Finding Semantically Guided Repairs in PDDL Domains Using LLMs

Nader Karimi Bavandpour, Pascal Bercher

College of Systems & Society, The Australian National University, Australia
{Nader.KarimiBavandpour, Pascal.Bercher} @anu.edu.au

Abstract

Repairing Planning Domain Definition Language (PDDL)
models is difficult because solutions must ensure correct-
ness while remaining interpretable to human modelers. Ex-
isting hitting set methods identify minimal repair sets from
whitelist and blacklist traces, but they cannot prefer seman-
tically meaningful fixes and the true repair may not be min-
imal. We propose combining large language models (LLMs)
with the hitting set framework, using semantic cues in PDDL
action and predicate names to guide repairs. This hybrid ap-
proach provides contrastive, counterfactual explanations of
why traces fail and how domains could behave differently.

Introduction

Explainability is a central requirement for Al systems that
interact with or support humans in decision making. In Al
planning, this requirement is naturally addressed by the ex-
plicit representation of actions, states, and goals: planners
generate solutions by reasoning over structured models of
the world. Compared to black—box machine learning tech-
niques, this explicit reasoning process makes planning in-
herently transparent and interpretable. However, one of the
main challenges to deploying planning in practice lies in
constructing the planning models themselves (Tantakoun,
Zhu, and Muise 2025).

The recent success of Largarge language models (LLMs)
has drawn a lot of attention to leverage it in Al planning
tasks (Huang, Lipovetzky, and Cohn 2025; Katz et al. 2025;
Huang, Cohn, and Lipovetzky 2024; Oswald et al. 2024;
Guan et al. 2023). Recent surveys (Tantakoun, Zhu, and
Muise 2025) highlight the potential of LLMs to support the
construction and refinement of planning models. While ver-
ifiable planning modules remain the backbone of reliability,
robustness, and explainability, LLMs can act as assistants to
reduce the manual burden of defining domain models. We
believe that one promising avenue for this is through model
repair, where the goal is to identify a set of modifications
to a domain such that a given set of positive traces becomes
executable and a set of negative traces becomes inapplicable.

Repairs can themselves be understood as explanations.
Following Miller’s account of contrastive explanations in the
social sciences (Miller 2019), a repair answers the question
of why a given trace fails in the current domain, and provides
a counterfactual justification of how the domain could have

behaved differently. Each repair is thus not only a technical
fix, but also a form of interpretable feedback to the human
modeler.

Model repair (Lin and Bercher 2021; Gragera et al. 2023)
in planning is an active research area, recently reviewed
by (Bercher, Sreedharan, and Vallati 2025). Lin, Grastien,
and Bercher (2023) introduced an efficient hitting set algo-
rithm for model repair with positive (whitelist) traces. It is
also possible to use partially lifted test plans if partial in-
formation is available (Bavandpour et al. 2025). Lin et al.
(2025) extended the hitting—set approach of Lin, Grastien,
and Bercher (2023) to handle both positive and negative
traces. In this setting, positive traces must remain or become
valid plans, while negative (blacklist) traces must be ren-
dered inapplicable. Although effective, optimization—based
approaches, such as the cited works, are limited: they cannot
select the semantically most meaningful repair when mul-
tiple minimal—cardinality options exist. Moreover, the true
repair set may not even be among the minimal—cardinality
solutions. The VS Code plugin (Lin, Yousefi, and Bercher
2024) which extends the work by Lin, Grastien, and Bercher
(2023) is an effort to address this limitation by allowing
the human modeler to reject solutions and request the next
solution of the hitting—set. However, this is inconvenient
and limits automation. Our core idea is to leverage the fact
that PDDL domains contain semantically meaningful names
for actions and predicates, which LLMs can interpret to
guide the repair process. This enables us to move beyond
cardinality—minimality toward repairs that are also semanti-
cally plausible to human users.

Building on insights from Caglar et al. (2024), who ex-
plored LLLM applications for model repair but limited their
scope to initial state fixes, we propose to combine LLM
guidance with the hitting set approach of (Lin et al. 2025).
This hybrid aims to exploit semantic knowledge encoded
in domain symbols while retaining the optimization guaran-
tees of hitting set solvers. Our experiments evaluate this ap-
proach on the same benchmark suite as the baseline paper,
allowing for a direct comparison of performance. This pa-
per presents our initial implementation and evaluation of this
idea. Extensions and further refinements will be discussed in
future work.

Planning Formalism

Since our focus is on repairing lifted PDDL domains, we
introduce the lifted planning formalism. A lifted planning
problem is defined as a tuple II = (P, A,,0,s!,G),
where the domain is D = (P, A, «) and the task is T =
(0,s1,G).

Objects, Types, and Variables. Let O be the set of ob-
jects in the planning task. We consider a set of variables V,
each acting as a placeholder for an object. The type of a vari-
able v € V is written as v|t, and the set of objects associated
with ¢ is shown by O[t] C O. We say thatt € T is a subtype
of t' € T iff O[t] C O[t'].

Predicates and Atoms A predicate symbol P € P and
a tuple of £ € Ny typed variables forms an atom p =
P(v1]t1, ..., vglts). We denote by L the set of all atoms
in II.

Variable Substitution. A variable substitution function
0 : V — O maps each typed variable v|t to an object
o(v|t) € O[t] of the same type t.

Facts. Given an atom p € £ and a substitution function
0, a fact is obtained by grounding p, that is, by replacing
each parameter (v1,. .., vy) with the corresponding objects
given by o: f = o(p) = P(o(v1),...,0(vg)). The set of
all grounded atoms is denoted by F, and any set of facts
constitutes a state. s’ and G are called the initial state and
the goal description, respectively, each of which is a set of
facts.

Action Schemas. Let A denote the set of action schemas.
An action schema a = A(v1|t1,. .., vg|tg) is defined by a
unique name A and a tuple of n variables. Each schema is
associated with a mapping

a(a) = (prec(a), prec” (a), eff " (), eff ~(a))

whose codomain is (2£)*, representing a tuple of four sets
of compatible atoms, as defined below.

Definition 1 (Compatible Atoms). For an action schema a,
the set of compatible atoms L£? contains all atoms whose set
of parameters is a subset of the parameters of a. As an ex-
ample, P(vy|t1) is a compatible atom for the action schema
A(Ul |t1, Ug|t2), but Q(Ug‘tg) is not.

Actions. Given an action schema a and a substitution
function g, the corresponding action is obtained by replac-
ing each parameter of a according to p, and is denoted
a = afp]. Actions describe transitions in the state space.
An action a is applicable in a state s iff prect(a) C s and
prec” (a) N's = (). Applying an applicable action a in s pro-
duces the successor state

s'=(s\ eff (a) Ueff*(a),

which we denote by s —, §’.

Throughout this paper, we use boldface (e.g., p, a) for
atoms and action schemas, and regular typeface (e.g., f, a)
for facts and actions.

Solutions. Let vy = (aj,...,ax) be an action sequence.
We write s —7 s’ to denote that s’ results from applying v
to s via a state trajectory (s, ..., sg) where sop = s, s, =

s', and each action is applicable in its preceding state. A
solution to a planning problem is an action sequence 7 =
(a1,...,ax) such that sy —* s’ for some s’ with G C s/,
and each a; is a grounding of some action schema a € A.

The Repair Problem

We begin by introducing the notation and syntax used to de-
fine possible repair operations for a given planning domain.
Next, we describe how a set of such repairs can be applied
to produce a modified domain. Based on these concepts, we
then formalize the model repair problem in terms of the de-
fined repair operations and a set of positive and negative
plans.

In a planning domain D = (P, A, «), an atomic repair
is a modification denoted by r[a, p,c,op]. Here, a € A
is an action schema, p € P is an atom compatible with
a, ¢ € {prect,prec,eff " eff 7} indicates whether the
change concerns a positive/negative precondition or effect,
and op € {+, —} specifies whether the component is added
or removed. We write D =, D’ to indicate that applying r
to D yields D' = (P, A, o), where ¢ is resulted by apply-
ing 7 to a.

A repair set ¢ for a domain is a finite collection of one
or more atomic repairs. We say that § is valid if and only
if it contains no two repairs 7,7’ € ¢ such that one re-
verses the effect of the other. Specifically, two repairs r =
rla, p,c,op] and v = r'[a’,p’,, 0p'] are considered to
undo each otherifa =a’, p = p’, ¢ = ¢/, and op # op'.

Let D be a domain and § a valid repair set for D. Applying
the repairs in J in any order yields the same modified domain
D'. We use D =% D’ to indicate that D’ is obtained from D
by applying the valid repair set 6.

Definition 1 (model repair Problem). The model repair
problem is defined as a pair R = (D, T), where D denotes
a planning domain and T = {T4, ..., T,} for somen € N.
Each element 'T; is a triple (I11;,P;, E;). Here, 11; = (D, T;)
denotes the planning problem; P; is a finite set of positive
plans ﬂzr for11;; and E; is a finite set of pairs (. , bi,) asso-
ciated with 11;. Each 7r,; denotes a negative plan (a sequence
of actions considered undesirable) for 11;, and by, is an inte-
ger equal or less than the length of m, which specifies the
index of the first action in w, which must be inapplicable.

Definition 2 (Solution to the Repair Problem). A solution fo
R is a valid repair set § that transforms the original domain
D into a modified domain D' through the sequence of repair
operations D = D’. This repair must satisfy the following:
for every index i with 1 < i < n, all positive plans 7+ € P;
are executable in the updated planning task II, = (D', T;),
and each pair (7, ,by,) € E; meets the condition that ,_ is
not a valid plan for 11,, with the action at position by, being
the first that cannot be applied.

Tdea #2
(Implemented-not
promising)

A feedback function

uses the traces to list a
set of possible repairs

Repair
Problem

Extract
Conflicts

m—) Plausible
Repair _Repair

~ Most

Accept
Accumulated
Repairs

Idea #3
Idea #1 a
- = H - Plausible : 3
(Implemented) Repair Domain LLM Filters the Repair Repaizs Baseline Domain
. Problem Repair Repairs Before the Problem per Action Algorithm Repair
LLM Repairs Hitting Set Problem
Independently
Feedback:
Idea #5 block repairs
Idea #4
LLM Fi.lfers the Baseline Domain LLmtiii':erSs;he Repair Baseline [Domain | LIM a €
H;:‘I‘Irll)? Set Problem) ~ fNEEPEESN Filter Repair Solugion Problem Algorithm | Repair | ccep
roblem the

Conflicts

Figure 1: Different LLM strategies in model repair to infuse semantic knowledge in search.

Solving the Repair Problem

Our baseline approach (Lin et al. 2025) proposes a sound al-
gorithm based on conditional hitting sets to solve the model
repair problem. They report precision and recall against
known ground truth repairs. To obtain ground truth, they per-
turb IPC domains by randomly adding or removing precon-
ditions and effects, which allows direct computation of these
metrics.

The Baseline Approach

Here, we briefly restate their approach at a level sufficient
to motivate our LLM-based extensions. The algorithm ex-
ecutes all provided traces. For each positive trace, one of
the unsatisfied preconditions (if any) encountered along the
run in each trace is recorded as a flaw. For a negative trace
(7 ,ix), a flaw is recorded if the action at index 4y, in 7,
is applicable. If some earlier action at index j < i is inap-
plicable, the trace is handled analogously to a positive one:
repairs are generated so that the prefix becomes executable
and the first inapplicable action occurs exactly at position 7.

For each flaw, the algorithm enumerates a finite set of
candidate repairs. The set of candidates for a single flaw
is called a conflict; at least one element of the conflict
must be selected to eliminate that flaw. Consider a miss-
ing positive precondition p,, for action as in the sequence
~v = {a1, as,as), and suppose a; has p,, in its negative ef-
fects. The repair candidates include: (i) remove the missing
precondition from ag, that is 71 [ag, Pm, prec’, —] for some
o0 so that a3 = as[p] and p,, = pm[g]; (i) add p,, to the
positive effects of a, that is ro[ag, Pm, eff 7, +] whenever
a matching o such that as = as[g] and p,, = pm[o]; ex-
ists; (iii) remove p,, from the negative effects of a;, that
is r3[a1, pm,eff ~, —] for some p so that a; = a;[g] and
Pm = Pm|0];- These give a conflict @ = {ry,r2,73}.

For negative traces, conflicts are constructed so that the
target action becomes inapplicable at its specified position.
For example, one can add a new required precondition g that
is false in the corresponding state, or remove earlier effects
that would otherwise establish an existing precondition.

Different conflicts may interact. Some repairs may con-
tradict one another, or jointly re—introduce earlier flaws. The
baseline therefore augments the plain collection of conflicts
to a more complex object O that encodes applicability con-
ditions and mutual exclusions, producing a conditional hit-
ting set instance. Note that the details of forming © is out
of scope here. A solver then returns a minimal—cardinality
hitting set, called a diagnosis. The algorithm iterates: it (1)
extracts flaws from the current domain using the given pos-
itive and negative traces, (2) constructs ©, (3) solves for a
diagnosis, and (4) applies the corresponding repairs to ob-
tain a modified domain. The process repeats until all positive
traces succeed and all negative traces fail at their specified
positions.

The baseline does not exploit semantic cues encoded by
the modeler in predicate, action, or domain names within
the PDDL file. Its hitting—set solver optimizes only the size
of the repair set; when multiple diagnoses share the same
cardinality, it returns an arbitrary one. Moreover, the ground
truth repair need not be cardinality—minimal, so it can be
missed under this objective.

LLM-Guided Search

We propose five strategies for using LLMs to steer the search
toward human—plausible repairs, as Figure 1 shows. Because
a planning domain can admits multiple semantically con-
sistent fixes, precision and recall against the ground truths
should be viewed as proxies for alignment with modeler in-
tent rather than definitive correctness. Note that ideas 1 and
2 are implemented, but only Idea 1 is evaluated here. Ideas
3-5 are deferred to follow—up work.

Idea 1. This simple approach treats the LLM as a
knowledge—engineering assistant. We specify the allowed
repair operators, show the full domain to preserve global
context, and ask the model to summarize the semantics it
infers from action and predicate names. It then proposes a
small set of repairs with brief rationales. This variant is im-
plemented, and its results are reported in the next section.

Idea 2. Extract conflicts from action traces as in the base-

Idea #1 Baseline
Domain Words Lines Tasks POS-Sum NEG-Sum POS-Len NEG-Len Flaws Repairs Prec Rec Repairs Prec Rec
FLOORTILE 348 109 20 1 5 27.00 1.00 4 3.20 1.00 0.75 2.00 0.70 0.35
FREECELL 597 215 80 62 60 43.15 38.00 4 4.00 0.56 0.50 3.00 0.73 0.55
GED 784 310 20 20 9 14.30 8.67 10 4.00 0.13 0.06 4.00 0.90 0.36
HIKING 442 140 20 7 2 20.43 13.50 4 2.60 0.73 0.45 2.00 0.40 0.20
LOGISTICS00 282 99 28 28 1 47.54 1.00 4 3.60 090 0.75 2.00 0.50 0.25
LOGISTICS98 276 97 35 27 6 67.96 1.33 4 3.40 085 0.70 3.00 0.60 0.45
MPRIME 307 97 35 30 29 11.10 4.66 2 3.60 0.15 0.30 2.00 1.00 1.00
SCANALYZER 323 94 20 14 1 42.57 4.00 2 1.20 0.90 0.50 2.00 0.70 0.70
SLITHERLINK 410 133 20 1 2 19.00 14.00 2 2.40 0.53 0.60 2.00 0.50 0.50
SOKOBAN 239 71 20 2 3 40.50 17.67 2 2.80 043 0.60 2.00 1.00 1.00
TETRIS 477 144 17 5 5 24.60 20.80 4 3.20 029 0.20 2.00 0.80 0.40
THOUGHTFUL 1283 469 20 15 1 135.27 2.00 10 4.80 032 0.14 3.00 0.53 0.16
TIDYBOT 2157 656 20 4 5 29.25 19.20 12 3.60 0.60 0.17 2.00 1.00 0.17
WOODWORKINGO08 972 300 30 30 5 20.77 6.00 6 3.60 0.73 0.40 7.00 0.17 0.20
WOODWORKING11 976 302 20 7 1 62.29 9.00 6 2.80 053 0.23 3.00 0.53 0.27

Table 1: Experimental results comparing idea #1 with the baseline algorithm. Summary statistics over 5 runs per domain.
Words and Lines count PDDL size; Tasks is the number of planning problems; POS-Sum/NEG-Sum are positive/negative
plan counts; POS-Len/NEG-Len are their average lengths; Flaws and Repairs are detected issues and fixes; Prec/Rec denote

precision and recall.

line, take their union, and iteratively ask the LLM to choose
the most plausible repair, apply it to the domain, and repeat.
Note that by taking union of the conflicts we are creating a
long flat set of repairs, each of which fix at least one of the
flaws found in the action traces. While we are not ready to
report on its performance, preliminary tests suggest that the
flat candidate pool can become large, which degrades LLM
selection quality and makes this approach less promising.

Idea 3. Combine LLM proposals with minimality via the
hitting—set solver. After exposing the full domain for con-
text, we query the LLM for a list of plausible repairs at the
action level. The hitting—set solver then selects a cardinality—
minimal subset, ensuring that the final repairs are optimized
toward consistency across conflicts. This separation allows
the LLM to focus on local, per—action suggestions, avoiding
confusion from reasoning over global repair sets, while the
optimization stage consolidates them. This could improve
the results compared to Idea 1, with the added benefit of
shorter and more efficient prompts.

Idea 4. A symmetric decomposition to Idea 3 that operates
at the level of conflicts rather than actions. For each flaw,
the LLM filters or ranks its candidate repairs, and we keep
conflict sets separate instead of forming a single union. This
yields more focused prompts and allows us to test whether
action—centric (Idea 3) or flaw—centric filtering is more nat-
ural for LLMs.

Idea 5. Use the LLM as a post—hoc judge. The baseline
algorithm proposes a minimal repair; the LLM then accepts
or vetoes it on semantic grounds and requests alternatives if
needed. This mirrors the human—in—the—loop design of the
VS Code plugin (Lin, Yousefi, and Bercher 2024) for the
predecessor algorithm (Lin, Grastien, and Bercher 2023),
with the LLM replacing the human reviewer.

Experiments

We use the same problem set as the baseline paper (Lin
et al. 2025) to ensure a direct comparison, and we report
the same metrics of precision and recall. Runtime results
are omitted for now, as they are negligible (comparable to

the latency of a single OpenAl API call) but will be in-
cluded in future work. The baseline numbers in our tables
are taken directly from the published paper; we did not re—
run their implementation locally. Our experiments employ
the model gpt-40-2024-08-06, where the suffix de-
notes the training cutoff date.

Despite its simplicity, Idea 1 improves both precision and
recall in roughly half of the benchmark domains. We also
report word and line counts of the PDDL files as a proxy for
domain complexity, although no clear correlation with LLM
performance emerges. Crucially, Idea 1 does not exploit in-
formation from action traces, so we expect that incorporat-
ing our other proposed methods will further improve results
across all domains. An additional insight concerns the num-
ber of repairs returned by the LLM: it is lower than the base-
line in some domains and higher in others. When fewer re-
pairs are produced, combining with the baseline is neces-
sary, as any sound repair set necessarily has a cardinality
greater than or equal to the minimum—cardinality set. When
more repairs are produced, recall does not consistently im-
prove over the baseline, which indicates unexploited infor-
mation in the action traces. Trace availability and length vary
by domain: some domains include 62 traces with an average
length of 43 steps, whereas a different domain has a sin-
gle trace of length 135. Given this sizes, we do not expect
the LLM alone to exploit trace information reliably, and we
believe integrating the LLM with hitting—set methods that
consume traces is therefore essential for consistent gains.

Conclusion & Future Work

We introduced the use of large language models (LLMs) to
exploit semantic cues in PDDL domains, guiding repairs to-
ward solutions that are preferable for human modelers. Our
approach leverages action and predicate names to improve
semantic alignment. Among five proposed strategies, a sim-
ple single—shot prompt outperformed the baseline on half the
benchmark domains. A limitation is that benchmarks may
overlap with LLM training data; future work will test on un-
published domains for a more reliable evaluation.

Acknowledgements

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

This work was supported in part by the ANU Student Ex-
tracurricular Enrichment Fund (SEEF), which contributed to
the travel and registration expenses for presenting this paper
at HAXP 2025, hosted by ICAPS 2025.

References

Bavandpour, N. K.; Lauer, P,; Lin, S.; and Bercher, P. 2025.
Repairing Planning Domains Based on Lifted Test Plans. In
Proc. of the 28th ECAI, 4774-4781.

Bercher, P.; Sreedharan, S.; and Vallati, M. 2025. A Survey
on Model Repair in Al Planning. In Proc. of the 34th 1JCAI,
10371-10380.

Caglar, T.; Belhaj, S.; Chakraborti, T.; Katz, M.; and Sreed-
haran, S. 2024. Can LLMSs Fix Issues with Reasoning Mod-
els? Towards More Likely Models for Al Planning. In Proc.
of the 38th AAAI, 20061-20069.

Gragera, A.; Fuentetaja, R.; Olaya, A. G.; and Fernandez, F.
2023. A Planning Approach to Repair Domains with Incom-
plete Action Effects. In Proc. of the 33rd ICAPS, 153-161.

Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2023. Leveraging Pre-trained Large Language Mod-
els to Construct and Utilize World Models for Model-based
Task Planning. In Proc. of the 37th NeurIPS, 79081-79094.

Huang, S.; Cohn, T.; and Lipovetzky, N. 2024. Chasing
Progress, Not Perfection: Revisiting Strategies for End-to-
End LLM Plan Generation. CoRR.

Huang, S.; Lipovetzky, N.; and Cohn, T. 2025. Planning
in the Dark: LLM-Symbolic Planning Pipeline Without Ex-
perts. In Proc. of the 39th AAAI 26542-26550.

Katz, M.; Kokel, H.; Muise, C.; Sohrabi, S.; and Sreedharan,
S. 2025. Make Planning Research Rigorous Again! CoRR.

Lin, S.; and Bercher, P. 2021. Change the World — How Hard
Can that Be? On the Computational Complexity of Fixing
Planning Models. In Proc. of the 30th IJCAI, 4152—4159.

Lin, S.; Grastien, A.; and Bercher, P. 2023. Towards Au-
tomated Modeling Assistance: An Efficient Approach for
Repairing Flawed Planning Domains. In Proc. of the 37th
AAAI, 12022-12031.

Lin, S.; Grastien, A.; Shome, R.; and Bercher, P. 2025. Told
You That Will Not Work: Optimal Corrections to Planning
Domains Using Counter-Example Plans. In Proc. of the 39th
AAAI 26596-26604.

Lin, S.; Yousefi, M.; and Bercher, P. 2024. A Visual Stu-
dio Code Extension for Automatically Repairing Planning
Domains. In Demo at the 34th ICAPS.

Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. AlJ, 267: 1-38.

Oswald, J. T.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and
Sohrabi, S. 2024. Large Language Models as Planning Do-
main Generators. In Proc. of the 34th ICAPS, 423-431.

Tantakoun, M.; Zhu, X.; and Muise, C. 2025. LLMs as Plan-
ning Modelers: A Survey for Leveraging Large Language
Models to Construct Automated Planning Models. CoRR.

