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Abstract

Knowledge distillation (KD), which involves training a smaller student model to approximate
the predictions of a larger teacher model is useful in striking a balance between model
accuracy and computational constraints. However, KD has been found to be ineffective when
the teacher and student models have a significant capacity gap. In this work, we address this
issue via "meta-collaborative distillation" (MC-Distil), where students of varying capacities
collaborate during distillation. Using a "coordinator" network (C-Net), MC-Distil enables
mutual learning among students as a meta-learning task. Our insight is that C-Net learns
from each student’s performance and training instance characteristics, allowing students
of different capacities to improve together. Our method enhances student accuracy for all
students, surpassing state-of-the-art baselines, including multi-step distillation, consensus
enforcement, and teacher re-training. We achieve average gains of 2.5% on CIFAR100 and
2% on TinyImageNet datasets, consistently across diverse student sizes, teacher sizes, and
architectures. Notably, larger students benefiting through meta-collaboration with smaller
students is a novel idea. MC-Distil excels in training superior student models under
real-world conditions such as label noise and domain adaptation.

1 Introduction

Although modern deep learning methods can effectively learn from large datasets with high-dimensional
features, their associated compute and memory requirements often exceed the constraints faced by practical
applications. To address this, Knowledge distillation (KD (Hinton et al., 2015)) trains a smaller student
model to approximate the higher quality predictions of a larger teacher model. These distilled student models
often outperform supervised models of similar capacity; however, such gains are limited by the choice of
teacher and student. In particular, larger teacher-student capacity gaps are observed to produce poorer
quality student models (Cho & Hariharan, 2019).

Previous work on this challenge use an altered teacher (Cho & Hariharan, 2019; Li & Jin, 2022) or introduce
additional “assistant” models of intermediate learning capacities between teacher and student model (Mirzadeh
et al., 2020; Son et al., 2021). An interesting idea in this literature is the use of multiple teachers for a given
student, providing the student with a multi-grain view of the relationship between instance input and label.
However, the use of inferior or intermediate-quality teacher models in these approaches potentially limit the
quality of information available to the student. We believe, instead, that students should have access to
high-quality teacher signals, but focus more on instances that are “learnable” given their model capacity
(see e.g., Mindermann et al. (2022) for supervised learning). To this, we add the following insight: we could
obtain a finer, multi-grain picture of instance hardness by observing the performance of students of different
capacities (as opposed to generating and utilizing multiple teachers), which could then be used for better
distillation. These observations lead us to the following problem statement: Can students of different
capacities learn from each other in a collaborative distillation framework, thereby understanding how to
prioritize relevant “learnable” information and improving distillation outcomes?

Approach: We build MC-Distil – meta-collaborative distillation – where students of different capacities are
codistilled from a single teacher. We propose to use an auxiliary meta-network for aggregating information
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across students, and using it to modulate each student’s learning on a per-instance basis. We term this
meta-learning approach towards joint multi-student distillation as meta-collaboration. As shown in Figure 1,
the auxiliary network C-Net modulates the training loss of each student through an instance-dependent
reweighting of the teacher and cross-entropy losses. C-Net removes the need for intermediate teachers,
and students have access to high-quality teacher signals that they can emulate on a per-instance basis. We
set C-Net’s objective as the pooled student accuracy on a separate, held-out dataset, setting up a nested
optimization that we approximate using an efficient alternating update algorithm (see section 3 for details).
A key advantage of MC-Distil is that it produces a spectrum of student models with varying capacities all
with improved generalization capabilities, which can be deployed contextually at test time to suit specific
application requirements.

x

C-NET

training loss

Figure 1: MC-Distil Training Workflow. Losses are weighted
according to the parameters obtained from C-Net which are then
used to train the individual students.

Pooling information across students:
Figure 2 shows accuracy gains for 2 stu-
dent models using MC-Distil compared
to vanilla KD, as a function of total num-
ber of students distilled together. As
more students are added, the C-Net
is better able to understand data in-
stances, and deliver better quality stu-
dent models. The student pool was
subsets of { ResNet10-xxs, ResNet10-
xs, ResNet10-s and ResNet10-m } He
et al. (2016); Kag et al. (2023). For
ResNet10-xxs results, models of higher
capacity are added one by one to the co-
hort, whereas for ResNet10-m, models of
lower capacity are added sequentially. Ex-
periments were conducted on CIFAR100
dataset Krizhevsky (2009), with Resnet10
and Resnet 18 as teacher (figure 2a,2b
respectively). In appendix C.1 we present
the complete result for all the students.

Modulating distillation at a (student,instance) grain: Figure 3 shows the relative weight assigned in
MC-Distil to training instances as a function of instance hardness (x-axis), and student model capacity
(different curves). C-Net implicitly learns instance hardness, and encourages weaker students to focus more
on the easier examples, while stronger students learn from a wider range of data. Experiment details are as
above; we used label likelihood gap between teacher and largest student as a measure of instance hardness
(x-axis), and total weight assigned to loss components (α+ β) as instance weight (y-axis). Since instance
hardness isn’t an explicit input to C-Net, it has learned an implicit map between input instance and difficulty
through the MC-Distil training process. We further inspect how choice of choosing loss component-wise
weights α and β (see equation 2) helps MC-Distil in improving KD in section 4.5

We present extensive evaluation of MC-Distil on a wide range of student & teacher architectures and model
sizes (section 4.3), quantifying gains against SOTA benchmarks. MC-Distil improves the performance of
each student in the ensemble, highlighting the interesting finding that smaller student models can help improve
larger students in collaborative distillation. Finally, we show that MC-Distil achieves better generalization
and robust models (section 4.7).

2 Related works

Knowledge Distillation (KD) In supervised learning, Knowledge Distillation (KD) (Hinton et al., 2015)
is a valuable method where a ‘student’ model learns by mimicking a pre-trained ‘teacher’ model, rather
than solely relying on labeled data. The success of KD depends on factors like teacher model accuracy
and student model capacity (Menon et al., 2021). Recent research (Harutyunyan et al., 2023) explores
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Figure 2: Influence of student cohort size on distillation
gains using meta-collaboration. See text for details.
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Figure 3: C-Net prioritizes training data based on
student capacity and instance hardness. See text for
details.

its efficacy in relation to supervision complexity. Using early-stopped teacher models has shown promise
in improving student training (Cho & Hariharan, 2019), though it requires iterative distillation. Another
approach (Liu et al., 2020) employs multiple teacher networks with intermediate knowledge transfer. The
strategic blending of loss components (Sivasubramanian et al., 2023) has recently improved KD, particularly
in scenarios with significant representation gaps between teacher and student models. The challenge of
suboptimal KD performance caused by significant capacity disparities between student and teacher models
was addressed by strategically choosing points to learn from the teacher model in Kag et al. (2023). Other
innovations such as ‘Teacher Assistants’ (TAs) or intermediate models have been introduced (Mirzadeh et al.,
2020), with further enhancements achieved through stochastic techniques such as Dense Gradient Knowledge
Distillation (DGKD) (Son et al., 2021), which involves the simultaneous training of intermediates with
occasional model dropout. Recently Li & Jin (2022) showed that the gap between online and offline KD could
be bridged using a shadow head on top of the backbone of the teacher model. The shadow head is trained to
perform bidirectional distillation. These works indicate knowledge transfer to the smaller models, resulting in
their improvement by the presence of the intermediate bigger models; however the generalization of the larger
models has also been shown to improve from the knowledge of smaller models (Mindermann et al., 2022) and
bidirectional learning to improve KD (Li & Jin, 2022). Therefore, inspired by these bidirectional signals, we
present an approach to train multiple student models simultaneously and communicate vital information via a
coordinator network.

Online knowledge distillation : In the absence of a strong pre-trained teacher, online knowledge distillation
often involves collaborative model efforts to acquire soft labels. (Chen et al., 2020) aggregate predictions
from peer models using an attention-based mechanism to obtain soft targets. (Wu & Gong, 2021) employ an
m-branch model treating each branch as a peer model, constructing soft distillation targets from weighted
logits of these branches and an exponentially moving-averaged m-branch model. (Guo et al., 2020) propose
using pooled student logits with varying learning capacities as soft distillation targets. Additionally, Du et al.
(2023) creates a curriculum using variance in predictions of multiple students with varying sparsity levels as
a measure of task complexity. In Zhang et al. (2018), uses KL-divergence loss between every student pair
to improve consensus among student models. The primary focus in these works lies either in constructing
logits due to the absence of a pre-trained teacher model or explicit synchronization of the student models.
In contrast, our approach centers on influencing the learning patterns of the models participating in the
collaborative process via signals from peer models.

Instance-Specific and Meta-Learning : Instance-specific learning has been greatly explored to improve
training in the presence of noise. (Saxena et al., 2019; Algan & Ulusoy, 2021; Vyas et al., 2020) propose
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to learn instance-specific temperature or smoothing parameters to account for potential label noise. In
the context of knowledge distillation, (Zhao et al., 2021) have demonstrated the advantages of learning
instance-level sequences (or curricula) for training samples. A similar instance-wise weighing scheme has been
proposed to improve distillation in semi-supervised settings (Iliopoulos et al., 2022). Recent contributions such
as that in (Ren et al., 2018; Shu et al., 2019a; Raghu et al., 2020; Jain & Shenoy, 2022) employ meta-learning
based on validation sets to acquire instance-specific weights, enhancing robustness. We introduce a novel
approach, MC-Distil, that involves the utilization of meta-learning based on validation sets to facilitate
a collaborative learning process among multiple models. To the best of our knowledge, this has not been
previously explored.

3 MC-Distil: Meta-collaborative distillation

3.1 Standard Knowledge Distillation

In supervised learning, one is concerned with training a classifier y = fθ(x) using data D =
(xi, yi) | i ∈ (1, · · · , n). Here, (xi, yi) ∈ X × Y denote pairings of inputs xi along with their correspond-
ing labels yi and θ denote the model parameters. Typically, the labels y are cardinal, and practitioners have
found that such labels are often inadequate in capturing nuances in the data. A popular mitigation is to
incorporate more nuanced ‘soft labels’, or distributions over labels, as the target for supervision instead
of cardinal labels. In particular, Knowledge distillation (KD) (Hinton et al., 2015) uses the logits from a
pre-trained model (the ‘teacher model’) as soft labels for training a classifier, in addition to the standard
cardinal labels.

Suppose a pre-trained model (teacher) generates logits denoted by y(T ) = T (x). Then a new model (student)
could be trained using a “teacher matching” objective that involves minimizing the KL-divergence between
y(T ) and the student’s logits y(S). The KD objective is as follows:

Ls =
∑
D

(
(1− λ)lce + λ

(
τ2KL

(
y(S), y(T ))))

(1)

Here, lce = H
(
y(S), y

)
is a supervised learning loss matching y(S) to the true labels y, and lkd =

τ2KL
(
y(S), y(T )) is the teacher-matching loss. Typically, H is the standard cross-entropy loss. The hyperpa-

rameters τ, λ control the softening of the KL-divergence term, and the relative contributions of the two loss
components.

3.2 MC-Distil: Multi Student Knowledge Distillation

Successful application of KD often depends on the quality of the pre-trained teacher model (see e.g., (Menon
et al., 2021)), and the representational gap between the teacher and student models. To address the capacity
gap issue, often, several Teacher Assistants (TA) or intermediate models are introduced (Mirzadeh et al.,
2020; Son et al., 2021). The success of the such multi-teacher approaches suggests that supervisory inputs
from teacher models of different sizes enrich the information available to the student. We leverage this insight
in a completely different setup where a single teacher is simultaneously distilled into multiple cooperating
student models. Our primary thesis is that the diversity in student capacities and learning behaviors can be
leveraged to tailor the distillation process more effectively for each student.

Specifically, we propose to learn adaptive, instance-wise distillation losses using a coordinator network,
denoted as gϕ (referred to as C-Net). This network modulates the contribution of each training sample
to the student models based on their individual learning dynamics and their relationship with the teacher.
Formally, we define a set of student models S = Sj | j ∈ 1, · · · , k, a single pre-trained teacher model T , and
a shared coordinator network gϕ. The overall training objective for MC-Distil is then defined as:
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outer−level︷ ︸︸ ︷
argmin

ϕ

k∑
j=1
LC-Net

(
argmin

θj

Lsj
(θj , αj , βj)︸ ︷︷ ︸

inner−level

,V
)

(2)

where ⟨α1i, . . . , αki⟩,⟨β1i, . . . , βki⟩ = gϕ(xi), αj = ⟨αj1, · · · , αjn⟩, βj = ⟨βj1, · · · , βjn⟩

and Lsj
=

∑
(xi,yi)∈D

(
αjiH(xi, yi) + βjiτ

2KL
(
y

(S)
i , y

(T )
i

))

3.2.1 Coordinator network gϕ (C-Net):

Our key innovation in equation 2 is to use an additional “coordinator network”, which we call C-Net
(Figure 1), to address two key challenges, viz., a) reducing the number of learnable parameters and b)
introducing interaction among the student models. The C-Net is a learnt function (Ai,Bi) = gϕ(xi), where
Ai = [α1i, . . . , αki],Bi = [β1i, . . . , βki] represent the loss mixing parameters for the k students on the input
xi.Therefore, the combined (A,B) for the entire dataset would result in a matrix of size n×k, which can incur
a significant memory overhead as the training dataset grows. Thus to compactly represent the loss mixing
parameters we use C-Net parameterized by ϕ ∈ Φ. Moreover, as the C-Netis a centralized mechanism, it
acts as a shared interface across students and training instances, enabling the coordinator to incorporate the
relative learning dynamics of models with different capacities. This allows C-Net to assign more informed,
adaptive weights to each student based on instance-specific difficulty and model behavior. The training
procedure for the C-Net is described in the following section.

Training the C-Net We train the gϕ (C-Net) using a separate validation set of data V =
(xv

i , y
v
i ) | i ∈ (1, · · · ,m). The objective is to learn ϕ such that the resulting student models generalize

well—i.e., they achieve low prediction error on the validation data. Specifically, we minimize the average
cross-entropy loss across all k student models on the validation set:

LC-Net = 1
km

k∑
j=1

m∑
i=1

H
(
y

v(Sj)
i , yv

i

)
= 1
km

k∑
j=1

m∑
i=1

H
(
fθj

(xv
i ), yv

i

)
(3)

Here, H(·, ·) denotes the cross-entropy loss between the predicted label from student j and the ground
truth. Crucially, LC-Net depends on ϕ only implicitly — via the student parameters θj , which themselves are
optimized using the loss mixing weights generated by gϕ(·) (see Eq. 2). In other words, our proposal defines
a bi-level optimization that encompasses both the C-Net and classifier parameters. Thus, the optimal θ
values depend on the optimal choice of ϕ and vice versa. For most modern deep learning models, solving
the inner optimization in Eq. equation 2 in closed form is intractable due to the non-convexity and scale
of the models. To address this, we adopt an iterative strategy to approximate the solution to the bilevel
optimization problem. Rather than fully optimizing the inner objective before updating the outer parameters,
we employ an alternating stochastic gradient descent (SGD) approach. This involves interleaving updates of
the student model parameters and the coordinator network. Specifically, we perform a few gradient steps
on the student parameters using the training set and the weights predicted by the coordinator, followed
by an update of the coordinator parameters based on validation loss(equation 5). This alternating scheme
provides a practical and efficient means of optimizing the overall objective. The update steps are summarized
as follows:

θt+1
j = θt

j − ηj
1
n

n∑
i=1

gα
ϕti[j] ∗ ∇θt

j
H

(
y

(Sj )
i , yi

)
+ gβ

ϕti
[j] ∗ τ2 ∗ ∇θt

j
KL

(
y

(Sj )
i , y

(T )
i

)
∀j ∈ {1, · · · , k} (4)

ϕt+1 = ϕt − η2

m

m∑
i=1

∇ϕt LC-Net(xv
i , y

v
i ,Θt+1) = ϕt − η2

km

k∑
j=1

m∑
i=1

∇θt+1
j

LC-Net(xv
i , y

v
i ,Θt+1) ∗ ∇ϕtθt+1

j (5)

Here, we denote Θt+1 = ⟨θt+11, · · · , θt+1k⟩ as the collection of updated student model parameters. The
learning rates for the student models and the C-Net are represented by η1

1 , · · · , ηk
1 and η2, respectively. We
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Algorithm 1 The MC-Distil approach: learning student S1, · · · Sk, Training data D, Validation data V,
teacher T and C-Net gϕ.
Hyperparameters: τ Temperature, η1

1 · · · ηk
1 : learning rates for k students, η2 learning rate for C-Net, L

epoch interval for C-Net update

1: Initialize student model parameters with θ0
1 · · · θ0

k and C-Net with g0
ϕ

2: for t ∈ {0, . . . , T} do
3: for j ∈ {1, . . . , k} do
4: Update θt+1

j by Equation 4.
5: end for
6: if t%L == 0 then
7: {xv, yv} ←− SampleMiniBatch(V)
8: Compute LC-Net using {xv, yv} and (θt+1

j ) as described in Equation 3.
9: Update ϕ⌊ t

L ⌋+1 by Eq. Equation 5.
10: end if
11: end for

use the notations gα
ϕti[j] = αi

j and gβ
ϕti[j] = βi

j to remind our readers that αs and βs are output from a model
(g(.)) parameterised by ϕ. The update step for the C-Net is similar to the standard meta-learning objectives
as it uses the updated student model parameters. We present the complete algorithm of MC-Distil in
Algorithm 1. Since training C-Net adds to the cost of training, we propose to update C-Net only after L
epochs. In Appendix A, we show theoretically that our method converges to the optima of both the validation
and training loss functions under some mild conditions.

4 Experiments

4.1 Model Architecture and Training

To demonstrate the utility of our method across groups of different model sizes we experiment with a group
of ResNet (He et al., 2016) models and several recent larger models. We use the ResNet32 model as C-Net
with the classification head changed to output weighting parameters. We present results of varying C-Net
size in Appendix sec. C.2. We use ResNet10-xxxs, ResNet10-xxs, ResNet10-xs, ResNet10-s and ResNet10-m
(Kag et al., 2023) models as the student models. These models are simultaneously trained with either
ResNet-10L, ResNet-10, ResNet-18 or ResNet-34 models as a teacher model. In Section B.2 we present
details of these models. We present experiment results on these combinations in Table 1. To illustrate the
utility of our method in larger vision models we perform knowledge distillation with ResNet-32x4 as the
teacher and ResNet-8x4, ShuffleNet-V2 (Ma et al., 2018), WideResNet-16x2 (Zagoruyko & Komodakis, 2016)
and MobileNet-V2x2 (Sandler et al., 2018) as the group of student models. We also perform knowledge
distillation with WideResNet-40x2 as a teacher model and ResNet-8x4, ShuffleNet-V2, WideResNet-40x1, and
MobileNet-V2x2 as a student model group in the large vision model setting. The results of these experiments
are presented in Table 2.

We train the student models for 500 epochs and update C-Net every 20 epoch (i.e., L = 20). Other training-
related details are presented in Section B.3. We perform all our experiments on the CIFAR-100 (Krizhevsky,
2009), Tiny-ImageNet (Le & Yang, 2015) and ImageNet (Russakovsky et al., 2015) datasets. Details of
train-val-test splits, input dimensions, and the augmentations used on the input to model are presented in
Appendix B.1.

4.2 Baselines

In our comparative analysis, we assess the performance of our method against a selection of recent works in
the field of knowledge distillation, alongside standard knowledge distillation and Empirical Risk Minimization
(ERM) or Cross-Entropy based training (CE). Specifically, we compare against TAKD (Mirzadeh et al., 2020)
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CIFAR100 Test Accuracies
Teacher Student CE KD TAKD DGKD RMC DML SHAKE MetaDistil Ours

ResNet10-l 72.2

ResNet10-xxs 31.85 33.45 34.39 35.34 34.07 33.41 33.56 34.92 36.19
ResNet10-xs 42.75 44.87 44.97 47.11 45.18 44.16 42.12 46.01 47.57
ResNet10-s 52.48 55.38 56.16 57.02 53.74 55.13 56.5 57.2 58.36
ResNet10-m 64.28 66.93 - - 66.66 66.06 68.8 68.28 69.42

ResNet10 75.18

ResNet10-xxs 31.85 33.95 34.98 34.85 33.64 33.54 33.7 34.66 35.97
ResNet10-xs 42.75 44.87 45.64 46.68 42.45 44.7 44.2 46.32 47.53
ResNet10-s 52.48 55.56 56.51 56.84 53.64 55.29 56.59 57.78 58.1
ResNet10-m 64.28 67.27 - - 66.58 66.25 68.63 68.89 69.21

ResNet18 76.99

ResNet10-xxs 31.85 33.56 34.26 34.26 33.77 34.02 32.32 34.4 35.94
ResNet10-xs 42.75 45.02 45.27 47.33 45.14 44.1 43.82 46.24 46.99
ResNet10-s 52.48 55.73 55.41 56.7 54. 03 54.82 56.82 57.4 57.5
ResNet10-m 64.28 66.42 - - 66.04 65.94 68.12 68.43 68.45

ResNet34 79.47

ResNet10-xxs 31.85 33.32 34.46 35.64 34.46 33.68 33.2 33.76 36.1
ResNet10-xs 42.75 44.94 45.92 47.21 42.78 44.45 45.8 46.43 47.12
ResNet10-s 52.48 54.73 56.17 57.12 53.58 55.28 56.2 56.91 57.67
ResNet10-m 64.28 66.52 - - 65.58 66.88 68.96 68.09 68.24

Tiny-ImageNet Test Accuracies

ResNet10-l 41.25

ResNet10-xxs 13.76 13.53 13.81 14.34 13.69 13.95 14.7 14.78 15.48
ResNet10-xs 18.56 19.19 19.22 20.54 19.04 19.57 19.92 20.13 21.68
ResNet10-s 24.56 25.95 26.35 27.24 25.86 26.2 27.0 27.06 29.74
ResNet10-m 33.47 34.63 - - 33.72 35.34 36.66 36.02 38.26

ResNet10 44.04

ResNet10-xxs 13.76 13.8 14.01 14.52 13.83 14.01 14.2 14.19 15.36
ResNet10-xs 18.56 19.48 19.09 21.21 19.28 19.78 19.87 20.13 21.78
ResNet10-s 24.56 26.95 25.58 26.99 26.18 27.04 27.79 27.06 29.82
ResNet10-m 33.47 35.5 - - 34.78 35.79 38.01 36.02 38.54

ResNet18 47.94

ResNet10-xxs 13.76 14.12 14.53 13.87 14.08 14.28 14.58 14.24 15.26
ResNet10-xs 18.56 19.78 19.35 19.54 19.75 18.24 19.85 19.96 21.36
ResNet10-s 24.56 26.3 26.17 27.42 25.08 25.92 27.92 27.32 30.36
ResNet10-m 33.47 35.08 - - 33.37 36.77 38.6 36.08 39.11

ResNet34 50.1

ResNet10-xxs 13.76 14.43 13.47 14.58 13.78 14.3 14.67 13.96 15.24
ResNet10-xs 18.56 19.72 18.33 20.84 19.28 19.29 19.76 20.93 21.82
ResNet10-s 24.56 27.05 24.96 27.89 25.99 26.81 28.05 27.64 29.59
ResNet10-m 33.47 35.94 - - 33.58 35.88 37.97 36.88 38.34

Table 1: Comprehensive comparison of methods across datasets. For each teacher model, we perform
knowledge distillation with a group of student models. MC-Distil(Ours, last column) substantially improves
the average accuracy on unseen test data. compared to other distillation baselines especially the ones designed
to take advantage of a multi-student setup. The highest accuracies are highlighted in bold.

and DGKD (Son et al., 2021) baselines involving multiple students or intermediate models, RMC(Du et al.,
2023) uses variance in predictions of students of levels of sparsity as a measure of task complexity for each
instance, DML (Zhang et al., 2018) forces collaboration among the models by introducing a KL-divergence
loss across different models and SHAKE (Li & Jin, 2022) which introduces a pseudo teacher that allows
bidirectional learning during KD. We also compare MC-Distil against one more baseline that involves
distilling knowledge to each of the students independently using a network architecturally similar to C-Net.
We refer to this baseline as the MetaDistil. This baseline is similar to AMAL (Sivasubramanian et al.,
2023); the strategic mixing loss components are achieved via the C-Net optimization. Further, in instance
dependent label-noise setting we compare against L2R (Ren et al., 2018) and MWN (Shu et al., 2019b)
reweighing techniques created for eliminating label noise by using bi-level optimization and MCD (Gal &
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CIFAR100 Test Accuracies
Teacher Student CE KD TAKD DGKD RMC DML SHAKE MetaDistil Ours

ResNet-32x4 80.1

ResNet-8x4 71.12 72.62 74.26 74.45 73.89 73.37 73.96 73.12 75.38
MobileNetV2x2 69.52 71.78 72.07 72.27 71.23 72.46 72.17 72.53 73.05

WideResNet16x2 72.79 73.34 73.72 74.12 75.19 73.87 74.22 74.1 75.52
ShuffleNet-V2 73.73 75.33 - - 76.52 75.98 76. 12 76.74 77.97

WideResNet40x2 77.6

ResNet-8x4 71.12 72.77 73.82 74.63 73.84 74.12 74.31 74.49 76.73
MobileNetV2x2 69.52 72.69 72.69 71.61 70.90 73.97 74.68 74.20 74.36

WideResNet40x1 72.90 73.01 73.72 74.67 75.44 74.26 74.41 75.38 75.85
ShuffleNet-V2 73.73 75.85 - - 76.72 77.87 78.08 78.17 77.94

Tiny-ImageNet Test Accuracies

ResNet-32x4 50.2

ResNet-8x4 37.16 37.23 38.83 39.52 36.76 38.86 38.12 40.46 41.89
MobileNetV2x2 47.68 49.89 49.89 48.21 48.07 48.24 49.79 49.85 49.95

WideResNet16x2 39.11 39.47 41.66 41.77 39.77 41.35 41.98 42.12 43.88
ShuffleNet-V2 47.76 50.44 - - 49.46 49.24 49.46 50.62 52.38

Table 2: Comprehensive comparison of methods when training models with larger learning capacity. Here
again MC-Distil(Ours, last column) substantially improves the test accuracy compared to other distillation
baselines even in this setting.

Ghahramani, 2016) which uses dropout to model uncertainties. Please refer to Sec. B.4 for more information
on these methods.

4.3 Improving efficacy of Knowledge Distillation

In Table 1, we present results from experiments conducted on CIFAR100 and TinyImagenet datasets, exploring
scenarios with a significant capacity gap between teacher and student models. We start with ResNet10-l
as the teacher and go on to continue the increasing learning capacity of the teacher model and perform
knowledge distillation with ResNet10, ResNet18, and ResNet34. On both the datasets, MC-Distil, by virtue
of meta-collaboration, achieves the best performance among the baselines showing accuracy gains of up to
4% on both the datasets compared to KD. The gains are much more pronounced on the larger models in
the student pool for the TinyImagenet dataset owing to the increased difficulty in classifying it whereas for
CIFAR100 the gains are pretty uniform across the student models. These gains are consistent across a wide
range of student and teacher capacities. MC-Distil improves all of the student model’s performances as
compared to the baselines, thereby showing that joint distillation of knowledge to a student set is beneficial
for both smaller and larger students. We analyze the effect of introducing student models one by one in the
presence of C-Net in Appendix sec.C.1.

MC-Distil remains competitive even in scenarios with a small capacity difference. As illustrated in Table 2,
MC-Distil maintains its competitive advantage over KD, even when the student model closely matches
the size of the teachers, achieving gains of up to 3% relative to KD. These improvements can be attributed
to two key factors: (i) the reweighing of loss terms and (ii) meta-collaboration. The reweighting strategy
aligns the learning focus with the model’s capacity, emphasizing examples that are more suitable for the
student. This targeted weighting helps explain the performance improvement observed with MetaDistil over
standard KD, particularly for students like ‘ResNet-m’. However, just this reweighing is not sufficient for
students such as ‘ResNet-xxs’ and ‘Resnet-s’ in the case of larger teachers. This is where MC-Distil’s ability
to leverage C-Net as a communication channel among student models is useful in enhancing knowledge
transfer from the teacher model. While the benefits of information flow from intermediate models to smaller
ones to improve final performance, as demonstrated in previous studies (Son et al., 2021; Mirzadeh et al.,
2020), are well-established, the reverse scenario has been under-explored. The gains reported in Tables 1
and 2 indicate that larger models can also benefit from information exchange with smaller models, akin to
standard supervised settings (Mindermann et al., 2022).
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Teacher Student CE KD DGKD SHAKE MetaDistill MC-Distil

ResNet101 81.68

ResNet14 22.28 19 20.92 21.15 22.84 23.79
ResNet20 26.87 22.1 24.31 24.48 26.44 27.94
ResNet32 31.04 26.83 29.34 29.26 31.56 33.07
ResNet56 37.56 33.38 - 34.82 37.9 39.73

Table 3: Comprehensive comparison ImageNet test accuracies of student models distilled from a ResNet101
teacher using different knowledge distillation techniques. The proposed method (MC-Distil) consistently
outperforms baseline approaches across all student architectures.

MC-Distil outperforms bidirectional learning methods in KD. We compare against two KD methods viz.
SHAKE’s (Li & Jin, 2022) and DML (Zhang et al., 2018), both aim to enhance teacher outputs to improve
KD’s effectiveness. SHAKE learns a pseudo-teacher (a few additional learnable layers on the teacher’s
backbone) to adapt according to the student model. This performs relatively well for larger students but
struggles to accommodate the specific needs of smaller students in Table 1. In contrast, MC-Distil carefully
controls the knowledge transfer from the teacher model, proving more beneficial for smaller students. On the
other hand, DML’s forceful explicit collaboration among student cohorts results in inferior performances.
This is because aligning outputs while stops the larger models from learning to their full capacities, burdens
smaller models to match their outputs to their larger cohorts (like in traditional KD). In Appendix 4.9 we
show that such collaboration can be added to our setup and if carefully reweighted can lead to improved
performances.

4.4 MC-Distil in extreme teacher student gap settings

To evaluate the resilience of MC-Distil in scenarios with a significant teacher-student capacity gap, we
conduct knowledge distillation using ResNet101 as the teacher model and ResNet14, ResNet20, ResNet32,
and ResNet56 as student models on the ImageNet dataset. Due to computational constraints, we compare
only against the most competitive baselines: DGKD, SHAKE, and MetaDistill.

Given ImageNet’s complexity and the large teacher-student disparity, KD (Knowledge Distillation) under-
performs even compared to standard Cross-Entropy (CE) training, aligning with prior findings from Cho &
Hariharan (2019). The alternative methods designed to mitigate poor transfer (such as DGKD and SHAKE)
provide some improvements over KD, they still fail to surpass CE, with the exception of MetaDistill, which
only matches CE performance. Despite these challenges, MC-Distil achieves a consistent 1-2% improvement
over CE, demonstrating its effectiveness even in extreme teacher-student gap scenarios.

4.5 Why MC-Distil uses instance and loss component specific weights

We expand on the analysis presented in Figure 3 to understand how C-Net assigns weights to individual
loss components. Figure 4a shows how αs, parameter controlling learning from the hard label and Figure 4b
shows how βs, parameter controlling learning from the teacher model (see equation 2) changes with instance
hardness for models with different learning capacity. For the smaller student models, learning majorly
happens via hard labels, whereas larger models prefer learning from the teacher’s nuanced soft labels. KD
improves the label student model’s performance by offering nuanced soft labels as targets. However, when the
student model cannot encode these nuanced soft labels, their introduction can worsen the student model’s
performance Cho & Hariharan (2019). Therefore, choosing a favorable ground truth is also important along
with focusing on the "learnable" points. MC-Distil achieves this by using two sets of weighing parameters-
αs and βs and carefully turning it according to student model capacity. For the smaller models, MC-Distil
carefully introduces soft teacher labels of only the easy points, and thus MC-Distil improves the smaller
model’s performance over traditional KD.
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Teacher Student CE KD DGKD DML SHAKE Meta-Distill MC-Distil

RN10-l 89.05

RN10-xxs 75.4 75.92 76.17 76.12 76.72 76.85 76.96
RN10-xs 77.3 77.37 77.86 77.5 78.3 78.27 78.82
RN10-s 79.97 80.42 80.3 80.51 81.79 81.94 82.8
RN10-m 84.77 84.94 - 85.80 86.91 86.52 87.35

RN10 91.86

RN10-xxs 75.4 75.85 76.2 76.17 76.25 76.82 76.94
RN10-xs 77.3 77.45 77.65 77.72 78.38 78.04 78.97
RN10-s 79.97 80.49 80.58 80.61 82.19 81.73 82.75
RN10-m 84.77 85.07 - 85.28 86.34 86.44 87.49

Table 4: Results of performing KD with challenging iWildCam Dataset (Beery et al., 2020). Notably,
MC-Distil demonstrates significant improvements in test accuracy compared to other distillation baselines.

4.6 MC-Distil trains models with better generalisation
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Figure 4: Plot between student model errors and weighting pa-
rameters while KD is performed using ResNet-18 as the teacher
model on CIFAR-100 dataset.

We perform knowledge distillation on
the challenging iWildCam dataset (Beery
et al., 2020). The challenge arises from
variations in the capturing environment,
resulting in a demanding test set (see ap-
pendix B.1). Table 4 shows the perfor-
mance of various knowledge distillation
methods based on multi-student setups,
including MC-Distil. Across both weak
(RN10-l) and strong (RN10) teachers, and
for a wide range of student model capaci-
ties—from extremely small (RN10-xxs) to
moderately sized (RN10-m)—MC-Distil
consistently achieves superior test accura-
cies. The consistent performance of MC-
Distil highlights its robustness in lever-
aging instance-level importance through
soft selection, enabling better generaliza-
tion in complex, real-world scenarios such

as iWildCam. This reinforces the effectiveness of our method not only in standard benchmarks but also
under real-world distribution shifts and limited model capacities.

Using models trained with Resnet-18 as the teacher on the TinyImagenet dataset (reported in Table 1),
we classify TinyImageNet-C (Hendrycks & Dietterich, 2019a). Table 6 presents the accuracies obtained by
models trained with different KD methods across three levels of corruption (details in B.1). In Appendix
appendix C.3 we present the complete table with results obtained across all five corruption levels. Notably,
MC-Distil produces models that demonstrate robustness and superior generalization, even when the test
data distribution differs from the training set.

4.7 KD in Instance Dependent Label-Noise

We now evaluate MC-Distil under a setting where instance-dependent label noise is present in the labels.
We illustrate this experiment on two datasets, namely. instance CIFAR-100 (Xia et al., 2020a) and Clothing-
1M Xiao et al. (2015b) where the labels inherit noise due to the data generation process as against randomly
flipping the labels. The results are reported in Table 5. Since MC-Distil employs a reweighting scheme,
C-Net learns weights to reduce the impact of the noise. For the inputs with high noise, it is able to assign
low weight to CE loss and rely more heavily on the distillation term, thereby outperforming other methods.
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Student CE KD MCD MWN L2R Meta-Distil MC-Distil
Inst. CIFAR-100 Accuracies

RN10xxxs 23.69 23.67 24.33 24.14 24.88 26.48 27.07
RN10xxs 28.97 28.55 29.81 28.66 29.04 29.59 31.88
RN10xs 38.04 38.19 38.88 37.34 39.39 42.57 42.18
RN10s 48.4 49.22 49.71 45.84 48.14 52.67 53.26
RN10m 59.42 60.14 61.62 55.74 60.9 60.64 61.61

Clothing-1M Accuracies
RN10xxxs 43.56 44.58 45.65 41.72 45.72 46.08 46.43
RN10xxs 51.67 51.28 52.22 48.74 51.6 52.88 52.58
RN10xs 57.14 57.16 57.51 53.49 56.7 57.06 58.28
RN10s 61 62.02 61.59 48.74 60.34 61.31 62.27
RN10m 64.83 66.55 64.86 61.21 63.45 63.64 64.92

Table 5: Assessment of performances of de-noising techniques and MC-Distil on a diverse set of student
models, employing ResNet-18 as the teacher model on datasets with instance-specific label noise.

Student CE KD MCD DGKD DML SKAKE Meta-Distill MC-Distil

Corruption level 1 Accuracies
RN10-xxs 11.25 11.38 10.61 10.77 9.99 11.47 11.02 12.05
RN10-xs 14.68 15.82 14.67 15.43 15.51 16.56 16.02 16.73
RN10-s 20.88 21.97 21.94 23.18 20.29 22.58 23.97 24.88
RN10-m 26.91 28.56 27.08 29.56 28.09 30.40 30.43 31

Corruption level 2 Accuracies
RN10-xxs 10.65 10.79 9.54 10.42 9.44 10.88 10.52 11.3
RN10-xs 13.75 14.6 13.72 14.60 14.56 15.42 14.78 15.52
RN10-s 19.28 20.64 20.46 21.26 18.74 20.74 21.93 23.04
RN10-m 24.76 25.87 24.36 26.97 26.20 27.94 27.39 28.67

Table 6: Comprehensive table presenting an assessment of model (trained with TinyImageNet in Table1) robustness
by conducting inference on the TinyImagenet-C dataset (Hendrycks & Dietterich, 2019a) across different degrees of
image corruption, alongside results for all baseline models. The columns indicate the method employed for training
the model on the TinyImagenet dataset, utilizing Resnet-18 as the teacher model.

Furthermore, the joint distillation (by communication via C-Net) of different-sized student models provides
additional valuable information to combat noise effectively.

4.8 Ablation: Changing size of the validation data

Validation set size
Student 2% 5% 10%

ResNet10-xxs 36.05 36.22 36.54
ResNet10-xs 47.23 47.53 47.72
ResNet10-s 57.73 57.91 58.00
ResNet10-m 68.93 68.95 69.01

Table 7: Performance of MC-Distil with different
validation dataset sizes. Here KD is performed using
ResNet-18 as the teacher model on CIFAR-100 dataset.

We allocate 10% of the training data as a validation
set, as detailed in appendix B.1. However, to demon-
strate that MC-Distil is not heavily dependent on
large validation sets, we conduct additional experi-
ments with reduced validation set sizes—specifically
2% and 5% of the training data. The corresponding
test accuracies are reported in Table 7, where ResNet-
18 is used as the teacher model for distillation on the
CIFAR-100 dataset.

As shown, MC-Distil maintains stable and competi-
tive performance across all student models even with
significantly smaller validation sets. This indicates
that the method is robust and can effectively learn
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meaningful instance-level weights without requiring requiring supervision from large validation corpora. The
performance gains reported in Tables 1 and 2 can therefore be achieved with minimal validation overhead,
making MC-Distil practical and scalable for real-world applications with limited validation data.

4.9 Incorporating online distillation techniques in MC-Distil

Consensus across students: To further encourage information sharing across students, we propose an
additional term in the loss function eq. (2). This term minimizes the KL divergence between each student’s
logits and a consensus representation of logits across students (a representation we call the “Pooled Student”).
For a training instance (x, y) ∈ D such that the true label is c, i.e., y[c] = 1, we first define the PooledStudent
logits for each label l:

y(P S)[l] =
{

max
(
y(S1)[l], · · · y(Sk)[l]

)
, if l = c

min
(
y(S1)[l], · · · y(Sk)[l]

)
, otherwise

(6)

This is similar to MinLogit introduced in (Guo et al., 2020). Using the PooledStudent logits, the loss function
in eq. (2) is updated to:

Lsj = 1
n

n∑
i=1

αijH
(
y

(Sj )
i , yi

)
+ βijτ

2KL
(
y

(Sj )
i , y

(T )
i

)
+ γijτ

2KL
(
y

(Sj )
i , y

(P S)
i

)
∀j ∈ {1, · · · , k} (7)

Teacher Student MC-Distil MC-Distil-PS

ResNet10-l

ResNet10-xxs 36.29 36.44
ResNet10-xs 47.14 47.65
ResNet10-s 57.37 57.55
ResNet10-m 68.47 68.51

ResNet10

ResNet10-xxs 36.57 36.78
ResNet10-xs 47.55 48.03
ResNet10-s 57.59 58.2
ResNet10-m 69.03 69.5

Table 8: We present the analysis of the effect of adding a loss
component based on the pooled student to MC-Distil. Here
MC-Distil-PS represents the test result obtained with model
trained with pooled student-based loss component.

Correspondingly, the C-Net outputs are
extended to be (A,B,Γ) = gϕ(x). Putting
it all together, MC-Distil minimizes the
total loss over all students, i.e., Ls =∑

j Lsj . We investigate the impact of
incorporating a loss component derived
from the pooled student, as introduced in
equation 6, in Table 8. The test results
labeled MC-Distil-PS correspond to the
model trained with the pooled student-
based loss component. It is notewor-
thy that integrating this new logit proves
beneficial in enhancing the performance
gains achieved through meta-collaborative
learning when applied in a controlled man-
ner, as suggested in equation 6. This
approach doesn’t enforce explicit collabo-

ration among the students; rather, it serves as an additional source of knowledge. Some students, particularly
those finding learning directly from the teacher challenging, may leverage this supplementary knowledge,
contributing to improved performance.

5 Conclusion

We introduced MC-Distil, a novel knowledge distillation framework based on meta-collaboration, or learning-
to-collaborate. The collaborative learning among a group of student models is facilitated by a coordinating
network C-Net. This allows models to benefit from the learning dynamics of their cohorts without any
explicit compulsion to mimic each other, while also leveraging teacher model signals. Therefore MC-Distil
produces a plethora of superior models that could be used according to deployment constraints and needs.
Extensive experiments with various teacher-student combinations and datasets show MC-Distil consistently
outperforms state-of-the-art distillation methods, even with noisy datasets or when there are distributional
shifts between the training and test data.
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Appendix

A Convergence

In this section, we lay out the complete proof of theorems. Our proof technique is inspired partly by the
prior literature (Shu et al., 2019a).

Lemma 1 Suppose the meta loss function is Lipschitz smooth with constant L, and C-Net(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function L have
ρ-bounded gradients with respect to training/metadata. Then the gradient of ϕ with respect to meta loss is
Lipschitz continuous.

Proof From equation 3

LC-Net = 1
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l=1

H
(
fθj

(xv
l ), yv

l

)
(8)
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The gradient of ϕ with respect to meta loss can be written as:

∇ϕLC-Netl
= 1
k

k∑
j=1
∇θj

H
(
fθj

(xv
l ), yv

l

)
∗ ∇ϕθj

= 1
k

k∑
j=1
−η

j
1
n

n∑
i=1
∇θjH

(
fθj (xv

l ), yv
l

)
∗ ∇ϕ

(
gα

ϕt [j] ∗ ∇θt
j
H

(
y

(Sj)
i , yi

)
+ gβ

ϕt [j] ∗ τ2 ∗ ∇θt
j
KL

(
y

(Sj)
i , y

(T )
i

))
(9)

Let GH
li = ∇θj

H
(
fθj

(xv
l ), yv

l

)
∗∇θt

j
H

(
y

(Sj)
i , yi

)
and GKL

li = ∇θj
H

(
fθj

(xv
l ), yv

l

)
∗τ2∗∇θt

j
KL

(
y

(Sj)
i , y

(T )
i

)
.Then

again taking gradients on both sides w.r.t ϕ,

∇2
ϕLC-Netl = 1

k

k∑
j=1

−ηj
1
n

n∑
i=1

[
∇ϕG

H
li ∗ ∇ϕg

α
ϕ +GH

li ∗ ∇2
ϕg

α
ϕ ∇ϕ + ∇ϕG

KL
li ∗ ∇ϕg

β
ϕ +GKL

li ∗ ∇2
ϕg

β
ϕ

]
(10)

For the first term on the right-hand side, we have that,

∥∥∥∥∇ϕG
H
li ∗ ∇ϕg

α
ϕ

∥∥∥∥ ≤ δ∥∥∥∥∇ϕ∇θj
H

(
fθj

(xv
l ), yv

l

)
∗ ∇θt

j
H

(
y

(Sj)
i , yi

)∥∥∥∥
= δ

∥∥∥∥∥− ηj
1
n

n∑
i=1
∇2

θj
H

(
fθj

(xv
l ), yv

l

)
∗ ∇ϕ

(
gα

ϕt [j] ∗ ∇θt
j
H

(
y

(Sj)
i , yi

)
+ gβ

ϕt [j] ∗ τ2 ∗ ∇θt
j
KL

(
y

(Sj)
i , y

(T )
i

))
∗ ∇θt

j
H

(
y

(Sj)
i , yi

)∥∥∥∥∥ (11)

since
∥∥∥∇2

θj
H

(
fθj

(xv
l ), yv

l

)∥∥∥ ≤ L,
∥∥∥∇θt

j
H

(
y

(Sj)
i , yi

)∥∥∥ ≤ ρ,
∥∥∥∇θt

j
KL

(
y

(Sj)
i , y

(T )
i

)∥∥∥ ≤ ρ,
∥∥∥∇ϕg

α
ϕ

∥∥∥ ≤ δ and∥∥∥∇ϕg
β
ϕt

∥∥∥ ≤ δ,
δ

∥∥∥∥∥ − ηj
1
n

n∑
i=1

∇2
θj
H

(
fθj (xv

l ), yv
l

)
∗ ∇ϕ

(
gα

ϕt [j] ∗ ∇θt
j
H

(
y

(Sj )
i , yi

)
+ gβ

ϕt [j] ∗ τ2 ∗ ∇θt
j
KL

(
y

(Sj )
i , y

(T )
i

))

∗ ∇θt
j
H

(
y

(Sj )
i , yi

)∥∥∥∥∥ ≤ δ

∥∥∥∥∥ − ηj
1
n

n∑
i=1

L ∗
(
δ ∗ ρ+ δ ∗ ρ ∗ τ2))

∗ ρ

∥∥∥∥∥ ≤ ηtj
1 Lρ

2δ2(1 + τ2) (12)

Similarly, ∥∥∥∥∇ϕG
KL
li ∗ ∇ϕg

β
ϕ

∥∥∥∥ ≤ ηtj
1 Lρ

2δ2(1 + τ2) (13)

And for the second term on the right-hand side in Equation equation 10 we have,

∥GH
li ∗ ∇2

ϕg
α
ϕ∇ϕ∥ ≤ B ∗ δ2 (14)
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Similarly,

∥GKL
li ∗ ∇2

ϕg
β
ϕ∥ ≤ B ∗ δ

2 (15)

Let η1 = max{η1
1 , · · · , ηk

1}. Thus combining equations 12,13,14 and 15,

∥∇2
ϕLC-Netl

∥ ≤ 2 ∗ η1ρ
2(Lδ2(1 + τ2) + B) (16)

Define LV = 2 ∗ η1ρ
2(Lδ2(1 + τ2) + B), based on Lagrange mean value theorem, we have:

∥∇LC-Net(ϕ1)−∇LC-Net(ϕ2)∥ ≤ LV ∥ϕ1 − ϕ2∥, for all ϕ1, ϕ2 (17)

Theorem 1 Suppose the loss function ℓ is Lipschitz smooth with constant L, and C-Net(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function
L have ρ-bounded gradients concerning training/metadata. Let the learning rates η1t

1 , · · · , ηkt
1 satisfies

ηjt
1 = min{1, a

T }∀j ∈ {1, · · · , k}, for some a > 0, such that a
T < 1, and ηt

2, 1 ≤ t ≤ N is a monotone descent
sequence, ηt

2 = min{ 1
L ,

c
σ

√
T
} for some c > 0, such that σ

√
T

c ≥ L and
∑∞

t=1 η
t
2 ≤ ∞,

∑∞
t=1(ηt

2)2 ≤ ∞. Then
MC-Distil can achieve E[∥∇ϕLC-Net(Θt(ϕt))∥2

2] ≤ ϵ in O(1/ϵ2) steps. More specifically,

min
0≤t≤T

E[∥∇ϕLC-Net(Θt(ϕt))∥2
2] ≤ O( C√

T
), (18)

where C is some constant independent of the convergence process, σ is the variance of drawing uniformly
mini-batch samples at random.

Proof

From Equation equation 5

ϕt+1 = ϕt − ηt
2
m

m∑
i=1
∇ϕtLC-Net(xv

i , y
v
i ,Θt+1) = ϕt − ηt

2∇ϕLC-Net(Θt+1(ϕt)) (19)

This can be written as,

ϕt+1 = ϕt − ηt
2∇ϕLC-Net(Θt+1(ϕt))

∣∣
Ξt

(20)

Since the mini-batch Ξt is drawn uniformly from the entire data set, we can rewrite the update equation as:

ϕt+1 = ϕt − ηt
2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)] (21)

where ξ(t) = ∇ϕLC-Net(Θt+1(ϕt))
∣∣
Ξt
−∇ϕLC-Net(Θt+1(ϕt)). Note that ξ(t) are i.i.d random variables with

finite variance since Ξt are drawn i.i.d with a finite number of samples. Furthermore, E[ξ(t)] = 0, since
samples are drawn uniformly at random. Observe that

17



Under review as submission to TMLR

LC-Net(Θt+2(ϕt+1))− LC-Net(Θt+1(ϕt)) =
[
LC-Net(Θt+2(ϕt+1))− LC-Net(Θt+1(ϕt+1))

]
+

[
LC-Net(Θt+1(ϕt+1))− LC-Net(Θt+1(ϕt))

]
(22)

By Lipschitz smoothness of meta loss function, we have

LC-Net(Θt+2(ϕt+1)) − LC-Net(Θt+1(ϕt+1)) ≤
〈

∇LC-Net(Θt+1(ϕt+1)),Θt+2(ϕt+1) − Θt+1(ϕt+1)
〉

+ L

2

∥∥∥∥Θt+2(ϕt+1) − Θt+1(ϕt+1)
∥∥∥∥2

2
(23)

Here, Θt+2(ϕt+1) − Θt+1(ϕt+1) =
〈

η1t
1
n

∑n
i=1 g

α
ϕti[1] ∗ ∇θt+1

1
H

(
y

(S1)
i , yi

)
+ gβ

ϕti[1] ∗ τ2 ∗

∇θt+1
1
KL

(
y

(S1)
i , y

(T )
i

)
, · · · , ηkt

1
n

∑n
i=1 g

α
ϕti[k] ∗∇θt+1

k
H

(
y

(Sk)
i , yi

)
+ gβ

ϕti[k] ∗ τ2 ∗∇θt+1
k
KL

(
y

(Sk)
i , y

(T )
i

)〉
accord-

ing to Eq.(4) and
∥∥∥∇θt+1

j
H

(
y

(Sj)
i , yi

)∥∥∥ ≤ ρ,
∥∥∥∇θt+1

j
KL

(
y

(Sj)
i , y

(T )
i

)∥∥∥ ≤ ρ,
∥∥∇H(

fθj
(xv

i ), yv
i

)∥∥ ≤ ρ, gϕ(·) ≤ 1
and η1 = max{η1

1 , · · · , ηk
1}, we have

∥LC-Net(Θt+2(ϕt+1))− LC-Net(Θt+1(ϕt+1))∥ ≤ kηt
1ρ

2(1 + τ2) + kL(ηt
1(1 + τ2))2

2 ρ2

= kηt
1ρ

2(1 + τ2)
(

1 + ηt
1L(1 + τ2)

2

)
(24)

By Lipschitz continuity of ∇LC-Net(Θt+1(ϕ)) according to Lemma 1, we can obtain the following:

LC-Net(Θt+1(ϕt+1)) − LC-Net(Θt+1(ϕt)) ≤
〈

∇LC-Net(Θt+1(ϕt)), ϕt+1 − ϕt

〉
+ L

2

∥∥∥∥ϕt+1 − ϕt

∥∥∥∥2

2
(25)

From Eq. 21,

LC-Net(Θt+1(ϕt+1)) − LC-Net(Θt+1(ϕt)) ≤
〈

∇LC-Net(Θt+1(ϕt)),−ηt
2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]

〉
+ L(ηt

2)2

2

∥∥∥∥∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)
∥∥∥∥2

2
= −

(
ηt

2 − L(ηt
2)2

2

)∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥

+ L(ηt
2)2

2 ∥ξ(t)∥2
2 − (ηt

2 − L(ηt
2)2)

〈
∇LC-Net(Θt+1(ϕt)), ξ(t)〉 (26)

Thus Eq. 22 satifies,

LC-Net(Θt+2(ϕt+1))− LC-Net(Θt+1(ϕt)) ≤ kηt
1ρ

2(1 + τ2)
(

1 + ηt
1L(1 + τ2)

2

)
−

(
ηt

2 −
L(ηt

2)2

2

)∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥2

2

+ L(ηt
2)2

2 ∥ξ(t)∥2
2 − (ηt

2 − L(ηt
2)2)

〈
∇LC-Net(Θt+1(ϕt)), ξ(t)〉 (27)
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Rearranging the terms, we obtain

(
ηt

2 −
L(ηt

2)2

2

)∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥2

2 ≤ LC-Net(Θt+2(ϕt+1))− LC-Net(Θt+1(ϕt))

+ kηt
1ρ

2(1 + τ2)
(

1 + ηt
1L(1 + τ2)

2

)
+ L(ηt

2)2

2 ∥ξ(t)∥2
2 − (ηt

2 − L(ηt
2)2)

〈
∇LC-Net(Θt+1(ϕt)), ξ(t)〉 (28)

Summing up the above inequalities and rearranging the terms, we obtain

T∑
t=1

(
ηt

2 −
L(ηt

2)2

2

)∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥2

2 ≤ LC-Net(Θ1(ϕ1))− LC-Net(ΘT +1(ϕT ))

+
T∑

t=1
kηt

1ρ
2(1 + τ2)

(
1 + ηt

1L(1 + τ2)
2

)
+

T∑
t=1

L(ηt
2)2

2 ∥ξ(t)∥2
2

−
T∑

t=1
(ηt

2 − L(ηt
2)2)

〈
∇LC-Net(Θt+1(ϕt)), ξ(t)

〉

≤ LC-Net(Θ1(ϕ1)) +
T∑

t=1
kηt

1ρ
2(1 + τ2)

(
1 + ηt

1L(1 + τ2)
2

)
+

T∑
t=1

L(ηt
2)2

2 ∥ξ(t)∥2
2

−
T∑

t=1
(ηt

2 − L(ηt
2)2)

〈
∇LC-Net(Θt+1(ϕt)), ξ(t)〉 (29)

Taking expectations with respect to ξ(N) on both sides, we obtain:

T∑
t=1

(
ηt

2 −
L(ηt

2)2

2

)
Eξ(N)

∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥2

2 ≤ LC-Net(Θ1(ϕ1))

+
T∑

t=1
kηt

1ρ
2(1 + τ2)

(
1 + ηt

1L(1 + τ2)
2

)
+

T∑
t=1

L(ηt
2)2

2 ∥ξ(t)∥2
2 (30)

since Eξ(N)⟨∇LC-Net(Θt+1(ϕt)), ξ(t)⟩ = 0 and E[∥ξ(t)∥2
2] ≤ σ2, where σ2 is the variance of ξ(t). Furthermore,

we can deduce that
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min
t

E
∥∥∇ϕLC-Net(Θt+1(ϕt))

∥∥2
2 ≤

∑T
t=1

(
ηt

2 −
L(ηt

2)2

2

)
Eξ(N)

∥∥∇ϕLC-Net(Θt+1(ϕt))
∥∥2

2∑T
t=1

(
ηt

2 −
L(ηt

2)2

2

)
≤ 1∑T

t=1(2ηt
2 − L(ηt

2)2)

[
2LC-Net(Θ1(ϕ1)) +

T∑
t=1

kηt
1ρ

2(1 + τ2)(2 + ηt
1L(1 + τ2))

+ Lσ2
T∑

t=1
(ηt

2)2
]

≤ 1∑T
t=1 η

t
2

[
2LC-Net(Θ1(ϕ1)) +

T∑
t=1

kηt
1ρ

2(1 + τ2)(2 + ηt
1L(1 + τ2)) + Lσ2

T∑
t=1

(ηt
2)2

]

≤ 1
Tηt

2

[
2LC-Net(Θ1(ϕ1)) + Tkη1

1ρ
2(1 + τ2)(2 + η1

1L(1 + τ2)) + Lσ2
T∑

t=1
(ηt

2)2
]

≤ 2LC-Net(Θ1(ϕ1))
Tηt

2
+ kη1

1ρ
2(1 + τ2)(2 + L(1 + τ2))

ηt
2

+ Lσ2ηt
2

= LC-Net(Θ1(ϕ1))
T

max{L, σ
√
T

c
}

+ min{1, a
T
}max{L, σ

√
T

c
}kρ2(1 + τ2)(2 + L(1 + τ2)) + Lσ2 min{ 1

L
,

c

σ
√
T
}

≤ LC-Net(Θ1(ϕ1))
c
√
T

+ aσkρ2(1 + τ2)(2 + L(1 + τ2))
c
√
T

+ Lσc√
T

= O( 1√
T

). (31)

The third inequlity holds for
∑T

t=1(2ηt
2 − L(ηt

2)2) ≤
∑T

t=1 η
t
2.Therefore, we can conclude that our algorithm

can always achieve min0≤t≤T E[∥∇LC-Net(Θ1)∥2
2] ≤ O( 1√

T
) in T steps, and this finishes our proof of Theorem

1.

Lemma 2 (Lemma A.5 in (Mairal, 2013)) Let (an)n≤1, (bn)n≤1 be two non-negative real sequences such
that the series

∑∞
i=1 an diverges, the series

∑∞
i=1 anbn converges, and there exists K > 0 such that

|bn+1 − bn| ≤ Kan. Then the sequences (bn)n≤1 converges to 0.

Theorem 2 Suppose the loss function L is Lipschitz smooth with constant L, and C-Net(·) is differential
with a δ-bounded gradient and twice differential with its Hessian bounded by B, and the loss function L
have ρ-bounded gradients with respect to training/meta data. Let the learning rates η1t

1 , · · · , ηkt
1 satisfies

ηjt
1 = min{1, a

T }∀j ∈ {1, · · · , k}, for some a > 0, such that a
T < 1, and ηt

2, 1 ≤ t ≤ N is a monotone descent
sequence, ηt

2 = min{ 1
L ,

c
σ

√
T
} for some c > 0, such that σ

√
T

c ≥ L and
∑∞

t=1 η
t
2 ≤ ∞,

∑∞
t=1(ηt

2)2 ≤ ∞.Then

lim
t→∞

E[∥∇LSj
(θt

j , ϕ
t)∥2

2] = 0. (32)

Proof

From Eq. ?? we have,

LSj
(θt

j , ϕ
t) = 1

n

n∑
i=1

gα
ϕti[j] ∗H

(
y

(Sj)
i , yi

)
+ gβ

ϕti[j] ∗ τ
2 ∗KL

(
y

(Sj)
i , y

(T )
i

)
∀j ∈ {1, · · · , k} (33)
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It is easy to conclude that ηjt1 satisfy
∑∞

t=0 ηjt1 =∞,
∑∞

t=0(ηjt1)2 <∞. From eq. 4

θt+1
j = θt

j − ηj
1
n

n∑
i=1

gα
ϕti[j] ∗ ∇θt

j
H

(
y

(Sj )
i , yi

)
+ gβ

ϕti
[j] ∗ τ2 ∗ ∇θt

j
KL

(
y

(Sj )
i , y

(T )
i

)
∀j ∈ {1, · · · , k} (34)

Since the mini-batch Ψt is drawn uniformly at random, we can rewrite the update equation as:

θt+1
j = θt

j −
ηj

1
n

n∑
i=1

[
gα

ϕti[j] ∗ ∇θt
j
H

(
y

(Sj)
i , yi

)
+ gβ

ϕti[j] ∗ τ
2 ∗ ∇θt

j
KL

(
y

(Sj)
i , y

(T )
i

)
+ Ψt

]
∀j ∈ {1, · · · , k}

= θt
j − η

tj
1 [∇LSj (θt

j , ϕ
t) + Ψt] (35)

where ψ(t) = ∇LSj
(θt

j , ϕ
t)|Ψt

−LSj
(θt

j , ϕ
t). Note that ψ(t) is i.i.d. random variable with finite variance, since

Ψt are drawn i.i.d. with a finite number of samples. Furthermore, E[ψ(t)] = 0, since samples are drawn
uniformly at random, and E[∥ψ(t)∥2

2] ≤ σ2.
The objective function LSj

(θt
j , ϕ

t) can be easily checked to be Lipschitz-smooth with constant L, and have
ρ-bounded gradients with respect to training data. Observe that,

LSj (θt+1
j , ϕt+1) − LSj (θt

j , ϕ
t) =

{
LSj (θt+1

j , ϕt+1) − LSj (θt+1
j , ϕt)

}
+

{
LSj (θt+1

j , ϕt) − LSj (θt
j , ϕ

t)
}

(36)

For the first term,

LSj (θt+1
j , ϕt+1) − LSj (θt+1

j , ϕt) = 1
n

n∑
i=1

(gα
ϕt+1i[j] − gα

ϕti[j]) ∗H
(
y

(Sj )
i , yi

)
+ (gβ

ϕt+1i
[j] − gβ

ϕti
[j]) ∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)
≤ 1
n

n∑
i=1

{
⟨∇ϕg

α
ϕt

i
[j], ϕt+1 − ϕt⟩ + δ(ηt

2)2

2 ∥ϕt+1 − ϕt∥2
2

}
∗H

(
y

(Sj )
i , yi

)
+ (gβ

ϕt+1i
[j] − gβ

ϕti
[j]) ∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)
= 1
n

n∑
i=1

{
⟨∇ϕg

α
ϕt

i
[j],−ηt

2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩

+ δ(ηt
2)2

2 ∥∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)∥2
2

}
∗H

(
y

(Sj )
i , yi

)
+ (gβ

ϕt+1i
[j] − gβ

ϕti
[j]) ∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)
= 1
n

n∑
i=1

{
⟨∇ϕg

α
ϕt

i
[j],−ηt

2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩ + δ(ηt
2)2

2

(
∥∇ϕLC-Net(Θt+1(ϕt))∥2

2 + ∥ξ(t)∥2
2

+ 2⟨∇ϕLC-Net(Θt+1(ϕt)), ξ(t)⟩
)}

∗H
(
y

(Sj )
i , yi

)
+ (gβ

ϕt+1i
[j] − gβ

ϕti
[j]) ∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)
≤ 1
n

n∑
i=1

{
⟨∇ϕg

α
ϕt

i
[j],−ηt

2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩ + δ(ηt
2)2

2

(
∥∇ϕLC-Net(Θt+1(ϕt))∥2

2 + ∥ξ(t)∥2
2

+ 2⟨∇ϕLC-Net(Θt+1(ϕt)), ξ(t)⟩
)}

∗H
(
y

(Sj )
i , yi

)
+ 1
n

n∑
i=1

{
⟨∇ϕg

β

ϕt
i

[j],−ηt
2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩

+ δ(ηt
2)2

2

(
∥∇ϕLC-Net(Θt+1(ϕt))∥2

2 + ∥ξ(t)∥2
2 + 2⟨∇ϕLC-Net(Θt+1(ϕt)), ξ(t)⟩

)}
∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)
(37)

For the second term from eq. 36,
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Combining Eq. 37 and Eq. 38 we can rewrite Eq. 36 as,

LSj (θt+1
j , ϕt+1) − LSj (θt

j , ϕ
t) ≤ 1

n

n∑
i=1

{
⟨∇ϕg

α
ϕt

i
[j],−ηt

2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩

+ δ(ηt
2)2

2

(
∥∇ϕLC-Net(Θt+1(ϕt))∥2

2 + ∥ξ(t)∥2
2 + 2⟨∇ϕLC-Net(Θt+1(ϕt)), ξ(t)⟩

)
∗H

(
y

(Sj )
i , yi

)
+ ⟨∇ϕg

β

ϕt
i

[j],−ηt
2[∇ϕLC-Net(Θt+1(ϕt)) + ξ(t)]⟩

+ δ(ηt
2)2

2

(
∥∇ϕLC-Net(Θt+1(ϕt))∥2

2 + ∥ξ(t)∥2
2 + 2⟨∇ϕLC-Net(Θt+1(ϕt)), ξ(t)⟩

)
∗ τ2 ∗KL

(
y

(Sj )
i , y

(T )
i

)}
−

(
ηtj

1 − L(ηj
1)2

2

)
∥∇LSj (θt

j , ϕ
t)∥2

2 + L(ηj
1)2

2 ∥ψ(t)∥2
2 − (ηtj

1 − L(ηj
1)2)⟨∇LSj (θt

j , ϕ
t), ψ(t)⟩ (39)

Taking expectation on both sides and since E[ξ(t)] = 0,E[ψ(t)] = 0, we have
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Summing up the above inequalities over t = 1, ...,∞ in both sides, we obtain,
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for some constant C. Based on the inequality:

|(∥a∥+ ∥b∥)(∥a∥ − ∥b∥)| ≤ ∥a+ b∥∥a− b∥, (46)

we then have:
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According to the above inequality, we can conclude that our algorithm can achieve
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The proof is completed.

B Training Details

B.1 Dataset Details

We conduct experiments using the following real-world datasets to showcase the effectiveness of our approach,

CIFAR-100 (Krizhevsky, 2009). The dataset consists of a total of 60K examples, distributed across 100
distinct classes. Each example in this dataset comprises images with a resolution of 32× 32× 3. Specifically,
the training set encompasses 50,000 examples, while the remaining 10K serve as the testing set. In our
experimental setup, approximately 5K examples are allocated for use as a validation set for our C-Net. For
the other baseline models, these validation examples are utilized for hyper-parameter tuning.

ImageNet (Russakovsky et al., 2015).

Tiny-ImageNet (Le & Yang, 2015). This dataset is derived from the extensive ImageNet-1K dataset
(Russakovsky et al., 2015). This dataset encompasses a total of 100K images, which have been downsampled
to a 64 × 64 resolution, representing a subset of 200 classes mirroring those in the ImageNet-1K dataset,
with each class containing precisely 500 images. As part of our experimental protocol, we have set aside an
independent validation set comprising 10K examples, which is utilized for both our proposed method and the
baseline models.
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Clothing-1M (Xiao et al., 2015a). This dataset consists of 10,00,000 noisy label training examples spread
across 14 class labels of clothing items taken from various online shopping websites. Each example consists
of an image with resolution 224 × 224 × 3. The validation and test set consists of 14,313 and 10,526
examples respectively. The dataset also contains 47,560 clean examples, but we do not use that portion for
our experiments. It is a dataset with noisy labels, since the data is collected from several online shopping
websites and include many mislabelled samples.

Inst. CIFAR-100 (Xia et al., 2020b) This dataset contains manually corrupted version (with an error
rate τ) of the CIFAR-100 (Krizhevsky, 2009) dataset. This is done by first constructing a transition matrix
T (x), where Tij(x) is the probability that the corrupted label is j, given the true label is i; while keeping the
overall error rate as τ . Then, the labels are flipped according to the defined transition probabilties. In our
experiments, the training uses 50K examples with noisy labels, corrupted by the above method, while the
remaining 10K examples, which serve as testing set have no label noise. Approximately 5K noisy examples are
allocated for use as a validation set for our C-NET. The overall label flip rate τ , used in our experiments was 0.2.

iWildCam-2020 (Beery et al., 2020) The dataset is set of collection of images collected using the heat trap
and motion activated cameras for the better understanding of wildlife and biodiversity. There is so wide
diversity in lighting, camera angle, backdrop, vegetation, color, and relative animal frequencies between
different camera traps, and also the number of animals of a particular species varies a lot, hence the data
about different spices also vary similarly. In our experimentation we trained the models using approx 100k
training, 12k validation and 12k test images across 216 classes.

Tiny-ImageNet-C (Hendrycks & Dietterich, 2019b). This dataset is a downsampled version of the ImageNet-
C dataset, which consists of 15 diverse corruption types applied to the ImageNet-1K (Russakovsky et al.,
2015) validation dataset. These corruptions have been drawn from 4 main categories - noise, blur, weather,
and digital. Each corruption has 5 severity levels, 1 being the least severe and 5 being the most severe. In
our experiments, the models trained on Tiny-ImageNet (Le & Yang, 2015) dataset, with train-validation split
of 90K and 10K examples respectively, are tested on Tiny-ImageNet-C for testing robustness gains.

For all the datasets, we use the data augmentation methods, using the torchvision’s transforms module.
We use RandomCrop, RandomResizedCrop, RandomSizedCrop, RandomHorizontalFlip, Normalize, and
ColorJitter for our purpose. Augmentation methods were applied on both datasets, over all experiments,
baselines, overall models.

B.2 Model Details

In Section 4.1, we introduce several smaller ResNet models, specifically ResNet10-xxxs, ResNet10-xxs,
ResNet10-xs, ResNet10-s, ResNet10-m, and ResNet10-l. These models are adopted from Kag et al. (2023),
and in Table 9, we compare their architectural details with well-established ResNet models like ResNet10,
ResNet18, and ResNet34. Similar to the standard ResNet models, these newer, more compact versions also
employ the traditional ’BasicBlock’ as their fundamental building block. The architectural structure consists
of a convolutional block, four stages of residual blocks, an adaptive average pooling layer, a convolutional
block, and a classifier layer. The sole variation among the various capacity variants within this experimental
setup is the number of filters in each stage and the residual block. Additionally, Table 9 provides information
about the number of parameters and multiply-addition (MAC) operations for each model for the datasets
CIFAR-100 and Tiny-ImageNet.

B.3 Hyper-Parameters

For all the KD baselines listed in Section 4.2 and MC-Distil, we use temperature τ = 2, employ the SGD
optimizer to train the student models and ADAM optimizer (Kingma & Ba, 2014) to train C-Net. We
use a batch size of 400 for all datasets. We train the student models for 300 epochs on CIFAR-100, Inst.
CIFAR-100, Clothing-1M, Tiny-ImageNet and Tiny-ImageNet-C datasets; and for 100 epochs on iWildCam
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Architecture Filters
Basic block CIFAR-100 Tiny-Imagenet

Repeats MACs Params MACs Params
ResNet10-xxs [8, 8, 16, 16] [1, 1, 1, 1] 2 M 13 K 8 M 15 K
ResNet10-xs [8, 16, 16, 32] [1, 1, 1, 1] 3 M 28 K 12 M 31 K
ResNet10-s [8, 16, 32, 64] [1, 1, 1, 1] 4 M 84 K 16 M 90 K
ResNet10-m [16, 32, 64, 128] [1, 1, 1, 1] 16 M 320 K 64 M 333 K
ResNet10-l [32, 64, 128, 256] [1, 1, 1, 1] 64 M 1.25 M 255 M 1.28 M
ResNet10 [64, 128, 256, 512] [1, 1, 1, 1] 253 M 4.92 M 1013 M 5 M
ResNet18 [64, 128, 256, 512] [2, 2, 2, 2] 555 M 11.22 M 2221 M 11.27 M
ResNet34 [64, 128, 256, 512] [3, 4, 6, 3] 1159 M 21.32 M 4637 M 21.38 M

Table 9: Comparision of newly introduced smaller ResNet with the standard ResNet models

dataset, while updating C-Net every 20 epoch (i.e., L = 20). We use cosine annealing (Loshchilov & Hutter,
2017) as the learning rate schedule for training the student models. We warm start each student model by first
training it using the cross-entropy loss without using the teacher model for all KD baselines and MC-Distil.
For all datasets, we perform a grid search on 0.1, 0.05 for the learning rate, on 1, e− 5, 5e− 5, 1e− 4 for the
weight decay, and 0.65, 0.75, 0.85, 0.95 for the momentum. For the C-Net training we use a learning rate of
1e− 3 and set weight decay to 1e− 4.

B.4 Baselines

We compare MC-Distil with the following SOTA Knowledge distillation baselines:

Teacher Assistant Knowledge Distillation (TAKD) (Mirzadeh et al., 2020) This approach introduces
a multi-step distillation process that leverages intermediate-level teachers to facilitate the efficient transfer
of knowledge from a large pre-trained teacher network to a more compact student model. To realize this,
we employ a teacher network identical to our own and enlist fellow student models with higher learning
capacities to serve as intermediate models in this knowledge distillation process.

Densely Guided Knowledge Distillation (DGKD) (Son et al., 2021) Much like TAKD, this approach
employs several intermediate models; however, it distinguishes itself by training the final student model
through a single distillation step. In addition to the teacher KL divergence loss, the training objective for the
final student model incorporates the KL divergence loss obtained from the pre-trained intermediate models.

Robust Model Compression (RMC) (Du et al., 2023). It uses multiple students with various levels of
sparsity and interprets the variance in their predictions for each instance as a measure of task complexity.
Subsequently, it refines the teacher predictions based on this complexity metric, resulting in a more robust
knowledge distillation process. In our experiments, we employ students with diverse learning capacities as a
substitute for models with different levels of sparsity, achieving similar benefits.

Deep mutual information (DML)(Zhang et al., 2018) It is a collaborative learning paradigm that leverages
the interactions among multiple neural networks to enhance their collective performance. In DML, a group of
neural networks, often referred to as student models, collaboratively learns by exchanging information with
each other during training. This is achieved by using the predictions or feature representations of one model
to guide the learning process of others. The collaborative nature of DML allows the models to exploit the
diverse knowledge learned by their peers, fostering a mutual learning dynamic.

SHAdow KnowlEdge transfer framework (SHAKE) (Li & Jin, 2022) It is a novel knowledge distillation
framework designed to enhance the transfer of knowledge from a teacher model to a student model in deep
learning. Introduced to address the challenges associated with large capacity gaps between teacher and
student models, SHAKE employs a pseudo-teacher concept. This pseudo-teacher consists of a set of additional
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learnable layers attached to the backbone of the teacher model. What sets SHAKE apart is its ability to
dynamically adapt to the student model during training.

In experiments where we train with noisy datasets, we compare against additional two bilevel optimisation-
based reweighting schemes,

Learning to Reweight(L2R) (Ren et al., 2018) It is a machine learning paradigm that focuses on training
models to dynamically assign weights to different instances in a dataset during the learning process. The
fundamental idea behind L2R is to adaptively adjust the significance of individual data points, emphasizing
more informative instances and de-emphasizing noisy or less relevant ones. This approach is particularly
valuable in scenarios where the training data may be imbalanced or subject to noise, helping models prioritize
the most crucial samples for better generalization.

Meta-Weight-Net (MWN) (Shu et al., 2019b) Like L2R, MWN also learns weights assigned to individual
samples based on their specific characteristics or importance. However, this explicit mapping of sample
weights is learned through a meta-learning framework. Meta-Weight-Net aims to address challenges related
to imbalanced or noisy datasets by explicitly learning a mapping function that adapts sample weights during
the training process. By doing so, the model can assign higher importance to informative or challenging
samples and reduce the impact of less relevant ones.

B.5 Compute Resources

We our experiments on a mixture of GPUS viz. A100s and RTX 2080 as our experiments don’t need any
sophisticated modern GPUs. MC-Distil memory requirements are slightly higher that traditional KD as we
train student co-horts simultaneously. The additional memory requirements depend the number of student
co-horts used and size of co-horts.

C Additional Experiments

We have released anonymized code at the URL: https://anonymous.4open.science/r/Multinet-E01D.

C.1 Ablations: Changing no. of student cohorts

To investigate the impact of introducing additional students in the presence of C-Net, we conducted an
experiment in which we incrementally introduced student models, one at a time. We present the results of
these experiments in Figure 5. This experiment was conducted in two distinct settings: one in which each
subsequent addition involved a student with a larger learning capacity. This is presented in Figure 5a and 5b.
The other setting is in which each additional introduced student is of a smaller learning capacity as shown in
Figure 5c and 5d. In both settings, we perform knowledge distillation with two teachers viz., ResNet10 and
Resnet18. We note that across different teachers, introducing additional students improves the performances
of all the students participating in the training process. This is much more pronounced in the setting where
larger students are added.

C.2 Ablations: Varying the size of C-Net

In table 10 presents an analysis of test accuracies on the CIFAR100 dataset for different student architectures
under the influence of various sizes of the coordinating network (C-Net).We observe that, in the majority of
instances, there are negligible alterations in the performance of the student model when it is trained with
coordinating networks (C-Net) of varying sizes. The term "performance" here refers to the model’s accuracy,
and the lack of significant changes suggests that the choice of C-Net size has minimal impact on the student
model’s ability to capture and generalize from the teacher’s knowledge. This stability across different C-Net
sizes indicates robustness in the knowledge distillation process, emphasizing that the coordination mechanism
implemented by C-Net is effective across a range of architectural scales.
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Figure 5: Analysis of the effect of introducing student model cohorts for different learning capacities in
meta-collaboration setting.

Teacher
Student C-Net

ResNet10-L ResNet10 ResNet18 ResNet32

ResNet10 75.18

ResNet10-xxs 36.13 34.95 36 36.38
ResNet10-xs 47.4 46.88 47.19 47.69
ResNet10-s 56.93 57.48 57.7 58.24
ResNet10-m 68.65 67.95 67.91 69.11

ResNet18 76.99

ResNet10-xxs 36.12 34.48 35.28 36.14
ResNet10-xs 47.68 46.44 46.98 47.68
ResNet10-s 57.12 57.82 57.65 58.21
ResNet10-m 69.72 69.72 68.96 69.62

ResNet34 79.47

ResNet10-xxs 35.93 34.71 35.65 36.13
ResNet10-xs 47.31 46.44 46.42 47.52
ResNet10-s 57.64 57.3 56.89 57.7
ResNet10-m 69.28 68.2 67.54 68.49

ResNet10-l 41.25

ResNet10-xxs 35.88 34.35 35.76 35.9
ResNet10-xs 47.28 45.8 46.59 47.42
ResNet10-s 57.51 56.61 56.49 57.74
ResNet10-m 68.86 67.94 67.49 68.54

Table 10: The table showcases the test accuracies for different student-teacher-coordinator network combina-
tions, providing insights into the impact of varying C-Net sizes on model performance. The table serves as a
comprehensive analysis of how different combinations influence the final model accuracies in the CIFAR100
dataset.

C.3 Robustness of MC-Distil trained models

For the models trained with Resnet-18 serving as the teacher model on the TinyImagenet dataset in Table
1, we present their performance on TinyImageNet-C (Hendrycks & Dietterich, 2019a) (see appendix B.1)
in Table 11 incorporating all baseline models and diverse corruption levels. We assess the resilience of
models whose perfromance was reported in Table 1 when confronted with data distribution mismatches.
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Student CE KD MCD DGKD DML SKAKE Meta-Distill MC-Distil

Corruption level 1 Accuracies
RN10-xxs 11.25 11.38 10.61 10.77 9.99 11.47 11.02 12.05
RN10-xs 14.68 15.82 14.67 15.43 15.51 16.56 16.02 16.73
RN10-s 20.88 21.97 21.94 23.18 20.29 22.58 23.97 24.88
RN10-m 26.91 28.56 27.08 29.56 28.09 30.40 30.43 31

Corruption level 2 Accuracies
RN10-xxs 10.65 10.79 9.54 10.42 9.44 10.88 10.52 11.3
RN10-xs 13.75 14.6 13.72 14.60 14.56 15.42 14.78 15.52
RN10-s 19.28 20.64 20.46 21.26 18.74 20.74 21.93 23.04
RN10-m 24.76 25.87 24.36 26.97 26.20 27.94 27.39 28.67

Corruption level 3 Accuracies
RN10-xxs 8.66 8.78 7.54 8.93 8.46 9.29 8.58 9.42
RN10-xs 10.94 11.54 11.08 11.82 11.96 12.19 11.78 12.58
RN10-s 15.68 16.85 16.71 16.95 14.76 16.95 17.65 18.79
RN10-m 19.7 21.07 18.79 22.20 21.45 22.23 20.83 22.63

Corruption level 4 Accuracies
RN10-xxs 4.92 4.66 4.38 5.52 5.05 5.57 4.6 5.87
RN10-xs 6.77 6.96 5.88 7.54 6.89 6.57 7.35 7.39
RN10-s 9.41 9.92 10.21 9.42 8.35 10.29 9.77 10.8
RN10-m 11.12 12.28 10.74 12.74 12.87 12.44 11.54 12.03

Corruption level 5 Accuracies
RN10-xxs 3.58 3.15 3.44 3.98 3.66 4.29 3.33 4.4
RN10-xs 5.14 5.18 4.34 6.23 5.15 5.05 5.47 5.53
RN10-s 6.94 7.24 7.33 7.07 6.19 7.93 7.15 7.38
RN10-m 8.16 9.09 7.86 9.73 9.46 9.48 8.44 8.89

Table 11: Comprehensive table presenting an assessment of model (trained with TinyImageNet in Table1) robustness
by conducting inference on the TinyImagenet-C dataset (Hendrycks & Dietterich, 2019a) across different degrees of
image corruption, alongside results for all baseline models. The columns indicate the method employed for training
the model on the TinyImagenet dataset, utilizing Resnet-18 as the teacher model.

Notably, across various corruption levels and teacher-studentś combinations, MC-Distil demonstrates robust
performance, even though it was not explicitly tailored for handling distributional shifts between training and
test datasets. Specifically, at lower corruption levels, models trained with MC-Distil exhibit a performance
advantage of 1-2% compared to other baselines. Even at higher corruption levels, MC-Distil maintains
competitiveness with the baselines.

C.4 Standard deviation and statistical significance results:

In Table 12, we show the p-values of one-tailed Wilcoxon signed-rank test Wilcoxon (1992) performed on every
single possible pair of knowledge distillation strategies to determine whether there is a significant statistical
difference between the strategies in each pair, across all datasets. Our null hypothesis is that there is no
difference between the knowledge distillation strategies pair. From the results, it is evident that MC-Distil
significantly outperforms other baselines at p < 0.05.

Table 13 shows the standard deviation results over three training runs on CIFAR100 and tiny-Imagenet
datasets. The results show that the MC-Distil has the least standard deviation compared two of the most
competitive baselines viz. DGKD and MetaDistil. We note that DGKD has large standard deviations owing
to not having a principled way of introducing student cohort models.
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KD 1.53e-05
TAKD 1.53e-05 0.0005
DGKD 1.53e-05 1.53e-05 0.0006
RMC 4.78e-05 0.99 0.9992 1
DML 1.53e-05 0.978 1 1 0.1156

SHAKE 4.78e-05 0.115 0.64714 0.9855 0.0222 0.0416
MetaDistil 1.53e-05 1.53e-05 0.0005 0.5896 4.58e-05 1.53e-05 0.001
MC-Distil 1.53e-05 1.53e-05 1.53e-05 7.63e-05 1.53e-05 1.53e-05 0.00015 1.53e-05
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Table 12: Pairwise significance p-values using Wilcoxon signed rank test

CIFAR100 Test Accuracies
Teacher Student CE KD DGKD MetaDistil MC-Distil

ResNet10 75.18

ResNet10-xxs 32.41± 0.517 35.23± 1.132 34.57± 0.453 35.47± 0.737 36.23± 0.247
ResNet10-xs 42.42± 0.724 45.62± 0.722 44.89± 1.775 46.86± 0.836 47.74± 0.244
ResNet10-s 52.7± 0.384 55.64± 0.106 56.25± 0.5445 57.25± 0.535 58.42± 0.275
ResNet10-m 64.19± 0.142 67.05± 0.191 67.27± 0.577 68.75± 0.185 69.45± 0.427

ResNet18 76.99

ResNet10-xxs 32.41± 0.517 35.19± 1.415 34.14± 1.259 35.26± 0.745 36.03± 0.442
ResNet10-xs 42.42± 0.724 45.49± 0.412 46.18± 1.055 46.23± 0.42 47.24± 0.459
ResNet10-s 52.7± 0.384 55.49± 0.315 56.07± 0.578 57.26± 0.131 57.63± 0.176
ResNet10-m 64.19± 0.142 66.42± 0.095 66.73± 0.548 68.02± 0.49 68.52± 0.237

Tiny-ImageNet Test Accuracies

ResNet10 44.04

ResNet10-xxs 13.68± 0.46 14.4± 0.526 14.2± 0.475 14.47± 0.597 15.33± 0.521
ResNet10-xs 18.78± 0.231 20.2± 0.624 20.90± 0.351 20.850.692 22.07± 0.285
ResNet10-s 24.86± 0.362 27.83± 0.779 27.59± 0.605 28.07± 0.89 29.62± 0.263
ResNet10-m 33.93± 0.493 35.86± 0.332 35.82± 0.398 37.64± 1.452 38.46± 0.068

ResNet18 47.94

ResNet10-xxs 13.68± 0.46 14.52± 0.368 14.42± 0.481 14.68± 0.595 15.26± 0.105
ResNet10-xs 18.78± 0.231 20.28± 0.5 20.58± 0.931 20.95± 1.038 21.36± 0.36
ResNet10-s 24.96± 0.362 27.26± 0.874 27.82± 0.378 28.45± 0.983 30.36± 0.006
ResNet10-m 33.93± 0.493 35.9± 0.724 35.96± 0.612 37.82± 1.562 39.11± 0.295

Table 13: Standard deviation results for CIFAR100 and Tiny-Imagenet datasets for 3 runs. We compare
MC-Distil with two most competitive baselines.

D Limitations & Social Impact

We have presented a novel metacollaborative distillation–where students of different capacities are codistilled
from a single teacher. While the initial results wide range of student & teacher architectures and model
sizes are encouraging, more work is needed to understand under what conditions such adaptive mixing
optimizations for metacollaborative distillation can provide gains. Our experiments are proof-of-concept
on widely used benchmarking datasets; future work will explore whether similar gains can be realized in
real-world applications as well. Our proposal involves a bi-level optimization objective (for which we provide a
cheap approximate meta-learning preocedure) – the tradeoff of increased training time vs increased accuracy
may depend on the specific application context.
Our work is a fairly general-purpose optimization procedure for improving knowledge transfer from a teacher
model to a very small student model and therefore tremendously improving the inference time. This could
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yield incremental improvements to a broad range of ML applications, and as a result benefit those applications.
We do not anticipate any inherent risk of negative social impact from our work, over and above the risk
inherent in the ML application itself.
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