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ABSTRACT

Emotion recognition from images is a challenging task due to its dependence
on subtle visual cues and contextual information. Recent advances in Vision-
Language Models (VLMs) have demonstrated strong performance in this domain.
Still, they are often limited by their large computational footprint and the pri-
vacy concerns associated with centralized training. To address these challenges,
we propose CAREFL (Context-Aware Recognition of Emotions with Federated
Learning), a framework for efficient emotion recognition. CAREFL combines
large VLMs, specifically LLaVA 1.5, for generating rich contextual descriptions
with lightweight small VLMs, SMOLVLM2, fine-tuned under a federated learn-
ing setup using Quantized Low-Rank Adaptation. This design enables accurate,
privacy-preserving, and resource-efficient training on edge devices. Although this
work evaluates CAREFL in the context of emotion recognition, the framework is
general by design: leveraging VLMs, it can also be fine-tuned for a wide range
of multimodal description and classification tasks beyond emotion analysis. Ex-
tensive experiments demonstrate that CAREFL outperforms state-of-the-art base-
lines, achieving up to 96.49% mAP and 50.36% F1-score, surpassing heavier
models such as GPT-4o, LLaVA, and EMOTIC. An ablation study further con-
firms the contribution of contextual enrichment, prompt design, and quantiza-
tion in enhancing performance. The results show that federated fine-tuning of
lightweight VLMs, when guided by contextual reasoning from large-scale mod-
els, provides a practical and scalable solution for emotion recognition in privacy-
sensitive and resource-constrained environments.

1 INTRODUCTION

Understanding human emotions from visual data is central to applications in education, healthcare,
and human-computer interaction (Pescarin & Pandiani, 2022; Saffar et al., 2023; Cambria, 2016).
Recent advances in Visual-Language Models (VLMs) have demonstrated strong capabilities in rec-
ognizing subtle affective cues by leveraging both visual and contextual information (Lu et al., 2024;
Liu et al., 2023). However, these gains come at a cost: Large VLMs such as GPT-4V or LLaVA
demand significant computational memory and rely on centralized training with user data collected
on a single server (Vajrobol et al., 2024). For emotion recognition and similar sensitive tasks, this
raises serious concerns about privacy, scalability, and real-world deployment.

Federated learning (FL) provides a natural solution, enabling models to be collaboratively trained
across distributed clients without sharing raw data (McMahan et al., 2023). Yet applying FL to
multimodal VLMs is far from straightforward (Kairouz et al., 2021). Lightweight models, like
SMOLVLM (Marafioti et al., 2025), often underperform in capturing the rich contextual signals
needed for emotion understanding, while directly federating large VLMs is impractical due to pro-
hibitive memory and communication costs. Moreover, most prior FL research for vision tasks has
focused on efficiency or robustness, while ignoring the role of contextual reasoning that is critical
for affective understanding (Barrett et al., 2011; Kosti et al., 2017).

In this work, we introduce CAREFL (Context-Aware Recognition of Emotions with Federated
Learning), a framework that bridges this gap by combining the contextual power of large VLMs
with the efficiency of lightweight small VLMs (SVLMs) in a federated setting. CAREFL operates
in two phases: (i) an offline context generation phase, where a large VLM (LLaVA 1.5) produces de-
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scriptive contextual captions for each image; and (ii) a federated fine-tuning phase, where an SVLM
model (SMOLVLM2) is adapted with quantized low-rank adapters (QLoRA) on local devices, trans-
mitting only compressed updates to the server. This design enables CAREFL to preserve privacy,
efficiency, and contextual richness simultaneously.

Our contributions are threefold:

• We propose CAREFL, a framework that integrates context generation from large VLMs
with lightweight SVLM fine-tuning under federated learning.

• We design an efficient QLoRA adaptation update scheme, which reduces memory footprint
and communication overhead while maintaining high performance.

• We conduct extensive experiments on EMOTIC and CAER-S, showing CAREFL outper-
forms centralized and federated baselines in mAP and F1-score, while being significantly
more efficient. Ablations further validate robustness across non-IID client splits, LoRA
ranks, quantization levels, and aggregation methods.

By explicitly incorporating context into federated multimodal learning, CAREFL advances the de-
sign of scalable, privacy-preserving emotion recognition systems and opens a new path for deploying
VLM-based reasoning under realistic distributed constraints.

2 RELATED WORK

Recent advances in artificial intelligence have improved emotion recognition, but accurately captur-
ing complex emotional states in diverse, decentralized settings remains challenging. This section
reviews progress in context-aware emotion recognition, the use of VLMs, and the role of FL.

2.1 FEDERATED LEARNING FOR EFFICIENT ADAPTATION

Federated learning (FL) enables collaborative model training without centralizing user data, making
it especially relevant for privacy-sensitive domains (McMahan et al., 2023). Early FL approaches
focused on vision models with FedAvg and its variants (Luo et al., 2025; Cui et al., 2024; Zeng
et al., 2024). More recent work has explored parameter-efficient fine-tuning in FL. Works like
FLoRA reduces communication costs by restricting updates to low-rank adapters (LoRA) (Nguyen
et al., 2024). Similarly, FedPrompt (Zhao et al., 2023) leverages prompt tuning to adapt models
in federated settings. While effective for efficiency, these works are limited to unimodal vision or
language tasks, and don’t address the role of contextual reasoning in multimodal learning.

2.2 VISION-LANGUAGE MODELS FOR CONTEXT-AWARE EMOTION RECOGNITION

Large VLMs such as CLIP, LLaVA, and GPT-4V have achieved strong performance in tasks that
require joint visual-text reasoning (Hu et al., 2023; Etesam et al., 2024a; Lu et al., 2024; Yang et al.,
2023). Recent studies have explored their use for emotion recognition and contextual inference,
showing that context often improves accuracy on ambiguous affective cues. For example, Xenos
et al. (2025) combines the use of LLaVA and CLIP, enriching emotion understanding by combining
VLM-generated captions to improve the classification of emotions. However, these approaches
operate in centralized settings, requiring large-scale resources and direct access to sensitive data
(Etesam et al., 2024b; Baldassini et al., 2024).

While prior works mainly explore zero-shot FER, VLM + LLM frameworks, or emotion reasoning
through prompting (Cheng et al., 2024; Xie et al., 2024), they often rely on large models directly
at inference time, which limits efficiency on edge devices. Our two-phase pipeline instead uses
LLaVA offline for context generation and delegates emotion inference to a fine-tuned lightweight
SVLM. This separation allows us to harness the semantic power of large VLMs while ensuring
computational and memory efficiency for real-world, resource-constrained deployment.
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Figure 1: Phase 1: Context generation in CAREFL. YOLOv8 provides bounding boxes, which are
combined with emotion prompts and passed to LLaVA to generate contextual descriptions.

3 CAREFL

We propose CAREFL, a framework for efficient and privacy-preserving contextual emotion recog-
nition in images. CAREFL follows a two-phase pipeline: (i) a large vision–language model (VLM)
generates rich contextual descriptions of each image, and (ii) a lightweight small VLM (SVLM) is
fine-tuned with Quantized Low-Rank Adaptation (QLoRA) in a federated learning (FL) setting to
perform downstream classification. The overall architecture consists of a central server and multiple
clients that collaboratively optimize a global model without sharing raw data.

3.1 TWO-PHASE VLM + SVLM PIPELINE

The CAREFL pipeline separates context generation from federated model training. In Phase 1, a
frozen large VLM produces the descriptive context for each image. In Phase 2, this context, paired
with images and serialized label sequences, are used to fine-tune an SVLM efficiently on client
devices. This design transfers the cost of contextual reasoning to the large model while ensuring
that client-side updates remain lightweight and privacy-preserving.

3.1.1 CONTEXT GENERATION WITH VLM

To enrich training data with high-level semantics, we employ LLaVA 1.5 as the context generator.
Given an input image Ximg

i , a pre-trained YOLOv8 detector first identifies individuals via bounding
boxes. These annotated regions, along with a prompt containing candidate emotions, are passed to
LLaVA, which outputs a narrative-style context that describes the scene.

As illustrated in Figure 1, the generated descriptions go beyond object recognition to capture seman-
tic and environmental cues. These textual contexts are later provided to the SVLM, enabling it to
benefit from the reasoning ability of a large VLM without incurring high on-device computational
costs.

3.1.2 TRAINING THE SVLM FOR EMOTION RECOGNITION IN AN FL ENVIRONMENT

In Phase 2, the contextual descriptions are combined with the raw image and the ground-truth la-
bels. Following the instruction fine-tuning paradigm, label sets are serialized into text sequences
([Happy, Surprised]), and the SVLM is trained to autoregressively generate them given the
multimodal input. This naturally supports multi-label outputs while remaining compatible with the
language modeling objective.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Client-side fine-tuning with QLoRA. (b) Server-side aggregation.

Figure 2: Phase 2: Federated training in CAREFL. Clients fine-tune LoRA adapters with QLoRA
and send quantized updates to the server, which aggregates them into global parameters.

We adopt SMOLVLM2 as the client model due to its compact architecture and efficiency in mul-
timodal tasks (Marafioti et al., 2025). Within CAREFL, SMOLVLM2 is fine-tuned using QLoRA:
the model is quantized to 4-bit precision, base weights remain frozen, and only low-rank adapter
modules are updated. This strategy minimizes memory and compute requirements, making client-
side fine-tuning feasible on resource-constrained devices. Hyperparameters such as the adapter rank
r and scaling factor α are tuned to balance accuracy with efficiency.

As shown in Figure 2, the server distributes the global SVLM LoRA parameters to each client.
Clients fine-tune locally on their data and return quantized adapter updates. The server aggregates
these updates into new global parameters and redistributes them in the next round. By transmit-
ting only low-rank adapter weights, CAREFL significantly reduces communication and memory
overhead while maintaining accuracy, enabling scalable deployment in federated, privacy-sensitive
environments.

4 EXPERIMENTS

All experiments were conducted using the EMOTIC dataset (Kosti et al., 2020), focused on the
26 discrete emotion labels, under the federated learning environment described in Section III. To
ensure reproducibility and scalability, the Flower framework (Beutel et al., 2022) was employed as
the base communication system between clients and the central server. All models were trained and
evaluated on a single NVIDIA RTX 4090 GPU, with inference parameters fixed to a maximum of
256 new tokens and a repetition penalty of 1.15.

The dataset was partitioned into training (70%), validation (10%), and testing (20%), following
prior works (Kosti et al., 2020; 2017). To simulate a non-IID (Non-independent and identically dis-
tributed) federated learning environment, we employed a Dirichlet partitioning strategy (Yurochkin
et al., 2019) with a concentration parameter of α = 5. This value ensures sufficient label variety
across clients in the 26-class EMOTIC dataset, while lower values (α < 5) led to unbalanced splits
with empty client subsets, making training infeasible. This configuration allowed us to evaluate our
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model’s performance in a realistic non-IID scenario without compromising the clients’ ability to
learn from their local data.

Since model outputs are serialized text sequences of emotion labels, we evaluate them as multi-
label text classification. Mean Average Precision (mAP), Recall, and F1-score were computed using
scikit-learn (Pedregosa et al., 2011). These metrics capture both label coverage and correct-
ness in the presence of multiple concurrent predictions per sample.

4.1 COMPARISON WITH STATE-OF-THE-ART

We benchmarked CAREFL against a range of state-of-the-art methods spanning CNN-based archi-
tectures, large vision–language models, and lightweight fine-tuning strategies. Traditional baselines
include EMOTIC (Kosti et al., 2020), which fuses body and scene-context features through a two-
branch CNN and the DINOv3 fine-tuned (Siméoni et al., 2025) using a structure similar to that
proposed by the EMOTIC team. More recent multimodal approaches include LLaVA+CLIP (Xenos
et al., 2025), which employs clip-vit-base-patch32 with LLaVA-generated emotion-aware
prompts, and NarraCap combined with GPT-4 and Mistral (Etesam et al., 2024a), where generated
captions are fed to large language models without additional fine-tuning. We also evaluate GPT-4o
(OpenAI et al., 2024), prompted with explicit label definitions, and LLaVA (Liu et al., 2023), tested
in both zero-shot and fine-tuned settings with bounding box conditioning. Finally, we consider
SMOLVLM2 (Marafioti et al., 2025), a lightweight VLM fine-tuned under the same conditions but
without the contextual enrichment introduced by CAREFL. This diverse set of baselines allows us
to isolate the contribution of CAREFL’s two-phase design, contrasting it with both computationally
heavy centralized models and lightweight federated approaches.

4.2 EVALUATION ON THE CAER-S DATASET

To further validate the effectiveness of CAREFL, we trained and evaluated the framework on the
CAER-S dataset Lee et al. (2019), a benchmark for context-aware emotion recognition in the wild.
CAER-S introduces additional challenges compared to our primary dataset, as it contains only 7
emotions, actor-based expressions, and diverse background scenes that increase intra-class variabil-
ity and contextual ambiguity.

5 RESULTS

5.1 SYSTEMATIC EXPLORATION OF CAREFL

Beyond the main comparisons, we systematically evaluated the effect of key design choices on
CAREFL’s performance.

Aggregation methods. FedDyn consistently outperformed FedAvg, FedProx, and FedAdam, with
best performance achieved at rank r = 4, γ = 5.0, and short local training using only 2 epochs. No-
tably, only three communication rounds were sufficient to reach peak F1-score (50.36%), indicating
that CAREFL converges efficiently without requiring excessive communication.

Client configurations. Varying the number of clients and their participation per round revealed dis-
tinct trade-offs. With 10 clients, each holding substantial data, CAREFL achieved consistently high
performance, peaking at mAP = 98.05%, Recall = 77.16%, and F1-score = 84.04% when all clients
participated. In contrast, scaling to 300 clients with only 10% participation per round offered the
best trade-off for large-scale FL: using just 77 images per client, CAREFL reached mAP = 96.41%,
Recall = 35.74%, and F1-score = 50.14%. This result emulates realistic deployment conditions in
which clients contribute small, heterogeneous datasets, capturing the practical limitations of data
scarcity.

Contextual enrichment. Ablation studies confirmed the critical role of context: removing context
reduced the F1-score to 4.74%, whereas enriching with LLaVA-generated context boosted perfor-
mance to 50.36%. This highlights that contextual reasoning is the primary driver of CAREFL’s
improvement over lightweight federated baselines.
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Quantization. Finally, precision experiments revealed that 4-bit QLoRA reduced memory usage
substantially while maintaining competitive accuracy compared to full-precision LoRA. Central-
ized fine-tuning baselines also performed consistently worse than the federated CAREFL pipeline,
underscoring the benefits of combining quantized adapters with federated optimization.

A more detailed discussion of hyperparameter tuning, client participation, and ablation studies is
provided in Appendix A.1 and A.2.

5.2 PERFORMANCE ON EMOTIC

The performance of CAREFL and baseline models on the EMOTIC dataset is reported in Table 1.
CAREFL consistently achieved the highest overall results, with the federated model trained using 10
clients and full participation reaching 98.05% mAP, 77.16% Recall, and an F1-score of 84.04%.
This represents a substantial improvement over the fine-tuned SMOLVLM2 baseline, with a gain of
+43.67 points in F1-score, underscoring the effectiveness of contextual enrichment in guiding multi-
label emotion recognition. Even under the more realistic scenario of 300 clients with only 10%
participation per round, CAREFL maintained strong performance with 96.49% mAP and 50.36%
F1-score, outperforming larger centralized baselines such as GPT-4o, LLaVA, and EMOTIC CNN.

These results validate CAREFL’s two-phase design, which offloads heavy contextual reasoning to
a frozen large VLM while keeping client-side training efficient through quantized low-rank adap-
tation. Compared to fine-tuned LLaVA (25.03M parameters, 12 GB VRAM) and SMOLVLM2
(11.22M parameters, 10.98 GB VRAM), CAREFL reduces the number of trainable parameters to
only 5.24M and memory requirements to 5.96 GB, achieving a favorable balance between efficiency
and accuracy. By preserving privacy and scalability through federated training while maintaining
competitive or superior accuracy, CAREFL demonstrates its suitability for deployment in real-world,
resource-constrained environments.

Table 1: Performance metrics (mAP, Recall, F1-Score, and Parameters Trained) of various models
compared to CAREFL. Best results in blue, and lowest in red.

Model mAP Recall F1-Score Parameters Trained (M) Memory (GB)

NarraCap + Mistral (Etesam et al., 2024a) 17.61±0.28 64.78±0.41 23.19±0.29 N/A N/A
NarraCap + GPT-4 (Etesam et al., 2024a) 25.67±0.32 33.16±0.42 26.52±0.30 N/A N/A
LLaVA (Zero shot) (Liu et al., 2023) 34.21±0.81 21.54±0.32 22.69±0.31 N/A 30
LLaVA + CLIP (Xenos et al., 2025) 21.96±0.19 28.75±0.35 17.06±0.18 86.01 8
GPT-4o (OpenAI et al., 2024) 37.83±0.87 38.53±0.37 34.29±0.28 N/A N/A
EMOTIC CNN (Kosti et al., 2020; 2017) 25.16±0.25 34.79±0.42 28.67±0.33 0.27 2
DINOv3 FT (Siméoni et al., 2025) 43.46±0.19 21.73±0.27 14.28±0.18 20 12
LLaVA FT + LoRA (Hu et al., 2021) 55.69±0.31 17.11±0.30 23.11±0.42 25.03 12
SMOLVLM2 FT (Marafioti et al., 2025) 83.78±0.58 28.04±0.27 40.37±0.32 11.22 10.98

Using 300 Clients and 10% for training
CAREFL (SMOLVLM Context) 95.17±0.41 32.87±0.37 46.67±0.29 5.24 5.96
CAREFL (LLaVA Context) 96.49±0.37 35.95±0.37 50.36±0.25 5.24 5.96

Using 10 Clients and 100% for training
CAREFL (LLaVA Context) 98.05±0.30 77.16±0.42 84.04±0.32 5.24 5.96

5.3 FEDERATED VS CENTRALIZED TRAINING

Table 2 compares centralized CAREFL against federated configurations on EMOTIC. The central-
ized (non-FL) setup achieved 97.01% mAP and an F1-score of 52.11. When training was distributed
across 10 clients with a non-IID Dirichlet partition (α = 5) and 100% of participation, CAREFL
reached 98.05% mAP and a substantially higher F1-score of 84.04, showing that federated optimiza-
tion can improve generalization by exposing models to diverse client distributions.

We selected 10 clients to approximate a moderate-scale deployment scenario, where data is dis-
tributed across multiple institutions or devices but not excessively fragmented. This number strikes
a balance: too few clients would converge to centralized training with minimal heterogeneity, while
too many would produce very small local datasets, leading to a more realistic scenario. Thus, 10
clients, with 100% of the participation in the training, provide a fair yet tractable benchmark for
comparing federated against centralized performance. A more detailed discussion of how varying
the number of clients and participation levels affects performance is provided in Appendix A.1.5.
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Further, under an IID partition with 10 clients, CAREFL achieved the strongest performance overall:
98.95% mAP, 80.46 Recall, and 85.45 F1-score. The small margin between the IID and non-IID
federated setups indicates that while heterogeneity introduces modest challenges, CAREFL remains
robust to skewed label distributions. These results suggest that federated training not only preserves
accuracy compared to centralized training but can also enhance recall and F1-score in realistic client-
distributed scenarios.

Table 2: Federated vs centralized performance on EMOTIC.

Setting mAP Recall F1-score

Centralized CAREFL (IID, Non FL) 97.01±0.92 37.42±0.49 52.11±0.33

Federated CAREFL (non-IID, α = 5, 10 Clients 100% participation) 98.05±0.30 77.16±0.42 84.04±0.32

Federated CAREFL (IID, 10 Clients 100% participation) 98.95±0.28 80.46±0.41 85.45±0.29

5.4 EVALUATION ON THE CAER-S DATASET

The performance on the CAER-S dataset is shown in Table 3. CAREFL achieves 82.33% accuracy
and an F1-score of 65.49%, confirming that the framework generalizes beyond EMOTIC despite
differences in label structure (single-label, seven categories). While performance is slightly lower
than on EMOTIC, CAREFL remains robust, showing its adaptability to both multi-label and single-
label emotion recognition tasks. This cross-dataset validation underscores the versatility of the
proposed two-phase pipeline.

Table 3: Performance of CAREFL on the CAER-S and EMOTIC datasets.

Dataset Accuracy mAP Recall F1-score
CAER-S 82.33±0.25 77.52±0.35 64.46±0.33 65.49±0.30

EMOTIC 85.35±0.22 96.49±0.37 35.95±0.37 50.36±0.25

A comparison with existing methods on CAER-S (Table 4) further illustrates the competitiveness of
CAREFL. The framework surpasses earlier context-centric approaches such as EMOTIC (74.48%),
CAER-Net-S + CCIM (74.81%), and CAER-Net-S + CLEF (75.86%), and stands close to the per-
formance of more recent specialized architectures. While state-of-the-art models like Efficient-
Face (85.87%) and Hybrid ConvNeXt (88.84%) achieve higher accuracy through dedicated designs
tailored to single-label emotion recognition, CAREFL delivers strong results without relying on
dataset-specific tuning or model redesign. This balance between generalization capability and com-
petitive performance underscores the practical value of CAREFL as a unified, privacy-preserving
emotion recognition framework that remains effective across heterogeneous datasets and task for-
mulations.

Table 4: Comparison of CAREFL on CAER-S Dataset

Method Accuracy
EMOTIC (Kosti et al., 2017; 2020) 74.48
CAER-Net-S + CCIM (Yang et al., 2024a) 74.81
CAER-Net-S + CLEF (Yang et al., 2024b) 75.86
EfficientFace (Zhao et al., 2021) 85.87
Hybrid ConvNeXt (Devi et al., 2025) 88.84
CAREFL 82.33

5.5 QUALITATIVE RESULTS

To illustrate CAREFL’s strengths and limitations, we present three representative qualitative cases
from the EMOTIC dataset. These examples highlight how contextual enrichment aids emotion
recognition in diverse scenarios. The results are shown in the Figure 4.
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(a) Indoor scene with multiple people. (b) Ambiguous facial expression.

(c) Background-driven cues.

Figure 3: Qualitative examples illustrating CAREFL’s ability to leverage context for accurate emo-
tion recognition in complex scenarios.

In the first case (indoor multi-person setting), LLaVA’s detailed narrative captured activity-driven
cues (gaming, social interaction), enabling CAREFL to predict the full ground truth set, while
SMOLVLM context missed ’Anticipation’ and ’Excitement’. This shows how a richer context en-
hances multi-label coverage.
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In the second case (ambiguous expression), LLaVA emphasized solitude and disconnection, lead-
ing to correct predictions of ’Disconnection’, ’Peace’, and ’Pleasure’, whereas SMOLVLM only
captured ’Peace’. Here, context disambiguated emotions not visible in facial cues.

In the third case (background-driven cues), SMOLVLM’s compact context captured all ground truth
emotions, while LLaVA’s narrower narrative led to partial predictions. This highlights the trade-off:
detailed descriptions may focus too narrowly, whereas lighter summaries can generalize better.

Overall, these cases confirm that contextual enrichment enhances CAREFL’s ability to infer nuanced
emotions, particularly in ambiguous or low-visibility settings. At the same time, they highlight
the challenge of balancing narrative detail with prediction breadth. Importantly, these qualitative
findings mirror the quantitative improvements reported in Section 5.2, where context consistently
boosted F1-scores (up to 50.36% and 84.05% on EMOTIC), demonstrating how context resolves
ambiguity and strengthens multi-label emotion prediction.

5.6 LIMITATIONS

Despite its contributions, CAREFL has several limitations. First, client models were fine-tuned us-
ing QLoRA with 4-bit quantization. This configuration was selected primarily due to the limited
computational resources available for this work, as it drastically reduces memory usage and com-
munication costs. While effective for enabling federated training on resource-constrained devices,
4-bit quantization may incur a slight loss in representational capacity compared to higher-precision
alternatives. Future work could explore adaptive quantization strategies or mixed-precision setups
to balance efficiency with accuracy.

Second, the framework’s reliance on contextual descriptions makes performance dependent on the
quality of captions generated by the large VLM. Errors or biases in these descriptions may propagate
to the lightweight SVLM during training. Incorporating mechanisms for context verification or
noise-robust training could improve reliability.

Finally, the non-IID partitioning strategy required dataset-specific tuning. For EMOTIC, we used
α = 5 to generate realistic non-IID splits (see Section 4). For CAER-S, a smaller value of α = 0.05
was selected due to its single-label nature, which allowed stronger heterogeneity without creating
empty partitions. This difference underscores the sensitivity of Dirichlet-based partitioning to la-
bel space characteristics and highlights the need for adaptive partitioning strategies that generalize
across datasets.

6 CONCLUSIONS

This work introduced CAREFL, a lightweight and context-aware framework for emotion recogni-
tion based on federated fine-tuning of small VLMs. By leveraging contextual descriptions from large
VLMs and pairing them with emotion labels under a federated learning setup, CAREFL achieves
strong performance while preserving privacy and reducing computational costs. On EMOTIC,
CAREFL achieved up to 98.05% mAP and an F1-score of 84.04 under a 10-client setup with full
participation, substantially outperforming baselines such as GPT-4o, LLaVA, and EMOTIC CNN.
In a more realistic configuration with 300 clients and 10% participation per round, CAREFL still
maintained competitive performance with 96.49% mAP and a 50.36% F1-score, showing its robust-
ness under data fragmentation and client heterogeneity. On CAER-S, CAREFL achieved 82.33%
accuracy, 77.52% mAP, 64.46% recall, and 65.49% F1-score, confirming its ability to generalize to
challenging, in-the-wild conditions.

Beyond emotion recognition, CAREFL serves as a general-purpose framework: its VLM founda-
tion makes it adaptable to other multimodal classification and description tasks where efficiency
and privacy are essential. Future directions include enriching contextual reasoning with additional
modalities (e.g., audio or physiological signals), mitigating data scarcity through generative aug-
mentation, and enabling client-specific personalization in federated setups. Optimizing for hetero-
geneous edge devices and investigating communication-efficient aggregation strategies will further
improve scalability and deployment.

In summary, CAREFL demonstrates that lightweight federated VLMs, guided by contextual en-
richment and efficient fine-tuning, can serve as a practical and scalable alternative to centralized
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architectures, achieving strong performance not only in controlled benchmarks but also under real-
istic federated scenarios with hundreds of clients and partial participation.
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A APPENDIX

A.1 HYPERPARAMETER TUNING

A.1.1 FEDERATED ENVIRONMENT OPTIMIZATION

CAREFL was evaluated under different client and server configurations:

• Aggregators: FedAvg, FedAdam, FedProx, and FedDyn with γ = {0.01, 1.0, 5.0}.
• Rounds and Epochs: Training conducted for 1, 3, 5, 7, and 10 communication rounds,

with local epochs = 1, 2, 5, and 10.
• Clients: 10, 30, and 100 clients with non-IID partitions of EMOTIC.

The results of the hyperparameter tuning experiments are summarized in Table 5. The effects of
aggregation methods, LoRA rank, number of communication rounds, and local training epochs on
mAP, Recall, and F1-score are evaluated in the CAREFL pipeline. For all experiments, the best
parameters are defined under a federated setting with 300 clients, where only 10% of the clients
are selected per round for training. This design simulates a realistic deployment scenario in which
individual clients contribute with a limited number of local examples during the training phase,
reflecting practical constraints in data availability and heterogeneity. A more detailed discussion
on the impact of the number of clients and examples used for training is provided in the Effect of
Number of Clients and Samples Used for Training part.

A.1.2 EFFECT OF AGGREGATION METHOD AND LORA RANK

Table 5 summarizes the results of different aggregation strategies across varying LoRA ranks. At
rank r = 4, FedDyn with γ = 5.0 achieved the best overall F1-score (49.95%) and Recall (35.89%),
outperforming FedAvg and FedProx. In contrast, FedAdam achieved the lowest Recall (9.09%) and
F1-score (13.78%), indicating that it is not well-suited for this task.

When increasing the rank to r = 8, performance remained consistent with FedDyn (γ = 5.0),
which yielded the highest mAP (95.95%) and strong F1-score (49.49%). FedAvg and FedProx
again showed competitive results but did not surpass FedDyn. Interestingly, FedAdam showed an
improvement in Recall (20.06%) compared to r = 4, but its F1-score remained lower than other
methods.

At r = 16, FedDyn with γ = 5.0 again achieved the strongest overall performance, with an F1-score
of 47.10% and the highest mAP (95.75%). FedDyn with γ = 1.0 also performed competitively,
achieving the highest Recall (33.21%), while FedAdam remained the weakest performer despite
improving slightly in F1-score compared to r = 4.

These results demonstrate that the FedDyn aggregation method consistently provides the most bal-
anced trade-off between mAP and Recall across all tested ranks, while FedAdam underperforms
regardless of configuration. While a larger rank tends to improve performance in centralized setups,
in our federated setting, the aggregation of a higher number of parameters actually degraded results.
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Table 5: Unified comparison of results across Aggregation methods, LoRA Rank, number of rounds,
and number of epochs.

Condition Method / Hyperparameter mAP Recall F1-score
in percent (%)

Rank r=4 FedAdam 90.87 09.09 13.78
FedProx 93.23 27.42 40.02
FedAvg 93.24 27.96 40.80
FedDyn (0.01) 92.94 28.69 41.51
FedDyn (1.0) 95.02 31.53 45.17
FedDyn (5.0) 94.70 35.89 49.95

Rank r=8 FedAdam 94.48 20.06 29.66
FedProx 92.89 26.88 39.33
FedAvg 92.00 27.67 40.23
FedDyn (0.01) 92.35 28.07 40.62
FedDyn (1.0) 91.94 32.26 45.25
FedDyn (5.0) 95.95 35.19 49.49

Rank r=16 FedAdam 87.30 12.52 18.73
FedProx 92.01 28.40 41.04
FedAvg 92.37 27.95 40.48
FedDyn (0.01) 92.63 27.46 40.09
FedDyn (1.0) 94.03 33.21 46.96
FedDyn (5.0) 95.75 32.87 47.10

Rounds 1 86.63 34.75 47.37
3 09.65 35.95 50.36
5 92.74 33.77 47.60
7 94.70 35.89 49.95
10 94.10 35.15 49.34

Epochs 1 80.98 09.10 12.80
2 96.49 35.95 50.36
5 91.94 35.19 49.95
10 92.91 36.06 50.07

Similarly, increasing the aggregation weight γ for FedDyn (tested with γ = 10) did not produce
improvements over the reported results.

A.1.3 EFFECT OF COMMUNICATION ROUNDS

As observed, a single communication round produces the weakest performance (F1-score of 47.37%
with an mAP of 86.63%). Increasing the number of rounds to 3 significantly improves performance,
yielding the highest overall F1-score (50.36%) and Recall (35.95%).

Beyond 3 rounds, results begin to decrease. For example, with 5 rounds, the F1-score slightly drops
to 47.60%, while with 7 and 10 rounds, performance remains close to the best but does not surpass
it. These findings suggest that three rounds of communication are sufficient to balance efficiency
and accuracy, while additional rounds provide limited benefits.

A.1.4 EFFECT OF LOCAL TRAINING EPOCHS

With only 1 epoch, the model suffers from severe underfitting, achieving an F1-score of just 12.80%
and a very low Recall of 9.10%. Increasing to 2 epochs yields the best results overall, with an mAP
of 96.49% and an F1-score of 50.36%.

At 5 and 10 epochs, performance remains competitive (F1-scores around 49–50%), but does not
surpass the results obtained with 2 epochs. These findings indicate that short local training (2 epochs
per round) is optimal for QLoRA fine-tuning, while additional epochs provide diminishing returns
and may introduce unnecessary computational cost.

A.1.5 EFFECT OF NUMBER OF CLIENTS AND SAMPLES

The effect of varying the number of clients and their participation per communication round is
summarized in Table 6. We tested three configurations: 10 clients with 2325 images each, 30 clients
with 774 images each, and 300 clients with 77 images each, with participation rates of 10%, 50%,
and 100%.

With 10 clients, each holding substantial data, performance remained consistently high, peaking
at 98.05% mAP, 77.16% Recall, and 84.04% F1-score when all clients participated. Increasing to
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30 clients reduced per-client data and overall performance, though full participation still achieved
strong results (94.93% mAP, 57.28% Recall, 68.23% F1-score).

The 300-client scenario, simulating highly data-constrained devices, showed the expected drop in
Recall and F1 but maintained stable mAP (96.41% at 100% participation). Interestingly, 10% par-
ticipation slightly outperformed 100% in Recall (35.89% vs. 35.74%) and avoided the instability
observed at 50%, where redundant or noisy updates degraded performance. This counterintuitive
result highlights the sensitivity of federated setups to sampling strategies, particularly when local
data availability is highly constrained.

These results illustrate the trade-off between per-client data and scalability: fewer clients yield
stronger accuracy, while larger numbers reflect realistic deployment. Within CAREFL, the 300-
client, 10% participation setting best balances practicality and performance, demonstrating robust-
ness under real-world constraints. Therefore, in the CAREFL framework, the setting of 300 clients
with 10% participation per round balances scalability with practical constraints and ensures the
framework remains realistic for real-world applications.

Table 6: Effect of number of clients and samples used for training.

Number
of

Clients

# of training
images

per client

% of clients
used

for training
mAP Recall F1-score

in percent (%)

10 94.02 64.44 76.07
10 2325 50 97.04 73.14 83.13

100 98.05 77.16 84.04
10 94.09 38.14 51.80

30 774 50 94.37 52.05 65.30
100 94.93 57.28 68.23
10 94.70 35.89 49.95

300 77 50 95.95 35.19 49.49
100 96.41 35.74 50.14

A.2 ABLATION STUDIES

To evaluate the impact of different design choices in the proposed framework, CAREFL, an ablation
study was conducted.

A.2.1 IMPACT OF CONTEXT AND PROMPTING STRATEGY

The contribution of contextual enrichment to performance was measured as follows:

• Without Context: Image + label only.
• Context from SMOLVLM: Descriptions generated by the lightweight model itself.
• Context from LLaVA: Rich descriptions from a large VLM.
• Prompt Variants: Emotion categories included in (a) system prompt, (b) user prompt, or

both.

The results, presented in Table 7, demonstrate that incorporating contextual information significantly
improves performance. For instance, when using SMOLVLM with context and quantization, the
model achieved a mAP of 95.17%, a Recall of 32.87%, and an F1-score of 46.67%. Similarly,
LLaVA with context and quantization obtained the best performance across all tested configurations,
reaching an mAP of 96.49%, a Recall of 35.95%, and an F1-score of 50.36%.

In contrast, removing contextual information drastically reduced the results, which dropped to only
15.01% mAP, 4.31% Recall, and 4.74% F1-score. This highlights the importance of leveraging
context for emotion recognition using SVLMs.

Table 8 presents the results considering different experimental settings, including the presence of
contextual information, quantization, and the different client setups.

Starting from the base SMOLVLM2 without context, quantization, or federated learning, perfor-
mance is notably weak and employing an amount of 10.98 GB of VRAM. Introducing contex-
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Table 7: Performance comparison by context source: mAP, Recall, and F1-Score.

Context Source mAP Recall F1-Score
None 15.01 4.31 4.74
SMOLVLM2 95.17 32.87 46.67
LLaVA 1.5 96.49 35.95 50.36

tual enrichment yields a dramatic improvement (mAP: 77.41%, Recall: 31.06%, F1-Score: 42.54).
Quantizing the model with QLoRA reduces memory usage to 5.96 GB and boosts performance
further (mAP: 92.61%, Recall: 37.61%, F1-Score: 53.50).

When federated learning is enabled with 300 clients and 10% participation, the model reaches
94.70% mAP, 35.89% Recall, and 49.95% F1-score. Varying the number of clients (30 or 10, still
10% participation) sustains high mAP above 94%, while recall (38.14% and 64.44%) and F1-score
(51.80 and 76.07) can increase even further depending on the client configuration and participation
rate.

Overall, the table clearly demonstrates that each CAREFL component—especially context and
quantization—substantially boosts recognition performance and enables scalable, efficient deploy-
ment. The federated setup, in particular, preserves high accuracy and efficiency across a range of
distributed environments.

Table 8: Ablation study on the contribution of CAREFL components to performance and efficiency.

Configuration Context Quantization FL Memory (GB) mAP Recall F1-Score
in percent (%)

Base SMOLVLM2 ✗ ✗ ✗ 10.98 15.01 4.31 4.74
+ Context ✓ ✗ ✗ 10.98 77.41 31.06 42.54
+ QLoRA ✓ ✓ ✗ 5.96 92.61 37.61 53.50
+ Federated Environment (300 Clients, 10% participation) ✓ ✓ ✓ 5.96 94.70 35.89 49.95
+ Federated Environment (30 Clients, 10% participation) ✓ ✓ ✓ 5.96 94.04 38.14 51.80
+ Federated Environment (10 Clients, 10% participation) ✓ ✓ ✓ 5.96 94.02 64.44 76.07

Table 9: Evaluation of QLoRA quantization and centralized fine-tuning benchmarks.

Setting mAP Recall F1-score
in percent (%)

QLoRA Quantization Evaluation
Full Precision Fine-tuning (LoRA) 92.39 42.41 54.71
4-bit QLoRA Fine-tuning 96.49 35.95 50.36

Centralized Fine-tuning Benchmarks
Full Fine-tuning (non-FL) 77.41 31.06 42.54
Centralized QLoRA Fine-tuning 92.61 37.61 53.50

A.2.2 QLORA QUANTIZATION EVALUATION

The effect of quantization on SMOLVLM was assessed:

• Full Precision Fine-tuning: LoRA adapters without quantization.

• 4-bit QLoRA Fine-tuning: LoRA adapters with quantization.

Table 9 presents the results of evaluating the effect of quantization on the model SMOLVLM2. The
full precision LoRA fine-tuning achieved an mAP of 92.39%, Recall of 42.41%, and F1-score of
54.71%. When applying 4-bit QLoRA, the mAP increased to 96.49%, showing that quantization
not only reduces the memory footprint but also improves performance in terms of retrieval preci-
sion. However, Recall dropped to 35.95%, and F1-score slightly decreased to 50.36%, indicating
that quantization introduces a trade-off: while overall accuracy is improved, sensitivity to correctly
identifying all relevant instances is reduced.
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A.2.3 CENTRALIZED FINE-TUNING BENCHMARKS

Two centralized settings were tested to contextualize the federated results:

• Full Fine-tuning (non-FL): Complete model training without QLoRA.
• Centralized QLoRA Fine-tuning: Matching federated setup but with centralized dataset.

The centralized fine-tuning benchmarks are also reported in Table 9. Full fine-tuning (non-FL)
reached 77.41% mAP, 31.06% Recall, and 42.54% F1-score, which is notably lower than both fed-
erated and quantized settings. Centralized QLoRA fine-tuning improved these results, achieving
92.61% mAP, 37.61% Recall, and 53.50% F1-score. This confirms the benefits of QLoRA even
outside the federated context, outperforming traditional centralized training. Compared to the fed-
erated setup, centralized QLoRA attains competitive results, but the federated CAREFL pipeline
provides superior scalability and robustness against data heterogeneity while maintaining higher
overall precision.

A.3 TRAINING EFFICIENCY AND RESOURCE ANALYSIS

To complement the performance comparison in Section IV, Table 10 reports detailed training effi-
ciency metrics for all baseline models and the proposed CAREFL framework. The table includes
memory requirements, dataset partitioning, training time per client, total wall-clock time, and nor-
malized training time per sample.

Table 10: Training efficiency and resource analysis

Model Memory
MB

Memory
GB Samples Samples

by Client
Batch
Size

Local
Epocs

Training Time
Per Client

Total
Clients

Sampled
Clients

FL
Rounds

Total Training
Time (s)

Total Training
Time (hh:mm:ss)

Training Time
Per Sample (s)

LLaVA + CLIP 8192 8.00 23265 - 64 50 21744 - - - 21744 06:02:24 0.019
EMOTIC 2047 2.00 23265 - 52 15 15053 - - - 15053 04:10:53 0.043
LLaVA FT + LoRA 12288 12.00 23265 - 16 4 81252 - - - 81252 22:34:12 0.873
SMOLVLM FT 11240 10.98 23265 - 16 4 71894 - - - 71894 19:58:14 0.773
CAREFL (SMOLVLM Context) 6098 5.96 23265 77 4 3 542 300 30 3 48780 13:33:00 0.699
CAREFL (LLaVA Context) 6098 5.96 23265 77 4 3 558 300 30 3 50220 13:57:00 0.720

The training efficiency analysis highlights substantial differences in resource requirements and com-
putational costs across baseline models and the proposed CAREFL framework. Among centralized
baselines, EMOTIC is the most lightweight, requiring only 2 GB of memory and achieving the
lowest training time per sample (0.043 s), though at the expense of lower overall performance. In
contrast, LLaVA FT and SMOLVLM FT exhibit significantly higher computational demands, con-
suming 11–12 GB of memory and exceeding 70,000 seconds of total training time, with per-sample
training times of 0.773–0.873 s, underscoring their limited practicality in resource-constrained en-
vironments. CAREFL, in contrast, achieves a favorable compromise by distributing training across
300 clients with different data partitions. Each client requires only 6 GB of memory and achieves
per-sample training times of 0.699–0.720 seconds, resulting in overall training durations of approx-
imately 13–14 hours. This decentralized efficiency highlights CAREFL’s scalability, as the frame-
work enables resource-constrained clients to participate in training without sacrificing performance,
while mitigating the prohibitive costs of centralized fine-tuning.

B QUALITATIVE ERROR ANALYSIS

This section analyzes representative failure cases from the model’s predictions, where the CAREFL
framework incorrectly assigned emotion labels. Each figure pairs the automatically generated con-
textual description (using LLaVA), predicted emotion labels, and ground-truth annotations.

In Figure 4a, the model predicted ’Sorrow’ and ’Grief’ based on contextual cues of mourning and
collective solemnity. The ground truth, however, was ’Anticipation’, ’Confidence’, and ’Engage-
ment’, reflecting the individual’s active role or focus rather than overt emotional distress. The over-
reliance on scene-level cues for sorrow led to a mismatch, in this case, the LLaVA-generated context,
which automatically annotated the real emotions as "not suitable to describe the man’s emotions",
illustrating the challenges of context-aware emotion recognition, where the emotional state may
diverge from the general atmosphere.

Figure 4b shows the case where the predicted labels were ’Excitement’ and ’Joy’, influenced by
cues of group engagement and the apparent enjoyment of play. However, the annotated ground
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truth was ’Disquietment’, ’Engagement’, and ’Fatigue’. The model missed cues of social fatigue
and discomfort, perhaps because these emotions are less visually salient or contextually masked by
overall engagement, underscoring the challenge of distinguishing between diverse social affects.

Finally, in Figure 4c, the model predicted ’Emotion’, ’Exhilaration’, ’Enthusiasm’, and ’Eagerness’
as the most probable emotions for the highlighted participant. While the LLaVA-generated context
effectively describes traits like engagement and excitement, the ground truth includes ’Aversion’,
’Confidence’, ’Disquietment’, ’Engagement’, and ’Excitement’. The model failed to capture the
emotional mix of aversion and disquietment, likely due to ambiguous body language and group
dynamics, highlighting the difficulty of modeling subtle interpersonal signals and negative affect in
active scenes.

(a) Emotional state diverges from the general at-
mosphere (b) Challenges in diverse social affects

(c) Ambiguous body language and group dynamics

Figure 4: Qualitative examples illustrating CAREFL’s inference errors.
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C HYPOTHESIS TESTS

To rigorously assess the differences among the evaluated models, we conducted hypothesis tests
across the three performance metrics: mean Average Precision (mAP), Recall, and F1-Score. The
Friedman test results for all three metrics yielded large test statistics accompanied by highly sig-
nificant p-values (≈ 10−7 to 10−8), indicating rejection of the null hypothesis of equivalent model
performance. Following this, post-hoc pairwise comparisons with the Nemenyi test revealed that the
CAREFL variants consistently form a statistically superior cluster relative to the NarraCap-based
baselines, LLaVA variants, and conventional CNN or DINOv3 models. This is clearly evidenced by
the Nemenyi heatmaps and critical difference diagrams (Figures 6 and 5), where CAREFL models
rank significantly higher and demonstrate consistent, statistically robust improvements across all
metrics. Conversely, other baselines such as NarraCap + Mistral, NarraCap + GPT-4, and certain
LLaVA configurations exhibit no statistically significant differences from each other, as reflected by
overlapping rank intervals and non-significant heatmap regions. Collectively, these results provide
support that context-aware federated learning, as instantiated by CAREFL, offers reliable and gener-
alizable performance gains in complex, reliability-critical emotion recognition tasks, substantiating
the efficacy of our proposed architectural design.

(a)

(b)

(c)

Figure 5: Critical Difference Diagram for each metric
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(a) Nemenyi test heatmap for mAP

(b) Nemenyi test heatmap for Recall

(c) Nemenyi test heatmap for F1-Score

Figure 6: Nemenyi test heatmaps.
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