Ethics in all respects.
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eration due to laws or regulations in their jurisdiction).
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necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The resources we used are all open-source, and we have cited them in our
references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided a link to the code in the Abstract, and all the resources we used
are open-source.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We described the details and principles of the LLMs and explained how to use
them in the provided link.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Dataset Analysis

Figure 5: Imbalance Situations in
Different Datasets

In real-world multimodal knowledge graphs, the modal infor-
mation is diverse and complex. Some entities may have rich
multimodal information such as images and text, while others
may have scarce modalities (e.g., containing only text modality
with the absence of image modality). This uneven distribution
makes the task of knowledge graph completion exceptionally
challenging. The missing modal information can lead to the
omission of key knowledge, thereby affecting the accuracy of
the completion process. As shown in Figure 5, we present the
phenomenon of imbalance across different datasets. Specifi-
cally, we focus on the imbalance of the image modality and
calculate the proportion of entities containing image modality
within the entire set of entities. Regarding the text modality,
even if an entity lacks a corresponding textual description,
the entity itself contains textual information (for example, the
triple <snowman, state, stillness>, which consists of three
words and is also considered a form of textual information), so
we consider the text modality to be balanced.

A.2 Generalization Experiments

We conducted generalization experiments on four different MMKGC models (namely TBKGC, IKRL,
AdaMF and QEB) using the multimodal features obtained from the LvMC and CMoA modules. We
employed the same parameters as LBMKGC on the DB15K dataset. In fact, with more meticulous
parameter tuning tailored to different MMKGC models, these models could potentially exhibit
even better performance. We report the Mean Reciprocal Rank (MRR) and Hit@10 results on the
DB15K dataset, as shown in Figure 6. Based on the experimental results, we can conclude that
by addressing the imbalance of multimodal information between entities and the heterogeneity of
multimodal information within entities, MMKGC models can achieve significant performance gains.
This indicates that the LvMC and CMoA modules can serve as universal components applicable to
various models in downstream tasks.

Figure 6: Imbalance Situations in Different Datasets

A.3 Statistical Testing

To rigorously evaluate the stability and reproducibility of our proposed LBMKGC method, we have
conducted five independent experiments on each of the three benchmark datasets (MKG-W, MKG-Y,
and DB15K) without fixing the random seed during training.
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The comprehensive results across all datasets, as depicted in Figure 7, demonstrate highly consistent
performance patterns throughout the evaluation metrics. On the MKG-W dataset, MRR values remain
confined to a narrow interval of 0.3840–0.3866, while Hit@1 scores exhibit stability, ranging from
0.3119 to 0.3152. A similar degree of consistency is observed on the MKG-Y dataset, where MRR
varies between 0.3992 and 0.4031, accompanied by Hit@1 scores spanning 0.3387–0.3449. The
DB15K dataset also reflects minimal performance deviation, with MRR consistently maintained
between 0.3707 and 0.3734. The standard deviations across all evaluation metrics on MKG-W,
MKG-Y, and DB15K datasets remain below 0.0026, demonstrating the exceptional algorithmic
stability of our proposed method.

Figure 7: Algorithmic Stability on Different Datasets

A.4 Hyperparameter Sensitivity

Figure 8: Hyperparameter Sensitivity on MKG-W Dataset

We have conducted experiments on the core hyperparameters (including embedding dimension,
number of negative samples, and margin) using the MKG-Y dataset. To ensure the fairness of these
experiments, we fixed the random seed at 42 and employed a controlled variable approach for multiple
independent experiments. The experimental results are shown as Figure 8.

The experimental results indicate that while there is some variability in the outcomes under different
hyperparameter settings, this variability is minor and does not significantly impact the model’s
performance.

A.5 Time Efficiency

We have conducted time efficiency experiments on the DB15K dataset using an NVIDIA GeForce
4090 GPU, employing the LBMKGC, TBKGC, QEB, RSME, and IKRL methods. The results are
as Figure 9, this deceleration is within an acceptable range and leads to substantial performance
improvements. The increased computational time is primarily due to the additional processing
required for assigning weights to the text and image modalities, as well as to the graph structural
information regulated by relational context.
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Figure 9: Training Time Efficiency on DB15K Dataset

Overall, the LBMKGC model achieves a commendable balance between efficiency, performance,
and stability. The additional computational investment yields disproportionately valuable returns in
terms of prediction accuracy and model robustness, making it particularly suitable for applications
where performance is prioritized over minimal training time.
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