
Shapeshifter: a Parameter-efficient Transformer
using Factorized Reshaped Matrices

Aliakbar Panahi1,2,∗ Seyran Saeedi1,3,∗ Tom Arodz1,†

1 Department of Computer Science, Virginia Commonwealth University, Richmond, VA
2 C3 AI, Redwood City, CA

3 Dept. of Electrical and Computer Engineering, University of California, Santa Barbara, CA

ali.panahi@c3.ai seyran@ucsb.edu tarodz@vcu.edu

Abstract

Language models employ a very large number of trainable parameters. Despite
being highly overparameterized, these networks often achieve good out-of-sample
test performance on the original task and easily fine-tune to related tasks. Recent
observations involving, for example, intrinsic dimension of the objective landscape
and the lottery ticket hypothesis, indicate that often training actively involves only
a small fraction of the parameter space. Thus, a question remains how large a
parameter space needs to be in the first place — the evidence from recent work on
model compression, parameter sharing, factorized representations, and knowledge
distillation increasingly shows that models can be made much smaller and still per-
form well. Here, we focus on factorized representations of matrices that underpin
dense, embedding, and self-attention layers. We use low-rank factorized represen-
tation of a reshaped and rearranged original matrix to achieve space efficient and
expressive linear layers. We prove that stacking such low-rank layers increases
their expressiveness, providing theoretical understanding for their effectiveness
in deep networks. In Transformer models, our approach leads to more than ten-
fold reduction in the number of total trainable parameters, including embedding,
attention, and feed-forward layers, with little degradation in on-task performance.
The approach operates out-of-the-box, replacing each parameter matrix with its
compact equivalent while maintaining the architecture of the network.

1 Introduction

Natural language models involve large number of parameters. A single encoder-decoder Transformer
[1] in its base variant has about 44 million parameters, not counting the word embedding matrix,
which adds another 10 million or more, depending on the chosen vocabulary or tokenization scheme.
Base variant of encoder-only BERT [2], including the embedding, has about 108 million parameters.
GPT-3 [3] has about 175 billion parameters, and the largest of the Switch Transformer [4] models has
1.5 trillion. This explosion in the model size has led to increased interest in approaches for reducing
the number of parameters in the model.

Models with high-dimensional parameter space have much lower intrinsic dimension [5], that is,
training trajectory can be successfully restricted to a random, smaller-dimensional subspace, even
∗Work performed while at Virginia Commonwealth University.
†Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



though training a small-parameter architecture is often less successful. These observations have been
recently extended to the fine-tuning trajectories of language models [6]. Lottery ticket hypothesis
[7, 8], recently demonstrated to hold also for language model fine-tuning [9, 10], shows that smaller
subnetworks can be selected from a large model, re-trained in isolation, and perform as well as
the large model; what those subnetworks are is not known a prior, in absence of the trained large
model, though. Some approaches for reducing model size build on this observation to train a smaller
model based on an existing large model, for example a 66 million parameter DistillBERT [11]
student has been distilled from 108 million parameter BERT-base [2] teacher with little loss in
quality. Alternatively, distillation has been used, for example in the context of machine translation,
to increase the quality of the models while maintaining their size [12, 13]. Other approaches train a
reduced-parameter model de novo, without relying on an already trained large model. For example,
DeLighT [14] uses an alternative parameterization of the multi-headed self-attention based on group
linear transform to reduce a 62 million parameter Transformer to 22 million.

One simple way to reduce model size involves factorized matrix representations. ALBERT [15]
employs a rank r decomposition of a d×nvocab embedding matrix storing d-dimensional embedding
vectors for each of the nvocab tokens by using a stack of two linear layers, d× r on top of r× nvocab.
Similar low-rank decomposition is also used implicitly in the multi-headed self-attention in the generic
Transformer [1] with hidden dimension d and nheads self-attention heads. In each Transformer head,
a r = d/nheads-rank factorized representation involving d × d/nheads key (K) and query (Q)
matrices are used, with the pairwise self-attention scores for sequence x calculated using xTKTQx,
instead of xTWx involving a full general attention d× d trainable matrix W as originally considered
in trainable-attention encoder-decoder LSTM models [16]. In both cases, the models are trained from
a random initialization of the factorized parameter space, instead of attempting to find the lowest-error
factorized representation of an already trained original model.

We explore here a Transformer model that uses an alternative way to decompose a matrix into two
smaller matrices. Instead of standard low-rank factorization as above, it involves reshaping and
reordering matrix dimensions prior to the decomposition, and is equivalent to a sum of Kronecker
products with an efficient implementation. The compact model based on the smaller matrices is
trained de novo, and matrices in the compact model are not aimed to be approximations of the
matrices in the original model. For non-square model matrices, the approach allows for increased
reduction in parameters for the same decomposition rank. For square matrices, the benefits come
from increased expressiveness of the decomposition for the same rank, allowing for reducing the
rank needed to preserve model accuracy, and thus reducing the model size. Our main contribution
is proving that stacking multiple linear layers decomposed this way increases the expressiveness
of the network, unlike stacking multiple low-rank layers factorized in the standard way, which
can only map into a subspace of dimensionality equal to the rank. Empirically, we show that the
decomposition can reduce the size of a simple encoder-decoder Transformer to as little as 4 million
parameters, including 2 million for the model and 2 million for the embeddings. The technique can
be employed automatically to any matrix, including embedding, dense, attention, and output layers,
without requiring any modification of the model architecture.

2 Related Work

The two approaches most closely related to ours are word2ket embeddings [17] and parameterized
hypercomplex multiplication (PHM) linear layers [18]. Word2ket represents input embedding matrix
in language models via a sum of Kronecker products, each involving two smaller matrices. It achieves
above 100-fold reduction in the number of trainable embedding parameters; however, their approach
relies on lazy tensors to efficiently extract embeddings for a limited number of words in the input
sequence, and does not extend to output embedding matrix or other model matrices that perform
general linear transformations of their input vectors. PHM linear layers [18] arise from generalizing
hypercomplex number layers [19] to arbitrary dimensionality r, with the arithmetic over the numbers
learned during training. For a given dimensionality r, the arithmetic takes form of a sum of r
Kronecker products. Irrespective of the original matrix size n×m, each Kronecker product involves
a small r × r matrix and a larger n/r × m/r matrix, which together have r3 + nm/r trainable
parameters. For r used in practice, the second term dominates, resulting in r-fold reduction in size.
PHM layers with r as large as 16 have been demonstrated to be effective, leading to a reduction of a
44 million parameter Transformer to a 2.9 million parameter PHM-Transformer. These numbers do

2



not include the embedding matrix for token embeddings which is not reduced in size by the PHM
approach; and which for example for 32, 000 BPE tokens requires about 16 million parameters.

Both of the Kronecker-based compact language model approaches [17, 18], as well as Kronecker-
based convolutional [20] and recurrent networks [21], demonstrate that a sum of Kronecker products
leads to very compact representations. Here, we advance theoretical understanding of why this
low-rank representation has advantages in terms of expressivity compared to a standard matrix
factorization with the same rank. We also provide a more efficient, more general Kronecker-based
representation. Unlike word2ket, it can be used in linear transformations anywhere in the model,
an unlike PHM it also applies to embedding matrices. To represent an n×m matrix, our approach
requires 2r

√
mn instead of r3 + nm/r parameters required by PHM. For example, for r = 16, the

highest used by PHM, for a Transformer with hidden dimension of 512, each 512×2048 feed-forward
matrix in the self-attention head would be reduced from 1 million parameters to 69,632 parameters
by PHM, but to 16,384 by our approach.

Kronecker product of two matrices is a concrete-basis representation of a finite-dimensional linear
operator defined by a tensor product of two underlying linear operators. Thus, Kronecker-product-
based representations, including PHM layers and ours, can be seen as special case of a more general
family of higher-order tensor-product-based representations. Kronecker-based representation unfolds
a n×m matrix from two smaller matrices, n1 ×m1 and n2 ×m2, with m = m1m2 and n = n1n2.
In tensor-based representations, this is generalized to m =

∏o
j=1mj and n =

∏o
j=1 nj for some

tensor order o, leading to unfolding the n×m matrix from an o-way tensor that is then decomposed
using low rank leading to reduction in parameters. For example, the tensor-train representation [22]
represents a matrix using a series of core tensors with matching ranks. Tensor decomposition has been
used successfully in convolutional networks [23, 24] and recurrent networks [25]. In the context of
language models, tensor-train representation has been used to construct tensorised embeddings [26],
which use order-three tensor representation to obtain 60-fold reduction in embedding in a sequence-
to-sequence Transformer, and also use order-six tensors to achieve almost 400-fold reduction in an
LSTM model for sentiment analysis. Similarly, word2ket [17] uses order-four tensor representation
to achieve more than 90,000-fold reduction in the embedding size for question-answering LSTM
model. Beyond embeddings, Tensorized Transformer [27] uses block-term tensor decomposition –
a combination of CP and Tucker decompositions – to reduce the multi-headed self-attention layer
with nheads by a factor 1/nheads, leaving other layers intact; this allowed for reducing a 52M
Transformer down to 21M trainable parameters, with little drop in BLEU scores on WMT’16 En-De
translation task compared to original Transformer. So far, none of the Kronecker- or tensor-product-
based approaches have been applied comprehensively to all components of a Transformer model –
embeddings, attention, and feed-forward layers.

3 Limitations of Factorized Matrices in Deep Networks

A simple approach for reducing the size and complexity of a model involves replacing each linear
transformation n×mmatrixW with its factorized, low-rank representation involving an n×r matrix
A and an r ×m matrix B, with the rank r � m,n. During training and inference, the product AB
is used instead of W , essentially replacing W with a two linear layers, A stacked on B. In this way,
the number of parameters reduces from nm needed to represent W to r(n+m) needed to represent
A and B.

One potential approach to use the factorized representation is to take an already trained model, and
factorize each matrix Wj into its low-rank approximation Ŵj = AjBj using a method such as SVD.
However, analyzing an idealized deep model with linear activations shows that errors from the layers
add up [28], ‖

∏
jWj −

∏
j Ŵj‖ =

∑
j‖Wj − Ŵj‖. Instead, a typical approach, used also here, is to

train a model de novo in its factorized form, using randomly initialized matrices Aj and Bj , without
attempting to approximate individual linear transformations of the non-factorized model.

Representing an n × m matrix W as a low-rank product AB limits the linear transformation –
the output is constrained to be a low-dimensional subspace of Rn. Stacking rank-r factorized
linear transformations into an idealized deep network with linear activations does not improve the
expressiveness, the dimensionality of the space of possible outputs is still constrained by the smallest
of the decomposed layers rank. While this may have regularizing effect for medium values of the
rank, it may prevent from using very small ranks and thus from creating compact models.

3



4 Stacked Kronecker Product-based Representations

For n = m, the standard factorized (n× r) (r ×m) → n × m representation is optimal among
pairwise-product-based representations in the sense that all elements of a column of A are multiplied
with each element of a row of B. For non-square matrices, for example matrix A is smaller than B, a
more efficient all-pairs product representation can be made by increasing the size of A and decreasing
the size of B.

In Shapeshifter, instead of the standard (n× r) (r ×m) → n ×m factorized representation, we
rearrange the mn parameters of the original matrix W into a

√
mn×

√
mn matrix3 W ′, and then

use a factorized representation of W ′ as a
√
mn× r matrix A and an r ×

√
mn matrix B:(√

nm× r
) (
r ×
√
nm
) multiply−−−−→

√
nm×

√
nm

reshape−−−−→
√
n×
√
m×

√
n×
√
m

transpose−−−−−→
√
n×
√
n×
√
m×

√
m

reshape−−−−→ n×m

This representation uses 2r
√
mn parameters instead of nm.

We apply this representation to all matrices in attention and feed-forward layers in all multi-head
attention blocks, and to the embedding matrices. For non-square matrices, the representation results
in parameter saving compared to standard factorization with the same rank r. For square matrices, no
parameter saving is achieved. However, as we show below, the way the matrix is decomposed allows
for increased expressive power.

For r = 1, the n×m matrix W arises from taking products of each element from
√
nm× 1 matrix

A with each element from 1 ×
√
nm matrix B. It is known to be equivalent [29] to a Kronecker

product A⊗B involving
√
n×
√
m matrices A, B resulting from reshaping the single-column and

single-row matrices, respectively. Beyond r = 1, the representation is equivalent to representing
W as sum of r Kronecker products, W =

∑r
j=1Aj ⊗ Bj . Compared to the equivalent sum of

Kronecker-products representation , using the matrix factorization representation avoids the explicit
summation of r terms. In current libraries, it results in a simpler implementation involving only
matrix multiplication, reshaping and transposing, and is more efficient compared to performing
individual Kronecker products followed by an explicit summation along the rank dimension.

4.1 Expressiveness of stacked Kronecker-product Layers

Certain types of matrices can easily be expressed as a sum of Kronecker products, but not in a r-rank
factorized matrix form. For example, identity mapping on Rn does not admit low-rank factorization,
but it can be decomposed as a single Kronecker product of two smaller identity matrices. More
broadly, the output of a sum of Kronecker products layer is not limited to r-dimensional subspace; a
Kronecker product of two orthogonal matrices is an orthogonal matrix [30], thus even a single A⊗B
term can model isomorphisms Rn → Rn. The converse is not true, most matrices require Kronecker
representation with a high rank, and the question of approximating various types of matrices with a
sum of Kronecker products has received ample attention [31, 32, 30, 33].

Here, we focus on a different question – how does the expressive power of a stack of layers, each
involving a sum of Kronecker products instead of generic linear transformation, grow with the
network depth. We analyze an idealized network formed by a stack of Kronecker layers with linear
activations. Given high-enough rank, a single layer is enough to represent any matrix. We first
analyze what the depth needs to be if rank is restricted to two, and then investigate how quickly the
depth can be reduced as the rank increases.

Below, we use the following notation. Support supp(x) of vector x is a set of indices at which x
is not null. We use [n] = {1, ..., n}. I is identity matrix. 1jk is a matrix with unity at row j and
column k and null elsewhere; 1k is a shorthand for 1kk. To avoid ambiguity, we use square brackets
for individual entries of a matrix or a vector; thus A[j, :] represents j-th row of matrix A, while Aj
represents j-th matrix out of a series, as used above. For index set Z of cardinality k and a square
matrixA, byA[Z] we represent a k×k submatrix ofA obtained by taking the intersection of columns
and rows from set Z.

We first define k-variant matrices, which will be a tool in exploring stacked layers.
3If

√
mn is not an integer, we round it up, and use a submatrix as representation of W .

4



Definition 1 (k-variant matrix). For an n × n orthogonal matrix U and an index set Z ⊂ [n], by
writing UZ we indicate that both U and its inverse UT act as identity on all the dimensions not in set
Z. That is, for each x ∈ Rn, supp(Ux− x) ⊆ Z and supp(UTx− x) ⊆ Z. If Z has cardinality at
most k, we call UZ a k-variant matrix.

The notion of k-variant matrices generalizes Givens rotation matrices [34] used for example in QR
decomposition. A Givens rotation in n dimensions is any rotation that acts on a plane spanned by two
of the n coordinate axes – it is thus 2-variant. QR decomposition can be used to show that each matrix
can be represented as a product of 2-variant matrices. We will then show that 2-variant matrices, or
more broadly, k-variant matrices for k ≤

√
n, can be represented using sum of Kronecker products.

Theorem 2 (Decomposition into layers involving Kronecker products). Let n = m2 for somem ∈ N.
Any orthogonal n× n matrix U can be represented as

U =

L∏
i=1

2∑
j=1

Aij ⊗Bij ,

where Aij and Bij are
√
n×
√
n matrices, and L = O

(
n2
)
.

Proof. QR decomposition using Givens matrices will result in Q being a product of up to n(n− 1)/2
Givens rotations, which are 2-variant, and R an upper triangular matrix which for orthogonal matrices
is a diagonal matrix with +1 and −1 elements. The sign of any pair of −1 diagonal entries can be
negated by a 2-variant matrix; at most n/2 such matrices are needed to convert the diagonal into
identity, since there are at most n− 1 negative elements in R. In total, up to n2/2 2-variant matrices
are needed to represent any given orthogonal matrix.

Next, we set to show that any 2-variant matrix can be represented as a product of at most three
matrices, each of the form A1 ⊗B1 +A2 ⊗B2, using m×m matrices.

Let U{k,q} be an arbitrary 2-variant orthogonal m2 ×m2 matrix for arbitrary k, q ∈ [m2]. That is,
y = U{k,q}x acts only on x[k] and x[q] to produce y[k] and y[q], for l 6= k, q we have y[l] = x[l].

Consider two vectors, xA, xB ∈ Rm. Kronecker product of x = xA ⊗ xB of these two vectors is a
vector x ∈ Rn with entries defined through products

x[k] = xA[κ]xB [λ] for k = (κ− 1)m+ λ,

x[q] = xA[π]xB [ρ] for q = (π − 1)m+ ρ

for κ, λ, π, ρ ∈ [m].

A matrixA⊗B acts on vectors x = xA⊗xB as (A⊗B)x = (AxA)⊗(BxB). For example, letB{λ,ρ}

be a 2-variant matrix action on λ, ρ, then 1ν ⊗B{λ,ρ} is a acting on dimensions k = (ν − 1)m+ λ
and q = (ν − 1)m+ ρ in the same way as B{λ,ρ} acts on dimensions λ and ρ, and producing either
identity or null elsewhere, as shown below:

[
0

1
0

]
⊗

[
α −β

1
β α

]
=



0
. . .

α −β
1

β α
. . .

0


.

First, consider k, q such that κ = π = ν for some ν ∈ [m]. Define a 2-variant B{λ,ρ} such that
B[{λ, ρ}] = U [{k, q}], that is, B acts on λ, ρ in the same way as U acts on k, q. We then have

U{k,q} = 1ν ⊗B{λ,ρ} + (I − 1ν)⊗ I.

A symmetric construction holds if λ = ρ = ν. In both cases, we can represent a 2-variant orthogonal
matrix by A1 ⊗B1 +A2 ⊗B2.

5



The general case of U{k,q} for κ 6= π and λ 6= ρ can be addressed by converting it into the case
κ = π via transforming κ into π, applying the special case, and then transforming π back into κ.

We show that an orthogonal matrix V of the form V = C ⊗D + C ′ ⊗D′ exists such that

U{k,q} = V T
(
1π ⊗B{λ,ρ} + (I − 1ν)⊗ I

)
V,

where B[{λ, ρ}] = U [{k, q}], the λ, ρ columns/rows of B are formed by taking submatrix of U
defined by columns/rows k, q.

To construct V , set C = Pκ→π, a permutation matrix that moves κ to π, and D = 1λ. Also set
C ′ = I and D′ = I − 1λ. Columns of C ⊗D and C ′ ⊗D are linearly independent, and each of the
two matrices is orthogonal, thus V is orthogonal.

Consider x = xA ⊗ xB , we then have

x′ = V x = Pκ→πxA ⊗ 1λxB + IxA ⊗ (I − 1λ)xB .
The first term will use the permutation to move xA[κ] to position π, where it will be multiplied by
xB [λ], and placed at x′[k′] for k′ = (π − 1)m+ λ; all other entries xA[·]xB [λ] will be rearranged
as well by the permutation. For m = 3, λ = 2, κ = 1, π = 2, the transformation that moves
x[k = 2] = x[(κ − 1)m + λ] = α1β2 into x′[k′ = 5] = x′[(π − 1)m + λ] and thus brings it into
position ready for the special case, is illustrated below[

0 1 0
1 0 0
0 0 1

][
α1

α2

α3

]
⊗

[
0 0 0
0 1 0
0 0 0

][
β1
β2
β3

]
=

[
α2

α1

α3

]
⊗

[
0
β2
0

]
=

= [0 α2β2 0 0 α1β2 0 0 α3β2 0]
T
.

The second term will preserve xA[·]xB [·] for all entries of xB except λ; this includes ρ, since in
the general case λ 6= ρ. The k, q entries of x will be now at k′, q entries of x′, and applying
1π ⊗ B{λ,ρ} + (I − 1ν)⊗ I on x′ will be equivalent to acting on positions k, q of x. The inverse
orthogonal transformation V T will restore the transformed values at positions k′, q, as well as all
other entries xA[·]xB [λ], back to their original positions. The transformation V T is of the same form
as V , except using P−1κ→π instead of Pκ→π , since the other matrices involved in V are diagonal with
unit-magnitude entries. In summary, in the general case, m×m matrices Aij and Bij exist such that
any 2-variant orthogonal matrix can be represented as

∏3
i=1

∑2
j=1Aij ⊗Bij .

Together, any orthogonal n = m2 dimensional matrix U can be decomposed into
U =

∏3n2/2
i=1

∑2
j=1Aij ⊗Bij .

Corollary 3. Any linear n ×m matrix W can be represented as a product of a finite sequence of
sums of two Kronecker products of dne × dme matrices followed by selecting an n×m submatrix.

Proof. The result immediately follows by considering an orthogonal matrix with dimension
max(dne2 × dme2), observing that an arbitrary, possibly rank-deficient diagonal matrix D can be
decomposed as a product of a series of matrices of the form 1k⊗(I−(D[j, k]−1)1j)+(I−1k)⊗I ,
one per diagonal entry D[j, k], which allows for producing arbitrary rank-deficient square matrices,
from which non-square matrices can be selected.

The above theorem shows that stacking layers represented compactly as (
√
nm× r) (r ×

√
nm) for

r = 2 increases the expressive power of the network. In the idealized case with linear activation
function, adding such layers allows the network to eventually produce arbitrary Rm → Rn linear
transformations, unlike stacking standard factorized layers (n× r) (r ×m), which always maps into
an r-dimensional subspace irrespective of the number of layers.

With rank r = 2, we may need as many as 3n2/2 layers to represent an orthogonal n× n matrix. On
the other extreme, only one layer is needed if the rank is n, since arbitrary n× n matrix can be seen
as a concatenation of n tiles of size

√
n×
√
n. As long as we define n indicator

√
n×
√
n matrices

1jk and use them as tile position selectors, we can use a sum of Kronecker products of the selection
with the corresponding tile to produce the matrix. In between these extremes, the number of layers
needed to increase the expressiveness of the network to allow arbitrary transformations depends on
the rank r in the Shapeshifter representation in the following way.

6



Theorem 4 (Depth-rank tradeoff for deep models involving Kronecker products). Let n = m2 for
some m ∈ N, and let r ≤ m. Any orthogonal n× n matrix U can be represented as a product of a
sequence of sums of two Kronecker products of m×m matrices,

U =

L∏
i=1

r∑
j=1

Aij ⊗Bij ,

where Aij and Bij are
√
n×
√
n matrices, and L = O

(
n2/r

)
.

Proof. Instead of 2-variant orthogonal matrices, we use r-variant ones. Consider r = 3, with U{k,q,t},
and with k = (κ− 1)m+ λ, q = (π − 1)m+ ρ, and t = (τ − 1)m+ υ. We now have two groups
of indices, κ, π, τ and λ, ρ, υ. If κ = π = τ = ν for some ν, we have a special case as in Theorem 2

U{k,q,s} = 1ν ⊗B{λ,ρ,υ} + (I − 1ν)⊗ I;

we have a similar special case if λ = ρ = υ.

The general case involves no equality in either of the two groups. Then, we can proceed similarly
as for 2-variant general case, but we need a permutation matrix Pκ→τ and separately a permutation
matrix Pπ→τ , which allow us to define

x′ = V x = Pκ→τxA ⊗ 1λxB + Pπ→τxA ⊗ 1ρxB + IxA ⊗ (I − 1λ − 1ρ)xB .

Here, V is an orthogonal transformation that uses a sum of three Kronecker products as a trans-
formation that maps the general case to the κ = π = τ case. The construction naturally extends
into higher r as long as r ≤ m, the number of diagonal entries in matrices A: we need V to be a
sum of r Kronecker products involving distinct dimensions of A. In summary, we need less than∏3
i=1

∑r
j=1Aij ⊗Bij to represent arbitrary r-variant orthogonal matrix. A product of two k-variant

matrices is at most 2k-variant. Grouping r/2 Givens rotations or, more generally, 2-variant matrices
can result in at most a r-variant matrix, thus we need at most L = O

(
3n2/r

)
layers, each involving

a Kronecker product of rank at most r.

As is common in theoretical work on deep networks, the results are limited to idealized multilayer
models with linear activations. However, they can provide insights into networks with nonlinearities;
for example, activations such as ReLU that are linear on large part of their input will lead to piece-wise
linear network, and the results above hold in a piece-wise fashion.

5 Experimental Results

We validated the approach on machine translation using sequence-to-sequence models. The experi-
ments were performed on a single V100 (longest run: 6 days) or A100 GPU (longest run: 1 day). Time
overhead experiments were performed on a dedicated workstation with a single NVIDIA RTX 3090
GPU. As the basis for Shapeshifter, we used Transformer [1], with embedding and encoder/decoder
layers replaced with compact representations. In Shapeshifter, we used small rank for all matrices
in the multi-head self-attention blocks. For embedding matrices, which are much larger and can
be reduced more effectively, we used higher rank, while aiming to keep the total size of factorized
embeddings below the total size of the rest of the factorized encoder/decoder. The time overhead

Table 1: Overhead introduced by Shapeshifter compact representation. We compared T5-small
Transformer model [35] with a Shapeshifter model resulting from the T5-Small model, with rank 256
for embedding and rank 16 within the multi-headed self-attention blocks. We measured time to train
10 epochs, and time to perform translations using a trained model on the full test set.

Training time [s] Inference time [s]
Dataset Transformer Shapeshifter 16/256 Transformer Shapeshifter 16/256

En-Ro [36] 16,192 18,007 (+11%) 110 124 (+13%)
De-En [37] 2,917 3,426 (+17%) 203 219 (+8%)

7



Figure 1: Comparison of the proposed Shapeshifter compact representation applied to Transformer
with two alternative approaches for compact Transformers: PHM layers [18] and DeLighT [14]. See
Tables 2 and 3 for details.

(see Table 1) introduced by the representation is modest, up to 17% increase in running time during
training, and up to 13% during predictions with a trained model.

We compared our approach to two recently proposed approaches for reducing model size: DeLighT
[14] and PHM Layers [18]. DeLighT uses separate vocabulary for the source language encoder
embeddings, and a different vocabulary for the target language decoder embedding and output layer.
PHM Layers, like its predecessor Quaternion Transformer [19], uses the same Byte-Pair Encoding
[38] in both encoder and decoder. To facilitate comparisons, we followed both approaches and trained
two Shapeshifter variants, one with separate embeddings and one with single embedding.

5.1 Comparison with PHM Layers

In comparisons with PHM layers [18], we used T5-small Transformer [35], which shares a single
embedding matrix in both the encoder and the decoder. We use Huggingface Transformers [40] for
PyTorch [41] implementation. We evaluate the approach on IWLSLT’14 German-to-English (De-En)
[37] and WMT’18 English-to-Romanian (En-Ro) [36] datasets. For the first dataset we use learning

Table 2: Results of comparisons with PHM layers [18]. Model performance measured using
BLEU [39] on dev set. We also list total number of model parameters, its breakdown into number of
parameters in the encoder-decoder multi-headed self-attention and feed-forward layers, and separately
in the all the embedding in the model. We also express the parameter reduction as a percentage and
as a fold change compared to the size of the corresponding Transformer model. Shapeshifter rencoder
/ rembedding denotes encoder/decoder and embedding ranks.

Model Total Enc./Dec. Emb. Pct. Fold BLEU

WMT’18 English-to-Romanian (En-Ro) dataset [36]
Transformer [1], from [18] – 44M – – – 22.79
PHM-Tm n = 16 [18] – 2.9M – – – 19.63
*Transformer [1] 60.5M 44M 16.5M 100.0 1 24.30
*PHM-Tm n = 16 [18] 19.6M 3.2M 16.5M 32.4 3.08 22.38
*Shapeshifter 24/256 5.2M 3.1M 2.1M 8.62 11.59 22.56
*Shapeshifter 16/256 4.2M 2.1M 2.1M 6.95 14.39 22.12

IWSLT’14 German-to-English (De-En) dataset [37]
Transformer [1], from [18] – 44M – – – 36.68
PHM-Tm n = 16 [18] – 2.9M – – – 33.89
*Transformer [1] 60.5M 44M 16.5M 100.0 1 36.72
*PHM-Tm n = 16 [18] 19.6M 3.2M 16.5M 32.4 3.08 36.49
*Shapeshifter 16/256 4.2M 2.1M 2.1M 6.95 14.39 36.36

* denotes our experimental results, other results taken from the referenced paper.
– denotes the information was not available in the referenced paper.

8



rate 2e-3 with batch size of 128, while for the larger En-Ro dataset we use 3e-3 with batch size of
192. We used LAMB optimizer [42] with inverse square root scheduler, dropout 0.1, no weight decay,
and 0.1 label-smoothed cross entropy loss.

To facilitate comparison of our results with PHM Layers approach under the same conditions, we
reimplemented the approach and applied it to T5-Small Transformer that we used as basis for
experiments with our method. The small increase in size of the PHM Transformer observed in our
re-implementation of PHM layers compared to the parameter size provided in the literature [18]
(3.2M vs 2.9M parameters) results from the fact that the underlying T5 Transformer that we build on
uses three separate dhid × dhid matrices for self-attention query, key, and value weights for all heads,
while the Transformer used in [18] stores all three as a single, concatenated dhid × 3dhid matrix.

The results presented in Table 2 and in the left panel of Figure ?? indicate that while our full models
are four times smaller than full PHM models, they offer very similar on-task performance. The
parameter reduction comes not only from factorized embeddings in Shapeshifter, but also from
matrices inside the attention blocks in encoder/decoder: both Shapeshifter 16 / 256 and PHM n = 16
use a sum of 16 Kronecker products to represent a matrix, yet PHM results in a 1.5 times larger
encoder/decoder when applied to the same exact base architecture.

5.2 Comparison with DeLighT

Following DeLighT [14], we used Transformer models as implemented in fairseq [45]. We bench-
marked the Shapeshifter models on four datasets: IWSLT’14 German-to-English (De-En) [37],
WMT’16 English-to-Romanian (En-Ro) [43], WMT’14 English-to-German (En-De) [44], and
WMT’14 English-to-French (En-Fr) [44]. The specific Transformer architecture used by DeLighT,
and also in our experiments, varies depending on the dataset. For the WMT’14 En-De we used 12
transformers blocks with 4 attention heads, 512 as the embedding dimension and 1024 for the fan out
fully-connected layer. For the other three datasets we used 12 transformers blocks with 8 attention
heads, 512 as the embedding dimension and 2048 for the fan out fully-connected layer. For the
training setup we have used Adam optimizer, learning rate of 5e-4, inverse square root scheduler with
15K warmup steps, dropout 0.3, weight decay of 1e-4, and 0.1 label-smoothed cross entropy loss.

Compared to the smallest of the DeLighT models available for each dataset, as summarized in
Table 3 and in the right panel of Figure ??, the Shapeshifter models have between 1.5 and 4 times

Table 3: Results of comparisons with DeLighT [14]. Same format as in Table 2.

Model Total Enc./Dec. Emb. Pct. Fold BLEU

IWSLT’14 German-to-English (De-En) dataset [37]
Transformer [1], from [14] 42M – – 100.0 1 34.3
DeLighT [14] 14M – – 35.5 2.82 33.8
*Transformer [1] 39.5M 31.5M 7.9M 100.0 1 35.43
*Shapeshifter 64/256 9.3M 7.2M 2.1M 23.6 4.24 35.43

WMT’16 English-to-Romanian (En-Ro) dataset [43]
Transformer [1], from [14] 62.0M 44.1M 17.9M 100.0 1 34.3
DeLighT [14] 22.0M – – 35.5 2.82 34.3
*Transformer [1] 62.0M 44.1M 17.9M 100.0 1 33.89
*Shapeshifter 64/256 10.4M 8.2M 2.2M 16.8 6 34.55
*Shapeshifter 24/256 5.4M 3.1M 2.2M 8.6 11.63 32.48

WMT’14 English-to-German (En-De) dataset [44]
Transformer [1], from [14] 62.0M 44.1M 17.9M 100.0 1 27.3
DeLighT [14] 37M – – 59.6 1.68 27.6
*Shapeshifter 64/256 10.7M 8.2M 2.5M 17.2 5.7 26.6

WMT’14 English-to-French (En-Fr) dataset [44]
Transformer [1], from [14] 62.0M 44.1M 17.9M 100.0 1 39.2
DeLighT [14] 37.0M – – 59.6 1.68 39.6
*Shapeshifter 64/256 10.7M 8.2M 2.5M 17.3 5.78 40.78

9



fewer parameters, yet offer similar quality; Shapeshifter achieves higher score than DeLighT on two
datasets, and lower score on two other datasets.

5.3 Comparison with Standard Low-rank Factorization

To validate experimentally the theoretical results from Section 4.1 concerning the increased expres-
siveness of the factorization type used in Shapeshifter compared to standard n× r, r ×m low-rank
factorization, we trained models factorized this way using the same encoder/decoder rank of 16, and
the same embedding rank of 256 as in Shapeshifter. To test only the stack of Transformer layers,
we also trained models that do not factorize the embedding matrix. We used one small dataset,
IWSLT’14 German-to-English, and one large, WMT’18 English-to-Romanian. The results in Table 4
show that the size of the model is reduced substantially in the Kronecker-based approach compared
to standard low-rank representation. The reduction comes predominantly from the embedding, which
involve non-square matrices. Despite more than two-times larger number of parameters, standard
low-rank representation shows much higher loss on the training set, with no significant difference in
terms of generalization outside of the training set, confirming that the difference between the two
representations results from increased expressiveness of a stack of low-rank Kronecker-product-based
layers. Similar behavior can be observed when the comparison involves models where the embedding
matrices are not factorized.

Table 4: Comparison with standard low-rank representation. Factorized models are trained de
novo on a small (IWSLT’14 De-En) and a large (WMT’18 En-Ro) dataset.

Dataset Factorization type Total Enc/Dec Emb. BLEU Train Loss Dev Loss

De-En Shapeshifter 16 / 256 4.2M 2.1M 2.1M 36.36 2.59 2.67
De-En Low-rank 16 / 256 10.6M 2.2M 8.4M 26.68 2.97 2.99
De-En Shapeshifter 16 / – 18.6M 2.1M 16.5M 35.85 2.66 2.73
De-En Low-rank 16 / – 18.7M 2.2M 16.5M 32.01 2.86 2.90

En-Ro Shapeshifter 16 / 256 4.2M 2.1M 2.1M 22.12 2.19 3.09
En-Ro Low-rank 16 / 256 10.6M 2.2M 8.4M 17.47 2.32 3.37
En-Ro Shapeshifter 16 / – 18.6M 2.1M 16.5M 21.93 2.16 3.09
En-Ro Low-rank 16 / – 18.7M 2.2M 16.5M 19.34 2.33 3.34

6 Conclusion

Our theoretical and experimental results show that deep models composed of stacked low-rank
Kronecker-product-based representations are more expressive, yet smaller, than equivalent models
that use standard low-rank factorized matrix representations. These observations help solve a puzzle
of how recent methods such as word2ket [17] and PHM layers [18] achieve their impressive parameter
reduction rates for embeddings and for encoder/decoder layers, respectively, despite training models
de novo, without the help of an existing large model serving as a blueprint for compression or pruning,
or as a teacher for knowledge distillation. Building on these results, we provide a comprehensive
Shapeshifter4 approach that works both for the embeddings and for the encoder/decoder, using more
effective way to exploit Kronecker products for factorized representations. Experimental comparisons
with state-of-the-art model reduction approaches, not only PHM but also recently proposed DeLighT
[14], on a range of machine translation problems, show that the approach offers similar translation
quality with much fewer parameters.

Funding Disclosure and Competing Interests

This work was partially funded by NSF grant IIS-1453658 to T.A.
The authors have no competing interests.

4Code available at: https://github.com/tarodz/shapeshifter.

10

https://github.com/tarodz/shapeshifter


References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 6000–6010, 2017.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, pages 4171–4186, 2019.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pages 1877–1901, 2020.

[4] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[5] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. In International Conference on Learning Representations,
2018.

[6] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 7319–7328, 2021.

[7] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2018.

[8] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[9] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained BERT networks. In Advances in
Neural Information Processing Systems, 2020.

[10] Sai Prasanna, Anna Rogers, and Anna Rumshisky. When BERT plays the lottery, all tickets are
winning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3208–3229, 2020.

[11] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[12] Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao, Chunliang Zhang, and Jingbo Zhu.
Learning light-weight translation models from deep transformer. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(15):13217–13225, 2021.

[13] Fusheng Wang, Jianhao Yan, Fandong Meng, and Jie Zhou. Selective knowledge distillation for
neural machine translation. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6456–6466, 2021.

[14] Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and Hannaneh Ha-
jishirzi. DeLighT: Very deep and light-weight transformer. In International Conference on
Learning Representations ICLR’2021, 2020.

11



[15] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. ALBERT: A lite BERT for self-supervised learning of language representations. In
International Conference on Learning Representations ICLR’2020, 2019.

[16] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1412–1421, 2015.

[17] Aliakbar Panahi, Seyran Saeedi, and Tom Arodz. word2ket: Space-efficient word embeddings
inspired by quantum entanglement. In International Conference on Learning Representations
ICLR’2020, 2019.

[18] Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan, Anh Tuan Luu, Siu Hui, and Jie Fu. Beyond
fully-connected layers with quaternions: Parameterization of hypercomplex multiplications
with 1/n parameters. In International Conference on Learning Representations ICLR’2021,
2020.

[19] Yi Tay, Aston Zhang, Anh Tuan Luu, Jinfeng Rao, Shuai Zhang, Shuohang Wang, Jie Fu, and
Siu Cheung Hui. Lightweight and efficient neural natural language processing with quaternion
networks. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 1494–1503, 2019.

[20] Shuchang Zhou, Jia-Nan Wu, Yuxin Wu, and Xinyu Zhou. Exploiting local structures with the
Kronecker layer in convolutional networks. arXiv preprint arXiv:1512.09194, 2015.

[21] Cijo Jose, Moustapha Cissé, and Francois Fleuret. Kronecker recurrent units. In International
Conference on Machine Learning, pages 2380–2389. PMLR, 2018.

[22] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[23] Emily Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient evaluation. In Advances in Neural
Information Processing Systems, pages 1269–1277, 2014.

[24] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, volume 32, 2015.

[25] Charles C Onu, Jacob E Miller, and Doina Precup. A fully tensorized recurrent neural network.
arXiv preprint arXiv:2010.04196, 2020.

[26] Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets.
Tensorized embedding layers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 4847–4860, 2020.

[27] Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Ming Zhou, and Dawei Song.
A tensorized transformer for language modeling. Advances in Neural Information Processing
Systems, 32:2232–2242, 2019.

[28] Thomas Frerix and Joan Bruna. Approximating orthogonal matrices with effective Givens
factorization. In International Conference on Machine Learning, pages 1993–2001. PMLR,
2019.

[29] Harold V Henderson and Shayle R Searle. The vec-permutation matrix, the vec operator and
Kronecker products: A review. Linear and multilinear algebra, 9(4):271–288, 1981.

[30] Charles F Van Loan. The ubiquitous Kronecker product. Journal of Computational and Applied
Mathematics, 123(1-2):85–100, 2000.

[31] Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. In Linear
algebra for large scale and real-time applications, pages 293–314. Springer, 1993.

[32] Julie Kamm and James G Nagy. Kronecker product and SVD approximations in image
restoration. Linear Algebra and its Applications, 284(1-3):177–192, 1998.

12



[33] Eugene Tyrtyshnikov. Kronecker-product approximations for some function-related matrices.
Linear Algebra and its Applications, 379:423–437, 2004.

[34] Wallace Givens. Computation of plain unitary rotations transforming a general matrix to
triangular form. Journal of the Society for Industrial and Applied Mathematics, 6(1):26–50,
1958.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[36] Ond Onrej Bojar, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias
Huck, Philipp Koehn, and Christof Monz. Findings of the 2018 Conference on Machine
Translation (WMT18). In Proceedings of the Third Conference on Machine Translation,
volume 2, pages 272–307, 2018.

[37] Mauro Cettolo, J Niehues, S Stüker, Luisa Bentivogli, and Marcello Federico. Report on the
11th IWSLT evaluation campaign, IWSLT 2014. In IWSLT-International Workshop on Spoken
Language Processing, pages 2–17. Marcello Federico, Sebastian Stüker, François Yvon, 2014.

[38] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, 2016.

[39] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[40] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. HuggingFace’s Trans-
formers: State-of-the-art natural language processing. arXiv e-prints, pages arXiv–1910, 2019.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32:8026–8037, 2019.

[42] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training BERT in 76 minutes. In International Conference on Learning
Representations ICLR’2020, 2019.

[43] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina
Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the
2016 Conference on Machine Translation. In Proceedings of the First Conference on Machine
Translation: Volume 2, Shared Task Papers, pages 131–198, 2016.

[44] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Aleš Tamchyna. Findings of the 2014 Workshop on Statistical Machine Translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58, 2014.

[45] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), pages 48–53, 2019.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See bottom of Section 4.1 for

discussion of the limitations of the theoretical study of expressivity.
(c) Did you discuss any potential negative societal impacts of your work? [No] While

there is ample work discussion potential negative societal impacts of language models
in general, we have not been able to identify negative impacts of reducing the size of
the models.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section

4.1.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 4.1.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See
https://github.com/tarodz/shapeshifter.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Running Transformer models is expensive, we only
performed one run. This is common practice in the field, as seen in cited references,
e.g. the work we use in comparisons [14, 18].

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the creators

of PyTorch, fairseq, Huggingface Transformers, IWSLT and WMT, see Section 5.
(b) Did you mention the license of the assets? [Yes] Our code refers to the licenses of the

assets it relies on.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We are using only publicly available, benchmark datasets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We are using only publicly available, benchmark datasets.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] We are using only publicly available, benchmark
datasets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] We are not using crowdsourcing nor conducting research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No] See above.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] See above.

14

https://github.com/tarodz/shapeshifter

	Introduction
	Related Work
	Limitations of Factorized Matrices in Deep Networks
	Stacked Kronecker Product-based Representations
	Expressiveness of stacked Kronecker-product Layers

	Experimental Results
	Comparison with PHM Layers
	Comparison with DeLighT
	Comparison with Standard Low-rank Factorization

	Conclusion

