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A B S T R A C T

Zero-shot video action recognition has advanced significantly due to the adaptation of visual-language models,
such as CLIP, to video domains. However, existing methods attempt to adapt CLIP to video tasks by leveraging
temporal information, neglecting the semantic information (i.e. the latent categories and their relationships)
within videos. In this paper, we propose a Semantic Constrained CLIP (SC-CLIP) approach that leverages
semantic information to adjust CLIP for video recognition while ensuring its performance on unseen data.
SC-CLIP comprises a semantic-related query generation module and a semantic constrained cross attention
module. First, the semantic-related query generation module clusters dense tokens from CLIP to generate
semantic-related mask. The semantic-related query is then derived by pooling the adapted CLIP output
using the semantic-related mask. Next, the semantic constrained cross attention module feeds the generated
semantic-related query back into CLIP to probe semantic-related values, enhancing their ability to leverage the
vision-language matching capabilities of CLIP. By generating semantic-related query, the semantic information
aids in distinguishing similar actions, thereby improving performance on unseen samples. Experimental results
on three zero-shot action recognition benchmarks show improvements of up to 1.9% and 2% in harmonic
mean under two settings. Code is available at https://github.com/quanzhenzhen/SC-CLIP.
1. Introduction

Research on video action recognition has gained significant at-
tention, driven by advances in video technology [1] and computer
vision [2,3]. Existing methods leverage various sensor data [4] for
applications in areas such as human–computer interaction and video re-
trieval. Traditional approaches rely extensively on large-scale manually
labeled video datasets to train models. However, with the exponential
growth of video data, the cost of manual labeling has risen sharply.
These methods often struggle to adapt to unseen action categories,
limiting their robustness and scalability in real-world applications. To
address these challenges, Zero-Shot Learning (ZSL) [5] has emerged
as a promising solution. ZSL aims to enable models to recognize cat-
egories absent from the training set by incorporating semantic infor-
mation to bridge the gap between visual modalities and categories [6],
reducing the dependence on large-scale labeled data. Common ZSL
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methods include embedding-based approaches [7] and generative ap-
proaches [8]. However, due to the challenges of low-quality generated
samples and poor stability often associated with generative methods,
most Zero-Shot Video Action Recognition (ZS-VAR) approaches rely on
embedding-based methods.

Recently, the rapid development of vision-language models such
as CLIP has prompted many studies to adapt models from the image
domain to the video domain, offering a novel solution for ZS-VAR [9].
However, these methods still face significant challenges in ZS-VAR. The
first challenge lies in effectively adapting vision-language models from
the image domain to the video domain. Video data differs considerably
from image data, incorporating temporal information and exhibiting
more complex dynamic features and scene semantics. Fully leveraging
the multimodal capabilities of vision-language models while adapting
to the spatiotemporal characteristics of video data remains a critical
research challenge. The second challenge is the insufficient emphasis on
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Fig. 1. Comparison of previous methods and the SC-CLIP approach. Previous methods in (a) process the inter-frame relationship in video through temporal modules or modeling
methods. The SC-CLIP approach in (b) distinguishes the potential semantics within video. By leveraging the relationship between actions and potential semantics, SC-CLIP can
better recognize actions such as hair cut and blow dry hair.
semantic information in action recognition. Current methods primarily
focus on capturing temporal dynamics in video data, either through
full fine-tuning of pre-trained vision-language models [10] or by using
parameter-efficient transfer learning techniques inspired by natural lan-
guage processing [11]. However, both approaches prioritize temporal
information, either by modeling time or adding temporal modules to
capture inter-frame relationships in video data (see Fig. 1(a)). These
methods often neglect semantic information in videos, such as objects,
actions, and their relationships, which are crucial for accurate action
recognition. For similar actions (e.g., ‘‘haircut’’ and ‘‘blow-dry hair’’),
key semantic cues (e.g., scissors and hairdryer) provide crucial informa-
tion for distinguishing action categories. The lack of semantic modeling
significantly limits the adapting capability of existing methods, par-
ticularly in complex scenarios. Moreover, although full fine-tuning of
vision-language models captures some semantic information, it incurs
high computational costs and risks overfitting. In contrast, lightweight
transfer learning methods offer only modest performance improve-
ments. Thus, effectively modeling semantic information while ensuring
computational efficiency remains a significant challenge.

To address the challenges in adapting vision-language models to
the video domain and the underutilization of semantic information in
action recognition, we introduce a novel Semantic Constrained CLIP
(SC-CLIP) approach, which achieves efficient ZS-VAR by distinguishing
potential semantics in the video and utilizing the relationship between
actions and potential semantics (See Fig. 1(b)). Specifically, SC-CLIP
approach includes a semantic-related query generation module to gen-
erate semantics and a semantic constrained cross attention module
to utilize the relationship between actions and semantics. First, the
semantic-related query generation module clusters the dense tokens of
the frozen CLIP through the K-Means and mask fusion methods [12] to
generate semantic-related mask encompassing all potential semantics.
The CLIP output is then pooled with the semantic-related mask to create
query embedded with semantic information. Second, the semantic con-
strained cross attention module feeds the generated semantic-related
queries back into CLIP. By using the semantic-related query as 𝑄 and
the intermediate token of the second last transformer layer of CLIP as
𝐾 and 𝑉 , semantic-related values are probed, enhancing the zero-shot
capabilities of CLIP. The probed semantic-related values are then used
for classification.

Unlike existing methods [13] that rely on temporal modules for
inter-frame information interaction, SC-CLIP focuses on semantic in-
formation in videos. By capturing potential semantics and applying se-
mantic constraints, SC-CLIP highlights features that distinguish similar
actions, enabling effective adaptation to the video domain. Addition-
ally, SC-CLIP selectively trains certain CLIP layers while keeping others
frozen, ensuring efficiency and reducing overfitting. Our contributions
are as follows:

(1) We develop a semantic-related query module that clusters the
dense tokens of CLIP to generate the semantic-related mask, which is
2 
then used to pool the CLIP output and produce the semantic-related
query.

(2) We introduce a semantic-constrained cross attention module that
feeds the semantic-related query back into CLIP, where it serves as
query to extract classification-related values, thereby constraining the
outputs.

(3) We demonstrate superior performance on unseen classes across
diverse action recognition datasets.

2. Related works

2.1. Video action recognition

With advancements in deep learning [14], Human Action Recogni-
tion (HAR) has emerged as a widely studied field [15]. HAR approaches
vary by data modality, encompassing single-modal methods, such as
those using RGB images [16] and skeleton data [17], as well as multi-
modal sensor data methods [4]. HAR methods can also be catego-
rized by action type, including fine-grained action recognition [18],
micro-gesture recognition [15], and micro-action analysis [19]. Based
on network architecture, HAR methods include Convolutional Neu-
ral Network (CNN)-based approaches [19] and transformer-based ap-
proaches [20]. CAST [1] demonstrated spatiotemporal understanding
of videos using spatiotemporal cross-attention mechanisms. The advent
of large-scale vision-language models, such as CLIP, has inspired re-
searchers to adapt these models for HAR [21]. The aforementioned
HAR methods require all data to be labeled. Our method employs zero-
shot learning for HAR, eliminating the need for labeling all actions. We
achieve this by leveraging the zero-shot capabilities of CLIP through
semantic-related query generation and semantic constrained cross at-
tention modules. This enables transfer knowledge from seen actions to
unseen ones, ultimately facilitating the recognition of unseen actions.

2.2. Zero-shot video action recognition

ZS-VAR is highly valuable in real-world applications as it enables
the trained model to recognize unseen actions. Early studies, such
as [22], employed action attributes to develop a ZS-VAR models.
Similarly, [23] leveraged object-related attributes to model actions.
Recently, the widespread adoption of large-scale pre-trained vision-
language models for various downstream tasks has inspired researchers
to extend these models to zero-shot tasks [24]. Beyond extensive re-
search in zero-shot image classification, zero-shot video action recog-
nition has also been explored [25]. X-CLIP [26] incorporated a cross-
attention module into each layer of the transformer to enhance infor-
mation exchange across the temporal dimension. Existing CLIP-based
approaches emphasize inter-frame relationships, achieving ZS-VAR by
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Fig. 2. The overview of the semantic constrained CLIP method is on the left, where the red line represents the semantic constraint process. The detailed view of the query
generation and the semantic cross attention are on the top-right and bottom-right.
modeling temporal dynamics or incorporating temporal modules. Addi-
tionally, our proposed SC-CLIP approach primarily focuses on semantic
information. SC-CLIP leverages CLIP to classify all semantics within
videos, utilizing the relationships between actions and semantics to
achieve ZS-VAR.

2.3. Pseudo-label generation

When labeled data is scarce, machine learning methods are em-
ployed to generate pseudo-labels, enhancing the diversity and richness
of the dataset and enhancing the ability of model to adapt to un-
seen data. Common pseudo-labeling methods include those based on
weakly-supervised learning [27], generative adversarial network [8],
and clustering [12]. [12] raised a multi-scale K-means algorithm and a
mask fusion method to generate pseudo-labels for unknown categories.
Unlike existing methods, we do not utilize pseudo-label generation
method to create pseudo-labels. Instead, we generate semantic-related
mask to provide semantics for video action recognition.

3. Methodology

3.1. Overview

To better distinguish similar actions (e.g., javelin throw and discus
throw) utilizing semantic information from videos, we implement a
novel semantic constrained CLIP approach. This approach identifies
potential semantics in videos and leverages the relationship between
actions and these semantics to emphasize those that differentiate sim-
ilar actions, as shown on the left side of Fig. 2. Firstly, we briefly
introduce CLIP in the context of the video domain (See Section 3.1.1).
Secondly, we raise a semantic-related query generation module to
cluster the dense tokens of the frozen CLIP through the K-Means and
mask fusion methods to generate semantic-related mask. The semantic-
related mask is utilized to pool the adapted CLIP output to create
semantic-related query (See Section 3.2). Then, we construct a semantic
constrained cross attention module that feeds the semantic-related
query back into CLIP to produce semantic-related embeddings (See Sec-
tion 3.3). Finally, we give the training objective of SC-CLIP approach
(See Section 3.4).

3.1.1. Preliminary
We introduce the manner in which existing methods [25,26] apply

CLIP in video recognition, and similarly, we apply this approach to
utilize CLIP in ZS-VAR. Consider a video 𝑣𝑖 ∈ R𝑇×3×𝐻×𝑊 with 𝑇
frames, where each frame has a resolution of 𝐻×𝑊 . The visual feature
𝑧𝑣,𝑖 ∈ R𝑇×𝐷 is extracted using the CLIP video encoder 𝑓𝑣, and 𝐷 is the
dimension of the [CLS] token in the ViT encoder. After processing the
temporal information using different ways, average pooling is applied
3 
to 𝑧𝑣,𝑖, yielding 𝑧𝑣,𝑙 ∈ R𝐷. Our approach treats the video as a collection
of frames, which are input into CLIP. For the text processing, the action
category is embedded in a predefined template (e.g. ‘‘a video of [ ]’’)
as input, where the content inside ‘‘[ ]’’ is the description of action.
Given a text description 𝑎𝑗 of a video, the text feature 𝑧𝑎,𝑗 ∈ R𝐷 is
extracted using CLIP’s text encoder 𝑓𝑎. During training, the objective is
to maximize the similarity between 𝑧𝑣,𝑖 and 𝑧𝑎,𝑗 if they belong to the
same class.

sim
(

𝑧𝑣,𝑖, 𝑧𝑎,𝑗
)

=

⟨

𝑧𝑣,𝑖, 𝑧𝑎,𝑗
⟩

‖

‖

𝑧𝑣,𝑖‖‖
‖

‖

‖

𝑧𝑎,𝑗
‖

‖

‖

. (1)

3.2. Semantic-related Query Generation (SQG)

To transfer the vision-semantic matching capability of CLIP to video
domains, we propose a semantic-related query generation module.
Inspired by the pseudo labels generation approach [12] for image, we
obtain semantic-related mask from frozen CLIP by the input video. The
algorithm proposed demonstrated semantic consistency across different
images. Since the variation between frames within the same video is
smaller than that between different images, we treat the 𝑇 frames as a
collection of individual frames. We first input a video 𝑉 ∈ R𝑇×3×𝐻×𝑊

into the frozen visual encoder of CLIP. Then we average the dense token
𝑂 ∈ R𝑇×(𝐻×𝑊 )×𝐷 from CLIP visual encoder to initialize the mask seed
𝐶𝑠 through sliding windows of different sizes.

𝐶𝑠 =

{ 𝑖+𝑠−1
∑

𝑢=𝑖

𝑗+𝑠−1
∑

𝑣=𝑗

𝑂[𝑢, 𝑣]
𝑠2

|

|

|

|

|

|

𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽

}

(2)

where 𝐼 = {0, [𝑠∕2],… , [𝐻 − 𝑠]}, 𝐽 = {0, [𝑠∕2],… , [𝑊 − 𝑠]}, [⋅] denotes
the rounding operation, and 𝑠 ∈ 𝑆. 𝑆 represents the size of the window.
The initialized 𝐶𝑠 is then refined using K-means to obtain fine-grained
category clusters. To further merge the mask belonging to the same
category, we consider mask fusion method by computing the cosine
similarity 𝐶 ∈ [−1, 1]𝑁𝑐∗𝑁𝑐 between 𝐶𝑠 and its corresponding mask
𝑀 ∈ R𝑇×𝑁×𝐷, and merge the mask based on a threshold 𝛿. The value
of the threshold 𝛿 in mask fusion determines the degree of fusion, with
larger values resulting in a higher level of fusion.

Next, we feed the video into CLIP visual encoder and obtain the out-
put from the last layer. The output is passed through an adapter with a
novel self-attention mechanism, SA = sof t max

(

𝑄𝐾(𝑡−2)∼(𝑡+2)𝑇
√

𝑑

)

𝑉 (𝑡 − 2)

∼ (𝑡 + 2), designed to capture temporal information from videos. This
process extracts features 𝐹 𝑎 ∈ R𝑇×(𝐻×𝑊 )×𝐷. The semantic-related query
𝑄 is obtained by mask pooling the features 𝐹 𝑎 through the semantic-
related mask 𝑀 obtained from CLIP on the dimension 𝑇 ×𝐻 ×𝑊 : (the
top-right of Fig. 2)

𝑄 =

[
∑

𝑇 ,𝐻 ,𝑊 𝐹 𝑎 [1(𝑚 = 1)]
∑ |𝑚 ∈ 𝑀

]

, (3)

𝑇 ,𝐻 ,𝑊 [1(𝑚 = 1)]
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Fig. 3. The visualization of attention weights of the last layer in CLIP and SC-CLIP.
where 1 implies whether the value of mask belongs to 1. For simplicity,
the batch size 𝐵 is omitted. In each epoch, each batch contains different
videos, and videos both within and across batches contribute to the
generation of semantic-related query.

The semantic-related query 𝑄 captures all potential semantic infor-
mation in every frame. To ensure that the semantic-related query 𝑄
aligns more accurately with action-related semantics, we supervise it
using the text embeddings 𝑎𝑖 from the frozen CLIP text encoder through
a cross-entropy:

𝑞 = −
∑

𝑖
log

exp
(

sim
(

𝑞𝑖, 𝑎𝑖
)

∕𝜏
)

∑

𝑗 exp
(

sim
(

𝑞𝑖, 𝑎𝑗
)

∕𝜏
) , (4)

where 𝑞 is the query alignment loss, 𝑞𝑖 ∈ 𝑄 and 𝜏 is temperature
parameter.

3.3. Semantic Constrained Cross Attention (SCCA)

We propose a semantic constrained cross attention module that
retains the semantics of CLIP, enabling it to learn semantic information
while leveraging the relationship between actions and semantics to
achieve the ZS-VAR task. First, we keep the parameters of the last
transformer layer of CLIP unchanged, while making the other lay-
ers trainable. All potential semantic information is captured in the
semantic-related query generated in Section 3.2. This query is then
input into the last transformer layer again, allowing CLIP to learn
semantic information. To capture the relationships between actions and
potential semantics in videos, we introduce Semantic Cross Attention
(SCA) mechanism, replacing the self-attention mechanism in the last
transformer layer when inputting semantic-related query, as shown
in the bottom-right of Fig. 2. The original query is replaced by the
semantic-related query, while the output from CLIP second last layer
continues to serve as the key and value. The semantic-related mask is
added as a bias matrix to enhance the distinction of semantic-related
areas, thereby influencing the semantic cross attention mechanism. SCA
is:

SCA (𝑄, 𝐹 , 𝑀) = sof t max

(

�̃��̃�𝑇
√

𝑑
+𝑀

)

𝑉 , (5)

where �̃� = 𝑊𝑞𝑄, �̃� = 𝑊𝑘𝐹 , 𝑉 = 𝑊𝑣𝐹 are parameter-invariant linear
projections of the semantic-related query 𝑄 and the output 𝐹 of second
last transformer layer.

After these operations, the output 𝐹 ′ of the last transformer layer
carries enriched semantic information, which we then utilize for action
recognition. We propose the semantic constrained loss 𝑠𝑐 to maximize
the semantic-related embeddings 𝑓 ′

𝑖 ∈ 𝐹 ′ and the corresponding text
embeddings 𝑎𝑖 from frozen CLIP text encoder via cross-entropy:

𝑠𝑐 = −
∑

𝑖
log

exp
(

sim
(

𝑓 ′
𝑖 , 𝑎𝑖

)

∕𝜏
)

∑

𝑗 exp
(

sim
(

𝑓 ′
𝑖 , 𝑎𝑗

)

∕𝜏
) . (6)

To assess whether our proposed method captures semantic infor-
mation, we visualize the attention weights of the last transformer layer
from both CLIP and SC-CLIP after passing through the SCCA module
4 
in Fig. 3. In the attention visualizations of specific tokens from CLIP
(See Fig. 3(a)), the CLS token and other tokens fail to capture meaning-
ful semantic information. However, the SC-CLIP approach effectively
captures semantics in the attention weights visualizations, such as hair
dryers and body parts (See Fig. 3(b)). This is because [28] demonstrated
that clustering effectively captures image semantics. Moreover, CLIP is
trained on large-scale image-text pair datasets, enabling text-centered
clustering and resulting in superior semantic clustering capabilities.
Leveraging this advantage, semantic-related query dynamically learn
the semantic clustering features of CLIP through semantic-related mask,
capturing detailed, transferable features without predefined category
labels. Subsequently, the SCCA module further refines and enhances
the completeness and accuracy of the semantic information.

3.4. Training objective

The training objective of SC-CLIP comprises the semantic-
constrained loss 𝑠𝑐, the query alignment loss 𝑞, and the adapter
alignment loss 𝑎:

 = 𝑠𝑐 + 𝛼𝑎 + 𝛽𝑞 , (7)

where 𝛼 and 𝛽 are hyperparameters. 𝑎 denotes the cross-entropy loss
between the video-level embeddings from the auxiliary adapter and the
corresponding text embeddings from the frozen CLIP text encoder like
Eqs. (4) and (6), enhancing the performance for unseen categories.

4. Experiment settings

4.1. Datasets

We showcase the effectiveness of the raised SC-CLIP approach by
evaluating it on the following datasets.

UCF-101 [29]: A HAR dataset, collected from YouTube, consists of
13,320 videos spanning 101 action categories. Each video depicts real-
life scenarios. The dataset is officially divided into three parts. Each
part allocates 9537 videos for training and 3783 videos for testing.

HHMDB-51 [30]: The dataset features 51 action categories, each
comprising a minimum of 101 videos, amounting to a total of 6849
videos. Like the UCF-101 dataset, it is split into three segments for
training and testing, with each category having 70 videos for training
and 30 for testing.

Something Something V2 (SSv2) [31]: This dataset features 174
action categories related to human interactions with everyday objects.
It focuses on detailed action recognition and introduces more complex
temporal dynamics than other datasets. The dataset comprises 168,913
videos for training and 24,777 videos for testing.

Kinetics-400 (K-400) [32] and Kinetics-600 (K-600) [33]: The
K-400 dataset contains 400 action categories, comprising YouTube
videos, each approximately 10 s long. The dataset is divided into a
training set (240,000 videos) and a test set (20,000 videos). K-600 is
an extension of the K-400 dataset, featuring 600 behavioral actions in
total, 220 of which are unique to K-600. These new action categories
provide valuable resources for zero-shot recognition testing (60 for
validation and 160 for testing).
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Table 1
The hyperparameters of UCF-101, HMDB-51, SSv2 and K-600 datasets.

Dataset 𝛿 𝜏 𝛼 𝛽

UCF-101 0.9 65 0.1 0.1
HMDB-51 0.85 40 0.3 0.3
SSv2 0.85 45 0.2 0.2
K-600 0.8 50 0.0001 0.3

4.2. Evaluation protocols

In line with [13,26], we assess SC-CLIP in both base-to-novel and
ero-shot settings. In both the base-to-novel and zero-shot settings, the

division of seen and unseen samples in each dataset is the same as
in [25].

Base-to-novel setting: We categorize the UCF-101, HMDB-51, and
Sv2 datasets into common and novel action categories following the

approach outlined in [13]. The common classes are utilized for training,
with novel classes designated for testing. Each dataset provides three
distinct splits for training and testing. For the SSv2 dataset, validation
is performed on the entire test set, whereas for the UCF-101 and HMDB-
51 datasets, only the first training-test split is used for validation.
The top-1 accuracy is calculated for seen and unseen categories across
various test datasets, denoted as 𝐵 𝑎𝑠𝑒 and 𝑁 𝑜𝑣𝑒𝑙, respectively, along
with their harmonic mean 𝐻 𝑀 .

𝐻 𝑀 = 2 × 𝐵 𝑎𝑠𝑒 ×𝑁 𝑜𝑣𝑒𝑙
𝐵 𝑎𝑠𝑒 +𝑁 𝑜𝑣𝑒𝑙 . (8)

Zero-shot setting: The SC-CLIP approach begins with training on
he K-400 dataset and is then assessed on the UCF-101, HMDB-51, and
-600 datasets. For the UCF-101 and HMDB-51 datasets, we employ

he three test splits from the official source and reported the mean
nd standard deviation of top-1 accuracy across these splits. For the
-600 dataset, we assess performance using 160 action categories that
re absent from the K-400 dataset and report the mean and standard

deviation of the top-1 accuracy.

4.3. Implementation details

We employ the CLIP architecture with ViT-B/16 across all exper-
ments, with adapters implemented as transformer encoders. Follow-
ng [25], we utilize GPT-3.5 to enrich action names. For training, we

train 11th layer while keeping the other layers frozen. And each video
is sampled with 8 frames, and the batch size is 64. For testing, we
sample 3 video clips per video, each with 1 crop (‘‘3 × 1’’ view),
and combine the results by averaging. In the base-to-novel setting,
training spans 18 epochs per dataset, including 2 warm-up epochs.
Initial learning rates are set to 5 × 10−5 for UCF-101, 1 × 10−3 for
HMDB-51, and 8 × 10−4 for SSv2, with rates decayed using a cosine
scheduler. In the zero-shot setting, training on the K-400 dataset spans
6 epochs, including 2 warm-up epochs, with an initial learning rate of
4 × 10−4. All experiments are performed using 8 NVIDIA Tesla V100
GPUs. Additional hyperparameter settings shown in Table 1 for all
atasets are obtained from the experiments in Section 5.3.

5. Experiment results

5.1. Comparison with state-of-the-art

We primarily compare our method with state-of-the-art CLIP-based
ZS-VAR approaches, including Frozen CLIP [24], Action CLIP [34],
XCLIP [26], ViFi-CLIP [13], MMA [35], Vita-CLIP [10], GBC [36],
M2-CLIP [37], AIM [9], and ST-Adapter [21], across the UCF-101,
HMDB-51, SSv2, and K-600 datasets under both two settings.
 b

5 
5.1.1. Base-to-novel
Table 2 presents the experimental results of base-to-novel compar-

isons conducted on the UCF-101, HMDB-51, and SSv2 datasets. The
results clearly show that the SC-CLIP method significantly outperforms
directly applying CLIP [24] to ZS-VAR, achieving notable improve-
ments in recognizing unseen action categories (46.8% to 57.2%). Com-
pared to X-CLIP [26], which modifies each transformer layer of CLIP
y adding cross-attention modules for temporal information exchange,
C-CLIP leverages semantic information to constrain CLIP, resulting
n improvements of 11.7% (HMDB-51), 21.1% (UCF-101), and 6%
SSv2) on unseen action categories. When compared to ViFi-CLIP [13],

which fine-tunes CLIP, SC-CLIP significantly boosts the recognition rate
of unseen actions, increasing it from 53.3% to 57.2% on HMDB-51.
Furthermore, SC-CLIP demonstrates superior performance over meth-
ods that freeze CLIP and employ trainable adapters, such as AIM [9]
and ST-Adapter [21], particularly on HMDB-51 and SSv2 datasets.
Compared to MMA [35], SC-CLIP also achieves a substantial improve-
ment in the harmonic mean. Notably, SC-CLIP requires only 1/4 of
the training parameters used by CLIP, yet achieves over 95% of the
performance of fully fine-tuned methods, such as 84.5% compared to
87.0% for FROSTER [25] on the UCF-101 dataset. The effectiveness of
SC-CLIP lies in its ability to classify each video frame and leverage the
elationship between actions and semantics to achieve ZS-VAR.

5.1.2. Zero-shot
Table 3 presents the zero-shot experimental results on the UCF-

01, HMDB-51, and K-600 datasets, including results for the full
est set and three split test sets on UCF-101 and HMDB-51 datasets.
hese results demonstrate that our method surpasses most existing ad-

vanced approaches, including uni-modal zero-shot recognition models
(ER-ZASR [38]) and CLIP-based adaptation models (such as Action-

LIP [34], Vita-CLIP [10], XCLIP [26], ST-Adapter [21], M2-CLIP [37],
and GBC [36]). SC-CLIP improves accuracy by approximately 28% on
he UCF-101 dataset over ER-ZASR [38], by 4.9% compared to the
ully fine-tuned approach (Vita-CLIP [10]), and by 2.3% relative to the

adapted method (ST-Adapter [21]). Although our approach falls short
f GBC [36] on the K-600 dataset, it achieves 96% of performance of
BC method while utilizing only 10% of its training parameters. These

mprovements highlight the effectiveness of the semantic-related query
eneration and semantic constrained cross attention modules in SC-
LIP for enhancing CLIP’s zero-shot performance in video applications.

n terms of GFLOPs, SC-CLIP generates semantic-related masks using
the frozen CLIP, creates semantic-related queries from these masks,
nd processes them through CLIP again. Despite this dual-pass usage,
C-CLIP achieves a GFLOP count of 305, which remains lower than
T-Adapter (455) and GBC (1882), highlighting its greater efficiency.

5.2. Ablation study

We perform ablation studies on various components of the SC-CLIP
approach, using the base-to-novel setting on the HMDB-51, UCF-101,
and SSv2 datasets, as detailed in Table 4. Fig. 2 demonstrates that
the semantic-related query from SQG serve as the input for SCCA.
Due to their interdependence, SQG and SCCA are analyzed as an
integrated unit. When neither SQG nor SCCA is included (as shown
in the 3rd row of Table 4), merely adding adapters to CLIP for the
S-VAR task leads to poor recognition performance for unseen action
ategories. This is due to the lack of semantic constraints in CLIP,
hich prevents it from leveraging the relationships between actions
nd potential semantics. Excluding 𝐿𝑎, which indicates ignoring the
lignment between auxiliary adapter features and text, improves zero-
hot performance compared to scenarios where both SQG and SCCA
re absent. However, it remains inferior to the SC-CLIP approach.
xcluding 𝐿𝑞 , which involves disregarding the alignment of semantic-
elated query and text in SQG, results in suboptimal recognition for

oth seen and unseen categories. Thus, integrating SQG, SCCA, 𝐿𝑎,
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Table 2
The accuracies on the HMDB-51, UCF-101 and SSv2 datasets based on base-to-novel setting. Pub represents publication and the best results are
bolded. Results are shown in percentage form.

Method Pub HMDB-51 UCF-101 SSv2

𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
Frozen CLIP [24] ICML’21 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1
ActionCLIP [34] TNNLS’23 69.1 37.3 48.5 90.1 58.1 70.7 13.3 10.1 11.5
XCLIP [26] ECCV’22 69.4 45.5 55.0 89.9 58.9 71.2 8.5 6.6 7.4
AIMa [9] ICLR’23 64.0 51.6 57.1 89.8 76.4 82.6 8.5 7.9 8.2
ST-Adaptera [21] NIPS’22 65.3 48.9 55.9 85.5 76.8 80.9 9.3 8.4 8.8
ViFi-CLIP [13] CVPR’23 73.8 53.3 61.9 92.9 67.7 78.3 16.2 12.1 13.9
MMA [35] CVPR’24 – – – 86.2 80.0 82.2 – – –
SC-CLIP – 72.2 57.2 63.8 93.5 77.0 84.5 15.8 12.6 14.0

a Indicates that results are generated by our implementation.
Table 3
The accuracies on UCF-101 and HMDB-51 datasets based on zero-shot setting. UCF∗ and HMDB∗ signify assessments on the complete validation
set, while UCF and HMDB correspond to evaluations over the three validation splits. Pub and TP represent publication and number of the
tunable parameters. The left and right sides of ± correspond to the mean and standard deviation of the top-1 accuracy, respectively.

Method Pub TP (M) GFLOPs UCF∗ UCF HMDB∗ HMDB K-600

ER-ZASR [38] ICCV’21 – – – 51.8 ± 2.9 – 35.3 ± 4.6 42.1 ± 1.4
ActionCLIPa [34] TNNLS’23 141 141 77.4 77.5 ± 0.8 48.0 48.2 ± 1.5 62.5 ± 1.2
XCLIP [26] ECCV’22 131.5 145 – 72.0 ± 2.3 – 44.6 ± 5.2 65.2 ± 0.4
ST-Adaptera [21] NIPS’22 7.2 455 77.9 77.6 ± 0.7 50.3 51.1 ± 0.6 60.2 ± 1.8
Vita-CLIP [10] CVPR’23 124.7 97 – 75.0 ± 0.6 – 48.6 ± 0.6 67.4 ± 0.5
M2-CLIP [37] AAAI’24 16 214 – 78.7 ± 1.2 – 47.1 ± 0.4 –
GBC [36] TCSVT’24 234.3 1882 – 77.7 ± 1.3 – 49.6 ± 1.4 67.4 ± 0.7
SC-CLIP – 21.3 305 79.9 79.9 ± 0.8 51.6 52.0 ± 0.3 65.3 ± 1.0

a Indicates that results are generated utilizing our implementation.
Table 4
The accuracies on the HMDB-51, UCF-101 and SSv2 datasets based on base-to-novel setting. SQG is semantic-related query generation, SCCA
represents semantic constrained cross attention, and 𝐿𝑎 and 𝐿𝑞 represent adapter alignment loss and query alignment loss.

Method HMDB-51 UCF-101 SSv2

SQG SCCA 𝐿𝑎 𝐿𝑞 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
– – ✓ ✓ 66.9 25.7 37.1 91.0 51.8 66.0 13.4 7.4 9.5
✓ ✓ – ✓ 73.7 55.3 63.2 90.9 77.7 83.8 15.9 11.6 13.4
✓ ✓ ✓ – 67.0 56.5 61.3 89.6 76.4 82.5 13.2 10.9 11.9
✓ ✓ ✓ ✓ 72.2 57.2 63.8 93.5 77.0 84.5 15.8 12.6 14.0
i
b

Table 5
The ablation study on similar actions, where Pre represents precision.

Dataset Method Category Pre (%)

SQG SCCA 𝐿𝑎 𝐿𝑞

HMDB-51

– – ✓ ✓ Fencing 36.92
✓ ✓ ✓ ✓ 47.37 (↑ 10.45)

– – ✓ ✓ Hit 28.57
✓ ✓ ✓ ✓ 65.00 (↑ 36.43)

UCF-101

– – ✓ ✓ Javelin throw 28.57
✓ ✓ ✓ ✓ 42.86 (↑ 14.29)

– – ✓ ✓ Throw discus 50.98
✓ ✓ ✓ ✓ 93.33 (↑ 42.35)

and 𝐿𝑞 significantly enhances the SC-CLIP approach’s performance for
both seen and unseen action categories. Additionally, the results for
each module in Table 4 are averaged over six experiments. A t-test
comparing these results with those of the SC-CLIP approach yields a
𝑝-value < 0.05, indicating statistical significance.

Additionally, we conducted ablation experiments on similar actions
n Table 5. It presents two sets of similar actions, comparing the method

that does not include SQG and SCCA with the SC-CLIP. The results
show that with the incorporation of semantic information, there is a
significant increase in precision for each action, with the highest im-
provement being 42.35%. This demonstrates that the SC-CLIP approach
enhances the importance of semantics that distinguish similar actions
y differentiating potential semantics in the video and leveraging the

relationship between actions and these semantics, thereby improving
 s
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Table 6
The accuracies of different structures of adapter on HMDB-51, UCF-101 and SSv2
datasets based on base-to-novel setting. TF means Transformer.

Adapter HMDB-51 UCF-101 SSv2

Structure 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
MLP MLP 67.5 57.2 61.9 91.0 77.7 83.8 14.9 11.4 12.9
MLP TF 68.7 57.3 62.5 91.0 77.6 83.8 15.9 11.2 13.1
TF MLP 72.0 56.4 63.3 93.4 76.6 84.2 16.3 10.0 12.4
TF TF 72.2 57.2 63.8 93.5 77.0 84.5 15.8 12.6 14.0

the ability to distinguish similar behaviors.

5.3. Parameter analysis

In this section, we discuss the adapter structure in the top-right of
Fig. 2, the parameter 𝜏 in Eqs. (4) and (6), the parameters 𝛼 and 𝛽
in Eq. (7), the parameter 𝛿 in SQG module, as well as the trainable
layer of CLIP.

5.3.1. The structure of adapter
Table 6 compares four different combinations of Transformer and

MLP structures for the two trainable adapters. The results indicate that
the adapter with a transformer structure facilitates greater semantic
nformation interaction during training, enhances the zero-shot capa-
ilities of CLIP, and enables more effective transfer of knowledge from

een to unseen action classes.
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Table 7
The accuracies of different values of the threshold 𝛿 on HMDB-51, UCF-101 and SSv2
atasets based on base-to-novel setting.
𝛿 HMDB-51 UCF-101 SSv2

𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
0.7 66.4 52.7 58.8 90.8 76.9 83.3 12.9 10.3 11.5
0.8 70.3 56.3 62.5 93.1 75.8 83.6 15.6 11.5 13.2
0.85 72.2 57.2 63.8 93.4 76.3 84.0 15.8 12.6 14.0
0.9 71.2 54.1 61.5 93.5 77.0 84.5 16.6 11.6 13.7
0.95 71.6 54.7 62.0 93.7 76.8 84.4 16.7 11.6 13.7

Table 8
The accuracies of different values of the parameter 𝜏 on HMDB-51, UCF-101 and SSv2
datasets based on base-to-novel setting.
1∕𝜏 HMDB-51 UCF-101 SSv2

𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
1 65.8 38.4 48.5 83.7 69.1 75.7 6.0 5.7 5.8
10 68.5 44.8 54.2 87.6 72.9 79.6 14.2 11.8 13.1
20 69.2 51.3 58.9 90.6 74.3 79.2 15.0 11.6 13.1
40 72.2 57.2 63.8 93.1 76.3 83.9 16.2 11.6 13.5
45 71.2 51.3 59.6 93.3 76.9 84.3 15.8 12.6 14.0
50 71.1 54.5 61.7 93.5 76.9 84.4 16.9 11.0 13.3
60 71.1 54.5 61.7 93.5 76.8 84.3 16.8 11.8 13.9
65 69.4 50.5 58.5 93.5 77.0 84.5 16.4 11.6 13.6
80 70.4 50.0 58.5 93.4 76.7 84.2 16.9 11.8 13.9
100 70.9 48.5 57.6 93.3 76.3 83.9 17.0 11.9 14.0

5.3.2. The threshold 𝛿
In semantic-related query generation module, the number of

emantic-related features is determined by the threshold 𝛿 in mask
usion. Increasing 𝛿 generates more mask seeds. Table 7 shows the

performance of different datasets under various thresholds in the base-
to-novel setting. The value of 𝛿 is selected from {0.7, 0.8, 0.85, 0.9, 0.95}.
As seen in Table 7, UCF-101 dataset requires more semantic-related
eatures than HMDB-51 and SSv2 datasets. This is because the back-
round in UCF-101 is simpler, allowing more semantic information
o be captured with a higher threshold 𝛿. For all datasets, a larger
hreshold 𝛿 is not necessarily better. For HMDB-51, increasing the
hreshold 𝛿 results in a decline in zero-shot capability and a reduction
n recognition accuracy for seen action categories. In contrast, for UCF-
01 and SSv2 datasets, increasing the threshold 𝛿 improves recognition
f seen action classes but reduces the ability to recognize unseen action
amples.

5.3.3. The parameter 𝜏
The 𝜏 value in Eqs. (4) and (6) represents the difficulty of training

samples across different datasets. Table 8 shows the performance of
arious datasets in the base-to-novel setting under different 𝜏 values.
he value of 1∕𝜏 is selected from {1, 10, 20, 40, 45, 50, 60, 65, 80, 100}.
s shown in Table 8, The 𝜏 value that is either too large or too

small hampers the development of zero-shot recognition capability.
The HMDB-51 and SSv2 datasets contain more challenging samples
compared to UCF-101 dataset, necessitating an increased 𝜏 value to
achieve better recognition performance.

5.3.4. The hyperparameters 𝛼 & 𝛽
Hyperparameters 𝛼 and 𝛽 in Eq. (7) represent the respective pro-

ortions of 𝐿𝑎 and 𝐿𝑞 in the total loss. Fig. 4 displays the results for
arious datasets in the base-to-novel setting. The values of 𝛼 and 𝛽
re selected from {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1}. As shown
n Fig. 4, the weight of 𝐿𝑎 does not significantly affect overall zero-
hot performance. In contrast, the weight of 𝐿𝑞 has a greater impact
hen set too high or too low, especially on the HMDB-51 and UCF-101

datasets. This suggests that aligning the semantic-related query with the
action class is essential, but preserving sufficient semantic information
within the query is equally important for enhancing performance on

nseen categories.
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Table 9
The accuracies of training different transformer layer on HMDB-51, UCF-101 and SSv2
datasets based on base-to-novel setting. When the specific layers mentioned in the table
are being trained (e.g. {9, 10, 11} means from 9th to 11th layer are trained), all other
layers remain frozen. ‘‘None’’ indicates that none of the layers are trained.

Trainable HMDB-51 UCF-101 SSv2

layer 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀 𝐵 𝑎𝑠𝑒 𝑁 𝑜𝑣𝑒𝑙 𝐻 𝑀
None 71.8 53.6 61.4 93.4 76.8 84.3 13.4 10.5 11.8
{10} 64.0 24.5 35.4 94.9 69.3 80.1 13.1 7.7 9.7
{11} 72.2 57.2 63.8 93.5 77.0 84.5 15.8 12.6 14.0
{10, 11} 66.9 23.5 34.8 94.9 69.1 80.0 13.1 7.3 9.3
{9, 10, 11} 61.2 19.3 29.3 93.9 63.4 68.1 13.1 7.5 9.5
{1 − 11} 66.2 32.1 43.2 89.9 45.1 60.1 13.3 7.9 9.9

5.3.5. The trainable transformer layer of CLIP
We experiment with training different layers of CLIP in the SC-CLIP

approach, and the results are presented in Table 9. It shows that if
any transformer layer of CLIP is left untrained (in the 1st row), the
recognition performance of the SC-CLIP approach declines for both
seen and unseen samples. When multiple layers of CLIP (e.g. from
0th to 11th layer) are trained, the recognition ability for unseen
amples significantly decreases, and the inherent zero-shot capability
f CLIP is compromised. However, when training a single layer of CLIP
10th or 11th layer), we found that training only the 11th layer of
he transformer leads to the strongest retention of zero-shot capability
f CLIP. As noted in [39], the last layer of the CLIP visual encoder

preserves visual-semantic associations. Freezing its parameters avoids
disrupting pre-trained multimodal features and ensures performance on
unseen categories.

5.4. Visualization

To extract semantic information from videos, we generate semantic-
elated mask in SQG and leverage it to create semantic-related query.
o evaluate the ability of SC-CLIP to learn semantic information, we
isualize the mask seeds alongside the attention weights of the last
ransformer layer after SCCA, as shown in Figs. 5 and 6. In Fig. 5, the
irst and fifth columns display three randomly selected frames from a

video, while the second to fourth and sixth to eighth columns show the
ask seeds. For the selected actions ‘‘blow-drying hair’’ and ‘‘playing

violin’’, the semantic-related mask includes three types of mask seeds
that capture the primary action semantics. While the content of the
seeds varies slightly between frames, they consistently represent the
same semantics. Combining frames clarifies semantic information, and
the accuracy of the semantic mask matches the results shown in Fig. 5.
The attention weights of the last transformer layer after SCCA are
shown in the second to fourth columns and the sixth to eighth of
Fig. 6. The visualization results indicate that SC-CLIP fully captures
the information from the semantic-related mask, including the types
and semantics. Additionally, SC-CLIP learns semantics at category level
rather than token level, enhancing the completeness of the semantic
representation.

In addition to mask visualization, we also utilize t-SNE [40] to
visualize the recognition performance of SC-CLIP on unseen action
categories, as shown in Fig. 7. By comparing the visualized results of
SC-CLIP and Frozen CLIP in zero-shot setting on UCF-101, we observed
that SC-CLIP demonstrates significantly stronger capability in distin-
guishing unseen categories. Specifically, as shown in parts (a) and (b) of
Fig. 7, results highlighted by the red circles illustrate the notable advan-
tages of SC-CLIP over Frozen CLIP in terms of clustering performance.
SC-CLIP effectively leverages the relationships between actions and
latent semantics, achieving a more distinct and well-separated distribu-
ion of different category samples. Compared to Frozen CLIP, SC-CLIP

forms clearer boundaries between classes, indicating its superior ability

to capture characteristic differences across categories.
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Fig. 4. The results of different values of parameters 𝛼 and 𝛽 on different datasets based on base-to-novel setting. (a) and (b) are the results on the HMDB-51 dataset, (c) and (d)
are the results on the UCF-101 dataset, and (e) and (f) are the results on the SSv2 dataset.
Fig. 5. The visualization of different mask seeds which represent different semantics.
6. Conclusion

In this work, we propose SC-CLIP, a novel approach to enhance
the performance of CLIP in zero-shot video action recognition by inte-
grating semantic information through the Semantic Query Generation
(SQG) and Semantic Constrained Cross Attention (SCCA) modules. SQG
extracts dense tokens from CLIP and clusters them to generate the
semantic-related query to provide richer semantic context. Addition-
ally, SCCA introduces a semantic cross-attention mechanism, feeding
the generated semantic-related query back into CLIP to better capture
semantic information and the relationships between actions and seman-
tics. By focusing on semantic-related information, SC-CLIP sharpens its
ability to distinguish between visually similar actions, ultimately im-
proving its performance on unseen action categories. Evaluations across
8 
multiple benchmarks consistently demonstrate improved performance.
Limitations and Future Directions: Despite its demonstrated suc-

cess, SC-CLIP approach is currently evaluated using the CLIP ViT-B
architecture, which may limit insights into how it performs with other
model variants. In the future, we aim to apply our method to a wider
variety of architectures to evaluate its adaptability and effectiveness.
Additionally, while this work primarily centers around the integration
of semantic information for improving action recognition, temporal
dynamics within video data have not yet been fully explored. Fu-
ture efforts will aim to incorporate temporal modeling, potentially
by developing modules that jointly learn both semantic and tempo-
ral relationships. Furthermore, the performance of SC-CLIP is highly
dependent on the quality and size of the training dataset. We plan to
explore its scalability to more diverse and large-scale datasets to assess
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Fig. 6. The visualization of the attention weights after SCCA.
Fig. 7. t-SNE visualization on UCF-101 dataset based on zero-shot setting. (a) is the Frozen CLIP method, and (b) is the SC-CLIP approach.
its robustness across different domains. Although SC-CLIP has been
evaluated in action recognition tasks, its performance in cross-domain
applications, such as healthcare or autonomous driving, remains to be
explored.
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