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Abstract

Knowledge distillation (KD), which involves training a smaller student model to approximate
the predictions of a larger teacher model is useful in striking a balance between model
accuracy and computational constraints. However, KD has been found to be ineffective when
the teacher and student models have a significant capacity gap. In this work, we address this
issue via “meta-collaborative distillation” (MC-DISTIL), where students of varying capacities
collaborate during distillation. Using a “coordinator” network (C-NET), MC-DISTIL enables
mutual learning among students as a meta-learning task. Our insight is that C-NET learns
from each student’s performance and training instance characteristics, allowing students
of different capacities to improve together. Our method enhances student accuracy for all
students, surpassing state-of-the-art baselines, including multi-step distillation, consensus
enforcement, and teacher re-training. We achieve average gains of 2.5% on CIFAR-100 and
2% on Tiny ImageNet datasets, consistently across diverse student sizes, teacher sizes, and
architectures. Notably, larger students benefiting through meta-collaboration with smaller
students is a novel idea. MC-DISTIL excels in training superior student models under
real-world conditions such as label noise and domain adaptation. Our approach also yields
consistent improvements on the MS COCO object detection benchmark and introduces only
a modest 5% computational overhead during training, with no additional cost at inference.

1 Introduction

Although modern deep learning methods can effectively learn from large datasets with high-dimensional
features, their associated compute and memory requirements often exceed the constraints faced by practical
applications. To address this, Knowledge distillation (KD (Hinton et al., |2015))) trains a smaller student
model to approximate the higher quality predictions of a larger teacher model. These distilled student models
often outperform supervised models of similar capacity; however, such gains are limited by the choice of
teacher and student. In particular, larger teacher-student capacity gaps are observed to produce poorer
quality student models (Cho & Hariharan) 2019).
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Previous work on this challenge use an altered teacher (Cho & Hariharan) 2019; |Li & Jin| 2022) or introduce
additional “assistant” models of intermediate learning capacities between teacher and student model (Mirzadeh!
et al., [2020; Son et al., 2021)). An interesting idea in this literature is the use of multiple teachers for a given
student, providing the student with a multi-grain view of the relationship between instance input and label.
However, the use of inferior or intermediate-quality teacher models in these approaches potentially limit the
quality of information available to the student. We believe, instead, that students should have access to
high-quality teacher signals, but focus more on instances that are “learnable” given their model capacity
(see e.g., [Mindermann et al.| (2022) for supervised learning). To this, we add the following insight: we could
obtain a finer, multi-grain picture of instance hardness by observing the performance of students of different
capacities (as opposed to generating and utilizing multiple teachers), which could then be used for better
distillation. These observations lead us to the following problem statement: Can students of different
capacities learn from each other in a collaborative distillation framework, thereby understanding how to
prioritize relevant “learnable” information and improving distillation outcomes?

Approach: We build MC-DISTIL — meta-
collaborative distillation — where students
of different capacities are codistilled from
a single teacher. We propose to use an
auxiliary meta-network for aggregating
information across students, and using it
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Figure 1: MC-DISTIL Training Workflow. Losses are weighted ~dents have access to high-quality teacher

according to the parameters obtained from C-NET which are then §ignals that.they can emulat? on a per-
used to train the individual students. instance basis. We set C-NET’s objective

as the pooled student accuracy on a sepa-

rate, held-out dataset, setting up a nested
optimization that we approximate using an efficient alternating update algorithm (see Section (3| for details).
A key advantage of MC-DISTIL is that it produces a spectrum of student models with varying capacities all
with improved generalization capabilities, which can be deployed contextually at test time to suit specific
application requirements. Furthermore, the effectiveness of C-Net strengthens as more students participate
in the distillation process, enabling richer collaborative gains. As we demonstrate, this framework not only
benefits from pooling knowledge across diverse students but also from a fine-grained, adaptive modulation of
the distillation process, where training signals are dynamically tailored to both the capacity of each student
and the difficulty of individual instances.

Ls. = apH(y®Y,y) + B KLy, y™)

Pooling information across students: Figure [2| shows that adding more students consistently improves
performance over vanilla KD, as C-NET leverages diverse capacities to better model instance difficulty. We
use subsets of ResNet10-xxs, ResNet10-xs, ResNet10-s, and ResNet10-m (He et al., [2016; |[Kag et al., 2023)).
For ResNet10-xxs, higher-capacity models are added incrementally, while for ResNet10-m, smaller ones are
introduced. Experiments are conducted on the CIFAR-100 dataset (Krizhevskyl, [2009)) with ResNet10 and
ResNet18 as teachers (Figure . Complete results are provided in Section

Modulating distillation at student & instance granularity: Figure[3|shows the relative weight assigned
in MC-DISTIL to training instances as a function of instance hardness (z-axis) and student capacity (different
curves). We use the label likelihood gap between teacher and largest student as instance hardness (z-axis)
and the total weight on loss components (a + () as instance weight (y-axis). Experiment details are as above.
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Figure 2: Influence of student cohort size on distillation ~ Figure 3: C-NET prioritizes training data based on
gains using meta-collaboration. See Section [I.7 for student capacity and instance hardness. See Sec-
details. tion [£.5] for details.

As seen in Figure [3] C-NET implicitly learns instance hardness, encouraging weaker students to focus on
easier examples while stronger students learn from a broader range of data. Since instance hardness isn’t an
explicit input, C-NET learns an implicit mapping of instance difficulty. We further inspect how the choice of
loss component weights « and 5 (see Equation [2|) helps MC-DISTIL improve KD in Section

We extensively evaluate MC-DISTIL across diverse student—teacher architectures and model sizes (Sec-
tion , demonstrating consistent gains over SOTA benchmarks. MC-DISTIL improves the performance
of each student, highlighting the interesting finding that smaller student models can help improve larger
students in collaborative distillation. Finally, MC-DISTIL yields improved generalization and robustness

(Section [£.4)).

2 Related works

Knowledge Distillation (KD) In supervised learning, Knowledge Distillation (KD) (Hinton et al.l [2015)
is a valuable method where a ‘student’ model learns by mimicking a pre-trained ‘teacher’ model, rather
than solely relying on labeled data. The success of KD depends on factors like teacher model accuracy
and student model capacity (Menon et all [2021)). Recent research (Harutyunyan et all [2023) explores
its efficacy in relation to supervision complexity. Using early-stopped teacher models has shown promise
in improving student training (Cho & Hariharan| [2019), though it requires iterative distillation. Another
approach employs multiple teacher networks with intermediate knowledge transfer. The
strategic blending of loss components (Sivasubramanian et al., [2023)) has recently improved KD, particularly
in scenarios with significant representation gaps between teacher and student models. The challenge of
suboptimal KD performance caused by significant capacity disparities between student and teacher models
was addressed by strategically choosing points to learn from the teacher model in [Kag et al. (2023). Other
innovations such as ‘Teacher Assistants’ (TAs) or intermediate models have been introduced (Mirzadeh et al.,
, with further enhancements achieved through stochastic techniques such as Dense Gradient Knowledge
Distillation (DGKD) (Son et al., |2021), which involves the simultaneous training of intermediates with
occasional model dropout. Recently |Li & Jin| (2022)) showed that the gap between online and offline KD could
be bridged using a shadow head on top of the backbone of the teacher model. The shadow head is trained to
perform bidirectional distillation. These works indicate knowledge transfer to the smaller models, resulting in
their improvement by the presence of the intermediate bigger models; however the generalization of the larger
models has also been shown to improve from the knowledge of smaller models (Mindermann et al.), |2022) and
bidirectional learning to improve KD . Therefore, inspired by these bidirectional signals, we
present an approach to train multiple student models simultaneously and communicate vital information via a
coordinator network.
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Online knowledge distillation: In the absence of a strong pre-trained teacher, online knowledge distillation
often involves collaborative model efforts to acquire soft labels. [Chen et al. (2020) aggregate predictions
from peer models using an attention-based mechanism to obtain soft targets. |[Wu & Gong| (2021) employ an
m-branch model treating each branch as a peer model, constructing soft distillation targets from weighted
logits of these branches and an exponentially moving-averaged m-branch model. |Guo et al.[ (2020]) propose
using pooled student logits with varying learning capacities as soft distillation targets. Additionally, [Du et al.
(2023) create a curriculum using variance in predictions of multiple students with varying sparsity levels as a
measure of task complexity. |Zhang et al.| (2018]) use KL-divergence loss between every student pair to improve
consensus among student models. The primary focus in these works lies either in constructing logits due to
the absence of a pre-trained teacher model or explicit synchronization of the student models. In contrast, our
approach centers on influencing the learning patterns of the models participating in the collaborative process
via signals from peer models.

Instance-Specific and Meta-Learning: Instance-specific learning has been greatly explored to improve
training in the presence of noise. [Saxena et al.|(2019);|Algan & Ulusoy| (2021)); |Vyas et al.| (2020) propose
to learn instance-specific temperature or smoothing parameters to account for potential label noise. In
the context of knowledge distillation, [Zhao et al. (2021) have demonstrated the advantages of learning
instance-level sequences (or curricula) for training samples. A similar instance-wise weighing scheme has been
proposed to improve distillation in semi-supervised settings (Iliopoulos et al.l2022)). Recent contributions such
as that in|Ren et al.| (2018); Shu et al.[ (2019)); [Raghu et al.| (2020); Jain & Shenoy| (2022)) employ meta-learning
based on validation sets to acquire instance-specific weights, enhancing robustness. We introduce a novel
approach, MC-DISTIL, that involves the utilization of meta-learning based on wvalidation sets to facilitate
a collaborative learning process among multiple models. To the best of our knowledge, this has not been
previously explored.

3 MC-Distil: Meta-collaborative distillation

3.1 Standard Knowledge Distillation

In supervised learning, one is concerned with training a classifier y = fp(x) using data D = {(x;,y;) | i €
(1,---,n)}. Here, (x;,y;) € X x ) denote pairings of inputs x; along with their corresponding labels y; and
denote the model parameters. Typically, the labels y are categorical, and practitioners have found that such
labels are often inadequate in capturing nuances in the data. A popular mitigation is to incorporate more
nuanced ‘soft labels’, or distributions over labels, as the target for supervision instead of categorical labels.
In particular, Knowledge distillation (KD) (Hinton et al., [2015) uses the logits from a pre-trained model (the
‘teacher’ model) as soft labels for training a classifier, in addition to the standard categorical labels.

Suppose a pre-trained model (teacher) generates logits denoted by 3(T) = T (). Then a new model (student)
could be trained using a “teacher matching” objective that involves minimizing the KL-divergence between
yT) and the student’s logits y(3). The KD objective is as follows:

£o=3 (1= Nlee + AL,y ™)) (1)

D

Here, l.. = H(y"¥,y) is a supervised learning loss matching y*) to the true labels y, and Iy =
m2KL (y(s), y(T)) is the teacher-matching loss. Typically, H is the standard cross-entropy loss. The hyperpa-
rameters 7, A control the softening of the KL-divergence term, and the relative contributions of the two loss
components.

3.2 MC-Distil: Multi Student Knowledge Distillation

Successful application of KD often depends on the quality of the pre-trained teacher model (see e.g., (Menon
et all |2021))), and the representational gap between the teacher and student models. To address the capacity
gap issue, often several Teacher Assistants (TA) or intermediate models are introduced (Mirzadeh et al.l [2020;
Son et al., [2021). The success of the such multi-teacher approaches suggests that supervisory inputs from
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teacher models of different sizes enrich the information available to the student. We leverage this insight
in a completely different setup where a single teacher is simultaneously distilled into multiple cooperating
student models. Our primary thesis is that the diversity in student capacities and learning behaviors can be
leveraged to tailor the distillation process more effectively for each student.

Specifically, we propose to learn adaptive, instance-wise distillation losses using a coordinator network,
denoted as g, (referred to as C-NET). This network modulates the contribution of each training sample
to the student models based on their individual learning dynamics and their relationship with the teacher.
Formally, we define a set of student models S = {S; | j € (1,--- ,k)}, a single pre-trained teacher model 7,
and a shared coordinator network gs. The overall training objective for MC-DISTIL is then defined as:

outer—level

k

argmin Z Lo Ner (argmln ﬁsj (0]’ Qj, BJ) ) (2)
Jj=1

inner—level

where <a1’ia ey aki>a<ﬂli7 v 7/8ki> = g¢(gjl)7 a5 = <aj17 e 7aj7l>a /8] = <Bj17 e 7/8_]YL>

and Ly, = Z (OéjiH(xivyi) +5ji7—2KL(y£ )’yz(T)))
(zi,y:)ED

3.2.1 Coordinator network g, (C-Net):

Our key innovation in Equation [2] is to use an additional “coordinator network”, which we call C-NET
(Figure , to address two key challenges, viz., a) reducing the number of learnable parameters and b)
introducing interaction among the student models. The C-NET is a learnt function (A;, Bj) = g4(z;), where
A; = [oagy -+, i), Bi = [B4y - - -, Bri) represent the loss mixing parameters for the k students on the input ;.
Therefore, the combined (A, B) for the entire dataset would result in a matrix of size n x k, which can incur
a significant memory overhead as the training dataset grows. Thus, to compactly represent the loss mixing
parameters we use C-NET parameterized by ¢ € ®. Moreover, as the C-NET is a centralized mechanism, it
acts as a shared interface across students and training instances, enabling the coordinator to incorporate the
relative learning dynamics of models with different capacities. This allows C-NET to assign more informed,
adaptive weights to each student based on instance-specific difficulty and student model behavior. The
training procedure for the C-NET is described in the following section.

Training the C-Net: We train the g, (C-NET) using a separate validation set of data V = {(a¥,y?) | i €
(1,---,m)}. The objective is to learn ¢ such that the resulting student models generalize well—i.e., they
achieve low prediction error on the validation data. Specifically, we minimize the average cross-entropy loss
across all k£ student models on the validation set:

k m m
ﬁc»Nm—imZZ B ) = 2SS H (o, (), ot (3)

Jj=11i=1

Here, H(:,-) denotes the cross-entropy loss between the predicted label from student j and the ground
truth. Crucially, Lc.ner depends on ¢ only implicitly — via the student parameters 6;, which themselves are
optimized using the loss mixing weights generated by g4(-) (see Equation . In other words, our proposal
defines a bi-level optimization that encompasses both the C-NET and classifier parameters. Thus, the optimal
0 values depend on the optimal choice of ¢ and vice versa.

For most modern deep learning models, solving the inner optimization in Equation [2] in closed form is
intractable due to the non-convexity and scale of the models. To address this, we adopt an iterative strategy
to approximate the solution to the bilevel optimization problem. Rather than fully optimizing the inner
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Algorithm 1 The MC-DISTIL approach: learning student Sy, - - - Sk, Training data D, Validation data V,
teacher 7 and C-NET gg.

Hyperparameters: 7 Temperature, i} ---n¥: learning rates for k students, 7, learning rate for C-NET, L
epoch interval for C-NET update

1: Initialize student model parameters with 6 - -- 09 and C-NET with gg
2: fort € {0,...,T} do
3: for je{1,...,k} do
Update 9;“ by Equation
end for
if t%L == 0 then
{z",y"} < SampleMiniBatch(V)
Compute Lo ngr using {zv, 3"} and (9;“) as described in Equation
Update ¢l Z1+1 by Eq. Equation
10: end if
11: end for

© ® >R

objective before updating the outer parameters, we employ an alternating stochastic gradient descent (SGD)
approach. This involves interleaving updates of the student model parameters and the C-NET. Specifically,
we perform a few gradient steps on the student parameters using the training set and the weights predicted
by the C-NET, followed by an update of the C-NET parameters based on validation loss (Equation . This
alternating scheme provides a practical and efficient means of optimizing the overall objective. The update
steps are summarized as follows:

I < o - S; . S; .
05 =05 — DN g5eilil x Vor H (5™ yi) + 9l + 7 ¢ Vo KL(y ™ 5" Vi€ {10 k) 4@
i=1
m k m
T2 v v T2 v oW
¢t+1 = ¢t T m Z Vab*ﬁC»NET(l’i»yi , 9t+1) = ¢t ~ Em Z Z vg;’+1LC-NET(xi yYi @t+1) * qu*e;'ﬂ (5)

i=1 j=1 i=1

Here, we denote O = (911 ... 9+1E) as the collection of updated student model parameters. The
learning rates for the student models and the C-NET are represented by ni,--- ,n¥ and 7, respectively. We
use the notations g3, [j] = oz;» and ggti[j] = ,6’; to remind our readers that as and s are output from the
C-NET (g(.)) parameterised by ¢. The update step for the C-NET is similar to the standard meta-learning
objectives as it uses the updated student model parameters. We present the complete algorithm of MC-DISTIL
in Algorithm [I] Since training C-NET adds to the cost of training, we propose to update C-NET only after L
epochs. In Appendix[A] we show theoretically that our method converges to the optima of both the validation
and training loss functions under some mild conditions.

4 Experiments

We conduct experiments on a variety of tasks. First, we compare our method with other knowledge distillation
baselines in terms of image classification. We experiment with different settings varying architecture and
datasets. Also, we apply our method to the object detection task.

4.1 Image Classification

For image classification, we evaluate across diverse datasets—CIFAR-100 (Krizhevsky, [2009), Tiny Im-
ageNet (Le & Yang, 2015) and ImageNet-1K (Russakovsky et al. 2015). In addition, we consider
iWildCam (Beery et all 2020), Tiny ImageNet-C (Hendrycks & Dietterichl [2019)), and Clothing-
1M (Xiao et al. 2015) as part of our further analysis. Dataset details, including splits, input dimensions,
and augmentations, appear in Appendix with training configurations in Appendix [B.3]
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CIFAR-100 Test Accuracies
Teacher Student CE KD | TAKD | DGKD | RMC | DML | SHAKE | MetaDistil | Ours
ResNet10-xxs | 31.85 | 33.45 34.39 35.34 34.07 33.41 33.56 34.92 36.19
ResNet10-xs | 42.75 | 44.87 44.97 47.11 45.18 44.16 42.12 46.01 47.57
ResNet10-1 | 72.20
ResNet10-s 52.48 | 55.38 56.16 57.02 53.74 55.13 56.50 57.20 58.36
ResNet10-m | 64.28 | 66.93 - - 66.66 66.06 68.80 68.28 69.42
ResNet10-xxs | 31.85 | 33.95 34.98 34.85 33.64 33.54 33.70 34.66 35.97
ResNet10-xs | 42.75 | 44.87 45.64 46.68 42.45 44.70 44.20 46.32 47.53
ResNet10 | 75.18
ResNet10-s 52.48 | 55.56 56.51 56.84 53.64 55.29 56.59 57.78 58.10
ResNet10-m | 64.28 | 67.27 - - 66.58 66.25 68.63 68.89 69.21
ResNet10-xxs | 31.85 | 33.56 34.26 34.26 33.77 34.02 32.32 34.40 35.94
ResNet10-xs | 42.75 | 45.02 45.27 47.33 45.14 44.10 43.82 46.24 46.99
ResNet18 | 76.99
ResNet10-s 52.48 | 55.73 55.41 56.70 54.03 54.82 56.82 57.40 57.50
ResNet10-m | 64.28 | 66.42 - - 66.04 65.94 68.12 68.43 68.45
ResNet10-xxs | 31.85 | 33.32 34.46 35.64 34.46 33.68 33.20 33.76 36.10
sNet10-xs | 42. 44.94 45.92 47.21 42. 44.4. 45. 46.4 47.12
ResNet34 | 79.47 ResNet10-xs 75 9 5.9 7 78 5 5.80 6.43 7
ResNet10-s 52.48 | 54.73 56.17 57.12 53.58 55.28 56.20 56.91 57.67
ResNet10-m | 64.28 | 66.52 - - 65.58 66.88 68.96 68.09 68.24
Tiny ImageNet Test Accuracies
ResNet10-xxs | 13.76 | 13.53 13.81 14.34 13.69 13.95 14.70 14.78 15.48
ResNet10-xs | 18.56 | 19.19 19.22 20.54 19.04 19.57 19.92 20.13 21.68
ResNet10-1 | 41.25
ResNet10-s 24.56 | 25.95 26.35 27.24 25.86 26.20 27.00 27.06 29.74
ResNet10-m | 33.47 | 34.63 - - 33.72 35.34 36.66 36.02 38.26
ResNet10-xxs | 13.76 | 13.80 14.01 14.52 13.83 14.01 14.20 14.19 15.36
ResNet10-xs | 18.56 | 19.48 19.09 21.21 19.28 19.78 19.87 20.13 21.78
ResNet10 | 44.04
ResNet10-s 24.56 | 26.95 25.58 26.99 26.18 27.04 27.79 27.06 29.82
ResNet10-m | 33.47 | 35.50 - - 34.78 35.79 38.01 36.02 38.54
ResNet10-xxs | 13.76 | 14.12 14.53 13.87 14.08 14.28 14.58 14.24 15.26
ResNet10-xs | 18.56 | 19.78 19.35 19.54 19.75 18.24 19.85 19.96 21.36
ResNet18 | 47.94
ResNet10-s 24.56 | 26.30 26.17 27.42 25.08 25.92 27.92 27.32 30.36
ResNet10-m | 33.47 | 35.08 - - 33.37 36.77 38.60 36.08 39.11
ResNet10-xxs | 13.76 | 14.43 13.47 14.58 13.78 14.30 14.67 13.96 15.24
ResNet10-xs | 18.56 | 19.72 18.33 20.84 19.28 19.29 19.76 20.93 21.82
ResNet34 | 50.10
ResNet10-s 24.56 | 27.05 24.96 27.89 25.99 26.81 28.05 27.64 29.59
ResNet10-m | 33.47 | 35.94 - - 33.58 35.88 37.97 36.88 38.34

Table 1: Comprehensive comparison of methods across datasets. For each teacher model, we perform
knowledge distillation with a group of student models. MC-DisTIL (Ours, last column) substantially improves
the average accuracy on unseen test data compared to other distillation baselines, especially those designed
for multi-student setups. The highest accuracies are highlighted in bold.

4.1.1 Model Architecture and Training

To demonstrate the utility of our method across groups of different model sizes we experiment with a group
of ResNet (He et al., 2016)) models and several recent larger models. We use the ResNet32 model as C-NET
with the classification head changed to output weighting parameters. We present results of varying C-NET
size in Section We use ResNet10-xxxs, ResNet10-xxs, ResNet10-xs, ResNet10-s and ResNet10-m (Kag
et al 2023) models as the student models. These models are simultaneously trained with either ResNet10-1,
ResNet10, ResNet18 or ResNet34 models as a teacher model. In Appendix we present details of these
models. We present experiment results on these combinations in Table [I Henceforth, in tables, - denotes
that for baselines TAKD (Mirzadeh et al., [2020)) and DGKD (Son et al., |2021]), the initial distillation step
coincides with standard KD from the teacher to the largest student, and is therefore not reported separately.
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CIFAR-100 Test Accuracies
Teacher Student CE KD | TAKD | DGKD | RMC | DML | SHAKE | MetaDistil | Ours
ResNet-8x4 71.12 | 72.62 74.26 74.45 73.89 | 73.37 73.96 73.12 75.38
MobileNet-V2x2 | 69.52 | 71.78 72.07 72.27 71.23 | 72.46 72.17 72.53 73.05
ResNet-32x4 80.10
WideResNet-16x2 | 72.79 | 73.34 | 73.72 74.12 75.19 | 73.87 74.22 74.10 75.52
ShuffleNet-V2 73.73 | 75.33 - - 76.52 | 75.98 76.12 76.74 77.97
ResNet-8x4 7112 | 72.77 | 73.82 74.63 73.84 | 74.12 74.31 74.49 76.73
. MobileNet-V2x2 | 69.52 | 72.69 72.69 71.61 70.90 | 73.97 74.68 74.20 74.36
WideResNet-40x2 | 77.60
WideResNet-40x1 | 72.90 | 73.01 73.72 74.67 75.44 | 74.26 74.41 75.38 75.85
ShuffleNet-V2 73.73 | 75.85 - - 76.72 | 77.87 78.08 78.17 77.94
Tiny ImageNet Test Accuracies
ResNet-8x4 37.16 | 37.23 38.83 39.52 36.76 | 38.86 38.12 40.46 41.89
MobileNet-V2x2 | 47.68 | 49.89 | 49.89 48.21 48.07 | 48.24 49.79 49.85 49.95
ResNet-32x4 50.20
WideResNet-16x2 | 39.11 | 39.47 | 41.66 41.77 39.77 | 41.35 41.98 42.12 43.88
ShuffleNet-V2 47.76 | 50.44 - - 49.46 | 49.24 49.46 50.62 52.38

Table 2: Comprehensive comparison of methods when training models with larger learning capacity. Here
again MC-DIsTIL (Ours, last column) substantially improves the test accuracy compared to other distillation
baselines even in this setting. The highest accuracies are highlighted in bold.

To illustrate the utility of our method in larger vision models we perform knowledge distillation with
ResNet-32x4 as the teacher and ResNet-8x4, ShuffleNet-V2 (Ma et al., |2018), WideResNet-16x2 (Zagoruyko
& Komodakis, [2016) and MobileNet-V2x2 (Sandler et al., [2018)) as the group of student models. We also
perform knowledge distillation with WideResNet-40x2 as a teacher model and ResNet-8x4, ShuffleNet-V2,
WideResNet-40x1, and MobileNet-V2x2 as a student model group in the large vision model setting. The
results of these experiments are presented in Table [2]

4.1.2 Baselines

In our comparative analysis, we assess the performance of our method against a selection of recent works in
the field of knowledge distillation, alongside standard knowledge distillation and Empirical Risk Minimization
(ERM) or Cross-Entropy based training (CE). Specifically, we compare against TAKD (Mirzadeh et al., |2020))
and DGKD (Son et al., [2021)) baselines involving multiple students or intermediate models, RMC(Du et al.,
2023) uses variance in predictions of students of levels of sparsity as a measure of task complexity for each
instance, DML (Zhang et al., [2018)) forces collaboration among the models by introducing a KL-divergence
loss across different models and SHAKE (Li & Jinl 2022) which introduces a pseudo teacher that allows
bidirectional learning during KD. We also compare MC-DISTIL against one more baseline that involves
distilling knowledge to each of the students independently using a network architecturally similar to C-NET.
We refer to this baseline as the MetaDistil. This baseline is similar to AMAL (Sivasubramanian et al., [2023);
the strategic mixing loss components are achieved via the C-NET optimization. Further, in instance dependent
label-noise setting we compare against L2R (Ren et al. [2018) and MWN (Shu et all |2019)) reweighing
techniques created for eliminating label noise by using bi-level optimization and MCD (Gal & Ghahramanil,
2016)) which uses dropout to model uncertainties. Please refer to Appendix for more information on these
methods.

4.1.3 Improving efficacy of Knowledge Distillation

In Table [l we present results from experiments conducted on CIFAR-100 and Tiny ImageNet datasets,
exploring scenarios with a significant capacity gap between teacher and student models. We start with
ResNet10-1 as the teacher and go on to continue increasing learning capacity of the teacher model and perform
knowledge distillation with ResNet10, ResNet18, and ResNet34. On both the datasets, MC-DISTIL, by virtue
of meta-collaboration, achieves the best performance among the baselines showing accuracy gains of up to
4% on both the datasets compared to KD. The gains are much more pronounced on the larger models in the
student pool for the Tiny ImageNet dataset owing to the increased difficulty in classifying it whereas for
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ImageNet-1K Test Accuracies

Teacher Student CE KD | DGKD | SHAKE | MetaDistil | MC-Distil
ResNet14 | 22.28 | 19.00 20.92 21.15 22.84 23.79
Net2 26. . . . . .
ResNet101 | 81.68 ResNet20 6.87 | 22.10 24.31 24.48 26.44 27.94
ResNet32 | 31.04 | 26.83 29.34 29.26 31.56 33.07
ResNetb6 | 37.56 | 33.38 - 34.82 37.90 39.73

Table 3: Comprehensive comparison ImageNet-1K test accuracies of student models distilled from a ResNet101
teacher using different knowledge distillation techniques. The proposed method (MC-DISTIL) consistently
outperforms baseline approaches across all student architectures. Bold indicates the highest accuracies.

CIFAR-100 the gains are pretty uniform across the student models. These gains are consistent across a wide
range of student and teacher capacities. MC-DISTIL improves all of the student models’ performances as
compared to the baselines, thereby showing that joint distillation of knowledge to a student set is beneficial
for both smaller and larger students. We analyze the effect of introducing student models one by one in the
presence of C-NET in Section [£.7]

MC-Distil remains competitive even in scenarios with a small capacity difference. As illustrated
in Table [2) MC-DISTIL maintains its competitive advantage over KD, even when the student model closely
matches the size of the teachers, achieving gains of up to 3% relative to KD. These improvements can be
attributed to two key factors: (i) the reweighing of loss terms and (ii) meta-collaboration. The reweighting
strategy aligns the learning focus with the model’s capacity, emphasizing examples that are more suitable for
the student. This targeted weighting helps explain the performance improvement observed with MetaDistil
over standard KD, particularly for students like ‘ResNet-m’. However, just this reweighing is not sufficient for
students such as ‘ResNet-xxs’ and ‘Resnet-s’ in the case of larger teachers. This is where MC-DISTIL’s ability
to leverage C-NET as a communication channel among student models is useful in enhancing knowledge
transfer from the teacher model. While the benefits of information flow from intermediate models to smaller
ones, as demonstrated in previous studies (Son et al., [2021; [Mirzadeh et al.| 2020)), are well-established for
improving final performance, the reverse scenario remains under-explored. The gains reported in Tables
and [2] indicate that larger models can also benefit from information exchange with smaller models, akin to
standard supervised settings (Mindermann et al., |2022]).

MC-Distil outperforms bidirectional learning methods in KD. We compare against two KD methods
viz. SHAKE’s (Li & Jinl |2022)) and DML (Zhang et al., |2018)), both aim to enhance teacher outputs to
improve KD’s effectiveness. SHAKE learns a pseudo-teacher (a few additional learnable layers on the teacher’s
backbone) to adapt according to the student model. This performs relatively well for larger students but
struggles to accommodate the specific needs of smaller students in Table [I} In contrast, MC-DISTIL carefully
controls the knowledge transfer from the teacher model, proving more beneficial for smaller students. On the
other hand, DML’s forceful explicit collaboration among student cohorts results in inferior performances.
This is because aligning outputs restricts larger models from learning to their full capacity and burdens
smaller models with the task of matching the outputs of their larger counterparts, similar to traditional KD.
In Section we show that such collaboration can be added to our setup and if carefully reweighted can
lead to improved performances.

4.1.4 MC-Distil in extreme teacher student gap settings

To evaluate the resilience of MC-DISTIL under a substantial teacher—student capacity gap, we conduct
knowledge distillation on the ImageNet-1K dataset using a high-capacity ResNet101 teacher model, which
is significantly larger than the student models ResNet14, ResNet20, ResNet32, and ResNet56. Due to
computational constraints, we compare only against the most competitive baselines: DGKD, SHAKE, and
MetaDistil. The results for the same are given in Table [3]

Given ImageNet’s complexity and the large teacher-student disparity, KD (Knowledge Distillation) under-
performs even compared to standard Cross-Entropy (CE) training, aligning with prior findings from |Cho &
Hariharan| (2019). The alternative methods designed to mitigate poor transfer (such as DGKD and SHAKE)
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MS COCO Test Average Precision Values
Metric Teacher Student | CE KD | TAKD | DGKD | RMC | SHAKE | MetaDistil | Ours
mAP | RN50 | 46.10 RN18 28.04 | 31.49 | 33.91 34.06 32.18 35.13 36.51 38.20
RN34 31.10 | 37.11 - - 36.06 39.79 40.69 42.70
N1 45.4 1.12 1.4 1. 1.44 91 1. 2.
AP50 | RN50 | 60.00 RN18 545 | 5 51.45 51.73 5 50.9 51.70 52.90
RN34 51.71 | 57.41 - - 56.61 58.37 58.36 58.49
|4
APT5 | RN50 | 50.20 RN18 28.90 | 32.86 | 34.04 35.06 36.57 37.07 39.63 41.59
RN34 32.34 | 38.78 - - 42.44 41.97 44.41 46.48

Table 4: Comparison of mAP, AP50, and AP75 on MS COCO Dataset (Lin et al., 2014]) for Faster R-
CNN with ResNet50-FPN teacher distilled into ResNet18-FPN and ResNet34-FPN students using various
distillation methods. MC-DisTIL (Ours, last column) consistently improves performance across all metrics.
Bold indicates the highest accuracies.

provide some improvements over KD, they still fail to surpass CE, with the exception of MetaDistil, which
only matches CE performance. Despite these challenges, MC-DISTIL achieves a consistent 1-2% improvement
over CE, demonstrating its effectiveness even in extreme teacher-student gap scenarios.

4.2 Object Detection

For object detection, we evaluate on the MS COCO benchmark (Lin et al., |2014), using the standard
metrics—mAP, AP50, and AP75. The distillation baselines are the same as in the image classification
experiments—KD (Hinton et al.l |2015), TAKD (Mirzadeh et al., 2020)), DGKD (Son et al. 2021), RMC (Du
et al} [2023), and SHAKE (Li & Jin, 2022)—with the KD loss adapted to object detection similar to described
in (Chen et al.| (2017)). Dataset details, including splits, input dimensions, and augmentations, appear in
Appendix with training configurations in Appendix

4.2.1 Model Architecture and Training

We employ Faster R-CNN (Ren et al., |2015]) as the base detector, with a high-capacity ResNet50-FPN teacher
distilled into lower-capacity ResNet18-FPN and ResNet34-FPN students. We use the ResNet34 model as
C-Net with the classification head changed to output weighting parameters. All models are initialized from
ImageNet-pretrained weights and fine-tuned following standard detection pipelines. Appendix presents
details of these models.

4.2.2 Boosting Detection Performance with MC-Distil

Table ] reports detection performance on MS COCO. Across all metrics—mAP, AP50, and AP75—MC-DISTIL
achieves the highest performance, surpassing both traditional KD and advanced distillation baselines such as
TAKD, DGKD, and RMC. Notably, MC-D1STIL provides an absolute gain of up to 4-5 mAP points over KD,
with larger improvements on stricter thresholds like AP75, underscoring its ability to transfer fine-grained
localization knowledge effectively. While SHAKE performs well on ResNet34-FPN;, it underperforms on the
smaller ResNet18-FPN due to its pseudo-teacher bias, whereas MC-DISTIL adapts the teacher’s knowledge
to both small and mid-sized students through meta-collaboration. The consistent performance boost across
all IoU thresholds highlights that our approach better aligns detection outputs between teacher and students,
resulting in more precise bounding box predictions.

4.3 MC-Distil trains models with better generalisation
We perform knowledge distillation on the challenging iWildCam dataset (Beery et al. 2020]). The challenge

arises from variations in the capturing environment, resulting in a demanding test set (see Appendix [B.I]).
Table 5| shows the performance of various knowledge distillation methods based on multi-student setups,

10



Published in Transactions on Machine Learning Research (08/2025)

iWildCam Test Accuracies

Teacher Student CE KD | DGKD | DML | SHAKE | MetaDistil | MC-Distil

ResNet10-xxs | 75.40 | 75.92 76.17 76.12 76.72 76.85 76.96
Net10- . . . . . 2 78.82

ResNet10.1 | 89.05 ResNet10-xs | 77.30 | 77.37 77.86 77.50 78.30 78.27
ResNet10-s 79.97 | 80.42 80.30 80.51 81.79 81.94 82.80
ResNet10-m | 84.77 | 84.94 - 85.80 86.91 86.52 87.35
ResNet10-xxs | 75.40 | 75.85 76.20 76.17 76.25 76.82 76.94
ResNet10-xs | 77.30 | 77.45 77.65 77.72 78.38 78.04 78.97

ResNet10 | 91.86

ResNet10-s 79.97 | 80.49 80.58 80.61 82.19 81.73 82.75
ResNet10-m | 84.77 | 85.07 - 85.28 86.34 86.44 87.49

Table 5: Results of knowledge distillation on the challenging iWildCam Dataset (Beery et al.l 2020). We
compare MC-DISTIL against standard and advanced distillation baselines, observing substantial improvements
in test accuracy across all student models. The highest accuracies are highlighted in bold.

Tiny Imagenet-C (OOD test set) Accuracies
Student | CE | KD | MCD | DGKD | DML | SHAKE | MetaDistil | MC-Distil
Corruption level 1 Accuracies
ResNet10-xxs 11.25 11.38 10.61 10.77 09.99 11.47 11.02 12.05
ResNet10-xs 14.68 | 15.82 | 14.67 15.43 15.51 16.56 16.02 16.73
ResNet10-s 20.88 | 21.97 | 21.94 23.18 20.29 22.58 23.97 24.88
ResNet10-m 26.91 | 28.56 | 27.08 29.56 28.09 30.40 30.43 31.00
Corruption level 2 Accuracies
ResNet10-xxs 10.65 | 10.79 | 09.54 10.42 09.44 10.88 10.52 11.30
ResNet10-xs 13.75 | 14.60 | 13.72 14.60 14.56 15.42 14.78 15.52
ResNet10-s 19.28 | 20.64 | 20.46 21.26 18.74 20.74 21.93 23.04
ResNet10-m 24.76 | 25.87 | 24.36 26.97 26.20 27.94 27.39 28.67

Table 6: Comprehensive table presenting an assessment of model (trained with Tiny ImageNet) robustness by
conducting inference on the Tiny ImageNet-C Dataset (Hendrycks & Dietterichl [2019)) across different degrees
of image corruption, alongside results for all baseline models. The columns indicate the method employed for
training the model on the Tiny Imagenet Dataset, utilizing ResNet18 as the teacher model. Corruption level
2 reflects a higher severity of corruption than level 1. The highest accuracies are highlighted in bold.

including MC-DISTIL. Across both weak (ResNet10-1) and strong (ResNet10) teachers, and for a wide range of
student model capacities—from extremely small (ResNet10-xxs) to moderately sized (ResNet10-m)-MC-DISTIL
consistently achieves superior test accuracies.

The consistent performance of MC-DISTIL highlights its robustness in leveraging instance-level importance
through soft selection, enabling better generalization in complex, real-world scenarios such as iWildCam.
This reinforces the effectiveness of our method not only in standard benchmarks but also under real-world
distribution shifts and limited model capacities.

Using models trained with ResNet18 as the teacher on the Tiny ImageNet dataset (reported in Table ,
we classify Tiny ImageNet-C (Hendrycks & Dietterich, [2019). Table @] presents the accuracies obtained by
models trained with different KD methods across two levels of corruption (details in Appendix . In
Appendix we present the complete table with results obtained across all five corruption levels. Notably,
MC-DisTIL produces models that demonstrate robustness and superior generalization, even when the test
data distribution differs from the training set.
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Student | CE | KD | MCD | MWN | L2R | MetaDistil | MC-Distil
Instance CIFAR-100 Accuracies
RN10xxxs | 23.69 | 23.67 | 24.33 | 24.14 | 24.88 26.48 27.07
RN10xxs | 28.97 | 28.55 | 29.81 | 28.66 | 29.04 29.59 31.88
RN10xs | 38.04 | 38.10 | 38.88 | 37.34 | 39.39 42.57 42.18
RN10s | 48.40 | 49.22 | 49.71 | 45.84 | 48.14 52.67 53.26
RN10m | 59.42 | 60.14 | 61.62 | 55.74 | 60.90 60.64 61.61
Clothing-1M Accuracies

RN10xxxs | 43.56 | 44.58 | 45.65 | 41.72 | 45.72 46.08 46.43
RN10xxs | 51.67 | 51.28 | 52.22 | 48.74 | 51.60 52.88 52.58
RN10xs | 57.14 | 57.16 | 57.51 | 53.49 | 56.70 57.06 58.28
RN10s | 61.00 | 62.02 | 61.59 | 48.74 | 60.34 61.31 62.27
RN1Om | 64.83 | 66.55 | 64.86 | 61.21 | 63.45 63.64 64.92

Table 7: Assessment of performances of de-noising and distillation methods on instance-specific noisy datasets.
Results are reported for multiple student models distilled from a ResNet18 teacher on Instance CIFAR-100 (Xia,
et al.|, 2020) (top) and Clothing-1M (Xiao et al., [2015)) (bottom). Our method (MC-DISTIL) consistently
achieves the best performance, outperforming 4 out of 5 student models on both datasets.

4.4 KD in Instance Dependent Label-Noise

We now evaluate MC-DISTIL under a setting where instance-dependent label noise is present in the labels. We
illustrate this experiment on two datasets, namely: Instance CIFAR-100 (Xia et al., [2020)) and Clothing-1M
(Xiao et all [2015)) where the labels inherit noise due to the data generation process as against randomly
flipping the labels. The results are reported in Table[7] Since MC-DISTIL employs a reweighting scheme,
C-NET learns weights to reduce the impact of the noise. For the inputs with high noise, it is able to assign
low weight to CE loss and rely more heavily on the distillation term, thereby outperforming other methods.
Furthermore, the joint distillation (by communication via C-NET) of different-sized student models provides
additional valuable information to combat noise effectively.

4.5 Why MC-Distil uses instance and loss component specific weights

We expand on the analysis presented in

050 o= ResNet1ooxs | 09| o= ReshitiO e Figure [3| to understand how C-NET as-
0.825 1 == Restetios = ResNet10-s signs weights to individual loss compo-
vaoo 08 e . nents. Figure [da] shows how as, param-

A )

eter controlling learning from the hard
label and Figure [4b] shows how s, param-
eter controlling learning from the teacher
model (see Equation [2)) changes with in-
stance hardness for models with differ-
ent learning capacity. We define instance
hardness as the teacher—largest-student
likelihood gap because a larger likelihood
(a) a vs Instance hardness (b) B vs Instance hardness gap indicates that the student struggles to
match the teacher’s confidence, implying
higher instance difficulty. For the smaller
student models, learning majorly happens
via hard labels, whereas larger models pre-
fer learning from the teacher’s nuanced
soft labels. KD improves the label stu-

0.7754
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Figure 4: Plot between student model errors and weighting param-
eters during knowledge distillation is performed using ResNet18
as the teacher model on the CIFAR-100 Dataset (Krizhevskyl
2009)). It illustrates how MC-DISTIL adaptively adjusts the loss
component weights to guide students of varying capacities
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Figure 5: Analysis of the effect of introducing student model cohorts for different learning capacities in
meta-collaboration setting.

dent model’s performance by offering nuanced soft labels as targets. However, when the student model
cannot encode these nuanced soft labels, their introduction can worsen the student model’s performance
[& Hariharan| (2019). Therefore, choosing a favorable ground truth is also important along with focusing
on the “learnable” points. MC-DISTIL achieves this by using two sets of weighing parameters—as and (s,
and carefully tuning it according to student model capacity. For the smaller models, MC-DISTIL carefully
introduces soft teacher labels of only the easy points, and thus M C-DISTIL improves the smaller model’s
performance over traditional KD.

4.6 Scalability of MC-Distil with very large student cohort

As demonstrated in Section [4.1.4] MC-

Teacher Student CE | KD | MC-Distil DISTIL scales effectively to ImageNet-1K,
ResNet10-xxs | 31.85 | 33.56 35.94 a large-scale dataset with over 1.2 mil-

ResNet10-xs | 42.75 | 45.02 46.99 lion training images and 1,000 classes.

ResNet1s | 76.99 | esNetlO-xs | 52.48 ) 55.73 57.50 To further demonstrate scalability, we ex-
ResNet10-m | 64.28 | 66.42 68.45 tend this analysis to six student models

ResNet10-1 | 72.20 | 73.85 74.55 of increasing capacity on the CIFAR-100

ResNet10 75.18 | 76.73 77.20 dataset. As shown in the Table 8] MC-

DISTIL consistently outperforms both
cross-entropy (CE) training and standard
knowledge distillation (KD) across all stu-
dent sizes — from very compact models
like ResNet10-xxs to full-capacity ResNet10. For instance, the smallest model (ResNet10-xxs) improves from
31.85% (CE) to 35.94% (MC-DisTIL), while even the largest student (ResNet10) benefits, reaching 77.2%
accuracy compared to 76.73% with KD. This consistent improvement highlights M C-DISTIL’s robustness
across a wide range of model capacities.

Table 8: Performance of MC-DISTIL as the number of student
cohorts increases on CIFAR-100 Dataset (Krizhevsky, 2009).

4.7 Ablation: Changing size of student cohort

To investigate the impact of introducing additional students in the presence of C-NET, we conducted an
experiment in which we incrementally introduced student models, one at a time. We present the results of
these experiments in Figure 5] This experiment was conducted in two distinct settings: one in which each
subsequent addition involved a student with a larger learning capacity. This is presented in Figure [Bh and [Bp.
The other setting is in which each additional introduced student is of a smaller learning capacity as shown in
Figure [5k and [fd. In both settings, we perform knowledge distillation with two teachers viz., ResNet10 and
ResNet18. We note that across different teachers, introducing additional students improves the performances
of all the students participating in the training process. This is much more pronounced in the setting where
larger students are added.
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C-Net
Teacher Student
ResNet10-1 | ResNet1l0 | ResNetl8 | ResNet32

ResNet10-xxs 36.13 34.95 36.00 36.38
ResNet10-xs 47.40 46.88 47.19 47.69

ResNet10 | 75.18
ResNet10-s 56.93 57.48 57.70 58.24
ResNet10-m 68.65 67.95 67.91 69.11
ResNet10-xxs 36.12 34.48 35.28 36.14

Net10- 47. 46.44 46. 47.

ResNet18 | 76.99 ResNet10-xs 7.68 6 6.98 7.68
ResNet10-s 57.12 57.82 57.65 58.21
ResNet10-m 69.72 69.72 68.96 69.62
ResNet10-xxs 35.93 34.71 35.65 36.13
sNet10- 47.31 46.44 46.42 47.52
ResNet34 | 7947 ResNet10-xs 7.3 6 6 7.5
ResNet10-s 57.64 57.30 56.89 57.70
ResNet10-m 69.28 68.20 67.54 68.49
ResNet10-xxs 35.88 34.35 35.76 35.90
ResNet10-xs 47.28 45.80 46.59 47.42

ResNet10-1 | 41.25
ResNet10-s 57.51 56.61 56.49 57.74
ResNet10-m 68.86 67.94 67.49 68.54

Table 9: The table reports test accuracies for various student—teacher—C-NET combinations, analyzing the
impact of C-NET size on model performance over CIFAR-100 Dataset.

4.8 Ablation: Varying the size of C-Net

Table [J] presents an analysis of test accuracies on the CIFAR-100 dataset for different student architectures
under the influence of various sizes of the coordinater network (C-NET). We observe that, in the majority
of instances, there are negligible alterations in the test accuracy of student models when it is trained with
coordinator networks (C-NET) of varying sizes. The lack of significant changes suggests that the choice of
C-NET size has minimal impact on the student model’s ability to capture and generalize from the teacher’s
knowledge. This stability across different C-NET sizes indicates robustness in the knowledge distillation
process, emphasizing that the coordination mechanism implemented by C-NET is effective across a range of
architectural scales.

4.9 Ablation: Changing size of the validation data

We allocate 10% of the training data
Teacher Validation Set Size as a validation set, as detailed in Ap-
Model | Acc. Student 2% 5% | 10% pendix However, to demonstrate
ResNet10-xxs | 36.05 | 36.22 | 36.54 that M C-DISTIL is not heavily dependent
ResNet10-xs | 47.23 | 47.53 | 47.72 on large validation sets, we conduct ad-
ResNet10-s | 57.73 | 57.91 | 58.00 ditional experiments with reduced vali-
ResNet10-m | 68.93 | 68.95 | 69.01 dation set sizes—specifically 2% and 5%
of the training data. The corresponding
test accuracies are reported in Table
where ResNet18 is used as the teacher

ResNet18 | 76.99

Table 10: Performance of MC-DISTIL under varying validation
dataset sizes, highlighting its sensitivity and overall robustness T
to validation data availability. Knowledge Distillation is per- model for distillation on the CIFAR-100

formed using ResNet18 as the teacher model on the CIFAR-100 dgtaset. blAS S(?OWH’ MQ_DIST; L main-
Dataset (Krizhevsky, [2009). tains stable and competitive performance

across all student models even with signif-
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icantly smaller validation sets. This indicates that the method is robust and can effectively learn meaningful
instance-level weights without requiring requiring supervision from large validation corpora. The performance
gains reported in Tables [1] and [2] can therefore be achieved with minimal validation overhead, making
MC-DisTIL practical and scalable for real-world applications with limited validation data.

4.10 Incorporating online distillation techniques in MC-Distil

Consensus across students: To further encourage information sharing across students, we propose an
additional term in the loss function (Equation . This term minimizes the KL divergence between each
student’s logits and a consensus representation of logits across students (a representation we call the “Pooled
Student”). For a training instance (z,y) € D such that the true label is ¢, i.e., y[c] = 1, we first define the
PooledStudent logits for each label [:
y(PS)[l] _ Jmax (y(sl)w .. .y(Sk)[l]), ifl=c (©)
min (yV[1], -y [1]), otherwise

This is similar to MinLogit introduced in |Guo et al.| (2020)). Using the PooledStudent logits, the loss function
in Equation [2] is updated to:

Loy = 3 auH (U™ 00) + Bir KL y™) + 0 KL 07) vj e {1, k) (7)
i=1

Correspondingly, the C-NET out-

Teacher Student MC-Distil | MC-Distil-PS puts are extended to be (A,B,I') =

ResNet10-xxs 36.29 36.44 ge (). Putting it all together, MC-

ResNet 10-1 ResNet10-xs 47.14 47.65 DISTIL minimizes the total loss over
ResNet10-s 57.37 57.55 all students, i.e., L, = Ej L. We

ResNet10-m 68.47 68.51 investigate the impact of incorporat-

ResNet10-xxs 36.57 36.78 ing a loss component derived from

ResNet10-xs 4755 48.03 the pooled student, as introduced in

ResNet10 ResNet10-s 5759 58.20 Equation [6] in Table The test
ResNet10-m 69:03 69:50 results labeled MC-DIisTIL-PS corre-

spond to the model trained with the

Table 11: We present the analysis of the effect of adding a loss compo- Pooled student-based loss compo-

nent based on the pooled student to MC-DisTiL. Here MC-DisTir-PS hent. It is noteworthy that integrat-

represents the test result obtained with model trained with pooled %ng this new logit proves beneﬁc.ial
student-based loss component. in enhancing the performance gains
achieved through meta-collaborative

learning when applied in a controlled manner, as suggested in Equation [6] This approach doesn’t enforce ex-
plicit collaboration among the students; rather, it serves as an additional source of knowledge. Some students,
particularly those finding learning directly from the teacher challenging, may leverage this supplementary
knowledge, contributing to improved performance.

4.11 Computational Cost Analysis of MC-Distil

Compared to baselines such as TAKD (Mirzadeh et al.l 2020), DGKD (Son et al.; [2021)), and DML (Zhang
et al.l |2018)—which require multiple student models during training—MC-DISTIL introduces an additional
C-NET. For a student pool consisting of ResNet10-xxs, ResNet10-xs, ResNet10-s, and ResNet10-m, with
ResNet34 as the teacher model and ResNet10-1 as the C-NET, the additional overhead is only 5% in terms
of total FLOPs. Furthermore, as demonstrated in Section the performance of MC-Distil is not highly
sensitive to the size of the C-NET, allowing for further optimization of this component. Importantly, both
the C-NET and the student cohort are utilized only during training. At inference time, MC-DISTIL requires
no ensemble or multi-student framework and thus incurs no additional cost over traditional KD.
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Method GFLOPs / Batch | TFLOPs / Epoch | Time / Epoch (s)
TAKD 01.49 00.58 20.06
DGKD 04.77 01.86 24.63
RMC 04.74 01.85 12.49
SHAKE 18.63 07.26 14.39
MetaDistil 10.29 04.01 09.10
MC-Distil 02.47 00.97 11.90

Table 12: Computational cost, reported as GFLOPs per batch and TFLOPs per epoch, along with training
time (in seconds) per epoch for training the full student cohort.

Table [12] presents a summary of the computational cost in terms of GFLOPs per batch and TFLOPs per
epoch, as well as the time required to train all student models for one epoch. These measurements provide a
fair comparison of the total training overhead associated with each approach. Details of the profiling setup
and assumptions are provided in Appendix [B-6]

As shown in the table, methods such as TAKD and DGKD require the sequential training of multiple
models. This leads to an inherent bottleneck in wall-clock time, since the overall duration is the sum of each
intermediate stage. In contrast, MC-Distil trains all students simultaneously, avoiding this cumulative delay.

Although SHAKE and MetaDistil achieve per-epoch training times comparable to our method, they incur a
larger total computational cost because they require a separate auxiliary model for each student. For instance,
SHAKE uses an individual proxy teacher per student, while MetaDistil trains a separate meta-network for
re-weighting the loss. When extended to train multiple students, the overhead of these approaches scales
linearly with the number of students, making them significantly more expensive in aggregate compared to
MC-Distil, which jointly optimizes the student cohort with a shared C-NET.

While RMC is computationally lighter than SHAKE and MetaDistil, it is outperformed by MC-Distil in
terms of final model accuracy. Table [I] provides a detailed comparison across CIFAR-100 and Tiny ImageNet
datasets, showing consistent gains in accuracy across all student sizes. This illustrates that MC-Distil

achieves a more favorable tradeoff between efficiency and effectiveness. Further details about the calculation
methodology of the FLOPS are mentioned in Appendix [B:6]

5 Conclusion

We introduced MC-DISTIL, a novel knowledge distillation framework grounded in meta-collaboration, or
learning-to-collaborate. Unlike conventional distillation techniques that treat each student model indepen-
dently or enforce rigid alignment with the teacher, M C-DiISTIL facilitates joint learning among a cohort of
students via a dedicated coordinator network, C-NET. This network dynamically modulates the flow of
gradient signals during training, enabling each student to learn not only from the teacher but also from the
training behavior and representations of its peers. As a result, each student model evolves in a collaborative
yet personalized fashion, free from hard constraints to mimic either the teacher or other students.

This flexible coordination fosters the emergence of diverse, high-performing student models that are well-suited
to a range of deployment needs with varying compute and memory budgets. MC-DISTIL enables the training
of a full student pool in a single pass, reducing overhead without sacrificing quality. The learned diversity
also contributes to robustness, allowing practitioners to select from multiple viable models depending on
specific task requirements or real-world constraints.

Our extensive evaluations across CIFAR-100, Tiny ImageNet, and MS-COCO benchmarks demonstrate that
MC-DISTIL consistently surpasses both classical and advanced distillation baselines, including KD, TAKD,
DGKD, SHAKE, and RMC. Notably, MC-DISTIL maintains its edge in the presence of data noise and under
domain shifts, highlighting its robustness and generalization capabilities. By aligning students with both
teacher knowledge and peer insights, M C-DISTIL paves the way for scalable, adaptable, and more resilient
distillation strategies suitable for practical deployment.
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Appendix
A Convergence

In this section, we lay out the complete proof of theorems. Our proof technique is inspired partly by the
prior literature (Shu et al. [2019).

Lemma 1 Suppose the meta loss function is Lipschitz smooth with constant L, and C-NET(-) is differential
with a §-bounded gradient and twice differential with its Hessian bounded by B, and the loss function L have
p-bounded gradients with respect to training/metadata. Then the gradient of ¢ with respect to meta loss is
Lipschitz continuous.

Proof From equation Equation

kK m m
Loxm = SOS HE S o) = - SN Hfo, (). o) (®)

j=11=1 j=11=1

The gradient of ¢ with respect to meta loss can be written as:
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Then again taking gradients on both sides w.r.t o,
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Similarly,

HV¢G{§L , wgiH < LR (1 + 1) (13)

And for the second term on the right-hand side in Equation [L0] we have,
|GH vgggv¢|| < B %62 (14)
Similarly,
IGH" * Vg5l < B+ o° (15)

Let n1 = max{ni,--- ,nf}. Thus combining Equations and
IVELeNen || < 2%mp?(LO*(1 + 7%) + B) (16)

Define Ly = 2 % 01 p?(Ld%(1 + 72) + B), based on Lagrange mean value theorem, we have:
IVLoNer(01) = VLN (¢2)[| < Ly [[¢1 — d2ll, Vo1, ¢2 (17)

Theorem 1 Suppose the loss function € is Lipschitz smooth with constant L, and C-NET(-) is differential
with a 6-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
L have p-bounded gradients concerning training/metadata. Let the learning rates nit,---  nkt satisfies
n{t =min{l, £}Vj € {1,--- ,k}, for some a >0, such that & < 1, and 5,1 <t < N is a monotone descent

sequence, n§ = min{{, —5=} for some ¢ > 0, such that # >Loand > 2 nh <00, o (n5)? < oo. Then

MC-DISTIL can achieve E[|V Lo ner(08(09))]|3] < € in O(1/€*) steps. More specifically,

i B[ Vo Lenen(®' ()] < O(—=), (13)

C
VT
where C is some constant independent of the convergence process, o is the variance of drawing uniformly
mini-batch samples at random.

Proof
From Equation [f]
t m
0 = ¢! = BN VLo (@l y 071) = ¢ = 15V Lo (01 (6)) (19)
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This can be written as,

¢t+1 = Qﬁt — ﬁ§v¢£C-NET(@t+1(¢t))| (20)

en
Since the mini-batch Z; is drawn uniformly from the entire data set, we can rewrite the update equation as:

P = ¢t — [V Loner (0771 (¢h)) + W] (21)

where £(t) = V¢EC_NET(@t+1(¢t))|Et — Vg Lo (011 (¢1)). Note that ¢®) are i.i.d random variables with

finite variance since Z; are drawn 4.i.d with a finite number of samples. Furthermore, E[¢(!)] = 0, since
samples are drawn uniformly at random. Observe that

EC—NET(®t+2(¢t+1)) - EC—NET(@t+1<¢t)> = EC—NET(®t+2(¢t+1)) - EC—NET(@t+1(¢t+1))
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+ [ACC-NET(@tJrl(QbH_l)) - ‘CC—NET(6t+1(¢t)):| (22)

By Lipschitz smoothness of meta loss function, we have
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According to the update rule, we have:
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This follows from Equation [} Now, under the assumptions:
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By Lipschitz continuity of VL ngr(©'71(¢)) according to Lemma |1} we can obtain the following:
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Rearranging the terms, we obtain

2
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Summing up the above inequalities and rearranging the terms, we obtain
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The third inequlity holds for Y1, (27 — L(n4)?) < S_1_, 15 Therefore, we can conclude that our algorithm
| L) in T steps, and this finishes our proof of Theorem

o
|

Lemma 2 (Lemma A.5 in (Mairal, |2013)) Let (an)n<1, (bn)n<1 be two non-negative real sequences such
that the series Z;’il an diverges, the series Efil anby, converges, and there exists K > 0 such that
|bpt1 — bn| < Kay,. Then the sequences (by)n<1 converges to 0.

Theorem 2 Suppose the loss function L is Lipschitz smooth with constant L, and C-NET(-) is differential
with a 0-bounded gradient and twice differential with its Hessian bounded by B, and the loss function L
have p-bounded gradients with respect to training/meta data. Let the learning rates nit,---  nft satisfies
ni" = min{l, £}Vj € {1, ,k}, for some a >0, such that % < 1, and 05,1 <t < N is a monotone descent

sequence, n5 = min{+, ﬁ} for some ¢ > 0, such that @ >Land Y o nh <00, o (nh)? < oo.Then
lim E[IVLs, (64, 6)2) = 0. ()

Proof

From Equation [4] we have,
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Since the mini-batch ¥; is drawn uniformly at random, we can rewrite the update equation as:
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where ¢(Y) = Vg, (05, 6")|w, — Ls, (0%, ¢"). Note that ¢ ® is i.i.d. random variable with finite variance, since

W, are drawn i.i.d. with a finite number of samples. Furthermore, E[w(t)] = 0, since samples are drawn
uniformly at random, and E[||l¢®||3] < o2
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The objective function Lg, (03»7 ¢') can be easily checked to be Lipschitz-smooth with constant L, and have
p-bounded gradients with respect to training data. Observe that,

Ls; (65, 0") — Ls; (65, ¢") = {Cs]- @570 — Ls, (9§+1,¢>t)} + {Esj @57, ¢") — Ls, (9§,¢t)} (36)

For the first term,
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For the second term from Equation [36]
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Combining Equations [37] and [38 we can rewrite Equation [36] as,
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Taking expectation on both sides and since E[¢()] = 0, E[¢)(!)] = 0, we have
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Summing up the above inequalities over ¢t = 1, ..., 00 in both sides, we obtain,
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This implies that 252, 7/ E[[|VLs, (0%, 03] < o0

By Lemma [2| to substantiate lim; o E[[|VLsg, (6%, ¢")[13] = 0 since -2, nt = oo, therefore we only need to
show,

[E[|VLs, (65, ¢ I3 — ElIVLs, (65, ¢")II3]]] < Cnf (45)

for some constant C. Based on the inequality:
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we then have:
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According to the above inequality, we can conclude that our algorithm can achieve

Jim E[|VLs, (0, 6")[3] = (48)

The proof is completed.

B Training Details

B.1 Dataset Details

We conduct experiments using the following real-world datasets to showcase the effectiveness of our approach,

CIFAR-100 (Krizhevsky, [2009). The dataset consists of a total of 60K examples, distributed across 100
distinct classes. Fach example in this dataset comprises images with a resolution of 32 x 32 x 3. Specifically,
the training set encompasses 50,000 examples, while the remaining 10K serve as the testing set. In our
experimental setup, approximately 5K examples are allocated for use as a validation set for our C-NET. For
the other baseline models, these validation examples are utilized for hyper-parameter tuning.
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ImageNet-1K (Russakovsky et al., 2015). The dataset comprises over 1.2 million training images and
50,000 validation images, spanning 1,000 object categories. Each image is high-resolution and varies in size,
but is typically resized to 224 x 224 x 3 during preprocessing. In our experiments, we follow the standard
ImageNet-1K split. A subset of 50K images from the training set is held out as a validation set for tuning
the parameters of the coordinator network (C-NET). For the remaining baselines, this same subset is used
exclusively for hyperparameter tuning.

Tiny ImageNet (Le & Yang, [2015). The dataset is derived from the extensive ImageNet-1K dataset
(Russakovsky et al.; [2015). This dataset encompasses a total of 100K images, which have been downsampled
to a 64 x 64 resolution, representing a subset of 200 classes mirroring those in the ImageNet-1K dataset,
with each class containing precisely 500 images. As part of our experimental protocol, we have set aside an
independent validation set comprising 10K examples, which is utilized for both our proposed method and the
baseline models.

Clothing-1M (Xiao et al., |2015). The dataset consists of 10,00,000 noisy label training examples spread
across 14 class labels of clothing items taken from various online shopping websites. Each example consists
of an image with resolution 224 x 224 x 3. The validation and test set consists of 14,313 and 10,526
examples respectively. The dataset also contains 47,560 clean examples, but we do not use that portion for
our experiments. It is a dataset with noisy labels, since the data is collected from several online shopping
websites and include many mis-labelled samples.

Instance CIFAR-100 (Xia et al., 2020) The dataset contains manually corrupted version (with an error
rate 7) of the CIFAR-100 (Krizhevsky, 2009) dataset. This is done by first constructing a transition matrix
T (x), where 7;;(x) is the probability that the corrupted label is j, given the true label is ¢; while keeping the
overall error rate as 7. Then, the labels are flipped according to the defined transition probabilties. In our
experiments, the training uses 50K examples with noisy labels, corrupted by the above method, while the
remaining 10K examples, which serve as testing set have no label noise. Approximately 5K noisy examples
are allocated for use as a validation set for our C-NET. The overall label flip rate 7, used in our experiments
was 0.2.

iWildCam-2020 (Beery et al.l [2020) The dataset is set of collection of images collected using the heat
trap and motion activated cameras for the better understanding of wildlife and biodiversity. There is so
wide diversity in lighting, camera angle, backdrop, vegetation, color, and relative animal frequencies between
different camera traps, and also the number of animals of a particular species varies a lot, hence the data
about different spices also vary similarly. In our experimentation we trained the models using approx 100k
training, 12k validation and 12k test images across 216 classes.

Tiny ImageNet-C (Hendrycks & Dietterich} |[2019)). The dataset is a downsampled version of the ImageNet-C
dataset, which consists of 15 diverse corruption types applied to the ImageNet-1K (Russakovsky et al.| |2015)
validation dataset. These corruptions have been drawn from 4 main categories - noise, blur, weather, and
digital. Each corruption has 5 severity levels, 1 being the least severe and 5 being the most severe. In our
experiments, the models trained on Tiny ImageNet (Le & Yang, [2015) dataset, with train-validation split of
90K and 10K examples respectively, are tested on Tiny ImageNet-C for testing robustness gains.

MS COCO (Lin et al., |2014) The dataset contains over 330K images, with more than 200K labeled and
80K annotated with object segmentation masks, spanning 80 object categories. Each image typically includes
multiple objects in complex scenes with rich contextual information. In our experimental setup, we use the
standard training-validation split, selecting a subset of 5K images from the training set as a validation set for
tuning C-NET. For all other baselines, this validation set is used solely for hyperparameter optimization.

For all the image classification datasets, we use the data augmentation methods, using the torchvision’s
transforms module. We use RandomCrop, RandomResizedCrop, RandomSizedCrop, RandomHorizontalFlip,
Normalize, and ColorJitter for our purpose. Augmentation methods were applied on both datasets, over all
experiments, baselines, overall models.
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. ) Basic block CIFAR-100 Tiny ImageNet
Architecture Filters
Repeats MACs | Params | MACs | Params
ResNet10-xxs [8, 8, 16, 16] 1,1,1,1 2M 13 K 8 M 15 K
ResNet10-xs [8, 16, 16, 32] 1,1, 1,1 3M 28 K 12M 31 K
ResNet10-s [8, 16, 32, 64] 1 ;1 4 M 84 K 16 M 90 K

[

[

[
ResNet10-m [16, 32, 64, 128] [
ResNet10-1 [32, 64, 128, 256] [
[

[

[

—_

16 M 320 K 64 M 333 K
64 M 1.25 M 256 M 1.28 M
253 M | 492M | 1013 M 5M
555 M | 11.22 M | 2221 M | 11.27 M
1159 M | 21.32 M | 4637 M | 21.38 M

ResNet10 [64, 128, 256, 512]
ResNet18 [64, 128, 256, 512]
ResNet34 [64, 128, 256, 512]
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Table 13: Comparision of newly introduced smaller ResNet with the standard ResNet models

B.2 Model Details

Image Classification Models In Section we introduce several smaller ResNet models, specifically
ResNet10-xxxs, ResNet10-xxs, ResNet10-xs, ResNet10-s, ResNet10-m, and ResNet10-1. These models are
adopted from Kag et al.| (2023, and in Table we compare their architectural details with well-established
ResNet models like ResNet10, ResNet18, and ResNet34. Similar to the standard ResNet models, these
newer, more compact versions also employ the traditional ‘BasicBlock’ as their fundamental building block.
The architectural structure consists of a convolutional block, four stages of residual blocks, an adaptive
average pooling layer, a convolutional block, and a classifier layer. The sole variation among the various
capacity variants within this experimental setup is the number of filters in each stage and the residual block.
Additionally, Table [13| provides information about the number of parameters and multiply-addition (MAC)
operations for each model for the datasets CIFAR-100 and Tiny-ImageNet.

Object Detection Models For the object detection experiments in Section we employ Faster R-
CNN (Ren et al., |2015)) as the base detector, with a high-capacity ResNet50-FPN as the teacher, and
ResNet18-FPN and ResNet34-FPN as the student models. These are equipped with Feature Pyramid
Networks (FPNs) (Lin et al., 2017) that enhance multi-scale feature learning. The C-Net used in this setting
is a ResNet34 model, modified to output weighting parameters in place of classification logits. All models
are initialized from ImageNet-pretrained weights and are fine-tuned on the MS COCO dataset following
standard detection pipelines. Unlike the plain ResNet architectures used for image classification, Faster
R-CNN incorporates a Region Proposal Network (RPN) and a detection head on top of a ResNet-FPN
backbone. The ResNet-FPN backbone outputs multi-scale feature maps, enabling detection of objects at
various sizes. These features are processed by the RPN to generate region proposals, which are then classified
and refined by the ROI head.

B.3 Hyper-Parameters

For all the KD baselines listed in Section [1.1.2]and MC-DISTIL, we use temperature 7 = 2, employ the SGD
optimizer to train the student models and ADAM optimizer (Kingma & Ba, [2014) to train C-NET. We use
a batch size of 400 for all datasets. We train the student models for 300 epochs on CIFAR-100, Instance
CIFAR-100, Clothing-1M, Tiny ImageNet and Tiny ImageNet-C datasets; and for 100 epochs on iWildCam
dataset, ImageNet and MS COCO while updating C-NET every 20 epoch (i.e., L = 20). We use cosine
annealing (Loshchilov & Hutter) 2017)) as the learning rate schedule for training the student models. We
warm start each student model by first training it using the cross-entropy loss without using the teacher
model for all KD baselines and MC-DISTIL. For all datasets, we perform a grid search on 0.1,0.05 for the
learning rate, on le — 5,5e — 5, 1le — 4 for the weight decay, and 0.65,0.75,0.85,0.95 for the momentum. For
the C-NET training we use a learning rate of le — 3 and set weight decay to le — 4.
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B.4 Baselines

We compare MC-DIsTIL with the following SOTA Knowledge distillation baselines:

Teacher Assistant Knowledge Distillation (TAKD) (Mirzadeh et al.| [2020) This approach introduces
a multi-step distillation process that leverages intermediate-level teachers to facilitate the efficient transfer
of knowledge from a large pre-trained teacher network to a more compact student model. To realize this,
we employ a teacher network identical to our own and enlist fellow student models with higher learning
capacities to serve as intermediate models in this knowledge distillation process.

Densely Guided Knowledge Distillation (DGKD) (Son et al., 2021) Much like TAKD, this approach
employs several intermediate models; however, it distinguishes itself by training the final student model
through a single distillation step. In addition to the teacher KL divergence loss, the training objective for the
final student model incorporates the KL divergence loss obtained from the pre-trained intermediate models.

Robust Model Compression (RMC) (Du et al.l [2023]). It uses multiple students with various levels of
sparsity and interprets the variance in their predictions for each instance as a measure of task complexity.
Subsequently, it refines the teacher predictions based on this complexity metric, resulting in a more robust
knowledge distillation process. In our experiments, we employ students with diverse learning capacities as a
substitute for models with different levels of sparsity, achieving similar benefits.

Deep Mutual Information (DML) (Zhang et al., |2018]) It is a collaborative learning paradigm that
leverages the interactions among multiple neural networks to enhance their collective performance. In DML, a
group of neural networks, often referred to as student models, collaboratively learns by exchanging information
with each other during training. This is achieved by using the predictions or feature representations of one
model to guide the learning process of others. The collaborative nature of DML allows the models to exploit
the diverse knowledge learned by their peers, fostering a mutual learning dynamic.

SHAdow KnowlEdge transfer framework (SHAKE) (Li & Jin| [2022) Tt is a novel knowledge distillation
framework designed to enhance the transfer of knowledge from a teacher model to a student model in deep
learning. Introduced to address the challenges associated with large capacity gaps between teacher and
student models, SHAKE employs a pseudo-teacher concept. This pseudo-teacher consists of a set of additional
learnable layers attached to the backbone of the teacher model. What sets SHAKE apart is its ability to
dynamically adapt to the student model during training.

In experiments where we train with noisy datasets, we compare against additional two bilevel optimisation-
based reweighting schemes:

Learning to Reweight (L2R) (Ren et al| [2018) It is a machine learning paradigm that focuses on training
models to dynamically assign weights to different instances in a dataset during the learning process. The
fundamental idea behind L2R is to adaptively adjust the significance of individual data points, emphasizing
more informative instances and de-emphasizing noisy or less relevant ones. This approach is particularly
valuable in scenarios where the training data may be imbalanced or subject to noise, helping models prioritize
the most crucial samples for better generalization.

Meta-Weight-Net (MWN) (Shu et al} [2019) Like L2R, MWN also learns weights assigned to individual
samples based on their specific characteristics or importance. However, this explicit mapping of sample
weights is learned through a meta-learning framework. Meta-Weight-Net aims to address challenges related
to imbalanced or noisy datasets by explicitly learning a mapping function that adapts sample weights during
the training process. By doing so, the model can assign higher importance to informative or challenging
samples and reduce the impact of less relevant ones.

B.5 Compute Resources

We our experiments on a mixture of GPUS wviz. A100s and RTX 2080 as our experiments don’t need any
sophisticated modern GPUs. MC-DISTIL memory requirements are slightly higher that traditional KD as we
train student cohorts simultaneously. The additional memory requirements depend the number of students
used and size of cohorts.
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KD 1.53e-05
TAKD 1.53e-05 | 0.0005
DGKD 1.53e-05 | 1.53e-05 | 0.0006
RMC 4.78e-05 0.99 0.9992 1
DML 1.53e-05 0.978 1 1 0.1156
SHAKE 4.78e-05 0.115 0.64714 | 0.9855 0.0222 0.0416
METADISTIL | 1.53e-05 | 1.53e-05 | 0.0005 0.5896 | 4.58e-05 | 1.53e-05 0.001
MC-DisTiL | 1.53e-05 | 1.53e-05 | 1.53e-05 | 7.63e-05 | 1.53e-05 | 1.53e-05 | 0.00015 1.53e-05 ‘
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Table 14: Pairwise significance p-values using Wilcoxon signed rank test

B.6 Timing Calculation Methodology

The values presented in Table [12] are based on profiling a full epoch of training and are intended to offer a
fair estimate of the computational budget required to train an entire cohort of student models. The following
principles were applied:

A standard heuristic was used to estimate computational cost: a model’s forward pass contributes 1x its
theoretical FLOPs, while a full training step—comprising both forward and backward passes—is estimated
to consume 3% the forward FLOPs, following [Zhou et al.| (2021).

The profiling was performed on the full student cohort consisting of ResNet10-xxs, ResNet10-xs, ResNet10-s,
and ResNet10-m, with ResNet34 used as the teacher. All reported FLOPs are normalized on a per-epoch
basis. Auxiliary components were configured as follows: SHAKE uses a ResNet18 proxy teacher per student;
MetaDistil uses a ResNet32 meta-network (similar to AMAL); and MC-Distil uses a ResNet32-based C-NET
(C-Net). RMC relies on the cohort itself for difficulty estimation.

For sequential distillation methods such as TAKD (Teacher — TA; — TA, ...) and DGKD (Teacher + TAs
— TA), total per-epoch time and TFLOPs are calculated as the cumulative sum across each training stage.
This approach captures the actual total training effort.

For methods that train each student independently—such as SHAKE, MetaDistil, and RMC—the total
TFLOPs are computed as the sum of each student-specific run. However, the reported time per epoch
reflects the slowest student model (ResNet10-m), representing an optimistic scenario under ideal hardware
parallelism.

In contrast, MC-Distil trains all students simultaneously in a single run, reusing shared components such as
the C-NET, thereby significantly reducing both wall-clock time and aggregate computational cost.

C Additional Experiments

We have released the code at the following URL: https://github.com/AtharvaTambat/MC-Distil

C.1 Standard deviation and statistical significance results:

In Table we show the p-values of one-tailed Wilcoxon signed-rank test \Wilcoxon| (1992)) performed on every
single possible pair of knowledge distillation strategies to determine whether there is a significant statistical
difference between the strategies in each pair, across all datasets. Our null hypothesis is that there is no
difference between the knowledge distillation strategies pair. From the results, it is evident that M C-DISTIL
significantly outperforms other baselines at p < 0.05.

Table [15] shows the standard deviation results over three training runs on CIFAR-100 and Tiny ImageNet
datasets. The results show that the MC-DISTIL has the least standard deviation compared two of the most
competitive baselines viz. DGKD and MetaDistil. We note that DGKD has large standard deviations owing
to not having a principled way of introducing student cohort models.
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CIFAR100 Test Accuracies
Teacher Student CE KD DGKD MetaDistil MC-Distil
ResNet10-xxs | 32.41 £0.517 | 35.23 £1.132 | 34.57 +0.453 | 35.47 + 0.737 | 36.23 £ 0.247
ResNet10-xs | 42.42 4+0.724 | 45.62 +0.722 | 44.89 +1.775 | 46.86 £ 0.836 | 47.74 £ 0.244
ResNet10 | 75.18
ResNet10-s 52.70 £0.384 | 55.64 +0.106 | 56.25 +0.545 | 57.25 + 0.535 | 58.42 + 0.275
ResNet10-m | 64.19+0.142 | 67.05 £ 0.191 | 67.27£0.577 | 68.75 £ 0.185 | 69.45 4+ 0.427
ResNet10-xxs | 32.41 £0.517 | 35.19 +1.415 | 34.14 +1.259 | 35.26 + 0.745 | 36.03 £ 0.442
ResNet10-xs | 42.424+0.724 | 45.49 +0.412 | 46.18 + 1.055 | 46.23 £ 0.420 | 47.24 £+ 0.459
ResNet18 | 76.99
ResNet10-s 52.70 £0.384 | 55.49 +0.315 | 56.07 = 0.578 | 57.26 +0.131 | 57.63 £ 0.176
ResNet10-m | 64.19 +0.142 | 66.42 £+ 0.095 | 66.73 £ 0.548 | 68.02 +0.490 | 68.52 + 0.237
Tiny-ImageNet Test Accuracies
ResNet10-xxs | 13.68 +0.460 | 14.40 +0.526 | 14.20 +0.475 | 14.47 +0.597 | 15.33 £+ 0.521
ResNet10-xs | 18.78 £0.231 | 20.20 +0.624 | 20.90 + 0.351 | 20.85 £ 0.692 | 22.07 £ 0.285
ResNet10 | 44.04
ResNet10-s 24.86 £ 0.362 | 27.83 £0.779 | 27.59 +0.605 | 28.07 & 0.890 | 29.62 + 0.263
ResNet10-m | 33.93 £0.493 | 35.86 +£0.332 | 35.82 +0.398 | 37.64 + 1.452 | 38.46 + 0.068
ResNet10-xxs | 13.68 £ 0.460 | 14.52 +0.368 | 14.42 +0.481 | 14.68 +0.595 | 15.26 £+ 0.105
ResNet10-xs | 18.78 £0.231 | 20.28 +0.500 | 20.58 + 0.931 | 20.95 + 1.038 | 21.36 £ 0.360
ResNet18 | 47.94
ResNet10-s 24.96 £ 0.362 | 27.26 =0.874 | 27.82 +0.378 | 28.45 + 0.983 | 30.36 £ 0.006
ResNet10-m | 33.93 £0.493 | 35.94+0.724 | 35.96 £ 0.612 | 37.82 +1.562 | 39.11 + 0.295

Table 15: Standard deviation results for CIFAR-100 and Tiny ImageNet datasets for 3 runs. We compare
MC-DISTIL with two most competitive baselines.

C.2 Robustness of MC-Distil trained models

For the models trained with Resnet18 serving as the teacher model on the Tiny ImageNet dataset in Table
we present their performance on Tiny ImageNet-C (Hendrycks & Dietterich| 2019)) (see Appendix
in Table incorporating all baseline models and diverse corruption levels. We assess the resilience of
models whose perfromance was reported in Table [I| when confronted with data distribution mismatches.
Notably, across various corruption levels and teacher-student combinations, MC-DISTIL demonstrates robust
performance, even though it was not explicitly tailored for handling distributional shifts between training and
test datasets. Specifically, at lower corruption levels, models trained with MC-DISTIL exhibit a performance
advantage of 1-2% compared to other baselines. Even at higher corruption levels, MC-DISTIL maintains
competitiveness with the baselines.

D Limitations & Social Impact

We have presented a novel meta-collaborative distillation—where students of different capacities are codistilled
from a single teacher. While the initial results wide range of student & teacher architectures and model
sizes are encouraging, more work is needed to understand under what conditions such adaptive mixing
optimizations for metacollaborative distillation can provide gains. Our experiments are proof-of-concept
on widely used benchmarking datasets; future work will explore whether similar gains can be realized in
real-world applications as well. Our proposal involves a bi-level optimization objective (for which we provide
a cheap approximate meta-learning preocedure)—the tradeoff of increased training time vs increased accuracy
may depend on the specific application context.

Our work is a fairly general-purpose optimization procedure for improving knowledge transfer from a teacher
model to a very small student model and therefore tremendously improving the inference time. This could
yield incremental improvements to a broad range of ML applications, and as a result benefit those applications.
We do not anticipate any inherent risk of negative social impact from our work, over and above the risk
inherent in the ML application itself.
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Tiny ImageNet-C Test Accuracies
Student | CE | KD | MCD | DGKD | DML | SKAKE | MetaDistil | MC-Distil
Corruption level 1 Accuracies
RN10-xxs | 11.25 | 11.38 | 10.61 10.77 09.99 11.47 11.02 12.05
RN10-xs | 14.68 | 15.82 | 14.67 15.43 15.51 16.56 16.02 16.73
RN10-s 20.88 | 21.97 | 21.94 23.18 20.29 22.58 23.97 24.88
RN10-m | 26.91 | 28.56 | 27.08 29.56 28.09 30.40 30.43 31.00
Corruption level 2 Accuracies
RN10-xxs | 10.65 | 10.79 | 09.54 10.42 09.44 10.88 10.52 11.30
RN10-xs | 13.75 | 14.60 | 13.72 14.60 14.56 15.42 14.78 15.52
RN10-s 19.28 | 20.64 | 20.46 21.26 18.74 20.74 21.93 23.04
RN10-m | 24.76 | 25.87 | 24.36 26.97 26.20 27.94 27.39 28.67
Corruption level 3 Accuracies
RN10-xxs | 08.66 | 08.78 | 07.54 08.93 08.46 09.29 08.58 09.42
RN10-xs | 10.94 | 11.54 | 11.08 11.82 11.96 12.19 11.78 12.58
RN10-s 15.68 | 16.85 | 16.71 16.95 14.76 16.95 17.65 18.79
RN10-m 19.70 | 21.07 | 18.79 22.20 21.45 22.23 20.83 22.63
Corruption level 4 Accuracies
RN10-xxs | 04.92 | 04.66 | 04.38 05.52 05.05 05.57 04.60 05.87
RN10-xs | 06.77 | 06.96 | 05.88 07.54 06.89 06.57 07.35 07.39
RN10-s 09.41 | 09.92 10.21 09.42 08.35 10.29 09.77 10.80
RN10-m 11.12 | 12.28 | 10.74 12.74 12.87 12.44 11.54 12.03
Corruption level 5 Accuracies
RN10-xxs | 03.58 | 03.15 | 03.44 03.98 03.66 04.29 03.33 04.40
RN10-xs | 05.14 | 05.18 | 04.34 06.23 05.15 05.05 05.47 05.53
RN10-s 06.94 | 07.24 | 07.33 07.07 06.19 07.93 07.15 07.38
RN10-m | 08.16 | 09.09 | 07.86 09.73 09.46 09.48 08.44 08.89

Table 16: Comprehensive table presenting an assessment of model (trained with Tiny ImageNet in Table
robustness by conducting inference on the Tiny ImageNet-C dataset (Hendrycks & Dietterichl, |2019) across
increasing degrees of image corruption (from level 1 to 5), alongside results for all baseline models. The
columns indicate the method employed for training the model on the Tiny ImageNet dataset, utilizing
ResNet18 as the teacher model. The highest accuracies are highlighted in bold.
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