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Abstract

Repairing Planning Domain Definition Language (PDDL)
models is difficult because solutions must ensure correct-
ness while remaining interpretable to human modellers. Ex-
isting hitting set methods identify minimal repair sets from
whitelist and blacklist traces, but they cannot prefer seman-
tically meaningful fixes and the true repair may not be min-
imal. We propose combining large language models (LLMs)
with the hitting set framework, using semantic cues in PDDL
action and predicate names to guide repairs. This hybrid ap-
proach provides contrastive, counterfactual explanations of
why traces fail and how domains could behave differently.

Introduction
Explainability is a central requirement for AI systems that
interact with or support humans in decision making. In AI
planning, this requirement is naturally addressed by the ex-
plicit representation of actions, states, and goals: planners
generate solutions by reasoning over structured models of
the world. Compared to black–box machine learning tech-
niques, this explicit reasoning process makes planning in-
herently transparent and interpretable. However, one of the
main challenges to deploying planning in practice lies in
constructing the planning models themselves (Tantakoun,
Zhu, and Muise 2025).

The recent success of Largarge language models (LLMs)
has drawn a lot of attention to leverage it in AI planning
tasks (Huang, Lipovetzky, and Cohn 2025; Katz et al. 2025;
Huang, Cohn, and Lipovetzky 2024; Oswald et al. 2024;
Guan et al. 2023). Recent surveys (Tantakoun, Zhu, and
Muise 2025) highlight the potential of LLMs to support the
construction and refinement of planning models. While ver-
ifiable planning modules remain the backbone of reliability,
robustness, and explainability, LLMs can act as assistants
to reduce the manual burden of defining domain models. We
believe that one promising avenue for this is through domain
repair, where the goal is to identify a set of modifications to
a domain such that a given set of positive traces becomes ex-
ecutable and a set of negative traces becomes inapplicable.

Repairs can themselves be understood as explanations.
Following Miller’s account of contrastive explanations in the
social sciences (Miller 2019), a repair answers the question
of why a given trace fails in the current domain, and provides
a counterfactual justification of how the domain could have

behaved differently. Each repair is thus not only a technical
fix, but also a form of interpretable feedback to the human
modeller.

Domain repair in planning is an active research area, re-
cently reviewed by (Bercher, Sreedharan, and Vallati 2025).
Lin, Grastien, and Bercher (2023) introduced an efficient hit-
ting set algorithm for domain repair with positive (whitelist)
traces. It is also possible to use partially lifted test plans if
partial information is available (Bavandpour et al. 2025).
Lin et al. (2025) extended the hitting–set approach of Lin,
Grastien, and Bercher (2023) to handle both positive and
negative traces. In this setting, positive traces must remain
or become valid plans, while negative (blacklist) traces must
be rendered inapplicable. Although effective, optimization–
based approaches, such as the cited works, are limited:
they cannot select the semantically most meaningful repair
when multiple minimal–cardinality options exist. Moreover,
the true repair set may not even be among the minimal–
cardinality solutions. The VS Code plugin (Lin, Yousefi, and
Bercher 2024) which extends the work by Lin, Grastien, and
Bercher (2023) is an effort to address this limitation by al-
lowing the human modeller to reject solutions and request
the next solution of the hitting–set. However, this is incon-
venient and limits automation. Our core idea is to leverage
the fact that PDDL domains contain semantically meaning-
ful names for actions and predicates, which LLMs can in-
terpret to guide the repair process. This enables us to move
beyond cardinality–minimality toward repairs that are also
semantically plausible to human users.

Building on insights from Caglar et al. (2024), who ex-
plored LLM applications for model repair but limited their
scope to initial state fixes, we propose to combine LLM
guidance with the hitting set approach of (Lin et al. 2025).
This hybrid aims to exploit semantic knowledge encoded
in domain symbols while retaining the optimization guaran-
tees of hitting set solvers. Our experiments evaluate this ap-
proach on the same benchmark suite as the baseline paper,
allowing for a direct comparison of performance. This pa-
per presents our initial implementation and evaluation of this
idea. Extensions and further refinements will be discussed in
future work.



Planning Formalism
Since our focus is on repairing lifted PDDL domains, we
introduce the lifted planning formalism. A lifted planning
problem is defined as a tuple Π = (P,A, α,O, sI , G),
where the domain is D = (P,A, α) and the task is T =
(O, sI , G).

Objects, Types, and Variables. Let O be the set of ob-
jects in the planning task. We consider a set of variables V ,
each acting as a placeholder for an object. The type of a vari-
able v ∈ V is written as v|t, and the set of objects associated
with t is shown by OJtK ⊆ O. We say that t ∈ T is a subtype
of t′ ∈ T iff OJtK ⊆ OJt′K.

Predicates and Atoms A predicate symbol P ∈ P and
a tuple of k ∈ N0 typed variables forms an atom p =
P (v1|t1, . . . , vk|tk). We denote by L the set of all atoms
in Π.

Variable Substitution. A variable substitution function
ϱ : V → O maps each typed variable v|t to an object
ϱ(v|t) ∈ OJtK of the same type t.

Facts. Given an atom p ∈ L and a substitution function
ϱ, a fact is obtained by grounding p, that is, by replacing
each parameter (v1, . . . , vk) with the corresponding objects
given by ϱ: f = ϱ(p) = P (ϱ(v1), . . . , ϱ(vk)). The set of
all grounded atoms is denoted by F , and any set of facts
constitutes a state. sI and G are called the initial state and
the goal description, respectively, each of which is a set of
facts.

Action Schemas. Let A denote the set of action schemas.
An action schema a = A(v1|t1, . . . , vk|tk) is defined by a
unique name A and a tuple of n variables. Each schema is
associated with a mapping

α(a) = (prec+(a), prec−(a), eff +(a), eff −(a))

whose codomain is (2L)4, representing a tuple of four sets
of compatible atoms, as defined below.

Definition 1 (Compatible Atoms). For an action schema a,
the set of compatible atoms La contains all atoms whose set
of parameters is a subset of the parameters of a. As an ex-
ample, P (v1|t1) is a compatible atom for the action schema
A(v1|t1, v2|t2), but Q(v3|t3) is not.

Actions. Given an action schema a and a substitution
function ϱ, the corresponding action is obtained by replac-
ing each parameter of a according to ϱ, and is denoted
a = a[ϱ]. Actions describe transitions in the state space.
An action a is applicable in a state s iff prec+(a) ⊆ s and
prec−(a)∩ s = ∅. Applying an applicable action a in s pro-
duces the successor state

s′ = (s \ eff −(a)) ∪ eff +(a),

which we denote by s →a s′.
Throughout this paper, we use boldface (e.g., p, a) for

atoms and action schemas, and regular typeface (e.g., f , a)
for facts and actions.

Solutions. Let γ = ⟨a1, . . . , ak⟩ be an action sequence.
We write s →∗

γ s′ to denote that s′ results from applying γ
to s via a state trajectory ⟨s0, . . . , sk⟩ where s0 = s, sk =
s′, and each action is applicable in its preceding state. A
solution to a planning problem is an action sequence γ =
⟨a1, . . . , ak⟩ such that sI →∗

γ s′ for some s′ with G ⊆ s′,
and each ai is a grounding of some action schema a ∈ A.

The Repair Problem

We begin by introducing the notation and syntax used to de-
fine possible repair operations for a given planning domain.
Next, we describe how a set of such repairs can be applied
to produce a modified domain. Based on these concepts, we
then formalize the domain repair problem in terms of the
defined repair operations and a set of positive and negative
plans.

In a planning domain D = (P,A, α), an atomic repair
is a modification denoted by rJa,p, c, opK. Here, a ∈ A
is an action schema, p ∈ P is an atom compatible with
a, c ∈ {prec+,prec−, eff+, eff−} indicates whether the
change concerns a positive/negative precondition or effect,
and op ∈ {+,−} specifies whether the component is added
or removed. We write D ⇒r D′ to indicate that applying r
to D yields D′ = (P,A, α′), where α′ is resulted by apply-
ing r to α.

A repair set δ for a domain is a finite collection of one
or more atomic repairs. We say that δ is valid if and only
if it contains no two repairs r, r′ ∈ δ such that one re-
verses the effect of the other. Specifically, two repairs r =
rJa,p, c, opK and r′ = r′Ja′,p′, c′, op′K are considered to
undo each other if a = a′, p = p′, c = c′, and op ̸= op′.

Let D be a domain and δ a valid repair set for D. Applying
the repairs in δ in any order yields the same modified domain
D′. We use D ⇒∗

δ D′ to indicate that D′ is obtained from D
by applying the valid repair set δ.

Definition 1 (Domain Repair Problem). The domain repair
problem is defined as a pair R = (D,T), where D denotes
a planning domain and T = {T1, . . . ,Tn} for some n ∈ N.
Each element Ti is a triple (Πi,Pi,Ei). Here, Πi = (D, Ti)
denotes the planning problem; Pi is a finite set of positive
plans π+

k for Πi; and Ei is a finite set of pairs (π−
k , bk) asso-

ciated with Πi. Each π−
k denotes a negative plan (a sequence

of actions considered undesirable) for Πi, and bk is an inte-
ger equal or less than the length of π−

k which specifies the
index of the first action in π−

k which must be inapplicable.

Definition 2 (Solution to the Repair Problem). A solution to
R is a valid repair set δ that transforms the original domain
D into a modified domain D′ through the sequence of repair
operations D ⇒∗

δ D′. This repair must satisfy the following:
for every index i with 1 ≤ i ≤ n, all positive plans π+ ∈ Pi

are executable in the updated planning task Π′
i = (D′, Ti),

and each pair (π−
k , bk) ∈ Ei meets the condition that π−

k is
not a valid plan for Π′

i, with the action at position bk being
the first that cannot be applied.



Figure 1: Different LLM strategies in domain repair to infuse semantic knowledge in search.

Solving the Repair Problem
Our baseline approach (Lin et al. 2025) proposes a sound al-
gorithm based on conditional hitting sets to solve the domain
repair problem. They report precision and recall against
known ground truth repairs. To obtain ground truth, they per-
turb IPC domains by randomly adding or removing precon-
ditions and effects, which allows direct computation of these
metrics.

The Baseline Approach
Here, we briefly restate their approach at a level sufficient
to motivate our LLM–based extensions. The algorithm ex-
ecutes all provided traces. For each positive trace, one of
the unsatisfied preconditions (if any) encountered along the
run in each trace is recorded as a flaw. For a negative trace
(π−

k , ik), a flaw is recorded if the action at index ik in π−
k

is applicable. If some earlier action at index j < ik is inap-
plicable, the trace is handled analogously to a positive one:
repairs are generated so that the prefix becomes executable
and the first inapplicable action occurs exactly at position ik.

For each flaw, the algorithm enumerates a finite set of
candidate repairs. The set of candidates for a single flaw
is called a conflict; at least one element of the conflict
must be selected to eliminate that flaw. Consider a miss-
ing positive precondition pm for action a3 in the sequence
γ = ⟨a1, a2, a3⟩, and suppose a1 has pm in its negative ef-
fects. The repair candidates include: (i) remove the missing
precondition from a3, that is r1Ja3,pm,prec+,−K for some
ϱ so that a3 = a3[ϱ] and pm = pm[ϱ]; (ii) add pm to the
positive effects of a2, that is r2Ja2,pm, eff+,+K whenever
a matching ϱ such that a2 = a2[ϱ] and pm = pm[ϱ]; ex-
ists; (iii) remove pm from the negative effects of a1, that
is r3Ja1,pm, eff−,−K for some ϱ so that a1 = a1[ϱ] and
pm = pm[ϱ];. These give a conflict θ = {r1, r2, r3}.

For negative traces, conflicts are constructed so that the
target action becomes inapplicable at its specified position.
For example, one can add a new required precondition q that
is false in the corresponding state, or remove earlier effects
that would otherwise establish an existing precondition.

Different conflicts may interact. Some repairs may con-
tradict one another, or jointly re–introduce earlier flaws. The
baseline therefore augments the plain collection of conflicts
to a more complex object Θ that encodes applicability con-
ditions and mutual exclusions, producing a conditional hit-
ting set instance. Note that the details of forming Θ is out
of scope here. A solver then returns a minimal–cardinality
hitting set, called a diagnosis. The algorithm iterates: it (1)
extracts flaws from the current domain using the given pos-
itive and negative traces, (2) constructs Θ, (3) solves for a
diagnosis, and (4) applies the corresponding repairs to ob-
tain a modified domain. The process repeats until all positive
traces succeed and all negative traces fail at their specified
positions.

The baseline does not exploit semantic cues encoded by
the modeller in predicate, action, or domain names within
the PDDL file. Its hitting–set solver optimizes only the size
of the repair set; when multiple diagnoses share the same
cardinality, it returns an arbitrary one. Moreover, the ground
truth repair need not be cardinality–minimal, so it can be
missed under this objective.

LLM–Guided Search
We propose five strategies for using LLMs to steer the search
toward human–plausible repairs, as Figure 1 shows. Because
a planning domain can admits multiple semantically con-
sistent fixes, precision and recall against the ground truths
should be viewed as proxies for alignment with modeller in-
tent rather than definitive correctness. Note that ideas 1 and
2 are implemented, but only Idea 1 is evaluated here. Ideas
3–5 are deferred to follow–up work.

Idea 1. This simple approach treats the LLM as a
knowledge–engineering assistant. We specify the allowed
repair operators, show the full domain to preserve global
context, and ask the model to summarize the semantics it
infers from action and predicate names. It then proposes a
small set of repairs with brief rationales. This variant is im-
plemented, and its results are reported in the next section.

Idea 2. Extract conflicts from action traces as in the base-



Idea #1 Baseline

Domain Words Lines Tasks POS-Sum NEG-Sum POS-Len NEG-Len Flaws Repairs Prec Rec Repairs Prec Rec

FLOORTILE 348 109 20 1 5 27.00 1.00 4 3.20 1.00 0.75 2.00 0.70 0.35
FREECELL 597 215 80 62 60 43.15 38.00 4 4.00 0.56 0.50 3.00 0.73 0.55
GED 784 310 20 20 9 14.30 8.67 10 4.00 0.13 0.06 4.00 0.90 0.36
HIKING 442 140 20 7 2 20.43 13.50 4 2.60 0.73 0.45 2.00 0.40 0.20
LOGISTICS00 282 99 28 28 1 47.54 1.00 4 3.60 0.90 0.75 2.00 0.50 0.25
LOGISTICS98 276 97 35 27 6 67.96 1.33 4 3.40 0.85 0.70 3.00 0.60 0.45
MPRIME 307 97 35 30 29 11.10 4.66 2 3.60 0.15 0.30 2.00 1.00 1.00
SCANALYZER 323 94 20 14 1 42.57 4.00 2 1.20 0.90 0.50 2.00 0.70 0.70
SLITHERLINK 410 133 20 1 2 19.00 14.00 2 2.40 0.53 0.60 2.00 0.50 0.50
SOKOBAN 239 77 20 2 3 40.50 17.67 2 2.80 0.43 0.60 2.00 1.00 1.00
TETRIS 477 144 17 5 5 24.60 20.80 4 3.20 0.29 0.20 2.00 0.80 0.40
THOUGHTFUL 1283 469 20 15 1 135.27 2.00 10 4.80 0.32 0.14 3.00 0.53 0.16
TIDYBOT 2157 656 20 4 5 29.25 19.20 12 3.60 0.60 0.17 2.00 1.00 0.17
WOODWORKING08 972 300 30 30 5 20.77 6.00 6 3.60 0.73 0.40 7.00 0.17 0.20
WOODWORKING11 976 302 20 7 1 62.29 9.00 6 2.80 0.53 0.23 3.00 0.53 0.27

Table 1: Experimental results comparing idea #1 with the baseline algorithm. Summary statistics over 5 runs per domain.
Words and Lines count PDDL size; Tasks is the number of planning problems; POS-Sum/NEG-Sum are positive/negative
plan counts; POS-Len/NEG-Len are their average lengths; Flaws and Repairs are detected issues and fixes; Prec/Rec denote
precision and recall.

line, take their union, and iteratively ask the LLM to choose
the most plausible repair, apply it to the domain, and repeat.
Note that by taking union of the conflicts we are creating a
long flat set of repairs, each of which fix at least one of the
flaws found in the action traces. While we are not ready to
report on its performance, preliminary tests suggest that the
flat candidate pool can become large, which degrades LLM
selection quality and makes this approach less promising.

Idea 3. Combine LLM proposals with minimality via the
hitting–set solver. After exposing the full domain for con-
text, we query the LLM for a list of plausible repairs at the
action level. The hitting–set solver then selects a cardinality–
minimal subset, ensuring that the final repairs are optimized
toward consistency across conflicts. This separation allows
the LLM to focus on local, per–action suggestions, avoiding
confusion from reasoning over global repair sets, while the
optimization stage consolidates them. This could improve
the results compared to Idea 1, with the added benefit of
shorter and more efficient prompts.

Idea 4. A symmetric decomposition to Idea 3 that operates
at the level of conflicts rather than actions. For each flaw,
the LLM filters or ranks its candidate repairs, and we keep
conflict sets separate instead of forming a single union. This
yields more focused prompts and allows us to test whether
action–centric (Idea 3) or flaw–centric filtering is more nat-
ural for LLMs.

Idea 5. Use the LLM as a post–hoc judge. The baseline
algorithm proposes a minimal repair; the LLM then accepts
or vetoes it on semantic grounds and requests alternatives if
needed. This mirrors the human–in–the–loop design of the
VS Code plugin (Lin, Yousefi, and Bercher 2024) for the
predecessor algorithm (Lin, Grastien, and Bercher 2023),
with the LLM replacing the human reviewer.

Experiments
We use the same problem set as the baseline paper (Lin
et al. 2025) to ensure a direct comparison, and we report
the same metrics of precision and recall. Runtime results
are omitted for now, as they are negligible (comparable to

the latency of a single OpenAI API call) but will be in-
cluded in future work. The baseline numbers in our tables
are taken directly from the published paper; we did not re–
run their implementation locally. Our experiments employ
the model gpt-4o-2024-08-06, where the suffix de-
notes the training cutoff date.

Despite its simplicity, Idea 1 improves both precision and
recall in roughly half of the benchmark domains. We also
report word and line counts of the PDDL files as a proxy for
domain complexity, although no clear correlation with LLM
performance emerges. Crucially, Idea 1 does not exploit in-
formation from action traces, so we expect that incorporat-
ing our other proposed methods will further improve results
across all domains. An additional insight concerns the num-
ber of repairs returned by the LLM: it is lower than the base-
line in some domains and higher in others. When fewer re-
pairs are produced, combining with the baseline is neces-
sary, as any sound repair set necessarily has a cardinality
greater than or equal to the minimum–cardinality set. When
more repairs are produced, recall does not consistently im-
prove over the baseline, which indicates unexploited infor-
mation in the action traces. Trace availability and length vary
by domain: some domains include 62 traces with an average
length of 43 steps, whereas a different domain has a sin-
gle trace of length 135. Given this sizes, we do not expect
the LLM alone to exploit trace information reliably, and we
believe integrating the LLM with hitting–set methods that
consume traces is therefore essential for consistent gains.

Conclusion & Future Work
We introduced the use of large language models (LLMs) to
exploit semantic cues in PDDL domains, guiding repairs to-
ward solutions that are preferable for human modellers. Our
approach leverages action and predicate names to improve
semantic alignment. Among five proposed strategies, a sim-
ple single–shot prompt outperformed the baseline on half the
benchmark domains. A limitation is that benchmarks may
overlap with LLM training data; future work will test on un-
published domains for a more reliable evaluation.
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