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ABSTRACT

Deep generative models, such as vision-language models (VLMs) and diffusion
models (DMs), have achieved remarkable success in cross-modality generation
tasks. However, the cyclic transformation of text → image → text often fails to
secure an exact match between the original and the reconstructed content. In this
work, we attempt to address this challenge by utilizing a deterministic function
to guide the reconstruction of precise information via generative models. Using a
color histogram as guidance, we first identify a soft prompt to generate the desired
text using a language model and map the soft prompt to a target histogram. We
then utilize the target color histogram as a constraint for the diffusion model and
formulate the intervention as an optimal transport problem. As a result, the gen-
erated image has the exact color histogram as the target, which can be converted
to a soft prompt deterministically for reconstructing the text. This allows the gen-
erated images to entail arbitrary forms of text (e.g., natural text, code, URLs, etc.)
while ensuring the visual content is as natural as possible. Our method offers
significant potential for applications on histogram-constrained generation, such as
steganography and conditional generation in latent space with semantic meanings.

1 INTRODUCTION

While deep generative models, such as vision-language models (VLMs) (Radford et al., 2021; Liu
et al., 2024a;b) and diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal
& Nichol, 2021; Rombach et al., 2022; Esser et al., 2024), have achieved significant success in
cross-modality generation tasks, challenges persist in preserving exact information during cyclic
transformations, such as text → image → text. A primary cause of this difficulty lies in the inherent
ambiguities and information loss that occur when converting between modalities. As illustrated by
the Diffusion generation process in Fig. 1, when generating images from textual descriptions, even
detailed prompts may lack sufficient specificity to fully capture all nuances of the original text (i.e.,
the generated image only exhibits one possible depiction among many, reducing complex semantic
information into abstract or less granular forms).

Similarly, when converting images back into text (i.e., the VLM captioning process in Fig. 1), the
process introduces further complexity, as the visual data can potentially be captioned in a variety of
ways, where multiple synonymous terms or paraphrases could be adopted. This multiplicity of valid
textual interpretations contributes to information drift, as subtle word choices or phrasing variations
lead to the loss of precise meanings or intended content. Consequently, during cross-domain trans-
formations, each stage introduces opportunities for information to be diluted, approximated, or even
transformed into concepts that, while similar, fail to match the original input exactly, particularly
when reconstructing structured data or metadata embedded within the content. Such information
loss is fatal to applications that rely on accurate cyclic transformations between multiple modalities,
leading to sub-optimal solutions and multi-modal representations that are not specific enough.

In this work, we propose using a vector as the medium so that the diffusion model can generate an
image where such a vector can be derived deterministically. On top of that, a large language model
(LLM) can decode such a vector into exact information. Hence, we can achieve the cyclic generation
with no loss. As demonstrated in Fig. 1, we can precisely decode the generation configurations of
the image, which can later be used to reproduce the entire generation setup. Some prior work has
explored a systematic approach of baking QR code into images (Wu et al., 2024), where at most 4K
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Figure 1: Demonstration of exact text decoding of OGCT compared to VLM captioning.

alphanumeric characters can be encoded in the ideal case. In contrast, by using the medium vector
as the constraint, thousands of exact text tokens can be decoded from this single vector, where 1) all
Unicode characters can be encoded, and 2) there is almost no impact on the image content.

To achieve cyclic generation and exact information decoding, several key properties are essential to
the design of the medium vector: First, it should be compact, allowing efficient storage and process-
ing while maintaining the integrity of the encoded information. Second, the vector shall be robust to
minor perturbations, ensuring reliable decoding performance. Third, it should support deterministic
computations, eliminating randomness in the encoding-decoding cycle. Hence, histograms in pixel
or latent space emerge as a viable choice for implementation as they satisfy all the aforementioned
properties and offer sufficient flexibility for image generation.

Accordingly, the cyclic transformation problem was decoupled into two subproblems. During the
diffusion process, the problem lies in how to enforce the generated image to have a desired histogram
(Sec. 2.4, Sec. C). Despite the success of ControlNet (Zhang et al., 2023) and LoRAs (Hu et al.,
2022) in controllable image generation, we showed that their controls over the color histogram
cannot ensure exact match (Sec. A). Instead, directly manipulating the feature map seems a more
reliable approach, where the histogram matching can be formulated as an optimal transport problem.
Based on the optimal transport plan, we can transform the image to follow the exact target histogram.

For the decoding side, the problem now becomes finding an embedding to reconstruct the encoded
text, where soft prompt tuning (Lester et al., 2021) offers an efficient and elegant solution. By
tuning a single pre-pended trainable token, we can obtain a medium vector (i.e., the soft prompt
itself) that can prompt an LLM to generate desirable text, which can be baked into the diffusion
model seamlessly for exact histogram encoding.

We envision that a variety of applications enabled by the proposed framework. For example, one can
encode proprietary information (e.g. copyright notices and licensing terms) directly into their work
or hide other sensitive information for secure transmission. The appearance of the encoded image
is natural to human viewers, while only those with access to the secured generative model decoder
could decode the hidden information. Moreover, apart from being a steganography technique, it is
also widely applicable for histogram-constrained diffusion generation, where the histogram could
correspond to arbitrary histograms or latent spaces with semantic meanings.

2 METHOD

2.1 PRELIMINARIES

Vision-Language Models. Motivated by the growing need for systems capable of understanding
and generating content across both modalities, Vision-Language Models (VLMs) have been pro-
posed to connect the domain of two critical modalities – text and image, empowering numerous
real-world tasks involving the interplay between images and text, such as captioning, visual ques-
tion answering, and cross-modal retrieval. Early approaches typically relied on separate models
for vision and language tasks, often using feature fusion techniques. However, these approaches
struggled with generalization across diverse tasks. To address this, researchers have developed large
pre-trained VLMs that leverage massive datasets of paired image-text data, enabling the models to
learn richer joint representations of both modalities (e.g., CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021a)). Recently, SOTA models such as the LLaVA (Large Language and Vision Assis-
tant) family (Liu et al., 2024a;b) have further advanced the field by combining vision-language
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pre-training with large-scale language models (LLMs) (Dubey et al., 2024), allowing for more ac-
curate and versatile cross-modal reasoning and generation. These models are increasingly capable
of generalizing across a wide range of tasks. However, challenges remain in ensuring precision and
specificity in tasks requiring exact cross-modal correspondence since the mapping between text and
image is arguably not a bijection up to the ambiguities of synonyms and abstract entities.

Diffusion Models. Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Dhariwal
& Nichol, 2021; Rombach et al., 2022) have emerged as the predominant method for image gen-
eration, surpassing Generative Adversarial Networks (GANs) (Goodfellow et al., 2014; Zhu et al.,
2017) due to their stability in training and ability to generate high-quality, diverse samples. Unlike
GANs, which rely on adversarial training between a generator and discriminator, DMs learn to gen-
erate images by modeling a stochastic process that gradually transforms noise into coherent images.
This process is typically governed by a forward diffusion process, which adds Gaussian noise to
an image over time, and a reverse process, which removes noise step by step to recover the data
distribution. Mathematically, the forward process can be defined as:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), (1)

which essentially characterizes a Gaussian distribution where noise is progressively added to the
data x0 based on certain scheduling {αt}t=1:T as the time step t increases. Moreover, the reverse
process is governed by the following ODE:

dx =
(
f(x, t)− g2(t)∇x log pt(x)

)
dt+ g(t)dw, (2)

where f(x, t) denotes the drift term, g(t) denotes the diffusion coefficient, and ∇x log pt(x) is the
score function that helps guide the denoising process.

Notably, Diffusion Models are particularly compelling in conditional generation tasks, where the
image generation is guided by external information. Condition-specific embeddings guide the dif-
fusion process toward generating images that match the given condition input. This has led to the
success of models like DALL·E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022), and
most recently Flux.1 (BlackForestLabs, 2024), where textual prompt is arguably the most popular
condition modality. While flexible, the text-guided diffusion does not necessarily secure the ex-
act match of text reconstruction when captioning diffusion-generated images to retrieve the textual
prompts (used for generation) via VLMs. This motivates us to look into the potential solutions that
secure exact reconstruction during cyclic cross-modality transformations.

2.2 METHOD OVERVIEW

Fig. 2 manifests the workflow of the proposed Optimal Generative Cyclic Transport (OGCT) frame-
work. We first optimize towards a soft prompt embedding (i.e., a single trainable token) that will
condition the LLM to generate the encoded text. Then, we transform the soft prompt embedding
into a histogram vector (non-negative, sum to 1) with a deterministic mapping. By intervening in the
text-to-image generation process, we can enforce the generated image to have the color histogram
matching the pre-computed histogram vector. As a result, when someone decodes the image (i.e.,
calculates the color histogram and transforms it back to the embedding form), the reconstructed soft
prompt will condition the LLM to reconstruct the encoded text, which can be as long as hundreds
to thousands of tokens. We introduce the three key modules of our framework in the following
subsections. Sec. 2.3 covers the optimization of the ideal soft prompt as well as the transformation
between the soft prompt embedding and the histogram vector. Sec. 2.4 details how we intervene
in the diffusion process while preserving the quality of the generated image. Sec. 2.5 formulates
histogram matching as an optimal transport problem, where the binning strategy can be decoupled
from the closeness of color values.

2.3 SOFT PROMPT OPTIMIZATION

Prompt tuning (Lester et al., 2021) is a parameter-efficient fine-tuning (PEFT) technique commonly
employed in natural language processing (NLP) tasks to adapt large pre-trained language models
(LLMs) to specific downstream tasks without updating the entire model. Rather than fine-tuning all
of the model’s parameters, prompt tuning involves learning a set of soft prompts or continuous em-
beddings that are prepended to the input text—that guide the language model’s behavior. These soft
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Figure 2: Overview of the Optimal Generative Cyclic Transport (OGCT) framework. OGCT enables
the exact reconstruction of arbitrary forms of text (up to 1K tokens) by encoding the soft prompt
embedding via the color histogram of the generated image. Zoom in for the best view.

prompts act as task-specific instructions that can condition the model to generate appropriate outputs
for a given task, making the process more efficient in terms of both computation and memory.

Consequently, prompt tuning allows identifying a soft prompt that effectively conditions the LLM
to output an exact sequence of tokens (i.e., any form of text). By optimizing the embeddings of the
soft prompt, it becomes possible to precisely control the model’s output, ensuring that the generated
sequence matches any predefined target, such as natural text, code, URLs, or some mixture of them.
Formally, aim to maximize the likelihood of the target text sequence y = (y1, y2, · · · , yT ) given a
learned soft prompt p ∈ Rd, where d = 4096 in practice. Given an LLM parameterized by Θ, the
training objective can be expressed as minimizing the conditional negative log-likelihood:

L(p) =
T∑

t=1

logP (yt|p, y<t; Θ), (3)

where P (yt|p, y<t; Θ) models the probability of the token yt at time step t, conditioned on the soft
prompt p and the previously generated tokens y<t and the sum is taken over the length T of the
target sequence. By optimizing the soft prompt p towards this objective, we can obtain a proper
prior context in the embedding space that guides the model to produce the exact desired sequence.

However, a direct optimization with respect to the objective in Eq. 3 can be problematic, as we are
taking gradient steps in the embedding space without any constraints. This can potentially lead to
slow convergence as each gradient update would change both the magnitude and the direction of the
soft prompt embedding. In contrast, we propose to rescale the embedding to some fixed norm so
that the soft prompt can be dedicated to learning the optimal direction that conditions the LLM to
generate the ideal output.

Noticing that the proposed approach inherently favors decoder-only models as opposed to encoder-
decoder ones. On the one hand, decoder-only models are less constrained by the complex input-
output alignments as in encoder-decoder models, where the input must be fully encoded before
decoding begins; on the other hand, the optimization process for decoder-only models are simpler
and more efficient, as the soft prompt embeddings can be seamlessly integrated into the beginning
of the input sequence and each predicted token solely relies on the previous context (including the
soft prompt itself) due to the auto-regressive nature.

After obtaining a proper soft prompt p that entails the target sequence y, we can then convert it
to some valid histogram h ∈ Rd via a simple deterministic mapping. Formally, we define the
embedding-to-histogram mapping as follows:

h = f(p) =
exp(p)∑
i exp(pi)

, (4)

where the exponential function ensures the non-negativity of all entries and the normalization en-
sures all the entries of h sum to 1. As for the inverse mapping f−1, we are essentially looking for
some scaling factor k ∈ R such that || ln (kh)|| = ||p||. Given that the target embedding vector

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

has a pre-defined fixed norm, the value of k can be efficiently solved. In this way, we can always
find a unique solution that constructs the one-to-one mapping between p and h, where no additional
information is required during the decoding stage.

2.4 HISTOGRAM-CONDITIONED DIFFUSION GENERATION

After obtaining a valid color histogram h, we wish to perturb the output of a diffusion model in a
way that aligns the generated image with h, while minimally affecting the overall image generation
process. To achieve this, we perturb the endpoint of the diffusion process (i.e., z0) during inference.
More specifically, we seek to apply this perturbation at a subset of inference time steps, adjusting the
intermediate predictions of z0, and add the proper amount of noise back to the perturbed prediction
z′0 to continue the inference procedure. Formally, at some intermediate time step t, we have:

z0 =
1√
ᾱt

zt −
√
1− ᾱt√
ᾱt

ϵθ(zt, t), (5)

where ϵθ(zt, t) denotes the predicted noise and {ᾱ}t=1:T denote the cumulative noise factors. Then
given some color histogram perturbation function φ(·) and the perturbed output image z′0 = φ(z0),
we can calculate the updated signal on the diffusion trajectory as follows:

zt−1 =
√
ᾱt−1z

′
0 +

√
1− ᾱt−1ϵθ(zt, t). (6)

In general, we apply the perturbation function φ(·) on the predictions of z0 at some intermediate
time steps as well as the last step, and the diffusion model would correct its trajectory throughout
the inference process. This ensures that the color histogram of the generated image conforms to
the target distribution while maintaining the overall integrity of the generated content, resulting in a
proper balance in between. We also note that most state-of-the-art diffusion models now operate in
the latent space, whereas the perturbation of color histograms generally happens in the pixel space,
so the encoding and decoding process of the variational auto-encoders (VAEs) (Kingma, 2013) have
been entailed in the perturbation function φ(·) for simplicity.

2.5 HISTOGRAM MATCHING WITH OPTIMAL TRANSPORT

Given a general approach to condition the diffusion process on color histogram, the next problem is
how to design perturbation function φ(·) properly, so that the diffusion trajectory does not collapse
to pure noise or low-quality outputs with weird coloring.

One natural idea is to formulate the histogram matching problem as an optimal transport (OT) prob-
lem. Formally, given the source histogram hsrc and the target htgt, where hsrc,htgt ∈ Rd, we want
to solve the following optimization problem:

γ = argmin
γ

⟨γ,M⟩F , s.t. γ1 = hsrc, γT1 = htgt, γ ≥ 0, (7)

where γ ∈ Rd×d denotes the optimal transport plan, M ∈ Rd×d denotes the cost matrix calculated
from the pairwise L1 distance between normalized RGB tuples (i.e., the center of each color bin).
To match the embedding dimension of d = 4096 for the soft prompt, we quantize the 8-bit RGB
values to 4-bit and solve for the optimal transport plan γ by the displacement interpolation via partial
mass transport between radial basis functions (RBFs). However, this naive way of transporting the
pixels can lead to sub-optimal results, where the output image suffers from a strong color hue jitter
as illustrated in Fig. 3(b). This is because the target color histogram converted from the soft prompt
tends to evenly divide the pixels into different RGB color bins. In contrast, most bins are generally
empty for natural images.

Luckily, this problem can be alleviated by adjusting the binning strategy. Intuitively, the color
histogram divides the pixels into a set of abstract bins based on certain criteria, where the binning
strategy does not necessarily depend on the closeness of RGB values. For example, one mediated
approach is to relax one of the RGB channels and apply binning by the closeness of the other two
channels. As shown in Fig. 3(c), the color hue seems to be consistent when controlling the green
and blue channels and relaxing the red channel. This approach can be further generalized to assign
the pixels to bins by a pre-defined look-up table, such that the division of color comes from random
shuffling instead of any distance metrics. In this way, the output image in Fig. 3(d) can be extremely
similar to the input after recoloring by the target histogram.
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Figure 3: Qualitative comparison of different histogram binning strategies. Better view with color.

Noticing that we are still trying to tackle an optimal transport problem characterized by Eq. 7 but
with parameters of different sizes. Formally, given k random colors in each bin, we are effectively
solving for γ ∈ Rkd×d when hsrc ∈ Rkd,htgt ∈ Rd,M ∈ Rkd×d. For the j-th color in the i-th
source bin, its closet color in the p-th target bin can be pre-computed and assigned to the cost matrix,
such that:

Mik+j,p = min
q

||cik+j , cpk+q||1, ∀ q ∈ [0, kd− 1], q ∈ N, (8)

where c ∈ Rkd corresponds to the flattened color book. In other words, we aim to find a more fine-
grained level transport plan, not from bin to bin, but from color to color, under the constraint that
the sum of the frequency of colors inside the target bins match the desired histogram. Note that we
are free to choose the frequency of color inside every target bin as long as the sum matches. When
applying the transport plan, we randomly sample a given number of pixels from each source color
and set them to the closest color in the target bin. Since we use a random binning strategy, every
color in the source bin will likely get transported to a similar color in the target bin, so the color
change is barely noticeable.

2.6 OPTIMAL GENERATIVE CYCLIC TRANSPORT VIA COLOR HISTOGRAM

Having introduced the three key modules for performing OGCT with color histograms, we reiterate
the workflow of the proposed method by the pseudo-code in Alg. 1. Overall, OGCT addresses the
ambiguities involved in the process of cyclic cross-modality transformation (e.g., text → image →
text), where more than one mapped targets can be identified as “correct” answers. The proposed
framework adopts a perturbation function φ(·) to enforce the diffusion process endpoint (i.e., z0)
to match some given target histogram, which can be converted to a soft prompt embedding for
exact information reconstruction. We relax the constraints for the closeness of colors in our binning
strategy, resulting in much better flexibility of image content without a loss of histogram precision.
By a properly designed embedding-to-histogram mapping, one can decode the information from the
image via the LLM without any extra information (e.g., normalizing factors). We also note that the
color histogram based OGCT is essentially a super-set for the cyclic cross-modality transformation,
as the encoded text can be decoupled from the text-to-image generation prompt and thus be of
arbitrary form (e.g, natural text, code, URLs, etc.). More details can be found in Sec. 3.

3 EXPERIMENT

3.1 IMPLEMENTATION DETAILS

We set Llama-3.1 (Dubey et al., 2024) as the LLM, where each soft prompt embedding with d =
4096 dimensions. We use the AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning
rate of 0.1, which decays by half every 200 training steps. We set the maximum number of training
steps to 2000. We empirically rescale the soft prompt embedding to have a fixed L2 norm 40.0 after
each gradient update. We generate images using the StableDiffusion-XL (Podell et al., 2023) and
use the default resolution of 1024×1024. We use the DDIM (Song et al., 2020) noise scheduler with
50 inference steps. We apply histogram matching perturbation every 10 inference steps when the
binning strategy depends on the closeness in the color space (e.g., RGB, RG); we only perturb the
output image once in the case of random binning, as the perturbed image is close to unchanged. We

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Optimal Generative Cyclic Transport via Color Histogram
Input: Decoder-only LLM Θ1, diffusion model Θ2, target text sequence y, learning rate scheduler

η(t), fixed norm n, textual prompt P , perturbation time steps T , color book c.
Output: Output image I, decoded text ŷ

1: Initialize soft prompt embedding p
2: while L(p,y; Θ1) >= τ do ▷ Prompt tuning loop
3: p = p− η(t) · ∇L(p,y; Θ1) ▷ Soft prompt update with learning rate scheduler
4: p = norm-rescale(p, n) ▷ Rescale the soft prompt to fixed norm
5: end while
6: htgt = exp(p)/(

∑
i exp(pi)) ▷ Set target histogram

7: zT = Gaussian-sampling() ▷ Initial noise sampling
8: for t = T:1 do ▷ Text-to-image diffusion loop
9: zt0 = 1√

ᾱt
zt −

√
1−ᾱt√
ᾱt

ϵθ(zt, t;P; Θ2) ▷ Trajectory endpoint prediction
10: if t ∈ T then ▷ Time step for perturbation
11: zt

′

0 = OT-histogram-matching(zt0,h
tgt)

12: zt−1 =
√
ᾱt−1z

t′

0 +
√
1− ᾱt−1ϵθ(zt, t;P; Θ2) ▷ Perturbed update

13: else
14: zt−1 =

√
ᾱt−1z

t
0 +

√
1− ᾱt−1ϵθ(zt, t;P; Θ2) ▷ Regular update

15: end if
16: end for
17: I = VAE-decode(z0) ▷ Output image
18: hrecon,precon = calculate-histogram(I; c) ▷ Soft prompt reconstruction
19: ŷ = LLM-forward(precon; Θ1) ▷ Information decoding
20: return I, ŷ

use a pre-defined color book of size 65536 (i.e., 16 colors per bin) to pre-compute the cost matrix
for random binning. All the training and inference are performed on a single NVIDIA A100 GPU.

3.2 EVALUATION OF OGCT

Qualitative Results. To evaluate the information encoding capability of OGCT, we collect the
README Markdown files from public GitHub 1 repositories with top-100 star numbers, which is
essentially a mixture of multilingual natural text, code, and URLs. We randomly crop the raw text
to have fixed number of tokens within {32, 64, 128, 256, 512}, resulting in 300 independent data
samples at each token length. We use the prompt tuning and image generation configuration as
specified in Sec. 3.1 by default. We collect and filter 148 textual prompts from Civitai 2 for image
generation, which is randomly paired with a trained soft prompt during OGCT. Some qualitative
results are presented in Fig. 4. From the figure we can observe that though relaxing one of the
RGB channels in color binning helps reduce the variety of colors in the images, the controlled
color channels may still suffer from weird coloring effect in some cases, which should be caused
by the perturbation of color histogram. Notably, some of the content deviates from the unperturbed
image, which demonstrates how diffusion model attempts to naturalize the image after matching
to some target histograms. In comparison, random binning consistently gives output images that
are extremely similar to the image without any perturbation. This demonstrates the superiority of
decoupling the binning strategy from the closeness of colors, resulting in a flexible choice of colors
while transporting a source color to some fixed target bin.

Quantitative Results. The quantitative results are presented in Tab. 1. In the prompt tuning stage,
we report the success rate of finding a soft prompt that leads to the exact encoded text from the
LLM as well as the training time. From the statistics, we can see that the optimization of a medium-
length text sequence (i.e., less than 256 tokens) generally takes less than 20 seconds on a single
NVIDIA A100 GPU with >99.7% success rate. We also note that it is empirically possible to find
a 4096-dimensional soft prompt that generates an exact match of text with more than 1K tokens –
we only provide the massive evaluation of up to 512 tokens as it’s substantially slower to optimize.

1https://github.com/
2https://civitai.com/
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Text Prompt Tuning Binning Perturbed Images Img-to-Text Reconstruction
Tokens Exact Match ↑ Avg Time (s) ↓ Strategy ∆CLIP ↑ DINO ↓ FID ↓ ↑ Hist Dist ↓ Original Img ↑ Rescaled Img ↑

32 100.0% 4.87 RG Color -2.80 0.0462 141.47 0.0 99.7% 97.3%
Random -0.25 0.0010 9.37 0.0 99.7% 97.3%

64 99.7% 6.19 RG Color -2.78 0.0461 141.29 0.0 99.7% 96.0%
Random -0.25 0.0010 9.49 0.0 99.7% 95.7%

128 99.7% 11.16 RG Color -2.68 0.0459 139.16 0.0 97.7% 88.3%
Random -0.25 0.0010 9.38 0.0 97.7% 91.7%

256 99.7% 20.06 RG Color -2.80 0.0461 140.24 0.0 92.0% 79.3%
Random -0.26 0.0009 9.36 0.0 92.3% 79.7%

512 98.3% 300.08 RG Color -2.87 0.0461 141.57 0.0 81.7% 56.0%
Random -0.23 0.0010 9.52 0.0 81.0% 57.3%

Table 1: Quantitative evaluation of OGCT via color histograms. The best results are shown in bold.

For the histogram-conditioned image generation, we present the results of CLIP-Score (compliance
to textual prompt), DINO-Score (structure similarity), and FID (embedding similarity). Overall,
we can observe the same trend as in qualitative results, where the output images with RG binning
exhibit a stronger drift of metrics towards the unfavorable direction and it is likely due to the change
of the controlled color channels during histogram matching. Meanwhile, the quantitative evaluation
for images transformed with random binning is both visually similar and metric-wise close. For
the reconstruction from image to the encoded text, we look into the pixel-level histogram distance
as well as the success ratio of exact text decoding from both original and rescaled images (with
a uniformly sampled factor between 0.5 and 2.0). We first observe that the color histogram of the
transformed image all matches with the target one (i.e., zero distance), which credits to the constraint
of our optimal transport formulation. Besides, the exact text reconstruction rate gradually decreases
as we enlarge the length of target text sequence in either binning strategy and there is no significant
performance gap between them. Considering the weird coloring effect that is likely to be caused
by color binning, the random binning approach seems to be more favorable. In the case of target
sequence with 512 tokens, the reconstruction rate is roughly 80% for the untouched image, whereas
it drops to slightly about 50% in the rescaled case because of the loss of certain pixels after rescaling.

Failure Case Analysis. The unsuccessful text decoding can be attributed to the following causes:
1) The optimizer fails to find a soft prompt embedding that generates the exact text under the current
optimization setup (e.g., learning rate scheduling, max train steps, fixed norm, etc.); 2) the rounding
error introduced while mapping continuous soft prompt embedding to some discrete histogram up to
the granularity of pixel numbers; 3) the loss of certain pixels after random rescaling. The first cause
can be alleviated by finding optimization configurations, whereas the second and third can be a bit
tricky to tackle. One potential solution is to enlarge the image resolution for better fault tolerance.

4 DISCUSSION

4.1 LIMITATIONS & FUTURE WORK

The limitation of the proposed OGCT approach mainly lies in the robustness when images get
skewed. The current approach is inherently invariant to permutation but may fail to reconstruct
the encoded text under some other transformations, such as non-90-degree rotations, cropping, and
color jitter. We perform robustness evaluation in Sec.B. Compared to prior works that bake QR
codes into images, the histogram matching approach gains better flexibility for content generation
but inevitably degrades the robustness concerning the transformations mentioned above. Moreover,
we may observe some slight artifacts in some output images when zooming in, which is introduced
in the process of histogram matching in pixel space.

Moreover, We wish to emphasize that OGCT via color histogram is not the only solution for the
perturbation function φ(·). We further extend the OGCT framework to the latent space via VQ-
VAE (van den Oord et al., 2017) in Sec. C. Besides, there are far more options that are yet to be
explored, such as the Fourier space and other latent space with semantic meanings.

4.2 BROADER IMPACT

The proposed method enables the encoding of up to thousands of text tokens within an image while
maintaining a near-indistinguishable visual appearance. It has the potential to facilitate applications
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in secure communication by embedding information directly into images, where the generative mod-
els serve as both the encoder and decoder. However, this technique also presents risks, particularly
in its ability to conceal harmful or malicious information within innocuous-seeming images. Unlike
QR codes or visible markers, which can raise suspicion or be flagged by traditional security systems,
natural images encrypted via this method are less likely to be detected. This poses potential con-
cerns where the technology could be misused to propagate illicit content or circumvent monitoring
systems. To this end, we respectfully bring the readers’ attention to a new field that may arise from
this technique – “generative encryption & decryption”.

Due to the inherent flexibility of large language models (LLMs) and the specialized nature of the
encoder-decoder pair, decryption of the hidden information without the exact corresponding decoder
model may be practically impossible. Based on our preliminary experiments, we found that fine-
tuning a Llama3.1 for 10 steps with a small learning rate is sufficient to deactivate a soft prompt em-
bedding for information decoding. Accordingly, the development of robust detection mechanisms
will be critical to counter such misuse. While this encryption method offers significant advance-
ments in secure data transmission, it equally demands ethical oversight and responsible deployment
to mitigate risks associated with its potential for abuse. One potential solution is to train a classifier
to detect the perturbed images as opposed to the untouched ones based on the artifact in images.

5 RELATED WORK

Multimodal Representation Learning. Multi-modal model integrates data from different modali-
ties like images and text into a shared representation space. Models pre-pretrained using contrastive
loss (van den Oord et al., 2018) have generated significant excitement as a powerful tool for data
integration (Jia et al., 2021b; Li et al., 2021; Xu et al., 2021; Zhang et al., 2022). Recent researches
frame the embeddings through various other techniques, including metric learning (Frome et al.,
2013), multilabel classification (Joulin et al., 2015), n-gram language learning (Li et al., 2017),
captioning (Desai & Johnson, 2021), and unified encoding (Girdhar et al., 2022).

Cycle Learning. The concept of cycle learning has been explored in various multi-modal and
uni-modal contexts. Guo et al. (2020) use a cycle framework to jointly learn the transformation
between text and graph. In the image domain, cycle consistent adversarial networks are used to
transfer within images (Zhu et al., 2017) and between text and images (Gorti & Ma, 2018). The
cycle consistency could also be applied to retrieval tasks (Cornia et al., 2018).

Constrained Diffusion Generation. Constrained Diffusion Generation has recently emerged as
a powerful approach for generating high-quality samples under various constraints. In addition to
in-painting as proposed by Rombach et al. (2022), recent techniques allows for precise control over
specific attributes of the generated images (Zhang et al., 2023; Brooks et al., 2023; Tumanyan et al.,
2023). Optimization-based methods have also been explored in the context of constrained diffusion.
Bar-Tal et al. (2023) propose optimizing the generation path within the diffusion process.

Steganography. Some prior works have focused on hiding data within some medium to avoid de-
tection. CRoSS (Yu et al., 2023) hides secret images via DDIM inversion. In contrast, most existing
works focus on hiding textual information: Zhou et al. (2023b) construct a bijective mapping based
on flow-based model, Peng et al. (2023) hides the message in the probability distribution along with
DDPM, Su et al. (2024) modifies StyleGAN (Karras et al., 2019), and Zhou et al. (2023a) encodes
secret message as object contours. OGCT enables steganography when the histogram is related to
the soft prompt, and it is not restricted to a specific dataset. Moreover, our method not only inter-
venes in the generative process but also uses generative models for exact information decoding.

6 CONCLUSION

We propose Optimal Generative Cyclic Transport (OGCT) a general framework that allows exact
information reconstruction during cyclic transformations across modalities (e.g., text → image →
text). We exemplify the OGCT framework using a histogram-based approach, where a medium vec-
tor trained from prompt tuning can encode up to thousands of text tokens. We embed the medium
vector into color or latent histograms of a visually indistinguishable image by intervening in the dif-
fusion process and optimal transport. Such techniques empower numerous novel applications related
to histogram-constrained generation, where the histogram entails the soft prompt for steganography
and may connect to other visually or semantically meaningful spaces for conditional generation.
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Figure 4: More qualitative results of the output images. Zoom in for the best view.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. MultiDiffusion: Fusing diffusion paths
for controlled image generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
1737–1752. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
bar-tal23a.html.

BlackForestLabs. Flux model. https://blackforestlabs.ai/#get-flux, 2024. Ac-
cessed: 2024-10-02.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 18392–18402, June 2023.

Marcella Cornia, Lorenzo Baraldi, Hamed Rezazadegan Tavakoli, and Rita Cucchiara. Towards
cycle-consistent models for text and image retrieval. In ECCV Workshops, 2018. URL https:
//api.semanticscholar.org/CorpusID:59249030.

Karan Desai and Justin Johnson. Virtex: Learning visual representations from textual annotations.
In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11157–
11168, 2021. doi: 10.1109/CVPR46437.2021.01101.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc' Aurelio Ran-
zato, and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/7cce53cf90577442771720a370c3c723-Paper.pdf.

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A single model for many visual modalities. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16102–16112, June 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Satya Krishna Gorti and Jeremy Ma. Text-to-image-to-text translation using cycle consistent adver-
sarial networks. ArXiv, abs/1808.04538, 2018. URL https://api.semanticscholar.
org/CorpusID:52004801.

Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang, David Wipf, and Zheng Zhang. CycleGT:
Unsupervised graph-to-text and text-to-graph generation via cycle training. In Thiago Castro Fer-
reira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Simon Mille, Diego Moussallem, and
Anastasia Shimorina (eds.), Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), pp. 77–88, Dublin, Ireland (Virtual), 12 2020.
Association for Computational Linguistics. URL https://aclanthology.org/2020.
webnlg-1.8.

11

https://proceedings.mlr.press/v202/bar-tal23a.html
https://proceedings.mlr.press/v202/bar-tal23a.html
https://blackforestlabs.ai/#get-flux
https://api.semanticscholar.org/CorpusID:59249030
https://api.semanticscholar.org/CorpusID:59249030
https://proceedings.neurips.cc/paper_files/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7cce53cf90577442771720a370c3c723-Paper.pdf
https://api.semanticscholar.org/CorpusID:52004801
https://api.semanticscholar.org/CorpusID:52004801
https://aclanthology.org/2020.webnlg-1.8
https://aclanthology.org/2020.webnlg-1.8


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021a.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 4904–4916. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.
press/v139/jia21b.html.

Armand Joulin, Laurens van der Maaten, Allan Jabri, and Nicolas Vasilache. Learning visual
features from large weakly supervised data. CoRR, abs/1511.02251, 2015. URL http:
//arxiv.org/abs/1511.02251.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for
Computational Linguistics.

Ang Li, Allan Jabri, Armand Joulin, and Laurens van der Maaten. Learning visual n-grams from web
data. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 4193–4202. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.449. URL
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.449.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 9694–9705. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Yinyin Peng, Donghui Hu, Yaofei Wang, Kejiang Chen, Gang Pei, and Weiming Zhang. Stegad-
dpm: Generative image steganography based on denoising diffusion probabilistic model. In Pro-
ceedings of the 31st ACM International Conference on Multimedia, MM ’23, pp. 7143–7151,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085. doi:
10.1145/3581783.3612514. URL https://doi.org/10.1145/3581783.3612514.

12

https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
http://arxiv.org/abs/1511.02251
http://arxiv.org/abs/1511.02251
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.449
https://proceedings.neurips.cc/paper_files/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf
https://doi.org/10.1145/3581783.3612514


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Christoph Reich, Biplob Debnath, Deep Patel, and Srimat Chakradhar. Differentiable JPEG: The
Devil is in the Details. In WACV, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Wenkang Su, Jiangqun Ni, and Yiyan Sun. Stegastylegan: Towards generic and practical generative
image steganography. Proceedings of the AAAI Conference on Artificial Intelligence, 38(1):240–
248, Mar. 2024. doi: 10.1609/aaai.v38i1.27776. URL https://ojs.aaai.org/index.
php/AAAI/article/view/27776.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
text-driven image-to-image translation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1921–1930, June 2023.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.
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Figure 5: Recoloring comparison with other candidate methods. Better view with color.

A OTHER CANDIDATE APPROACHES

One may argue that existing controllable image generation techniques, such as ControlNet and Lo-
RAs, can achieve precise control of color histograms. Hence, we conduct some preliminary experi-
ments to demonstrate the insufficiency of such approaches.

ControlNet is a popular architecture to manipulate image generation models by adding additional
controllable guidance, such as sketches, depth maps, poses, and so on. Among all the ControlNet
variants, ControlNet-Shuffle is the closest one to our objective, which alters the spatial and color
arrangements of an input image based on a target image. Fig. 5(c) presents the qualitative results
of applying the ControlNet-Shuffle checkpoint (along with the Canny edge checkpoint for structure
preservation) to the target image in Fig. 5(b), yet still resulting in obvious mismatch of color visually.

LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning method that reduces the num-
ber of trainable parameters by injecting low-rank matrices into the weight matrices of a pre-trained
model. Instead of updating the entire model, LoRA only modifies these additional low-rank matri-
ces, making fine-tuning more efficient regarding memory and computation. For our case, we add
an extra LoRA residual flow that takes in color histogram as extra condition and we trains it using
images transformed with color jitter as targets. Fig. 5(e) shows a sample condition with a full red
histogram, where the output image is still far from ideal.

In comparison, our OT-based approach in Fig. 5(d) and Fig. 5(f) consistently recolors the source
image properly, demonstrating the robustness of our approach.

Figure 6: OGCT in pixel space with complex image and text. The output images using either binning
strategy give output with proper structure and decent quality. Better view with color.
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Figure 7: Robustness evaluation for histogram vectors and reconstructed soft-prompts in OGCT. For
encoded text with less than 128 tokens, OGCT secures robust decoding (i.e., > 90%) up to 5% of
wrongly binned pixels or Gaussian noise perturbation.

B ROBUSTNESS EVALUATION

We first evaluate the performance of OGCT in pixel space using highly complex images and text at
the same time. More specifically, we generate images with intricate structures using the prompt “an
artwork with intricate details, vibrant colors, high resolution, 8k” and construct strings with non-
standard characters of length 128 (i.e., generally around 200 tokens) by randomly sampling from
the UTF-8 encoding space. As shown in Fig. 6, both RG color binning and random color binning
give image outputs with high fidelity. The success decoding rate over 300 image-text pairs is 78.7%
for RG binning and 77.3% for random binning, which demonstrates the OGCT’s tolerance to highly
complex image and text inputs.

Then, we test the robustness of OGCT using a noisy histogram vector and reconstructed soft-prompt.
For histogram vectors, we randomly distribute a subset of values to other bins and use the perturbed
histogram vector for decoding; whereas for the reconstructed soft-prompts, we perform a linear
interpolation with a random Gaussian vector (scaled to the same norm). The quantitative results are
shown in Fig. 7. It can be seen that for text with less than 128 tokens, OGCT can still decode the text
accurately (i.e., > 90% success rate) when the wrongly-binned values or the noise factor is below
5%. The performance drop becomes more significant as we enlarge the text length or increase the
perturbation strength.

We note that the wrongly-binned scheme can approximate the result of common perturbations such
as color jittering, blurring, and Gaussian noise, and it is applicable to all binning strategies and space
of operation (e.g., pixel space and latent space). In addition, OGCT is robust to permutation (e.g.,
rotation) at the courtesy of histograms, but it is inevitably sensitive to cropping, as the pixels are not
distributed uniformly in general.

Lastly, we empirically found that OGCT in pixel space is inherently less robust under JPEG com-
pression. This is because: 1) the color histogram intervention and the compression operation occur
both in the pixel space, which causes a conflict between the two objectives; 2) JPEG compression is
conducted in the YCbCr color space, where the transformation is lossy and incurs rounding errors,
resulting in the deviations of most pixel values. To this end, we extend the OGCT framework to
latent space to get better tolerance to JPEG compression, while demonstrating the generalization
ability of OGCT at the same time.
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Figure 8: Qualitative results of OGCT in pixel and latent space. Better view with color.

C OGCT IN LATENT SPACE

We further extend the binning strategy from pixel space to latent space by taking advantage of VQ-
VAE (van den Oord et al., 2017), where compact and semantically meaningful representations are
learned via the quantized codebook. The general procedure of OGCT in latent space is almost
the same as in pixel space, and the only difference lies in the implementation of the perturbation
function φ. In general, we first decode xt

0 from zt0 using the SDXL VAE (Podell et al., 2023) to
get the predicted trajectory endpoint in pixel space. Then, we convert xt0 to a quantized latent code
map via a VQ-VAE, where latent histograms can be derived by counting the latent code indices.
Accordingly, we can apply OT to match the latent histogram to some target distribution. Finally, we
return to the SDXL latent space via VQ-VAE decoding (to xt

′

0 ) and VAE encoding (to zt
′

0 ).

In particular, we adopt a VQ-VAE with 4 latent channels and a codebook of size 8192. We further
divide the quantized latent code into 1024 latent bins for histogram matching. The VQ-VAE is
trained on the CelebA dataset of resolution 256 × 256, and it is sufficient to give some descent
perturbation results for images of resolution 1024 × 1024. Some preliminary results of VQ-VAE
binning and its comparison with OGCT in pixel space can be found in Fig. 8.

By operating in the latent domain, we reduce the computational complexity of OT while preserving
the essential structure of the data. As each latent pixel captures higher-order features for a set of
color pixels, OGCT in latent space is inherently more robust to noise and variations of the input.
After incorporating DiffJPEG (Reich et al., 2024) for a pre-output optimization, we can find an
exact image that matches certain latent histograms after JPEG compression and VQ-VAE encoding.
Through this post hoc processing, we are essentially looking for an image that can cancel out the
compression effect and give the exact histogram in the latent space. Our experiments over 20 random
images resulted in a success rate of 95%.

We also wish to emphasize that the provided qualitative results aim to demo the feasibility of per-
forming OGCT in the latent space. The adopted VQ-VAE checkpoint still has sufficient improve-
ment possibilities, as it is fully trained on the domain of human faces. One can obtain better results
by: 1) performing VQ-VAE training with higher resolutions, more diverse images, and a larger la-
tent codebook size, which can generally lead to a more balanced color set in the latent space, and
2) baking DiffJPEG approximator into the training pipeline to make the VQ-VAE model inherently
robust to JPEG compression. We leave these as directions for future work.

D DIFFUSION PROCESS INTERVENTION

Choice of perturbation time steps. We present the qualitative results of using different sets of
perturbation time steps T in Fig.8. It can be seen that for both RG binning in pixel space and
VQ-VAE binning in latent space, intervening in the diffusion process by perturbing the intermediate
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Figure 9: VAE-decoded zt0 predictions using RG color binning. Better view with color.

Figure 10: Content stability of SDXL VAE (Podell et al., 2023).

predictions of zt0 gives smoother and more natural outputs. In comparison, simply adjusting the
images before output (T = {1}) may potentially result in coarse and blurry images.

Visualization of intermediate predictions. We showcase a few examples of VAE-decoded zt0 pre-
dictions before and after RG color perturbation in Fig. 9, where we use 50 sampling steps for genera-
tion. We can observe that: 1) large pre-trained diffusion models like SDXL are capable of estimating
the trajectory endpoint accurately at earlier time steps; 2) the color perturbation may lead to coarse
and blurry prediction in the earlier stage, but this could be corrected and naturalized along with the
diffusion process. We also demonstrate the content stability of SDXL VAE after multiple rounds of
reconstruction in Fig.10, which serves as the cornerstone for diffusion process intervention.

Implementation details for OT-histogram-matching. The procedures for histogram match-
ing are as follows: 1) divide the input pixel or latent map into a set of bins based on the selected
binning strategy; 2) calculate the target histogram from the soft-prompt embedding and round to
a vector of integers; 3) calculate the cost matrix between each source and target bin (typically L2
distance between vectors); 4) solve for the optimal transport plan using ot.emd from the Python
Optimal Transport library3; 5) for each pair of source and target bins, randomly sample pixels from
the source bin based on the optimal transport plan, and set them to the corresponding values of the
target bin. The source code can be found in the supplementary material.

3https://pythonot.github.io/
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