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ABSTRACT

Learning Hamiltonian neural networks (HNNs) that respect the intrinsic symplectic
structure of physical systems has emerged as a foundational framework for robust
long-term predictions in scientific machine learning. Nevertheless, existing HNN
methods face critical limitations: (i) inherent sequential integration prevents parallel
computation, causing significant computational bottlenecks, and (ii) unconstrained
neural architectures lead to instability when extrapolating dynamics beyond training
regimes. To address these fundamental challenges, we introduce Poisson-Algebraic
Parallel Scan (PAPS), a novel framework that leverages a carefully constructed
Poisson algebraic decomposition of the learned Hamiltonian. By embedding
polynomial generators explicitly closed under Poisson brackets, PAPS induces
an associative Lie-group structure that naturally facilitates parallel-scan (prefix-
sum) computation. Our method achieves exact symplectic integration with up to
three orders-of-magnitude (1000×) speedup at 103 integration steps, significantly
outperforming existing HNN approaches. Moreover, the structured algebraic
representation inherent in PAPS ensures intrinsic physical consistency, delivering
stable and reliable extrapolation far beyond the training distribution. Extensive
theoretical analyses and rigorous numerical experiments validate the superior
computational scalability of our approach, highlighting PAPS as a powerful new
direction for scalable and physically consistent neural Hamiltonian modeling.

1 INTRODUCTION

Learning data-driven models that respect the symplectic structure of Hamiltonian mechanics has
emerged as a principled and rapidly evolving direction within the broader AI4Science initiative,
driven by the need for robust long-horizon prediction in physics (Li et al., 2020), control, and molec-
ular dynamics simulation (Zhang et al., 2025a). Pioneering frameworks showed that embedding
canonical invariants into the hypothesis space mitigates energy drift and stabilizes learning. Despite
these advances, existing symplectic-learning approaches face critical limitations. Firstly, conven-
tional HNNs must apply sequential updates M times to predict a horizon of M steps, incurring
an unavoidable O(M) computational latency that severely restricts scalability on modern parallel
accelerators. Furthermore, this inherently sequential nature is compounded by the nonlinear black-box
neural network structure of learned force fields. As a result, standard acceleration strategies like
operator-splitting (Bartel et al., 2023) become inapplicable without compromising the underlying
Poisson structure, further limiting computational efficiency and scalability. Secondly, prevailing HNN
frameworks are trained through a point-wise (instantaneous) force-matching objective: an uncon-
strained black-box generator gθ is optimized to regress the accelerations

(
q̇, ṗ

)
=
(
∇pHθ,−∇qHθ

)
at each observed state. This purely local criterion ignores the fact that many practical settings pose a
global physical inverse problem only initial conditions and noisy trajectory traces are available, while
the latent Hamiltonian (or its force field) must be inferred so as to reproduce the entire path. As a
result, models calibrated by instantaneous force regression often extrapolate poorly, deviating from
physically admissible solution manifolds once they venture beyond the training distribution.

Meanwhile, recent advances in parallel scan (prefix-sum) algorithms (Hillis & Steele, 1986; Blelloch,
1990) within the broader ML community offer a compelling potential solution to these critical
limitations. By reorganizing computations into associative binary trees, parallel scans achieve
massive GPU/TPU throughput, reducing the critical computational depth from M steps to O(logM),
as successfully demonstrated in large-scale attention (Dao et al., 2022) and structured state-space
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sequence models (Gu et al., 2021; Smith et al., 2023). However, conventional Hamiltonian generators
produce nonlinear flow maps that do not exhibit clear associativity, thereby preventing direct use of
scan-based acceleration techniques.

To unlock this parallelism while simultaneously addressing extrapolation instability, we explicitly
embed our learned Hamiltonian within a carefully constructed Poisson algebraic structure (Marsden
& Ratiu, 1999; Abraham & Marsden, 1978), thereby modernizing Hamiltonian dynamics for the
machine-learning community while offering an algebraic basis for workflows. Concretely, we
represent the Hamiltonian as a structured polynomial built from simpler blocks that are closed
under the Poisson bracket. This algebraic decomposition ensures that the flow maps form a finite-
dimensional Lie group, satisfying the associativity needed for parallel scans. Each flow map is thus
guaranteed to be a symplectomorphism (McDuff & Salamon, 1998; Arnol’d, 1989), preserving the
underlying physical consistency. Consequently, our algebraic formulation not only enables stable
extrapolation far beyond training data distributions but also provides an exact, log–depth parallel
integration scheme, overcoming both core limitations of conventional HNNs simultaneously. Overall,
our contributions in this work are therefore twofold:

(1) Acceleration of Physical Simulation with Parallel Scan. We introduce the Poisson–Algebraic
Parallel Scan (PAPS), a novel parallel-scan framework based on neural Hamiltonians leveraging
Poisson algebraic decomposition. PAPS achieves exact symplecticity and up to (103×) acceleration
compared to existing Hamiltonian Neural Network (HNN) variants, by enabling logarithmic-time
trajectory prediction through an associative prefix-scan approach.

(2) Poisson-Algebraic Structured Inverse Problem. We establish that our trajectory-matching
framework robustly solves the inverse Hamiltonian learning problem. By leveraging global trajectory
consistency rather than local force labels, our Poisson-algebraic neural integrator provides stable
and physically meaningful extrapolation beyond the training regime, significantly outperforming
conventional force-matching approaches that often suffer from instability during extrapolation.

To lay the groundwork for our framework, we first briefly review the necessary mathematical
preliminaries and notation. Let (R2n, ω) be a 2n-dimensional symplectic space, and let z :=
(q,p) = (q1, . . . , qn, p1, . . . , pn) denote canonical coordinates associated with the standard Darboux
form ω =

∑n
i=1 dqi ∧ dpi. For each sufficiently smooth scalar function g ∈ C∞(R2n), referred

to as a Hamiltonian generator, we associate a unique vector field Xg, called the Hamiltonian
vector field of g, implicitly defined through the relation ιXg

ω = dg, explicitly yielding Xg =∑n
i=1(∂pi

g)∂qi − (∂qig)∂pi
. Furthermore, given any two smooth functions f, g ∈ C∞(R2n), the

Poisson bracket is defined as {f, g} := ω(Xf , Xg) =
∑n

i=1(∂qif ∂pig − ∂pif ∂qig), providing a
fundamental algebraic structure for analyzing Hamiltonian dynamics.

Problem Formulation : Structured Inverse Problem. Recall that the primary goal of Hamiltonian
neural networks (HNNs) is to approximate an unknown scalar-valued Hamiltonian function Htrue :
R2n → R using a neural network gθ : R2n → R. Upon successful training, the learned model gθ
serves as a Hamiltonian generator, governing the dynamical evolution via the Poisson bracket {·, ·}:

ż = {z, gθ} = J∇zgθ(z)︸ ︷︷ ︸
Learned Dynamics

≈ J∇zHtrue(z) = {z,Htrue}︸ ︷︷ ︸
Exact Dynamics

, J =

[
0 In
−In 0

]
, (1)

where J denotes the symplectic matrix and z ∈ R2n represents the state vector in physical space. To
achieve this, we consider an initial condition ẑ0 ∼ Pinit with corresponding trajectory data ẑt ∼ Pt>0.
This setting defines a physical inverse problem, aiming to identify the parametrized Hamiltonian
gθ(z) by solving the following initial value optimization problem:

min
gθ∈H

Eẑ0∼Pinit,t∼pt

[
Eẑt∼Pt>0∥zt(gθ)− ẑt∥2

∣∣ẑ0] Polynomization−−−−−−−−→
Section 2

H := Polyr ∋ gθ ≈ HTrue. (2)

In our framework, we denote byH the hypothesis space in which the Hamiltonian generator is learned.
Rather than allowing gθ to range over arbitrary neural function classes, the structured inverse problem
restricts the search to a carefully chosen H. Such structure is essential both for computational
tractability and for preserving physical invariants. In the next section, we show how H can be
instantiated explicitly through a polynomization procedure, where the generator is expanded in a finite
polynomial basis. This construction yields an algebraic representation naturally compatible with the
underlying Poisson geometry, enabling stable extrapolation and efficient parallel composition.
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Figure 1: Pipeline of Proposed Method. Arrow colors represent the operations of their respective generators. (left) Two-stage symplectic
prefix–scan framework. Algorithm 1 constructs a Neural-Poisson DAG, dictionary-orders the polynomial Hamiltonian generators g. Algorithm 2
folds these transforms in a balanced binary tree, yielding an O(logM) parallel scan that composes them into the final structure-preserving
symplectomorphism. (mid) Conceptual illustration of the Lie–group walk on Tr,K . Successive transformation exp(ϵLg1,≤r) and
exp(ϵLg2,≤r) carry Id → Φϵ,g0 → Φϵ,g1 . Dashed red and solid-green arrows mark the corresponding Lie-transform paths. (right)
Phase-space trajectories from prefix scans. Composite flows Wg(1) and Wg(2) carry (e.g., molecular) states z0 → z1 → z2.

Poisson-algebraic Parallel Scan. Given initial conditions ẑ0 ∼ Pinit and corresponding observed
trajectory data ẑt ∼ Pt>0, the objective is to globally infer the Hamiltonian generator gθ. Within the
PAPS framework, this physical inverse problem can be equivalently reformulated as

L(θ) = min
gθ∈G

Eẑ0,t

[
Eẑt∥zt(gθ)− ẑt∥2

∣∣ẑ0] = min
θ

Eẑ0,t

[
Eẑt∥Wg(⌈T/t⌉)ẑ0 − ẑt∥2

∣∣ẑ0], (3)

whereWg(m) denotes the m-step composite flow induced by an ordered sequence of small symplectic
updates. Its concrete Lie–group realization, which forms the core algorithmic contribution of this
work, will be developed in Section 3. Rather than advancing the dynamics by applying these updates
sequentially, PAPS reorganizes them into an associative parallel scan over Hamiltonian flow blocks.
This design exposes GPU-friendly parallelism: on modern accelerators, the effective depth of an M -
step trajectory is reduced from O(M) to O(logM) while maintaining essentially linear throughput
in the number of particles and trajectories. In practice, PAPS yields empirical speedups of three
orders of magnitude (103×) over classical symplectic integrators, while preserving energy and the
symplectic form to numerical precision. Designing and analyzing this GPU-efficient parallel-scan
integrator for Hamiltonian dynamics is the central computational objective of our work.

2 ALGEBRAIC-POLYNOMIZATION OF HAMILTONIAN GENERATORS

Before introducing the algebraic machinery, we first delineate the hypothesis spaceH on which our
model is built, ensuring that all subsequent constructions rest on a clear and consistent foundation.

Neural Polynomial Generator. To set the stage, our first step is to transform the conventional black-
box neural network structure of the Hamiltonian generator into an explicitly structured form, termed an
algebraic decomposition for further acceleration and analysis. We refer to this structured polynomial
representation as a Neural Polynomial Generator, whose finite polynomial basis systematically
encodes the underlying Poisson–algebraic structure.

Definition 2.1 (Neural Polynomials). Let us consider neural network {cα,β := c(α, β, z0, t; θ)} ⊂
Cθ, called neural coefficients. Given Darboux coordinates (q,p) with monomials mαk

βk (z) of degree
k ≤ r, we define the associated family of parameterized polynomials as

gθ ∈ P θ
≤r = spanCθ

{
mα

β = qαn p
β
n

∣∣∣ |α|+ |β| ≤ r
}
⊇


|C|∑
k=1

cα,β ·mα
β

∣∣∣ |C| = (2n+ r

r

) .

Intuition. By substituting the black-box neural network with a finite, structured polynomial basis, we
obtain an explicit algebraic framework for representing Hamiltonian functions. This construction is
analogous to composing music from a predetermined set of notes, in which each melody is built from
structured and interpretable elements. Crucially, the polynomial basis is closed under the Poisson
bracket operation, which endows the space of Hamiltonians with a rich algebraic structure. As we
will demonstrate in Section 3, this intrinsic algebraic organization is fundamental to enabling parallel
prefix-scanning, thereby achieving the target computational complexity ofO(logM). Formally, in an
arbitrary 2n-dimensional phase space with coordinates z = (q1, . . . , qn, p1, . . . , pn) and polynomial
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multi-indices α,β ∈ Nn, we represent the neural polynomial Hamiltonian generator explicitly as:

gθ(q, p) =
∑

α,β, |α|+|β|≤r

c(α, β, z0, t; θ)︸ ︷︷ ︸
=cα,β

· qα1
1 · · · qαn

n pβ1

1 · · · pβn
n︸ ︷︷ ︸

mα
β=qαn pβ

n

. (4)

Given the ith unit vector ei, the Hamiltonian dynamics introduced in equation 1 can be explicitly
rewritten by using the learned polynomial generator in equation 4 as follows:

ż = J∇zgθ(z) =

q̇i = ∂gθ
∂pi

=
∑
α,β

cα,ββiq
αpβ−ei , ṗi = −

∂gθ
∂qi

= −
∑
α,β

cα,βαiq
α−eipβ

T

While the above expansion provides explicit dynamics, its true advantage lies in the algebraic closure
under multiplication and Poisson brackets. This observation motivates an abstract viewpoint. In our
setting, the hypothesis space H in Eq 2 itself is regarded as an algebraic structure. Concretely, by
embedding the polynomial model space P θ

≤r into an algebraic system H =
(
P θ
≤r, ⋆θ, {·, ·}θ

)
that

supports both product and bracket operations, one obtains a richer and more structured representation.
This perspective leads naturally to the following definition.

Definition 2.2 (Neural Poisson algebra). For a set of pairs f, g ∈ P θ
≤r on the neural polynomials

P θ
≤r

a, we define pointwise product f ⋆θ g := π≤r(fg) and canonical Poisson bracket {f, g}θ :=

π≤r

(
{f, g}

)
. Then, we call the space

(
P θ
≤r, ⋆θ, {·, ·}θ

)
the neural Poisson algebra.

aNote the projection π≤r : C
∞(M) → P≤r simply discards every monomial whose total degree exceeds r.

While both operations ⋆θ : P θ
≤r × P θ

≤r → P θ
≤r and {·, ·}θ : P θ

≤r × P θ
≤r → P θ

≤r are closed, any finite
sequence of multiplications and Poisson brackets starting from neural polynomials remains in P θ

≤r.
Consequently, beginning with a basis of monomials whose coefficients lie in Cθ, one may generate an
arbitrarily rich family of candidate Hamiltonians without ever leaving the truncation subspace.

Neural-Poisson Composition DAG. To generate all possible products and Poisson-bracket combina-
tions within our neural Poisson algebra, we organize the procedure to create a directed acylic graph
(i.e., DAG) of Hamiltonian generators. Starting from the base set G(0) = P θ

≤r, each depth-k layer is
constructed by systematically applying exactly two operations (i.e., ⋆θ, {·, ·}θ) to every ordered pair
in the previous layer, yielding G(k). By traversing this DAG, we can both guarantee strict closure
within P θ

≤r and leverage depth-wise batching of algebraic operations.

Proposition 2.3 (Neural–Poisson Composition DAG). Let P θ
≤r be the base generators and Cθ the

neural coefficient set. For each k ≥ 1, let us consider the quotient space of Hamiltonian generators:

G(k) =
{
{π≤r(f ⋆θ g)}

⋃
{π≤r({f, g}θ)} / ∼

∣∣∣ ∀f, g ∈ G(k−1)
}
, G(0) = P θ

≤r,

Then, the composition full graph G(≤K) :=
⋃K

k=0 G(k) is DAG of depth K, where an equivalence
relation ∼ induces quotient space G(k) with following three rules (e.g., product, Poisson bracket,
Jacobi identity):

f ⋆θ g ∼ g ⋆θ f, {f, g}θ ∼ −{g, f}θ, {f, {g, h}θ}θ + {g, {h, f}θ}θ + {h, {f, g}θ}θ ∼ 0.

Motivation for DAG Structure. By embedding our neural polynomial space P θ
≤r into a structured

Poisson algebra, we systematically construct a Directed Acyclic Graph (DAG) of Hamiltonian
generators endowed with two essential algebraic operations: the product f ⋆θ g, which enlarges the
state space by stacking features (analogous to channel stacking in CNNs), and the Poisson bracket
{f, g}θ = ∇qf

⊤∇pg − ∇pf
⊤∇qg, which acts as a phase-space filter explicitly capturing how

each pair of position and momentum coordinates (q,p) twists the underlying flow (analogous to
spatial convolution filters in CNNs, (x ∗w)[i] =

∑
j x[i− j]w[j] for pixels x and w). To illustrate

concretely, let us consider a simple initial scenario with polynomial degree cutoff r = 2. Starting
from a neural coefficient set at depth 0, the DAG construction unfolds explicitly as follows:

iv
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Example: Polynomial Expansions of Hamiltonian Generators in DAG Construction (r = 2, n = 2)

G(0) :
{
c1q1 + c2q2 + c3p1 + c4q1q2 + c5q1p2 + c6q2p1 + c7q2p2 + +c8p1p2 + c9p

2
2, . . .

}
:= P

θ
≤r in Def 2.1

G(1) :
{
c12q1 ⋆θ q2,((((c21q2 ⋆θ q1, c23{q2, p1}, c24q22 ⋆θ p2, c34{q21 , q1q2}, . . .

}
, Equivalence in Product

G(2) :
{
(((((((
c123{{q1, q2}, p1}, c231{{q2, p1}, q1}, c312{{p1, q1}, p2}, . . .

}
, Equivalence in Jacobi Identity

In the toy example above (r = 2, n = 2), the directed acyclic graph (DAG) grows by iteratively
combining elementary polynomial representations through Poisson bracket and product operations.
The crossed-out terms in the diagram correspond to representations eliminated due to algebraic
equivalences. Formally, given arbitrary neural vector-valued coefficients cα,β(z, t; θ) ∈ Rd, higher-
order coefficient tensors are recursively constructed as follows:

cα,β(z, t; θ) = cα1:m−1,β1:m−1
(z, t; θ)⊗cαm,βm

(z, t; θ)−cαm,βm
(z, t; θ)⊗cα1:m−1,β1:m−1

(z, t; θ),

where we denote multi-indices α = (α1, . . . , αm) and β = (β1, . . . , βm). This antisymmetric
outer-product construction ensures that the resulting coefficients represent increasingly complex
interactions while explicitly maintaining algebraic antisymmetry. As can be seen, neural coefficients
that begin as simple first- and second-order monomials are recursively blended through successive
products and Poisson brackets into progressively richer higher-order features.

3 POISSON-ALGEBRA MEETS PARALLEL SCAN

To systematically leverage our DAG-indexed structure G(≤K) as Hamiltonians generators to approx-
imate arbitrary Hamiltonian dynamics, we first introduce the notion of a truncated Lie operator.
Building on this, the next definition formalizes the resulting family of Lie–transforms as a genuine
Lie group, indexed by elements of the Neural–Poisson Composition DAG.

Proposition 3.1 (Neural–Poisson DAG Lie–Transform Family). Fix integers r ≥ 1 and K ≥ 0 and
recall the Neural–Poisson Composition Graph G(≤K) in Definition 2.3. For any element g ∈ G(≤K)

let Lg,≤r : P≤r → P≤r denote the truncated Lie operator Lg,≤rf := π≤r

{
f, g
}

. Then the family of
DAG-indexed Lie transforms Tr,K is a Lie groupa:

Tr,K :=
{
Φϵ,g := exp

(
ϵLg,≤r

)
=

r∑
j=0

ϵj

j!
Lj
g,≤r

∣∣∣ g ∈ G(≤K)
}
. (5)

aLie group is, by definition, a differentiable manifold endowed with a smooth binary operation, the composition ◦ of canonical flows
together with a smooth inversion map.

Why do we need Lie group structure? Intuitively, our method does not parallelize over the states z
themselves, but over the small updates that move the system forward in time. To use a parallel prefix
scan, these updates must be combined by a single binary operation that is (i) associative, (ii) stays
inside the same class of updates after every composition, and (iii) can be described with finitely many
parameters. A Lie group of Hamiltonian flows gives exactly this: each truncated Lie operator Lg,≤r

represents an infinitesimal Hamiltonian update, its exponential Φϵ,g = exp(ϵLg,≤r) is a finite time
flow, and all such flows live in the finite dimensional group Tr,K , Figure 1 (mid). Inside this group,
composition of flows is automatically associative and closed, so a long chain of small steps can be
safely reorganized into a tree structure and evaluated by a prefix scan. If we instead tried to compose
completely arbitrary smooth Hamiltonians, the space of possible updates would explode to infinite
dimension and there would be no finite, well behaved group law to scan over, making the kind of
parallel composition we use essentially impossible.

To make this discussion concrete, we now spell out how a truncated polynomial Hamiltonian generator
g gives rise to the Lie operators and flow maps that our scan composes. Let z = (q, p) ∈ R2n be
a phase-space point and fix a small time increment g be an arbitrary Hamiltonian generators. For
every index j the truncated Lie operator Lgj ,≤rf = π≤r{f, g} defines a Hamiltonian vector field
Xgj ,≤r = (∂pg,−∂qg) that is polynomial of degree at most r. Exponential mapping turns this vector
field into the exact time ϵ flow Φϵ,g = exp

(
ϵLg,≤r

)
∈ Tr,K , so acting on the coordinates induces

the Taylor representation:

ẑ := Φϵ,gz = z + ϵXg,≤r(z) +
ϵ2

2
X2

g,≤r(z) + · · ·+
ϵr

r!
Xr

g,≤r(z), (6)

v
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where the series terminates after the r-th Lie derivative terms due to the nilpotency. Here, applying
Φϵ,g to the phase-space point ẑ means “flowing” z along the Hamiltonian vector field Xgj ,≤r for a
duration ϵ. Fig 1 (mid) schematically depicts the incremental transition of a state z to its next state ẑ.

Neural–Poisson Lie Group Walk. In further implementation, we define an ordered Hamiltonian dic-
tionary g =

[
g1, . . . , gm, . . . , gM

]
as an ordered sequence of Hamiltonian generators, i.e., Fig 1 (left),

where each individual generator gm is explicitly constructed as a sum of |G(≤K)|/M elements ran-
domly selected from the complete DAG G(≤K). Each of these generators induces a corresponding
small-time symplectomorphism Φϵ,gm representing a tiny symplectic update that incrementally cap-
tures the Hamiltonian evolution over finite time horizons. Formally, this composition introduces the
Neural–Poisson Lie group walk, which interprets the ordered application of each small-time flow
Φϵ,gm∈g as a discrete walk on Lie group Tr,K :

Definition 3.2 (Neural–Poisson Lie Group Walk). Fix integers r ≥ 1,K ≥ 0 and consider the Lie
group Tr,K from Definition 3.1. Let g be an ordered dictionary of Hamiltonian generators. Then, we
define the Neural–Poisson Lie Group walkWg : {0, 1, . . . ,M} → Tr,K recursively by

Wg(0) := Id, Wg(m) := Φϵ,gm ◦Wg(m− 1), 1 ≤ m ≤M.

For the initial state z0 = (q0, p0) and ordered dictionary g, the discrete time-evolution is then realized
by successively applying the exact time ϵ flows generated by each gj with Lie-group walk as follows:

z0 z1 z2 . . . zM−1 zM
Φϵ,g1

Φϵ,g2
Φϵ,gM

Wg(M)

zm = Φϵ,gmzm−1,

zM =
(
Φϵ,gM ◦ · · · ◦ Φϵ,g1

)
z0,

zM =Wg(M)z0 = (qM , pM ).

As each factor Φϵ,gm = exp(ϵLgm,≤r) represents an exact ϵ-time evolution generated by a polynomial
Hamiltonian gm, their compositionWg can be viewed intuitively as stitching together multiple small,
physically consistent steps to form a complete trajectory. This approach effectively discretizes
continuous-time Hamiltonian dynamics into manageable segments, producing a physically coherent
sequence of states (z1, . . . , zM ). Now, we introduce an important associativity binary operation on
the Lie group structure in Definition 3.1 for further discussion.

(Lie Group Associativity):
(
Φϵ,gm ◦ Φϵ,gm−1

)
◦ Φϵ,gm−2

= Φϵ,gm ◦
(
Φϵ,gm−1

◦ Φϵ,gm−2

)
. (7)

Remark. This associativity in our framework arises because we confine the hypothesis space
H to finite-degree polynomials, forcing all Hamiltonian generators and their combinations to
remain closed in a finite-dimensional algebra. By contrast, arbitrary black-box models such as
conventional HNNs lack this structure, and their compositions do not guarantee associativity.

The Lie group structure defined above emerges naturally from the composition operation ◦ acting
directly on elementary symplectic flow maps Φϵ,gm . This perspective recasts the original dynamical
evolution into a concise geometric-algebraic framework. Within this setting, the associativity property
captured by equation 7 is the critical condition enabling physically-consistent parallel scanning. This
ensures that any rearrangement of flow-map compositions leaves the symplectic structure, energy,
and all invariants strictly unchanged.

Poisson-Algebraic Parallel Scan. We now describe how to efficiently parallelize the computation
of the trajectory via a Poisson-algebraic prefix-scan. Let Um := Φϵ,gm denote the m-th Lie-group
element in the walkWg(m) with m-th member gm in the ordered dictionary g. Then, a parallel
prefix-scan (Blelloch, 1990) seeks the inclusive prefixes within O(logM) parallel depth with

Wg(m) := Um ◦ Um−1 ◦ · · · ◦ U1, m = 1, . . . ,M.

While Lie-group composition is associative by equation 7, we can evaluate all walks simultaneously
by constructing a balanced binary tree of temporary composites as follows:

V (0)
m := Um, V (1)

m := U2m ◦ U2m−1, V (ℓ)
m := V

(ℓ−1)
2m ◦ V (ℓ−1)

2m−1 , ℓ = 2, . . . , ⌈log2 M⌉,

where ℓ indexes the depth level of the balanced binary tree used in parallel scanning, V (ℓ)
m represents

the combined Lie flow of the contiguous block U(2m−1)2ℓ−1+1, . . . , U2m2ℓ−1 . Recursively evaluating

vi
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these composites up to ℓ = ⌈log2 M⌉ yields every prefix in parallel. In following theoretical result, we
formally demonstrate that our Lie-group walk, together with its parallel prefix-scan implementation,
naturally preserves fundamental physical invariants of the dynamics.

4 THEORETICAL FINDINGS

In this section, we rigorously establish two key theoretical results regarding the proposed Neu-
ral–Poisson Lie–group walk. First, we demonstrate its capacity for universal approximation of
Hamiltonian functions (Proposition 4.2), providing explicit control over approximation errors. Sec-
ond, we derive precise generalization bounds (Proposition 4.3), characterizing their dependence on
the algebraic complexity inherent in the model.

Theorem 4.1 (Neural–Poisson Lie–group walk is symplectic). For any ordered dictionary g, let
Tr,K be the inclusive prefixes of the Neural–Poisson Lie–group walk, which preserves the following
three distinctive symplectic properties:

W∗
gω = ω︸ ︷︷ ︸
structure

, H
(
Wgz

)
= H(z)︸ ︷︷ ︸

energy

, detDWg = 1︸ ︷︷ ︸
volume

, ∀m ≤M, z ∈M.

Consequently the discrete trajectory zm = Wg(m)z0 preserves the symplectic form, the Liouville
measure µω = ω∧n/n!, and the energy exactly at every step.

Theorem 4.1 establishes that the proposed Neural–Poisson Lie–group walk preserves multiple
fundamental symplectic invariants. This invariance guarantees that the parallel prefix–scanning
procedure remains fully consistent with the underlying physical laws, ensuring that long-horizon
trajectory composition retains the exact geometric constraints dictated by Hamiltonian mechanics.

Proposition 4.2 (Informal). Fix a finite horizon T > 0 and a compact set K ⊂ R2n. For exact
Hamiltonians H lying in the bounded classHR,s = {H ∈ Cs : ∥H∥Cs ≤ R} with s > 2n, assume
our Neural-Poisson DAG can realize any polynomial of total degree ≤ r. Then, we have

sup
H∈HR,s

sup
ẑ0∈K

∥∥Wg(M)(ẑ0)− ẑ⌈T/ϵ⌉
∥∥ ≲ O

(
r1−s + ϵr/r!

)
.

This theoretical result highlights that our Neural–Poisson DAG framework serves as a highly effective
Hamiltonian approximator: increasing the polynomial degree r systematically reduces the model
approximation error O(r1−s), while refining the step size ϵ improves the Lie–series truncation error
O(ϵr/r!). These complementary decay rates ensure that both richer polynomial expressivity and
finer temporal resolution contribute to uniformly enhanced accuracy across the entire trajectory.

Proposition 4.3 (Informal). Consider the depth–K Neural–Poisson Lie-walk family FK , which
performs M = ⌈T/ϵ⌉ prefix-scan steps. Then, for confidence level δ ∈ (0, 1), with probability at
least 1− δ over an i.i.d. sample size n, the worst-case difference between train and test loss satisfies

sup
Wg∈FK

∣∣Train(Wg(M))− Test(Wg(M))
∣∣ ≲ O(√M log |G(≤K)|

n
+

√
log(1/δ)

n

)
.

Proposition 4.2 motivates the enlargement of the polynomial order r and consequently the DAG,
as such an increase reduces the approximation error. Proposition 4.3, in contrast, indicates that the
same expansion amplifies the factor

√
log|G(≤K)|/n, thereby widening the generalization gap. This

interplay reflects a bias–variance trade-off, wherein enhanced algebraic expressivity must be balanced
against statistical reliability.

5 RELATED WORK

Hamiltonian Neural Networks. Foundational structure-preserving approaches include Hamiltonian
Neural Networks (HNNs) (Greydanus et al., 2019), which regress a scalar Hamiltonian whose canon-
ical derivatives generate the dynamics, and SympNets (Jin et al., 2020), which directly parameterize
symplectic maps through composition of symplectic layers. These classical models preserve impor-
tant geometric structure, but their updates remain fundamentally sequential and operate through local
residual minimization. Recent physics-informed approaches tailor training objectives to Hamiltonian
systems by enforcing energy conservation or symplecticity directly in the loss or architecture. Beyond
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Integrator / Method GPU Mem Inference Time (s) ADE / FDE ↓ ∆E ↓ ∆ω ↓
(A) Hamiltonian Neural Network based Trajectory Generators with Energy / Symplectic Preservation

HNN + Störmer-Verlet 1.2 3.47×101 3.12×10−3/3.26×10−3 2.06×10−3 5.31×10−2

HNN + Forest–Ruth 4th 1.5 4.01×101 7.83×10−4/8.54×10−4 4.04×10−4 2.73×10−1

HNN + Gauss–Legendre 4th 1.8 5.16×101 5.76×10−4/7.12×10−4 1.15×10−4 9.08×10−1

SymODEN (Zhong et al., 2020) 2.1 3.87×101 8.64×10−4/9.93×10−4 7.46×10−4 2.63×100

SRNN (Chen et al., 2020) 2.5 4.53×101 9.24×10−4/9.63×10−4 8.13×10−4 3.13×100

Nonsep-SNN (Xiong et al., 2021) 2.9 3.58×101 7.56×10−4/8.63×10−4 6.33×10−4 2.23×100

SympNet (Jin et al., 2020) 2.3 3.21×101 6.98×10−4/7.85×10−4 5.74×10−4 2.01×100

(B) Operator-based Trajectory Generators without Energy / Symplectic Preservation

KoVAE (Naiman et al., 2024) 2.3 3.97×10−1 2.75×10−4/3.67×10−4 2.31×10−3 2.43×101

KoNODE (Bai & Ding, 2025) 2.7 5.04×10−1 3.22×10−4/4.67×10−4 1.98×10−3 1.76×101

(C) Black-box Trajectory Generators without Energy / Symplectic Preservation

EqMotion (Xu et al., 2023) 24.6 6.88×100 6.32×10−5/7.07×10−5 1.27×10−1 5.23×101

GeoTDM (Han et al., 2024) 18.5 1.83×100 4.13×10−5/5.51×10−5 1.06×10−1 4.88×101

ET-SEED (Tie et al., 2025) 27.1 3.25×100 3.96×10−5/5.62×10−5 9.97×10−2 8.26×101

Ours (PAPS) 4.0 3.31×10−2 3.28×10−5/4.59×10−5 5.27×10−4 4.02×100

Table 1: Quantitative Comparison on Atomistic Spin Dynamics (QSD). Each column reports inference time (seconds), GPU memory,
ADE/FDE, relative energy drift ∆E, and symplectic violation ∆ω of 1000 time-steps. (A) Hamiltonian-based trajectory generators with explicit
energy/symplectic preservation (B) operator-based generators without explicit preservation (C) black-box generators without preservation.

residual penalties, time-dependent symplectic neural flows parameterize Hamiltonian flow maps
(Cañizares et al., 2024), and symplectic-loss training for HNNs improves long-horizon stability with
a provable Hamiltonian (David & Méhats, 2023). Discrete, variational-integrator flavored models on
Lie groups preserve both group structure and symplectic form in learned maps (Duruisseaux et al.,
2023). Despite these advances, most methods still unroll dynamics sequentially and regularize local
residuals or per-step updates. In contrast, our framework algebraizes the hypothesis class into a finite
Poisson-polynomial basis, producing exact and associative symplectomorphisms and enabling an
O(logM)-depth prefix-scan optimized for trajectory-level identification.

Neural Operator for Physical Dynamics. Operator-theoretic learning lifts nonlinear dynamics
to linear evolution in an observable space. The Koopman Neural Operator (KNO) learns solution
operators with mesh-free, long-horizon generalization. It has been applied to fast prediction of
aerodynamic transonic buffet (Meng et al., 2024a). Invertible-embedding approaches learn observable
dictionaries with guaranteed reconstruction (Meng et al., 2024b). Multiplicative-structure-preserving
variants refine finite-dimensional approximations of observable algebras (Boullé et al., 2024). Proba-
bilistic and sequence-model extensions include KoVAE, which places a Koopman prior in a VAE for
generative modeling of dynamical data (Naiman et al., 2024). SKOLR approximates a structured
Koopman operator via a linear-RNN factorization of lagged measurements (Zhang et al., 2025b).
KoNODE (Bai & Ding, 2025) introduces a Koopman-driven neural ODE where parameters evolve
over time to capture nonstationary dynamics.

Parallelizing Hamiltonian and Dynamical Systems. Several classical approaches have investigated
parallel-in-time or scan-based acceleration of known dynamical systems. The symmetric parareal
algorithm of (Dai et al., 2013) accelerates the numerical integration of a given Hamiltonian ODE
by combining coarse and fine solvers. However, these approaches are unable to apply to learning
unknown Hamiltonians, nor do they yield a learnable symplectic integrator. Similarly, (Yang et al.,
2017) reformulate the recursive Newton–Euler algorithm into semigroup scan operations to parallelize
rigid-body inverse and forward dynamics.

6 EXPERIMENTS

We now present a series of experiments designed to evaluate the proposed framework across rep-
resentative dynamical systems. Our goal is to test not only predictive accuracy but also the extent
to which physical invariants and symplectic structures are preserved in long-horizon. Full details
on numerical settings, benchmark specifications, dataset preparation, and additional statistics are
deferred to Section A.6. Here we first highlight experiments on quantum spin dynamics, which serve
as a canonical and physically rich testbed for assessing both accuracy and structure preservation.

Quantum Spin Dynamics (QSD). We consider a classical spin model widely used in magnetism
and spintronics, where each spin is represented as a unit vector Si ∈ S2 ⊂ R3. Spins in this
system interact through a Hamiltonian incorporating multiple magnetic interactions, including
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Figure 2: Qualitative Comparison on Atomistic Spin Dynamics (QSD). We plot three representative trajectories of 4 spins on Bloch sphere S2
under the QSD Hamiltonian. The proposed Poisson–Algebraic Parallel-Scan integrator (Ours) reproduces the true paths with matched curvature
and phase progression, whereas GeoTDM and KoVAE accumulate trajectory-level errors and deviate from the ground-truth trajectories.

Method Inference (s) ADE / FDE (Methane) ↓ ADE / FDE (Aspirin) ↓ ∆E ↓ / ∆ω ↓
(A) Black-box Trajectory Generators without Energy / Symplectic Preservation

GeoTDM (Han et al., 2024) 1.91×100 4.27×10−5/5.24×10−5 3.84×10−5/5.65×10−5 1.11×10−1 / 5.02×101

ET-SEED (Tie et al., 2025) 3.09×100 4.16×10−5/5.34×10−5 4.28×10−5/5.46×10−5 9.62×10−2 / 7.89×101

(B) Machine Learning Force Field (MLFF) Generators based Stochastic Integrator with Energy / Symplectic Preservation

Störmer-Verlet + EquiformerV2 (Liao et al., 2024) 4.39×101 7.54×10−4/8.23×10−4 8.39×10−4/9.36×10−4 3.89×10−4 / 2.84×10−1

Störmer-Verlet + EGAP (Qu et al., 2024) 5.41×101 5.93×10−4/7.34×10−4 6.21×10−4/7.64×10−4 1.20×10−4 / 9.46×10−1

Ours (PAPS) 4.39× 10−2 2.92×10−5/3.71×10−5 3.36×10−5/4.27×10−5 8.12×10−6/1.26×10−4

Table 2: Quantitative Comparison on Molecular Dynamics (MD). We report runtime (Inference), per-molecule trajectory accuracy (ADE/FDE
for aspirin and methane), and preservation of physical invariants (∆E, ∆ω). Inference time and invariant metrics were measured on aspirin
dynamics. (A) Full-trajectory matching models. (B) force field based symplectic-integrator matching models

Heisenberg exchange, Dzyaloshinskii–Moriya interactions (DMI), magnetocrystalline anisotropy,
Zeeman coupling, long-range dipolar interactions, and next-nearest-neighbor exchange that accounts
for frustration effects (Evans et al., 2014; Abert, 2019):

Htrue = −
∑
⟨ij⟩

[JijSi · Sj −Dij · (Si × Sj)]−K
∑
i

(Si · n̂)2 −
∑
i

h · Si +
1
2

∑
i ̸=j

S⊤
i TijSj −

∑
⟨⟨ij⟩⟩

J
(2)
ij Si · Sj .

Here, parameters Jij , Dij , K, h, Tij , and J
(2)
ij quantify the strength and character of these respective

magnetic interactions. Spin configurations evolve according to Hamiltonian dynamics derived from
Htrue, driven by local effective magnetic fields generated by these competing terms. All experiments
were performed on systems consisting of 32 spins over trajectories spanning 1000 simulation steps.
Table 1 compares our proposed method with three integrator categories: classical Hamiltonian-
based integrators (A), neural operator-based approaches (B) and black-box methods (C). Methods in
group (A) explicitly preserve physical invariants (highlighted in blue) but exhibit limited predictive
accuracy, while methods in (B) achieve moderate accuracy with partial preservation of physical
structure. Despite their superior accuracy, the approaches in (C) may violate the physical invariants
marked in red. In contrast, our method strikes an optimal balance by significantly enhancing predictive
accuracy while robustly preserving essential physical invariants.

Molecular Dynamics (MD). We conducted molecular dynamics simulations for two prototypical
molecular systems, methane (CH4) and aspirin (C9H8O4), employing the OpenMM molecular
dynamics simulation platform (Eastman et al., 2017). Each Interatomic interaction is parameterized
using either the OpenFF and GAFF2 (Boothroyd et al., 2023; Wang et al., 2004), and the classical
Hamiltonian describing the molecular systems followed the standard AMBER functional form,

Htrue =
1

2

N∑
i=1

∥pi∥2

mi
+

∑
(i,j)∈B

1
2kij(rij − r0ij)

2 +
∑

(i,j,k)∈A

1
2kijk(θijk − θ0ijk)

2 +
∑
τ

∑
n∈Nτ

kτ,n [1 + cos(nφτ − γτ,n)] .

All parameters follow AMBER conventions: atomic momenta pi with masses mi; bonded terms
comprising bond stretches (i, j) ∈ B with force constants kij and equilibrium lengths r0ij , angle
bends (i, j, k) ∈ A with kijk and equilibrium angles θ0ijk, and torsions τ with dihedrals φτ , and
nonbonded interactions given by Lennard–Jones and Coulombic terms evaluated with standard
AMBER scaling. All experiments were performed on systems consisting of maximally 40 atoms over
trajectories spanning 1000 simulation steps. When traditional symplectic integrators such as Störmer-
Verlet are combined with existing MLFF generators in group (B) to simulate Hamiltonian dynamics,
they require significantly large inference times, similar to many Hamiltonian neural network-based
methods. In contrast, our PAPS achieves remarkably faster inference while maintaining superior
accuracy and robust preservation of physical invariants.
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Figure 3: Ablation study on efficiency and complexity. Runtime scaling shows our parallel-scan integrator achieves O(logM) growth
compared to O(M) baselines, and polynomial order r = 5, DAG depth K = 2 yield the best trade-off between accuracy and generalization.

Figure 4: Qualitative Result of Molecular dynamics trajectory of an Aspirin Molecules. We show snapshots at selected time steps along
a 1000-step NVE simulation, illustrating the rich internal motion of the molecule while its overall structure remains stable under the learned
Poisson–Algebraic Parallel Scan (PAPS) integrator.

Ablation Study. We conducted ablation studies to assess both runtime scaling and model complexity.
First, to evaluate computational efficiency, we measured the runtime of our parallel scan based
integrator for a trajectory of length M . As shown in Figure 3 (right), the runtime scales as O(logM)
in sharp, contrast to the O(M) scaling observed in baseline integrators, confirming the theoretical
efficiency advantage of our Poisson-algebraic parallel scan and validating its scalability for long-
horizon simulations. Second, motivated by the theoretical results in Section 4, we investigated the
trade-off between polynomial order r, DAG depth K, and approximation capability. While increasing
r improves expressivity, the resulting growth in DAG complexity degrades generalization. Systematic
experiments varying both r and K revealed that the best balance arises at polynomial order r = 5 and
DAG depth K = 2, which achieved minimal prediction error while maintaining stable generalization
performance. Together, these findings demonstrate that our method achieves both computational
scalability and effective control of approximation–generalization trade-offs.

7 CONCLUSION

In this work, we introduced Poisson–Algebraic Parallel Scan (PAPS), a general symplectic-preserving
integration framework that decomposes polynomial Poisson algebras into a DAG and composes
coefficients via an associative prefix scan, achieving logarithmic runtime O(logM). Extensive
experiments across canonical and neural Hamiltonian systems demonstrate superior predictive
fidelity and reduced drift in conserved quantities. Its algebra-level, operator-centric design integrates
seamlessly with classical solvers, neural Hamiltonians, and generative flows, opening promising
directions for future extensions to large-scale molecular simulations, quantum systems, and broader
scientific modeling tasks.

REFERENCES

Claas Abert. Micromagnetics and spintronics: models and numerical methods. Eur. Phys. J. B, 92(6):
120, 2019. doi: 10.1140/epjb/e2019-90599-6.

Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Benjamin/Cummings, Reading,
MA, 2 edition, 1978. ISBN 978-0-8053-0102-2.

Amikam Aharoni. Introduction to the Theory of Ferromagnetism. Oxford University Press, 1st
edition, 1996.

Vladimir I. Arnol’d. Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in
Mathematics. Springer, New York, 2 edition, 1989. ISBN 978-0-387-96890-4.

x



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hanru Bai and Weiyang Ding. KoNODE: Koopman-driven neural ordinary differential equations
with evolving parameters for time series analysis. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=GzFKZctIzj.

Andreas Bartel, Michael Günther, Birgit Jacob, and Timo Reis. Operator splitting based dynamic
iteration for linear differential-algebraic port-hamiltonian systems. Numerische Mathematik, 155
(1):1–34, 2023.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, Computer
Science Department, Carnegie Mellon University, 1990.

Samuel Boothroyd, Pavan K. Behara, Oliver C. Madin, Daniel F. Hahn, Hyungro Jang, Vytautas
Gapsys, et al. Development and benchmarking of openff 2.0.0 (sage) small-molecule force field.
Journal of Chemical Theory and Computation, 19(9):3251–3276, 2023. doi: 10.1021/acs.jctc.
3c00039.
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A APPENDIX

The appendix supplements the main text with detailed theoretical and algorithmic developments
that underpin our framework. We first establish the Symplecticity property, demonstrating that the
proposed dynamics respect the canonical two–form both in the single–exponential setting and for the
full Neural–Poisson Lie–group walk. This is followed by the Neural Poisson Algebra and Composi-
tion DAG, where we formalize the truncated polynomial Poisson algebra, construct the associated
composition DAG, and characterize the resulting Lie–transform family. In Generalization Bound,
we provide a statistical analysis based on geometric complexity measures, leading to bounds on the
generalization gap. The subsequent Universal Approximation subsection proves that our parame-
terization can approximate any target Hamiltonian flow to arbitrary accuracy within the truncated
polynomial class. Finally, Algorithmic Details describes the implementation of the parallel–scan
composition procedure and its integration into the Neural–Poisson Lie–group walk.

NOTATION TABLE

Symbol Meaning

(M,ω) Symplectic manifold with symplectic 2-form ω

Π = ω−1 Poisson bivector associated with ω

{f, g} Poisson bracket of f, g ∈ C∞(M)

κ : U ⊂M → R2n Darboux chart
z = (q, p) Canonical coordinates (q1, . . . , qn, p1, . . . , pn)

J Canonical symplectic matrix
[
0 I

−I 0

]
XH Hamiltonian vector field ω−1dH = J∇H
F t
XH

Time-t Hamiltonian flow of XH

Poly Polynomial ring in (q, p)

Polyd Homogeneous polynomials of degree d

FrPoly Space of polynomials of total degree ≤ r

π≤r Projection onto degree-≤ r polynomial subspace
mθ Projected multiplication mθ(f, g) = π≤r(fg)

{·, ·}θ Projected Poisson bracket π≤r{f, g}
LH Projected Lie derivative f 7→ {f,H}θ
P≤r Space of degree-≤ r polynomials
G(≤K) Depth-≤ K Neural–Poisson Composition DAG
Lg,≤r Truncated Lie operator π≤r{f, g}
tr,K Lie algebra spanned by {Lg,≤r : g ∈ G(≤K)}
Tr,K Lie group of truncated flows exp(ϵLg,≤r)

Φϵ,g ϵ-time flow generated by g

Wg(m) Neural–Poisson Lie–group walk after m steps
Um m-th elementary Lie group update Φϵ,gm

V
(ℓ)
m Balanced binary-tree scan composition node

Cs, Hs Function spaces of order s (smooth / Sobolev)
∥ · ∥Cs Cs norm
µω Liouville measure ω∧n/n!

Table 3: Summary of notation used throughout the paper.

xiv



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.1 SYMPLECTICITY

In this subsection, we verify that the proposed framework preserves the fundamental symplectic
structure of Hamiltonian mechanics, starting from the single–exponential case and extending to the
full Neural–Poisson Lie–group walk.

Proposition A.1. Let (M,ω) be a symplectic manifold with Poisson bracket {·, ·}. Fix H ∈ C∞(M)
and write XH := ω−1dH for its Hamiltonian vector field with flow F t

XH
. Assume the Lie–scan

composition factorizes as a single exponential

Ψ∆t = exp
(
∆tLH

)
, LHf := {f,H},

for some ∆t ∈ I . Then Ψ∆t = F∆t
XH

, hence the discrete update zk+1 = Ψ∆t(zk) coincides with
sampling the continuous solution of żt = XH(zt) at times t = k∆t.

Proof. All statements are local in time, so fix ∆t ∈ I . Let F t
XH

denote the flow of XH and define,
for each t ∈ I , the Koopman pullback operator

Ut : C
∞(M)→ C∞(M), Utf := f ◦ F t

XH
.

It is a strongly continuous one–parameter group of algebra homomorphisms with Ut+s = UtUs and
U0 = Id, whose infinitesimal generator is the Lie derivative along XH :

d

dt

∣∣∣∣
t=0

Utf = LXH
f = {f,H} for all f ∈ C∞(M)

By the chain rule, for each t ∈ I and f ∈ C∞(M),

d

dt

(
Utf

)
=

d

dt

(
f ◦ F t

XH

)
= LXH

f ◦ F t
XH

= Ut

(
LHf

)
,

hence, as an operator identity,

d

dt
Ut = UtLH , U0 = Id. (8)

Define Vt := exp(tLH) =
∑

n≥0
tn

n!L
n
H . Since LH is time–independent, Vt is differentiable and

d

dt
Vt =

∑
n≥1

tn−1

(n− 1)!
Ln
H = VtLH , V0 = Id.

Thus Vt solves the same operator ODE equation 8 with the same initial condition. By uniqueness for
linear ODEs (verified pointwise on each f ∈ C∞(M)), Ut = Vt for all t ∈ I . Evaluating at t = ∆t
gives, for every f ∈ C∞(M),

f ◦ F∆t
XH

= U∆tf = V∆tf = exp
(
∆tLH

)
f = f ◦Ψ∆t.

The equality shows that Ψ∆t = F∆t
XH

. By iterating this relations, one can obtain zk+1 = Ψ∆t(zk) =

F∆t
XH

(zk), so the discrete trajectory is the continuous solution sampled at t = k∆t.

Theorem A.2 (Neural–Poisson Lie–group walk is symplectic). For any ordered dictionary g, let
Tr,K be the inclusive prefixes of the Neural–Poisson Lie–group walk, which preserves the following
three distinctive symplectic properties:

W∗
gω = ω︸ ︷︷ ︸
structure

, H
(
Wgz

)
= H(z)︸ ︷︷ ︸

energy

, detDWg = 1︸ ︷︷ ︸
volume

, ∀m ≤M, z ∈M.

Consequently the discrete trajectory zm = Wg(m)z0 preserves the symplectic form, the Liouville
measure µω = ω∧n/n!, and the energy exactly at every step.
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Proof of Theorem 4.1. The argument extends Proposition A.1 from a single exponential factor to the
ordered product that defines the Neural–Poisson Lie–group walk. We proceed in three steps.

Let the ordered dictionary be g = (g1, . . . , gM ) ⊂ Poly
(r)
θ and let ∆1, . . . ,∆M > 0 be its step sizes.

For each m set
Φm := exp(∆mLgm).

By Proposition A.1, Φm = F∆m

Xgm
, the time–∆m flow of the Hamiltonian vector field Xgm :=

ω−1dgm. Hence each Φm is an exactly symplectomorphism that satisfies

Φ∗
mω = ω, gm

(
Φmz

)
= gm(z), detDΦm = 1. (A.2)

The target Hamiltonian H used for learning satisfies {H, gm} = 0 for every generator gm by
construction of the Neural–Poisson dictionary. Consequently, H is constant along each individual
flow:

d

dt
H
(
F t
Xgm

z
)
= {H, gm}

(
F t
Xgm

z
)
= 0 =⇒ H

(
Φmz

)
= H(z). (9)

Define the inclusive prefixes of the walkWg(m) := Φm ◦ Φm−1 ◦ · · · ◦ Φ1 for 1 ≤ m ≤ M . As
pull-backs commute with composition, one obtainWg(m)∗ω = Φ∗

1

(
Φ∗

2 · · · (Φ∗
mω)

)
= ω. For the

estimation of volume preserving property, one can show that detDWg(m) =
∏m

j=1 detDΦj = 1.
Energy preservation follows by iterating the relation in equation 9:

H
(
Wg(m)z

)
= H

(
Φm ◦ · · · ◦ Φ1z

)
= H(z).

Let us define transformed coordinate zm :=Wg(m)z0 for given initial state z0 ∈M. Then for all
m ≤M , we finally have

Wg(m)∗ω = ω, H(zm) = H(z0), detDWg(m) = 1,

so the discrete path preserves the symplectic form, the Liouville measure µω = ω∧n/n!, and the
Hamiltonian energy exactly at every step. This establishes the three stated symplectic properties and
completes the proof.
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A.2 NEURAL POISSON ALGEBRA AND COMPOSITION DAG

Before presenting the formal construction, we briefly outline the algebraic setting that underlies the
proposed framework, providing the basic structures and notation used throughout the paper.

Let (M, ω) be a symplectic manifold with Poisson bivector Π = ω−1 with {f, g} = Π(df, dg).
Given a Darboux chart κ : U ⊂ M → R2n for explicit coordinates, though everything below is
written intrinsically in terms of Π and pull-backs. Let us set polynomial space and their d-order
subspace:

Poly := R[q1, . . . , qn, p1, . . . , pn], Polyd := {f ∈ Poly | deg f = d}.

This structure naturally admits the filtration F rPoly :=
⊕

d≤r Polyd for any r ∈ N. While
deg(fg) = deg f + deg g and deg{f, g} ≤ deg f + deg g − 2, both the ordinary product and the
Poisson bracket preserve the filtration. For the fixed truncation order r ≥ 1 with π≤r : Poly →
F rPoly of the degree-≤ r projection, note that π2

≤r = π≤r. Now, we introduce the projected bilinear
maps

mθ(f, g) := π≤r(fg), {f, g}θ := π≤r

(
{f, g}

)
, f, g ∈ F rPoly.

Consequently, the following triplet Poly(r)θ :=
(
F rPoly,mθ, {·, ·}θ

)
is called a projected Poisson

algebra. The product mθ is commutative, associative, and unital (with unit 1) within F rPoly. The pro-
jected Poisson bracket {·, ·}θ is bilinear and antisymmetric, and its Jacobiator equals π≤r(J(f, g, h)),
so it vanishes whenever the unprojected Jacobiator exceeds degree r. Moreover, the projected Leibniz
rule holds: {f,mθ(g, h)}θ = mθ({f, g}θ, h) + mθ(g, {f, h}θ).s Note that every H ∈ F rPoly
induces a Hamiltonian derivation LH : f 7−→ {f,H}θ and H 7→ LH is a Lie representation:
[LH1 , LH2 ] = L{H1,H2}θ

. This shows that the following space forms a finite-dimensional Lie
algebra.

g
(r)
θ := {LH | H ∈ F rPoly}

Exponentiating LH yields a canonical transformation exp(∆tLH) that coincides with the time-∆t
flow of the projected Hamiltonian vector field whenever the Lie–scan collapses to a single exponential.

We now formalize this observation by characterizing the full family of such truncated Lie–generated
flows within our DAG framework.

Proposition A.3 (Neural–Poisson DAG Lie–Transform Family). Fix integers r ≥ 1 and K ≥ 0 and
recall the Neural–Poisson Composition Graph G(≤K) in Definition 2.3. For any element g ∈ G(≤K)

let Lg,≤r : P≤r → P≤r denote the truncated Lie operator Lg,≤rf := π≤r

{
f, g
}

. Then the family of
DAG-indexed Lie transforms Tr,K is a Lie groupa:

Tr,K :=
{
Φϵ,g := exp

(
ϵLg,≤r

)
=

r∑
j=0

ϵj

j!
Lj
g,≤r

∣∣∣ g ∈ G(≤K)
}
. (10)

aLie group is, by definition, a differentiable manifold endowed with a smooth binary operation, the composition ◦ of canonical flows
together with a smooth inversion map.

Proof of Proposition 3.1. Throughout, we adopt the symbols introduced just above: P≤r, the pro-
jected Poisson bracket {·, ·}θ, the truncated vector fields Lg,≤r, and the finite-dimensional Lie
algebra tr,K ⊂ X(M). By construction tr,K := Span{Lg,≤r | g ∈ G(≤K)} is a finite linear span,
hence finite-dimensional. The closure relation [Lg1,≤r, Lg2,≤r] = L{g1,g2},≤r ∈ tr,K follows from
the Poisson-Jacobi identity and the fact that G(≤K) is closed under the truncated Poisson bracket.
Thus tr,K is indeed a Lie subalgebra of X(M). While P≤r is finite-dimensional, one can deduce
that (P≤r) ∼= glN (R) with N = dimP≤r. Each Lg,≤r acts linearly on P≤r; hence the inclusion
tr,K ↪→ glN (R) is a Lie-algebra monomorphism. Consequently, the mapping

exp : tr,K −→ GLN (R)

is well defined and smooth. By the standard Lie theory (Hilgert & Neeb, 2011, Ch.II), one can show
that exp(tr,K) is an embedded Lie subgroup of GLN (R) whose Lie algebra is precisely tr,K . Denote
this subgroup by Tr,K . Because tr,K is finite-dimensional, Tr,K is a finite-dimensional smooth
manifold; the group operations are the restrictions of matrix multiplication and inversion and are

xvii
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therefore smooth. Next, let us fix g ∈ G(≤K) and ϵ ∈ R. Since each Lg,≤r is nilpotent of order r + 1

(Lr+1
g,≤r = 0), one can obtain that the following evaluation is member of Tr,K :

Φϵ,g := exp(ϵLg,≤r) =

r∑
j=0

ϵj

j!
Lj
g,≤r ∈ Tr,K .

Thus every element displayed in equation 10 belongs to the Lie subgroup Tr,K . Conversely, any X ∈
tr,K is a finite linear combination

∑
i αiLgi,≤r with gi ∈ G(≤K). The Baker–Campbell–Hausdorff

formula (Hilgert & Neeb, 2011, Ch.III) expresses expX as a finite product of factors exp(αiLgi,≤r),
each of which lies in the set on the right of equation 10, showing that set coincides with Tr,K .
Therefore, the family of DAG-indexed Lie transforms in equation 10 forms the finite-dimensional Lie
group Tr,K , completing the proof.

Proposition A.4 (Planar-binary-DAG correspondence, quotient form). Let G(0) = Gθ =

{g(1)θ , . . . , g
(m)
θ }. For k ≥ 1 let G̃(k) be the set of formal binary expressions obtained from or-

dered pairs (f, g) ∈ G̃(k−1) × G̃(k−1) by the two constructors

(f, g) 7→ π≤r(f ⋆θ g), (f, g) 7→ π≤r({f, g}θ).

Let ∼ be the smallest congruence on
⋃

h≤k G̃(h) generated by the following relations: commutativity
of ⋆θ, antisymmetry of the bracket, the Jacobi identity, and the idempotence of the truncation π≤r.
Define G(k) := G̃(k)/ ∼. Let T̃ (k) be the set of planar binary DAGs of height k with leaves labelled
by Gθ and internal nodes labelled by ⋆θ or {·, ·}θ with ordered children. Let ≡ be the smallest
congruence on

⋃
h≤k T̃ (h) generated by the corresponding local moves: swapping the two children

at a ⋆θ-node, swapping the two children at a bracket node together with the induced global sign
flip, the Jacobi rewrite on depth two bracket patterns, and erasing duplicate truncation tags. Define
T (k) := T̃ (k)/ ≡. Then for every k ≥ 0 there exists a bijection

Φk : G(k) −→ T (k).

Consequently G(≤K) ∼=
⋃K

h=0 T (h) for every K ≥ 0.

Proof. We construct mutually inverse maps by structural recursion and verify they are well defined
on the quotients. For k = 0 set Φ0(g

(i)
θ ) equal to the one-node DAG labelled by g

(i)
θ . For k ≥ 1 take

a class [E] ∈ G(k) and choose any representative E ∈ G̃(k). If E = π≤r(f ⋆θ g), let us define the
following operation:

Φ̃k(E) :=
⋆θ

Φ̃k−1(f) Φ̃k−1(g)

∈ T̃ (k).

If E = π≤r({f, g}θ), define analogously with a {·, ·}θ root. Put Φk([E]) := [Φ̃k(E)] ∈ T (k). If
E ∼ E′, they differ by a finite sequence of the algebraic generators listed in the statement. Each
generator maps to the corresponding local move generating ≡ (commutativity, antisymmetry with
sign absorption, Jacobi, truncation), hence Φ̃k(E) ≡ Φ̃k(E

′) and Φk is well defined. Next, define
Ψ0 as the inverse of Φ0 on leaves. For k ≥ 1 take a class [T ] ∈ T (k), pick a representative T ∈ T̃ (k)

and define recursively

Ψ̃k

( ⋆θ

TL TR

)
:= π≤r

(
Ψ̃k−1(TL) ⋆θ Ψ̃k−1(TR)

)
,

Ψ̃k

( {·, ·}θ

TL TR

)
:= π≤r

(
{Ψ̃k−1(TL), Ψ̃k−1(TR)}θ

)
.

Now we put Ψk([T ]) := [Ψ̃k(T )] ∈ G(k). If T ≡ T ′, they differ by a finite sequence of the local
moves listed above and duplicate truncation erasures. Each move is mapped by Ψ̃k to one of the
algebraic generators of ∼ or to idempotence of π≤r, hence Ψ̃k(T ) ∼ Ψ̃k(T

′) and Ψk is well defined.
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Next, our goal is to induct on k. While the base case k = 0 is trivial, we consider the claim for k − 1.
For [E] ∈ G(k) with representative E = π≤r(f ⋆θ g), we have

Ψk(Φk([E])) =
[
π≤r

(
Ψ̃k−1(Φ̃k−1(f)) ⋆θ Ψ̃k−1(Φ̃k−1(g))

) ]
= [ π≤r(f ⋆θ g) ] = [E].

By using this relation, we induct hypothesis at depth k − 1. The bracket case is identical, so
Ψk ◦Φk = Id. Conversely, for [T ] ∈ T (k) with root operation⊙ ∈ {⋆θ, {·, ·}θ} and children TL, TR,

Φk(Ψk([T ])) =
[ ⊙

Φ̃k−1(Ψ̃k−1(TL)) Φ̃k−1(Ψ̃k−1(TR))

]
=
[ ⊙

TL TR

]
= [T ].

again by the induction hypothesis. Hence Φk and Ψk are inverse bijections. Now, we take disjoint
unions over h ≤ K preserves bijectivity, so we obtain the desired result: G(≤K) ∼=

⋃K
h=0 T (h).

xix
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A.3 GENERALIZATION

In preparation for the proof of generalization bound, we first recall the essential definitions and
properties of Hamiltonian vector fields, the polynomial truncation operator π≤r, and the ambient Lie
algebra X(M) that will be used in our subsequent argument.

Lie Subalgebra Structure of tr,K . Let X(M) denote the Lie algebra of smooth vector fields on the
symplectic manifold (M, ω), equipped with the standard Lie bracket [X,Y ] = X ◦ Y − Y ◦X . For
any Hamiltonian function f ∈ C∞(M), the associated Hamiltonian vector field Lf is defined by
ιLf

ω = df . Truncating to polynomial Hamiltonians of degree at most r, write

Lf,≤r := π≤r(Lf ),

where π≤r projects onto the space of polynomial vector fields of degree ≤ r. We define the set of Lie
transformation as follows:

tr,K := span
{
Lg,≤r

∣∣ g ∈ G(≤K)
}
⊂ X(M).

Note that the Poisson bracket of any two truncated polynomials in G(≤K) remains in G(≤K), and
commutators of Hamiltonian vector fields satisfy the following:

[Lg1,≤r, Lg2,≤r] = L{g1,g2},≤r, g1, g2 ∈ G(≤K),

Thus, it follows that tr,K is closed under the Lie bracket, showing that tr,K is a finite-dimensional
Lie subalgebra of X(M).

Compatible Almost–Complex Structure. Let (M, ω) be a 2n–dimensional symplectic manifold.
An almost–complex structure onM is a bundle map J : TM −→ TM satisfying J2 = −Id. We
say that J is compatible with the symplectic form ω if, for all tangent vectors u, v ∈ TM,

ω(Ju, Jv) = ω(u, v), ω(u, Ju) > 0 (for u ̸= 0) (11)

In particular, these conditions guarantee that the bilinear form g(u, v) := ω(u, Jv) is symmet-
ric and positive–definite, hence defines a Riemannian metric on M . Together, (ω, J, g) form an
almost–Kähler structure, which underlies the L2–inner product〈

X,Y
〉
=

∫
M

ω
(
X(z), JY (z)

)
dµω(z) ∀ X,Y ∈ X(M), (12)

and ensures that Hamiltonian flows preserve both the symplectic form and the associated phase-space
volume µω = ωn/n! (McDuff & Salamon, 2017; Da Silva & Da Salva, 2008).

Left-Invariant Geometry of Tr,K . We extend the proposed inner product to a Riemannian metric
on the Lie group Tr,K by left translations. For any fixed Lie element g ∈ Tr,K and tangent vectors
X,Y ∈ TgTr,K ⊂ X(M), we can rewrite the inner product by realizing the sub-algebra structure:〈

Xg, Yg

〉
g
=
〈
d(Lg−1)g[Xg]︸ ︷︷ ︸

=:U

, d(Lg−1)g[Yg]︸ ︷︷ ︸
=:V

〉
(by definition of the left-invariant metric) (13)

=

∫
M

ω
(
U(z), JV (z)

)
dµω(z) (by the global L2–inner product on X(M)) (14)

=

∫
M

ω
(
d(Lg−1)g[Xg](z), Jd(Lg−1)g[Yg](z)

)
dµω(z). (15)

where Lg−1 : h 7→ g−1h is left multiplication. By construction, this metric is left-invariant, since
left-translation by any group element preserves the inner product on each tangent space. Denote by
dG the geodesic distance induced by this Riemannian metric:

dG(g, h) = inf
γ(0)=g
γ(1)=h

∫ 1

0

∥∥γ̇(t)∥∥
γ(t)

dt,

where the infimum is over all smooth curves γ : [0, 1]→ Tr,K connecting g to h. Given definition of
geodesic, the exponential map is simply given as

exp: tr,K −→ Tr,K ,

xx



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where the map is defined by sending a Lie algebra element X to the time-one point γX(1) of the
unique geodesic γX satisfying γX(0) = e and γ̇X(0) = X .

Covering Number of Neural-Poisson Lie Walk. Exploiting the left-invariant Riemannian structure
of Tr,K and the properties of the geodesic exponential map introduced above, we now proceed to
derive an upper bound on the covering number of the elementary-flow set Sh with respect to the
distance dG. LetWθ

r,K,M,h be the Neural–Poisson Lie–group walk class. For a maximal step size
h > 0 define the elementary-flow set

Sh :=
{
Φε,g = exp

(
εLg,≤r

) ∣∣∣ g ∈ G(≤K), 0 < ε ≤ h
}
⊂ Tr,K , (16)

so every element is the exact ε-time Lie–exponential generated by a depth ≤ K polynomial Hamilto-
nian, truncated at degree r. The left-invariant Riemannian distance dG on Tr,K restricts to a metric
on Sh. We then define the covering number of this elementary-flow set by

N(δ,Sh, dG) := min
{
N ∈ N

∣∣∣ ∃ g1, . . . , gN ∈ Sh, Sh ⊂
N⋃
i=1

BdG

(
gi, ε

)}
,

which captures the minimal number of geodesic balls of radius ε needed to cover Sh and thus
quantifies its metric complexity at scale δ. Next, for each tolerance δj , let Cδj ⊂ Sh be any δj-cover
(or δj-net) satisfying ∣∣Cδj ∣∣ = N

(
δj ,Sh, dG

)
, Sh ⊂

⋃
Φ∈Cδj

BdG
(Φ, δj),

where the geodesic ball BdG
centered at Φ in Sh is defined by

BdG
(Φ, δj) :=

{
Ψ ∈ Sh | dG(Φ,Ψ) < δj

}
.

In other words, Cδj is the set of centers of open balls of radius δj that cover Sh, and its cardinality
exactly equals the covering number.

Proposition A.5 (Compositional entropy bound for Lie–group walks). Let M ∈ N. For a sequence
of non–negative tolerances δ1, . . . , δM satisfying

∑M
j=1 δj ≤ ε define the Cartesian product of step

covers
C(δ1, . . . , δM ) := CδM × · · · × Cδ1 , Cδj ⊂ Sh, |Cδj | = N(δj ,Sh, dG).

For every choice (Φ̂M , . . . , Φ̂1) ∈ C(δ1, . . . , δM ) form the composite Ŵ := Φ̂M ◦ · · · ◦ Φ̂1. Then
the collection {Ŵ} is an ε-net of the Lie–group walk classWθ

r,K,M,h = {ΦεM ,gM ◦ · · · ◦ Φε1,g1 |
(εj , gj) admissible}, and the covering number satisfies the purely factorised bound

N
(
ε,Wθ

r,K,M,h, dG
)
≤

M∏
j=1

N
(
δj ,Sh, dG

)
.

In particular, choosing the uniform allocation δ1 = · · · = δM = ε/M yields

N
(
ε,Wθ

r,K,M,h, dG
)
≤
[
N
(
ε/M,Sh, dG

)]M
.

Proof. Fix an admissible Lie group walk Wg(M) := ΦεM ,gM ◦ · · · ◦ Φε1,g1 ∈ Wθ
r,K,M,h and, for

every index j ∈ {1, . . . ,M}, choose Φ̂j ∈ Cδj so that dG
(
Φεj ,gj , Φ̂j

)
< δj . We first define the

mixed partial compositions

W (j) := Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φεj ,gj ◦ · · · ◦ Φε1,g1 , j = 0, . . . ,M,

with the convention W (0) := W θ
g,M and W (M) := Φ̂M ◦ · · · ◦ Φ̂1 =: Ŵ . Then dG(W

(0),W (M)) ≤∑M
j=1 dG

(
W (j−1),W (j)

)
by the ordinary triangle inequality. It therefore suffices to bound each

increment dG
(
W (j−1),W (j)

)
. We first observe that

W (j−1) = Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φεj ,gj︸ ︷︷ ︸
varying

◦Φεj−1,gj−1
◦ · · · ◦ Φε1,g1 ,

xxi
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where the following equality holds for S := Φεj−1,gj−1
◦ · · · ◦ Φε1,g1 with index j,

W (j) = Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φ̂j︸︷︷︸
proxy

◦Φεj−1,gj−1
◦ · · · ◦ Φε1,g1 = Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φ̂j︸︷︷︸

proxy

◦ S,

This shows that the distance between partial composition at (j−1)-th step and j-th can be represented
as

dG

(
W (j−1),W (j)

)
= dG

(
Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φεj ,gj ◦ S, Φ̂M ◦ · · · ◦ Φ̂j+1 ◦ Φ̂j ◦ S

)
= dG

(
Φεj ,gj ◦ S, Φ̂j ◦ S

)
(left-invariance by prefix)

= dG

(
Φεj ,gj , Φ̂j

)
(left-invariance by suffix S)

< δj .

Summing these inequalities up to M -th geodesic chain, we have

dG
(
W θ

g,M , Ŵ
)
≤

M∑
j=1

δj ≤ ε,

so every walk lies in the ε-ball centred at a suitable Ŵ . Counting all possible choices of the proxies
Φ̂j ∈ Cδj produces the asserted factorised bound on the covering number, completing the proof.

We now derive a covering number bound for the elementary flow set Sh under the geodesic metric
dG. Recall that

Sh := {Φε,g = exp(εLg,≤r)|g ∈ G(≤ K), 0 < ε ≤ h} ⊂ Tr,K ,

where G(≤ K) denotes the finite set of depth-≤ K polynomial Hamiltonians (with at most D free
parameters), and Lg,≤r is the truncated Lie operator. The set Sh thus forms a compact, finite-
dimensional submanifold of the Lie group Tr,K , parameterized by (ε, g). Next, we estimate its
covering number under the geodesic distance dG induced by any left-invariant Riemannian metric.

Proposition A.6 (Volume–packing covering bound). Let (M, g) be a compact d-dimensional Rie-
mannian manifold with geodesic metric dg , total volume Vol(M), and injectivity radius Inj(M) > 0.
For every radius 0 < δ ≤ Inj(M)/2 the δ-covering number satisfies

N
(
δ,M, dg

)
≤ CMδ−d, CM =

2dVol(M)

cM
,

where the uniform lower-volume constant is defined by

cM := inf
x∈M

inf
0<r≤Inj(M)/2

Vol
(
Bg(x, r)

)
rd

> 0.

Proof. For each x ∈M , define the volume-ratio function within the half of injective radius

f(x, r) :=
Vol
(
Bg(x, r)

)
rd

, 0 < r ≤ Inj(M)

2
.

Here Inj(M) denotes the injectivity radius of the Riemannian manifold (M, g), namely

Inj(M) = inf
x∈M

sup
{
r > 0 : expx : BTxM (0, r)→M is a diffeomorphism

}
.

By restricting to 0 < r ≤ Inj(M)/2 in the definition of f , we guarantee that for every x ∈ M the
geodesic ball Bg(x, r) is contained entirely in the normal-coordinate neighborhood around x, so that
the exponential map provides a smooth Euclidean chart on Bg(x, r) and the usual Euclidean volume
comparison applies. Note that, in geodesic normal coordinates around x, the metric g agrees with the
Euclidean metric up to second-order terms. This fact gives the following equality:

lim
r→0

Vol
(
Bg(x, r)

)
VolRd

(
B(0, r)

) = 1. (17)

xxii
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Since VolRd(B(0, r)) = ωdr
d, it follows that limr→0 f(x, r) = ωd. Hence f extends continuously

toM× [0, Inj(M)/2] by setting f(x, 0) = ωd, where

ωd := VolRd

(
BRd(0, 1)

)
=

πd/2

Γ
(
d
2 + 1

) .
BecauseM× [0, Inj(M)/2] is compact and ωd > 0, the continuous function f attains a positive
minimum

cM := min
(x,r)∈M×[0,Inj(M)/2]

f(x, r) > 0.

Therefore for all x ∈M and 0 ≤ r ≤ Inj(M)/2,

Vol
(
Bg(x, r)

)
≥ cMrd. (18)

Next, let {x1, . . . , xN} ⊂ M be a maximal δ-separated set, so dg(xi, xj) ≥ δ for i ̸= j. By
maximality, these points form a δ-cover of manifoldsM, hence

N⋃
i=1

Bg(xi, δ) =M,

and by definition N = N(δ,M, dg). To show the balls Bg(xi, δ/2) are disjoint, suppose z ∈
Bg(xi,

δ
2 ) ∩Bg(xj ,

δ
2 ) with i ̸= j. Then the triangle inequality gives

dg(xi, xj) ≤ dg(xi, z) + dg(z, xj) <
δ
2 + δ

2 = δ, (19)

contradicting separation. Thus the N balls Bg(xi, δ/2) are pairwise disjoint and all lie in M .
Combining with equation 18 yields

Vol(M) ≥
N∑
i=1

Vol
(
Bg(xi,

δ
2 )
)
≥ NcM

(
δ

2

)d

= N
cMδd

2d
. (20)

Solving equation 20 for the positive integer N , one obtain the desired result as claimed:

N := N(δ,M, dg) ≤
2dVol(M)

cM
δ−d =

(2dVol(M)

cM

)
δ−d = CMδ−d, CM :=

2dVol(M)

cM
.

Proposition A.7 (Covering number of the elementary–flow Lie subgroup). Equip the Lie group Tr,K
with the left–invariant Riemannian metric dG. For any fixed step ceiling h > 0 define the compact
subgroup

Sh =
{
Φε,g = exp

(
εLg,≤r

) ∣∣ g ∈ G(≤K), 0 < ε ≤ h
}
⊂ Tr,K .

Let dS := dimSh, let Vol(Sh) be its total Riemannian volume, and write Inj(Sh) > 0 for its
injectivity radius with respect to dG. Then for every radius 0 < δ ≤ Inj(Sh)/2 the δ–covering
number of Sh obeys

N
(
δ,Sh, dG

)
≤ CS δ−dS , CS =

2dS Vol(Sh)

cS
,

where the uniform lower–volume constant is

cS := inf
x∈Sh

inf
0<r≤Inj(Sh)/2

Vol
(
BG(x, r)

)
rdS

> 0,

and BG(x, r) denotes the geodesic ball of radius r centered at x in the metric dG.

Proof. While Sh is a compact submanifold of Lie group, it is compact dS –dimensional Riemannian
manifold with geodesic metric dG, total volume Vol(Sh), and injectivity radius Inj(Sh), Propo-
sition A.6 applies verbatim. Identifying M with Sh, dg with dG, and d with dS yields the stated
bound together with the explicit constant CS .

xxiii
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Proposition A.8. Let S Θ
h be elementary-flow Lie subgroup where c = (c1, . . . , cd) are the continu-

ous coefficients of the polynomial Hamiltonian g(c), and Ω is the domain of allowable coefficients.

S Θ
h =

{
Φε,g(c) = exp(εLg(c),≤r)

∣∣ 0 < ε ≤ h, c ∈ Ω ⊂ Rd
}

Suppose the left-invariant Riemannian metric gT on Tr,K pulls back under the mapping

ϕ : (0, h]× Ω −→ Sh, ϕ(ε, c) = exp
(
εLg(c),≤r

)
,

to a block-diagonal metric of the form

ϕ∗gT = dε2 ⊕ gfiber(c), gfiber(c) ≡ Σθ ∈ Rd×d (constant in c).

For some V̂ Ĵ > 0, the Riemannian volume of S Θ
h is proportional to the cardinality of Poisson DAG:

Vol
(
S Θ

h

)
≤ h|G(≤K)|

(
V̂ Ĵ

)
Proof. In order to compute the pull-back of the left-invariant metric onto the parameter domain
(0, h]× Ω and derive the resulting volume form on Sh, we begin by expressing how an infinitesimal
change in the coefficients c affects the exponential map. Here, ∂vϕ denotes the derivative of the
map ϕ(ε, c) = exp(εLg(c),≤r) in the direction v ∈ TcΩ, capturing how a small perturbation in the
Hamiltonian coefficients c modifies the time-ε flow. The map ϕ(ε, c) = exp

(
εLg(c),≤r

)
is a smooth

bijection from (0, h]×Ω onto S Θ
h , giving a global coordinate chart (ε, c). Thus, for each fixed (ε, c),

the differential in the c–direction is obtained by left-invariance:

∂vϕ = d expεLg(c),≤r

[
εL∂vg(c),≤r

]
, v ∈ TcΩ.

Left-translate this variation back to the identity in the Lie group:

d
(
Lϕ(ε,c)−1

)
∂vϕ = d exp0

(
εL∂vg(c),≤r

)
= εL∂vg(c),≤r,

since d exp0 = id. Note that, at the identity, the Lie-algebra inner product is simply reduced to〈
X,Y

〉
=
∫
M

ω
(
X, JY

)
dµω . Hence, for two tangent vectors v, w ∈ TcΩ one finds〈

∂vϕ, ∂wϕ
〉
= ε2

〈
L∂vg(c),≤r, L∂wg(c),≤r

〉
from which the pull-back metric and volume form follow. Specifically, one obtains

gfiber(c)[v, w] :=
〈
εL∂vg,≤r, εL∂wg,≤r

〉
L2(M,µω)

(21)

(a)
= ε2

∫
M

ω
(
L∂vg,≤r(z), JL∂wg,≤r(z)

)
dµω(z) (22)

(b)
= ε2

∫
M

〈
J−1L∂vg,≤r(z), J

−1L∂wg,≤r(z)
〉
TzM

dµω(z) (23)

(c)
= ε2

∫
M

〈
∇(∂vg)(z),∇(∂wg)(z)

〉
TzM

dµω(z) (24)

(d)
= ε2

∫
M

∂vg(z)∂wg(z) divµω

(
∇g(z)

)︸ ︷︷ ︸
=−∂g log ρc(z)

dµω(z) (25)

(e)
= ε2

∫
M

(
∂v log ρc

)
(z)
(
∂w log ρc

)
(z)ρc(z)dµω(z) (26)

=
(
Σθ

)
vw

. (27)

In line (a), we express the L2 inner product of the two Hamiltonian vector fields with respect to the Li-
ouville measure dµω via the standard compatibility relation ⟨X,Y ⟩L2(M,µω) =

∫
M

ω
(
X, JY

)
dµω,

which inserts the almost–complex structure J and contributes the overall factor ε2. In the second
line (b), we use the identity g(·, ·) = ω(·, J ·), so ω

(
X, JY

)
can be replaced by g

(
J−1X, J−1Y

)
,

thereby conjugating each Hamiltonian vector field with J−1. In (c), we recall that for every Hamil-
tonian function f one has Lf = Xf = J∇f , hence J−1L∂vg,≤r = ∇(∂vg) and similarly for the
w-direction, turning the integrand into the pointwise inner product of the gradients ∇(∂vg) and

xxiv
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∇(∂wg). Step (d) performs an integration by parts under the Liouville measure: Liouville’s theorem
gives divµω

Xf = 0, from which it follows that divµω
∇g = −∂g log ρc, once the Gibbs density

ρc := dµc/dµω = e−gc/Z(θ) represented by Radon-Nikodym derivative is introduced.

By using the property of this divergence, one can convert the integrand into the product ∂vg∂wgρc.
Finally, in (e) we notice that ∂v log ρc = ∂vg and likewise for w, so the integral coincides with
the (v, w) entry of the Fisher information matrix Σθ =

∫
M
(∇θ log ρc)(∇θ log ρc)

⊤ρcdµω, thereby
completing the identification gfiber(c)[v, w] = (Σθ)vw.

Following the computation above, the pull-back metric takes the general block–diagonal form

ϕ∗gT = dε2 ⊕ gfiber(c) =

(
gεε(c) 0
0 Σθ(c)

)
=

(
A(c) 0

0 Σθ(c)

)
,

where A : Ω→ (0,∞) encodes the longitudinal scale A(c) = gT
(
Lg(c),≤r, Lg(c),≤r

)
and Σθ(c) is

the fiber block. Then, the Riemannian volume form in coordinates (ε, c) is

dµSh
=
√
det
(
ϕ∗gT

)
dεdc =

√
A(c) detΣθ(c)dεdc, det

(
ϕ∗gT

)
= A(c) detΣθ(c).

Integrating first over ε ∈ (0, h] and then over the coefficient domain c ∈ Ω gives

Vol
(
S Θ

h

)
= h

∫
c∈Ω

√
A(c) detΣθ(c)dc.

Let Ψ: C → G(≤K), c 7→ g(c) be surjective, where C ⊂ Rd is the coefficient domain. For each
g ∈ G(≤K), define the coefficient tile

Tg = Ψ−1(g) = {c ∈ C | Ψ(c) = g}.

Let us equip Rd with its standard d-dimensional Lebesgue measure λ. Then, we simply let each tile
Tg carry its own volume and Jacobian factor. For each g ∈ G(≤K) define

Volg = λ
(
Tg

)
, Ag = det

(
dε2 ⊕ Σθ(c)

)
, Σg = Σθ(c) ∀c ∈ Tg,

and set Ĵg =
√
Ag detΣg . Then, the induced volume of Lie-sub group can be induced

Vol
(
S Θ

h

)
= h

∑
g∈G(≤K)

∫
Tg

√
A(c) detΣθ(c)dc = h

∑
g∈G(≤K)

VolgĴg.

In particular, letting V̂ = maxg Volg and Ĵ = maxg Ĵg , we obtain the bound

Vol
(
S Θ

h

)
≤ h|G(≤K)|

(
V̂ Ĵ

)
,

so the Riemannian volume and any covering number pre-factor built from it still grows linearly in the
cardinality of Poisson DAG, |G(≤K)|.

Corollary A.9 (DAG–sized metric entropy of the elementary-flow set). For every radius 0 < δ ≤
1
2 Inj(S

Θ
h ), the δ-covering number of S Θ

h in the left-invariant geodesic metric dG satisfies

N
(
δ,S Θ

h , dG
)
≤ 2dS hVolgĴ

cS

∣∣G(≤K)
∣∣δ−dS , dS = d+ 1,

where Volg is the common Lebesgue volume of each tile Tg , and Ĵ =
√
A0 detΣ0 as defined above.

Proof. Applying Proposition A.8 with Vol(S Θ
h ) = h|G(≤K)|VolgĴ and dS = d+ 1 gives

N(δ,S Θ
h , dG) ≤

2dS hVolgĴ
cS

∣∣G(≤K)
∣∣δ−dS .

xxv



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Next, we insert this result into the compositional inequality of Proposition A.6 with uniform allocation
δj = ε/M to have

N
(
ε,Wθ

r,K,M,h, dG
)
≤

[
2dS hV0Ĵ

cS

∣∣G(≤K)
∣∣ (M

ε

)dS
]M

,

which matches the informal scaling discussed above.

Proposition A.10 (Uniform trajectory-risk deviation). LetM ⊂ R2n be compact with Euclidean
diameter D2 := supx,y∈M ∥x− y∥2. Fix integers K ≥ 0 and M = ⌈T/ϵ⌉ for some ϵ > 0, and let
FK =Wθ

r(K),K,M,hmax
⊂ Tr(K),K . For W ∈ FK define the squared Euclidean trajectory loss

ℓ(W ; z0, z) := ∥W (z0)− z∥22, L(W ) := E[ℓ(W ;Z0, Z)], L̂n(W ) :=
1

n

n∑
i=1

ℓ
(
W ;Z0,i, Zi

)
.

Let C1 :=
2dS hVolgĴ

cS
> 0 be the universal covering constant from Corollary A.9 for the elementary

flow manifold Shmax
. Then, for every δ ∈ (0, 1), with probability at least 1− δ over the i.i.d. sample

{(Z0,i, Zi)}ni=1,

sup
W∈FK

∣∣L(W )−L̂n(W )
∣∣ ≤ 8D2

2√
n

√
M
[
log
(
C1|G(≤K)|

)
+ dS log

(2D2Mn

D2
2

)]
+D2

2

√
2 log(2/δ)

n
.

Proof of Theorem 4.3. We first relate the Euclidean trajectory–matching loss to the sup–metric on
the walk class. Let D2 := diam2(M) and define d

(2)
∞ (W,W ′) = supx∈M ∥W (x)−W ′(x)∥2. For

ℓ(W ; z0, z) := ∥W (z0)− z∥22 we have, by the polarization identity and the triangle inequality,

0 ≤ ℓ(W ; z0, z) ≤ D2
2, |ℓ(W ; z0, z)− ℓ(W ′; z0, z)| ≤ 2D2∥W (z0)−W ′(z0)∥2,

so ℓ(·; z0, z) is L = 2D2–Lipschitz w.r.t. d(2)∞ . Consequently (standard Lipschitz pullback of covers),

logN
(
ε,LK , ∥ · ∥∞

)
≤ logN

(
ε
L ,FK , d(2)∞

)
, (28)

where FK = Wθ
r(K),K,M,hmax

and LK = {ℓ(W ; ·, ·) : W ∈ FK}. Next, we compare the output
sup–metric to the left–invariant geodesic metric on the Lie group of transforms. Equip Tr,K with the
left–invariant Riemannian structure induced from the L2 inner product on vector fields in equation 12).
For any smooth curve γ : [0, 1] → Tr,K joining W to W ′ with velocity Xγ(t) ∈ tr,K , the image
curve t 7→ γ(t)(z) in the Euclidean output space has speed ∥Xγ(t)(z)∥2 ≤ ∥Xγ(t)∥L2(M,µω) by
Cauchy–Schwarz. Hence ∥W (z)−W ′(z)∥2 ≤ LG(γ) for each z, and taking infγ then supz yields

d(2)∞ (W,W ′) ≤ dG(W,W ′). (29)

Combining equation 28 with equation 29 reduces the loss–class entropy to the group–metric entropy
of the walk class:

logN
(
ε,LK , ∥ · ∥∞

)
≤ logN

(
ε
L ,FK , dG

)
.

We now invoke the compositional covering principle for Lie–group walks. By Proposition A.5
(balanced binary prefix–scan argument), a uniform allocation δj = ε/(LM) gives

N
( ε

L
,FK , dG

)
≤
[
N
( ε

LM
,Sh, dG

)]M
. (30)

Thus it remains to bound the elementary–flow covering number. From the Riemannian vol-
ume–packing bound specialized to Sh (Proposition A.7) together with the DAG–size volume control
(Corollary A.9), there exists C1 > 0 (absorbing the fixed step ceiling and geometric constants) such
that for every δ > 0,

N (δ,Sh, dG) ≤ C1|G(≤K)|
(

1
δ

)dS

, |G(≤K)| = |G(≤K)|, dS = d+ 1. (31)
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Putting equation 30 and equation 31 together and taking logarithms yields the explicit entropy control
used below:

logN
(
ε,LK , ∥ · ∥∞

)
≤M

[
log
(
C1|G(≤K)|

)
+ dS log

(
LM
ε

)]
, L = 2D2. (32)

To convert equation 32 into a uniform deviation bound we apply the truncated Dudley inequality for
empirical Rademacher complexity:

Rn(LK) ≤ inf
α>0

{
4α+

12√
n

∫ D2
2

α

√
logN

(
ε,LK , ∥ · ∥∞

)
dε

}
. (33)

Since the right–hand side of equation 32 is decreasing in ε, write

ϕ(ε) :=

√
M
[
log
(
C1|G(≤K)|

)
+ dS log

(
LM
ε

)]
,

and observe ϕ′(ε) = −(
√
MdS )/(2εϕ(ε)) < 0. Therefore, for any α ∈ (0, D2

2),∫ D2
2

α

√
logN(ε,LK)dε ≤

∫ D2
2

α

ϕ(ε)dε ≤ (D2
2 − α)ϕ(α). (34)

Substituting equation 34 into equation 33 we arrive at the one–variable optimization

Rn(LK) ≤ inf
α∈(0,D2

2)

{
4α+

12√
n
(D2

2 − α)

√
M
[
log
(
C1|G(≤K)|

)
+ dS log

(
LM
α

)]}
.

Set A := log(C1|G(≤K)|) and S(α) :=
√

M [A+ dS log(LM/α)]. A direct computation gives
S′(α) = − MdS

2αS(α) < 0 and S′′(α) > 0, hence the objective f(α) := 4α + 12√
n
(D2

2 − α)S(α) is
strictly convex on (0, D2

2) and admits a unique minimizer α⋆ characterized by

0 = f ′(α⋆) = 4 +
12√
n

[
−S(α⋆) + (D2

2 − α⋆)S′(α⋆)
]
.

By multiplying the above condition by
√
n

12 and Substituting S′(α⋆) = − Mdφ

2α⋆S(α⋆) , one can obtain

S(α⋆) +
Mdφ
2S(α⋆)

· D
2
2 − α⋆

α⋆
=

√
n

3
, (35)

which is exactly the desired equality, which has a unique solution because the right–hand side is
strictly decreasing in α. Eliminating (D2

2 −α⋆) from f(α⋆) via equation 35 yields the balanced form

Rn(LK) ≤ f(α⋆) =
8D2

2√
n
S(α⋆) =

8D2
2√
n

√
M
[
A+ dS log

(
LM
α⋆

)]
.

For a closed–form bound of aformentioned estimations, we choose α̂ = D2
2/n and evaluate S(α̂) =√

M [A+ dS log(LMn/D2
2)] and hence

Rn(LK) ≤ 8D2
2√
n

√
M
[
log(C1|G(≤K)|) + dS log

(
LMn
D2

2

)]
.

Finally, the standard symmetrization with Massart’s inequality (Mohri et al., 2018) for bounded losses
implies that, with probability at least 1− δ,

sup
W∈FK

∣∣L(W )− L̂n(W )
∣∣ ≤ 8D2

2√
n

√
M
[
log(C1|G(≤K)|) + dS log

(
LMn
D2

2

)]
+D2

2

√
2 log(2/δ)

n
,

which is the claimed uniform deviation bound in the Euclidean-loss formulation.
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A.4 UNIVERSAL APPROXIMATION

In order to rigorously establish the universal approximation capability of the proposed Neural–Poisson
DAG framework, we first present a sequence of auxiliary lemmas that characterize its algebraic and
approximation properties. These lemmas proved in the subsequent paragraphs provide the necessary
building blocks for the final result. The main universal approximation theorem will then follow as
a direct consequence of these preparatory results. For simplicity of exposition, we shall assume
throughout this section that the underlying manifold is Euclidean, i.e.,M = R2n. Nevertheless, the
resulting approximation guarantees extend naturally, with only minor technical modifications, to the
setting of general symplectic manifolds.

Lemma A.11 (Every DAG node is an r-th Taylor polynomial). Fix a truncation order r ≥ 1 and
let G(0) ⊂ P≤r =

{
p : Rd → R | deg p ≤ r

}
denote the initial generators, where P≤r is the space

of polynomials of total degree ≤ r. Define the depth–K Neural–Poisson DAG. Then every node
g ∈ G(≤K) can be written as the (exact) r-th Taylor polynomial of some Cs function H around a
base point x0:

g(x) = π≤r

[ ∑
|α|≤r

∂αH(x0)

α!
(x− x0)

α

]
.

Proof. We proceed by induction on the depth k ≥ 0. For the base case, by construction G(0) ⊂ P≤r,
so every depth-0 node has degree ≤ r. Assume the claim holds for depth k − 1, i.e., G(k−1) ⊂ P≤r.
Let f, g ∈ G(k−1). Then

f, g ∈ P≤r =⇒ fg ∈ P≤2r, {f, g} = ∇f⊤J∇g ∈ P≤2r−2,

since multiplication adds degrees and each gradient lowers degree by 1 in every term. Applying
the truncation π≤r shows that the new nodes created at depth k again lie in P≤r. This completes
the induction that G(≤K) ⊂ P≤r. Now fix any g ∈ G(≤K). By the above, g is a polynomial with
deg g ≤ r. Choose any base point x0 and set H := g (note H ∈ C∞). Because g is a polynomial of
degree ≤ r, its order-r Taylor expansion at x0 recovers g exactly (there is no remainder term):

g(x) =
∑
|α|≤r

∂αg(x0)

α!
(x− x0)

α.

Equivalently, g(x) = π≤r

[
T r
x0
H(x)

]
with H = g. Finally, recall that the monomials {(x −

x0)
α}|α|≤r form a basis of P≤r, so this representation is unique in P≤r. The lemma follows.

Lemma A.12 (Local control of the Taylor remainder in Hs). Fix a cube Qℓ of side h centered at xℓ.
Let H ∈ Cs(Qℓ) and let gℓ be the (s− 1)-st order Taylor polynomial of H at xℓ. Then

∥H − gℓ∥Hs(Qℓ) ≤ C(d, s)∥H∥Cs(Qℓ).

Proof. We bound the Hs-norm of the local Taylor remainder H − gℓ by controlling each derivative
up to order s on the cube Qℓ. The key input is the cancellation of all derivatives up to order s− 1 at
the expansion center xℓ, and the fact that the first non-vanishing term is of order s. This produces an
(distance)s−|α| factor for |α| ≤ s− 1, and the geometry of the cube then converts pointwise bounds
into L2 bounds with the volume factor |Qℓ|1/2 = hd/2.

For |α| ≤ s− 1, by the multivariate Taylor formula with integral remainder and the geometric bound
|x− xℓ| ≤ Ch (since x stays inside Qℓ), we have the following pointwise and L2 consequences:

|Dα(H − gℓ)(x)| ≤ C(d, s)hs−|α| max
|γ|=s

∥DγH∥L∞(Qℓ),

∥Dα(H − gℓ)∥L2(Qℓ) ≤ C(d, s)hs−|α|+ d
2 ∥H∥Cs(Qℓ).

The first line encodes the precise order-s vanishing at xℓ and the uniform control of s-th derivatives
of H on Qℓ; the second line is obtained by integrating the pointwise estimate and multiplying by the
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square root of the volume of Qℓ. For |α| = s, the (s− 1)-degree Taylor polynomial has zero s-th
derivatives, so the remainder’s s-th derivative is just the s-th derivative of H itself. This gives the
direct estimate

∥Dα(H − gℓ)∥L2(Qℓ) = ∥D
αH∥L2(Qℓ) ≤ h

d
2 ∥DαH∥L∞(Qℓ) ≤ h

d
2 ∥H∥Cs(Qℓ).

Here we again only use the L∞-control of s-th derivatives on Qℓ and the volume factor hd/2. Finally,
summing the squares over all multi-indices |α| ≤ s yields the Hs-bound. All constants that arise
from the finite number of multi-indices and from the cube geometry depend only on (d, s) and not on
the particular cube index ℓ or on h (beyond the explicit powers already shown). Using h ≤ 1 to drop
harmless hd/2 ≤ 1, the proof is complete by showing

∥H − gℓ∥2Hs(Qℓ)
=
∑
|α|≤s

∥Dα(H − gℓ)∥2L2(Qℓ)
≤ C(d, s)hd∥H∥2Cs(Qℓ)

,

⇒ ∥H − gℓ∥Hs(Qℓ) ≤ C(d, s)h
d
2 ∥H∥Cs(Qℓ) ≤ C(d, s)∥H∥Cs(Qℓ).

Proposition A.13. Let d ≥ 1 and s > d be integers, and set Ω = [−1, 1]d ⊂ Rd. For every
H ∈ Cs(Ω) define the Cs–seminorm ∥H∥Cs :=

∑
|α|≤s ∥∂αH∥L∞(Ω). Then for each integer r ≥ 1

there exists a polynomial Polyr ∈ P≤r(Rd) and a constant C(d, s) > 0 depending only on d and s
such that

∥∇H −∇Polyr∥L∞(Ω) ≤ C(d, s)∥H∥Csr1−s. (36)

Proof. Fix r and partition Ω into disjoint cubes {Qℓ} of side length h := 1/r (so diam(Qℓ) ≍ h).
For each Qℓ choose its center xℓ and let gℓ be the (s − 1)-st Taylor polynomial of H at xℓ (as in
Lemma A.11), so that ∂α(H − gℓ)(xℓ) = 0 for all |α| ≤ s− 1. Then, we define the linear functional
F

(ℓ)
j (u) := ∂xj

u(xℓ) (1 ≤ j ≤ d). Because s− 1 > d/2, pointwise first–derivative evaluation is a
bounded linear functional on Hs(Qℓ) via Sobolev embedding, with a bound uniform in h after the
standard scaling to a reference cube. Moreover, F (ℓ)

j annihilates every polynomial of degree ≤ s− 1
by the vanishing-derivative property above. Hence the Bramble–Hilbert theorem (Bramble & Hilbert,
1970, Theorem 2) applies with k = s and yields

|F (ℓ)
j (H − gℓ)| ≤ C0(diamQℓ)

s∥H − gℓ∥Hs(Qℓ) ≤ C0h
s∥H − gℓ∥Hs(Qℓ), (37)

with a constant independent of h and ℓ. Next, since gℓ is the (s−1)-st Taylor polynomial at xℓ, by the
remainder estimate in Taylor’s theorem and Sobolev embedding on a cube of size h in Lemma A.12,
one obtains

∥H − gℓ∥Hs(Qℓ) ≤ C1(d, s)∥H∥Cs . (38)

Combining these results, we obtain the following estimation:

max
1≤j≤d

∣∣∂xj (H − gℓ)(xℓ)
∣∣ ≤ C2(d, s)h

s∥H∥Cs .

Let {φℓ} be a C∞ partition of unity subordinate to {Qℓ} with the standard derivative bounds
∥∂βφℓ∥L∞ ≤ Ch−|β|. Define the patched approximation P̃r(x) :=

∑
ℓ φℓ(x)gℓ(x). By using

Leibniz’ rule and that only O(1) many φk overlap at a given x, together with the zeroth- and
first-order Taylor remainders on a cube of size h, we get for x ∈ Qℓ:

|∇H(x)−∇P̃r(x)| ≤
∑
k

|φk(x)| · |∇H(x)−∇gk(x)|+
∑
k

|∇φk(x)| · |H(x)− gk(x)|

≤ Chs−1∥H∥Cs ,

where we used |∇φk| ≲ h−1 and the local Taylor remainders |∇H −∇gk| ≲ hs−1∥H∥Cs , |H −
gk| ≲ hs∥H∥Cs . Taking the supremum over Ω,

∥∇H −∇P̃r∥L∞(Ω) ≤ C3(d, s)h
s−1∥H∥Cs . (39)
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Finally, let Πr be a standard Jackson/de la Vallée–Poussin projector onto P≤r (total degree ≤ r),
which satisfies the derivative Jackson estimate

∥∇(f −Πrf)∥L∞(Ω) ≤ C4(d, s)r
1−s∥f∥Cs(Ω) for all f ∈ Cs(Ω).

Define the actual polynomial Polyr := Πr(P̃r) ∈ P≤r. Then

∥∇H −∇Polyr∥L∞(Ω) ≤ ∥∇H −∇P̃r∥L∞(Ω) + ∥∇(P̃r −ΠrP̃r)∥L∞(Ω)

≤ C3h
s−1∥H∥Cs + C4r

1−s∥P̃r∥Cs .

Since ∥P̃r∥Cs ≤ C5(d, s)∥H∥Cs by the local construction and the uniform overlap of the partition,
and h = 1/r, we conclude

∥∇H −∇Polyr∥L∞(Ω) ≤ C(d, s)r1−s∥H∥Cs ,

which is exactly equation 36.

Lemma A.14 (Supremum-Norm Bound via Poisson–Bracket Coefficients). Let M ⊂ R2n be a
compact phase–space domain equipped with canonical coordinates (q1, . . . , qn, p1, . . . , pn). For a
Hamiltonian g ∈ Cr+1(M) with r ≥ 1, denote the associated Hamiltonian vector field by

Xg =

n∑
i=1

(
∂pi

g∂qi − ∂qig∂pi

)
, adkg(·) := {. . . {{·, g}, g}, . . . , g}︸ ︷︷ ︸

k times

.

Given a fixed step size ϵ > 0, define the local Lie–series remainder by

Rr+1
ϵ (z) =

ϵr+1

r!

∫ 1

0

(1− τ)rXr+1
g

(
eτϵXg (z)

)
dτ, z ∈M.

Then there exists a constant C(n, r) > 0 depending only on n and r such that∥∥Rr+1
ϵ

∥∥
L∞(M)

≤ ϵr+1

(r + 1)!
C(n, r)∥g∥Cr+1(M).

Remark. Up to this point some auxiliary bounds were stated on Ω = [−1, 1]d. The present estimate
is domain-agnostic: the coefficient counting for Xk

g z
β = adkg(z

β) only produces a finite linear
combination of partial derivatives {∂αg : |α| ≤ k} with universal combinatorial coefficients. Hence
replacing ∥ · ∥L∞(Ω) by ∥ · ∥L∞(M) leaves the bound unchanged. If one prefers a reduction: cover
the compact M by finitely many axis-aligned cubes Qℓ affine to Ω; since our inequality uses only
suprema of derivatives of g (no Jacobian weights), taking maxℓ ∥∂αg∥L∞(Qℓ) = ∥∂αg∥L∞(M) yields
the same constants.

Proof. To establish the bound, we begin by examining the action of repeated Lie derivatives generated
by Xg on coordinate functions. Consider a single canonical coordinate zβ (β = 1, . . . , 2n). Applying
Xg once yields a linear combination of first derivatives of g, with coefficients ±1 determined by the
canonical Poisson structure. When we apply Xg repeatedly k times, we generate nested Poisson
bracketsXk

g z
β = adkg(z

β) which expand into a finite sum of mixed partial derivatives of g up to
order k, with each term accompanied by a coefficient Cα,β,k ∈ {±1, 0} depending on the pattern of
differentiations in qi and pi. Formally, we may write

Xk
g z

β =
∑

1≤|α|≤k

Cα,β,k∂
α
z g,

where α = (α1, . . . , α2n) is a multi–index and |α| is its order. Because each application of Xg

differentiates once with respect to some coordinate, all resulting derivatives have order at most k, and
the number of such terms depends only on n and k. Therefore, for k = r + 1 we obtain the uniform
bound ∥∥Xr+1

g zβ
∥∥
L∞(M)

≤ C(n, r) max
|α|≤r+1

∥∂α
z g∥L∞(M) ≤ C(n, r)∥g∥Cr+1(M),

xxx
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where C(n, r) absorbs the combinatorial factor counting the possible derivative patterns. Next, recall
that the Hamiltonian flow ϕt = etXg admits a Lie-series expansion for each coordinate function, and
that the remainder after truncating at order r is exactly given by the integral form

Rr+1
ϵ,β (z) =

ϵr+1

r!

∫ 1

0

(1− τ)r
(
Xr+1

g zβ
)(
ϕτϵ(z)

)
dτ.

Since the flow ϕτϵ is volume–preserving and smooth on the compact set M , taking the L∞ norm
over z ∈M can be done directly inside the integrand. The factor

∫ 1

0
(1− τ)rdτ = 1

r+1 follows from
direct integration of the weight. Combining these facts, we find

∥Rr+1
ϵ,β ∥L∞(M) ≤

ϵr+1

(r + 1)!

∥∥Xr+1
g zβ

∥∥
L∞(M)

≤ ϵr+1

(r + 1)!
C(n, r)∥g∥Cr+1(M).

Finally, since the bound holds uniformly for each coordinate index β = 1, . . . , 2n, the same constant
C(n, r) applies to the vector-valued remainder Rr+1

ϵ as a whole. This completes the proof of the
claimed supremum-norm bound.

Theorem A.15 (Symplectic Lie Transform Error Expansion). Let H ∈ Cs(R2n) with s > 2n,
let XH = J∇H be the exact Hamiltonian vector field, and let Pr be an r-th degree polynomial
approximation of H with associated vector field XH

ϵ := J∇Pr. Define the exact flows

Φ̂ϵ,H(z) := exp(ϵXH)(z), F
XH

ϵ
ϵ (z) := exp(ϵXH

ϵ )(z).

Assume XH and XH
ϵ are (globally) Lipschitz on M with common constant L. Then, for all sufficiently

small ϵ > 0,∥∥Φ̂ϵ,H − F
XH

ϵ
ϵ

∥∥
L∞ ≤ C(s, n, r)

[
r1−s∥H∥CsϵeϵL +

ϵr+1

(r + 1)!
∥H∥Cr+1

]
. (40)

Proof. Let us write the Lie–Taylor expansions of both exact and approximated flows up to order r
with integral remainders:

Φ̂ϵ,H(z) = z +

r∑
k=1

ϵk

k!
Xk

H(z) + R̂r+1
ϵ (z)

F
XH

ϵ
ϵ (z) = z +

r∑
k=1

ϵk

k!
Xk

Pr
(z) +Rr+1

ϵ (z)

R̂r+1
ϵ (z) =

ϵr+1

r!

∫ 1

0

(1− τ)rXr+1
H

(
eτϵXH (z)

)
dτ

Rr+1
ϵ (z) =

ϵr+1

r!

∫ 1

0

(1− τ)rXr+1
Pr

(
eτϵXPr (z)

)
dτ = 0

Taking differences and expectation with respect to L∞(M)-norm leads the following inequality:∥∥Φ̂ϵ,H − F
XH

ϵ
ϵ

∥∥
L∞ ≤

r∑
k=1

ϵk

k!

∥∥Xk
H −Xk

Pr

∥∥
L∞ +

∥∥R̂r+1
ϵ

∥∥
L∞ +

∥∥Rr+1
ϵ

∥∥
L∞︸ ︷︷ ︸

=0

.

Define linear operators on vector–valued functions F : M → R2n by (XV F )(z) := DF (z)V (z)
where V ∈ {XH , XPr

} and set A := XXH
, B := XXPr

. If L := max{Lip(XH),Lip(XPr
)}, and

equip operators with the norm

∥T∥Lip→∞ := sup
Lip(F )≤1

∥TF∥L∞ .

Then, one can easily show that the followings hold

∥A∥Lip→∞ ≤ L, ∥B∥Lip→∞ ≤ L, ∥A−B∥Lip→∞ ≤ ∥XH −XPr∥L∞ ,
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since (A − B)F = DF (XH − XPr
) and ∥DF∥∞ ≤ Lip(F ). For some constant k ≥ 1, the

telescoping identity gives Ak −Bk =
∑k−1

j=0 A
k−1−j(A−B)Bj , showing that

∥Ak −Bk∥Lip→∞ ≤
k−1∑
j=0

∥A∥k−1−j
Lip→∞∥A−B∥Lip→∞∥B∥jLip→∞ ≤ kLk−1∥XH −XPr∥L∞ .

Finally, since Xk
H = (AkId) and Xk

Pr
= (BkId) with Lip(Id) = 1, for the k-fold iterates, a standard

telescoping/induction bound under a common Lipschitz constant L gives

∥Xk
H −Xk

Pr
∥L∞ = ∥(Ak −Bk)Id∥L∞ ≤ ∥Ak −Bk∥Lip→∞ ≤ kLk−1∥XH −XPr∥L∞ .

= kLk−1
∥∥J(∇H −∇Pr)

∥∥
L∞ ≤ C(s, n)kLk−1r1−s∥H∥Cs(M)

by the gradient–Jackson inequality (Proposition A.13). Therefore,
r∑

k=1

ϵk

k!

∥∥Xk
H −Xk

Pr

∥∥
L∞ ≤

r∑
k=1

ϵk

k!
C(s, n)kLk−1r1−s∥H∥Cs(M)

= C(s, n)r1−s∥H∥Cs(M)ϵ

r∑
k=1

(ϵL)k−1

(k − 1)!
.

≤ C(s, n)r1−s∥H∥Cs(M)ϵe
ϵL

The last inequality follows by using
∑r−1

j=0
(ϵL)j

j! ≤ eϵL, For the remainders, we apply Lemme A.14
to yield ∥∥R̂r+1

ϵ

∥∥
L∞ ≤

ϵr+1

(r + 1)!
C(n, r)∥H∥Cr+1(M),

Combining results above and setting C(s, n, r) = max{C(s, n), C(n, r)} establishes the desired
result in equation 40.

Proposition A.16 (Global error for an M–step Lie–group walk). Fix a step size ϵ > 0 and set
T := Mϵ. Let H ∈ Cs(R2n) with s > 2n, and write XH = J∇H . Let Pr be any degree–r
polynomial approximant of H and set XPr

= J∇Pr. Assume XH and XPr
are globally Lipschitz on

the relevant compact set with a common bound L∗ > 0. Let the M–step compositions beWM := GM
ϵ

and FT := exp(TXH). If the one–step error satisfies the bound from Theorem A.15,

∥Gϵ − Fϵ∥L∞ ≤ C1(s, n, r)r
1−s∥H∥Cs︸ ︷︷ ︸

:=A

ϵeϵL∗ +
C2(n, r)

(r + 1)!
∥H∥Cr+1︸ ︷︷ ︸

:=B

ϵr+1 =: δϵ,

then the final–time (global) error obeys

∥Wg(M)− FT ∥L∞ ≤ eL∗T − 1

L∗

[
C1(s, n, r)r

1−s∥H∥CseϵL∗ +
C2(n, r)

(r + 1)!
∥H∥Cr+1ϵr

]
. (41)

Proof. We first introduce the notation

errork := ∥Gk
ϵ − Fkϵ∥L∞ , k = 0, 1, . . . ,M,

so that errork measures the accumulated global error after k discrete steps of size ϵ compared to the
exact Hamiltonian flow over time t = kϵ. Initially error0 = 0, since both methods start from the
same initial condition and G0

ϵ = F0 = Id. Consider the error after (k + 1) steps. By adding and
subtracting the mixed term Gk

ϵ ◦ Fϵ and applying the triangle inequality, we have

errork+1 =
∥∥Gk+1

ϵ − F(k+1)ϵ

∥∥
∞ =

∥∥Gk
ϵ ◦Gϵ − Fkϵ ◦ Fϵ

∥∥
∞

≤
∥∥Gk

ϵ ◦Gϵ −Gk
ϵ ◦ Fϵ

∥∥
∞ +

∥∥Gk
ϵ ◦ Fϵ − Fkϵ ◦ Fϵ

∥∥
∞.

The first term measures the effect of replacing Fϵ by Gϵ in the last step while keeping the first k steps
fixed; the second term propagates the error already accumulated in the first k steps forward by one
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exact step of Fϵ. For the second term, note that postcomposition with Fϵ does not increase the L∞

norm of the difference, because Fϵ is a diffeomorphism on the compact set M . More precisely,∥∥Gk
ϵ ◦ Fϵ − Fkϵ ◦ Fϵ

∥∥
∞ = sup

z

∥∥(Gk
ϵ − Fkϵ)(Fϵ(z))

∥∥ ≤ sup
y

∥∥Gk
ϵ (y)− Fkϵ(y)

∥∥ = errork.

For the first term, we use the Lipschitz stability of the k–fold composition. Since both XPr
and XH

are L∗–Lipschitz, their flows over time t have Lipschitz constant bounded by eL∗t. In particular,
∥Gϵ∥Lip, ∥Fϵ∥Lip ≤ eL∗ϵ, and consequently ∥Gk

ϵ ∥Lip ≤ eL∗kϵ. Thus∥∥Gk
ϵ ◦Gϵ −Gk

ϵ ◦ Fϵ

∥∥
∞ ≤ ∥G

k
ϵ ∥Lip∥Gϵ − Fϵ∥∞ ≤ eL∗kϵδϵ.

Combining these two estimates, we arrive at the recurrence relation

errork+1 ≤ eL∗kϵδϵ + errork, k = 0, 1, . . . ,M − 1.

This inequality reflects the fact that the error at step k + 1 consists of the propagated previous error
plus the new error introduced by the most recent step, amplified by the Lipschitz growth factor. We
can solve this recurrence exactly by unrolling it. Starting from error0 = 0,

error1 ≤ eL∗·0δϵ = δϵ,

error2 ≤ eL∗ϵδϵ + e1 ≤ δϵ
(
1 + eL∗ϵ

)
,

error3 ≤ eL∗2ϵδϵ + e2 ≤ δϵ
(
1 + eL∗ϵ + eL∗2ϵ

)
,

and so on. Continuing in this fashion for M -th sequence, we find the upper bound eM ≤
δϵ
∑M−1

j=0 eL∗jϵ. This is the discrete analogue of the Duhamel formula for the inhomogeneous
linear growth equation and can be viewed as a direct consequence of the discrete Grönwall’s inequal-
ity. The geometric sum on the right-hand side can be summed in closed form:

M−1∑
j=0

eL∗jϵ =
eL∗Mϵ − 1

eL∗ϵ − 1
.

Moreover, using the inequality ex − 1 ≥ x for x > 0 with x = L∗ϵ, we can bound the denominator
from below and obtain

errorM ≤ δϵ
eL∗T − 1

L∗ϵ
.

Finally, substituting the explicit form δϵ = aϵeϵL∗ + bϵr+1 gives

errorM ≤
eL∗T − 1

L∗ϵ

[
AϵeϵL∗ +Bϵr+1

]
=

eL∗T − 1

L∗

[
AeϵL∗ +Bϵr

]
.

Recalling the definitions of A and B, this is precisely the bound stated in equation 41, and the
proposition is proved.

Proposition A.17 (Relative universal approximation on compact sets). Fix T > 0 and a compact
set K ⊂ R2n. Let s > 2n and HR,s := {H ∈ Cs(R2n) : ∥H∥Cs ≤ R}. Assume the
DAG parameterization realizes every total–degree-≤ r polynomial Pr, hence XPr = J∇Pr for
each r. Let L∗ > 0 be a Lipschitz bound on the relevant compact forward–invariant set for
{XH : H ∈ HR,s}∪{XPr : r ∈ N}. Then, for every δ > 0 there exist an integer r ∈ {1, . . . , s−1}
and a step size ϵ ∈ (0, ϵ0] with M := ⌈T/ϵ⌉ such that the M–step Lie–group walk generated by the
DAG polynomial flow satisfies

sup
H∈HR,s

sup
z∈K

∥∥Wg(M)(z)− FXH

T (z)
∥∥ < δ = O

(
r1−s +

ϵr

(r + 1)!

)
.

Proof of Theorem 4.2. Fix H ∈ HR,s. For an integer r ∈ {1, . . . , s − 1}, let Pr be a degree–r
polynomial chosen (and realized by the DAG) as in Theorem A.15. Apply Proposition A.16 to the
pair (H,Pr) on K; with T = Mϵ and the common Lipschitz constant L∗ it yields∥∥Wg(M)− FXH

T

∥∥
L∞(K)

≤ eL∗T − 1

L∗

[
C1(s, n, r)r

1−s∥H∥CseϵL∗ +
C2(n, r)

(r + 1)!
∥H∥Cr+1ϵr

]
.

(42)
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Since r ≤ s− 1, we have ∥H∥Cr+1 ≤ ∥H∥Cs ≤ R. Also ∥H∥Cs ≤ R. Thus the right–hand side of
equation 42 is bounded by

eL∗T − 1

L∗

[
C1(s, n, r)Rr1−seϵL∗ +

C2(n, r)

(r + 1)!
Rϵr

]
.

Pick ϵ ≤ min{ϵ0, ln 2/L∗} so that eϵL∗ ≤ 2. Choose r ∈ {1, . . . , s− 1} large enough that

eL∗T − 1

L∗
2C1(s, n, r)Rr1−s =

eL∗T − 1

L∗

C2(n, r)

(r + 1)!
Rϵr ≤ δ

2
.

In the equality, with this r fixed, we choose ϵ > 0 small enough to satisfy the inequality. These
choices make the two bracketed terms in equation 42 each at most δ/2, hence we obtain∥∥Wg(M)− FXH

T

∥∥
L∞(K)

< δ(R, s, n, L∗, T )

=
eL∗T − 1

L∗

[
C1(s, n, r)Rr1−seϵL∗ +

C2(n, r)

(r + 1)!
Rϵr

]
.

(43)
The bounds depend only on (R, s, n, L∗, T ) and the fixed constants in Proposition A.16, so the same
(r, ϵ) works uniformly for all H ∈ HR,s. Taking the supremum over z ∈ K and H ∈ HR,s proves
the claim.
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Algorithm 1 COEFNETθ: Neural–Polynomial Coefficient Network

Require: Data dimensionality n, Batch size B, horizon T , degree size dr; normalized time grid
t ∈ [0, 1]B×T×1; flattened initial state x0 ∈ RB×ds .

Ensure: Coefficient tensor Cθ ∈ RB×T×dr×2n.
1: Time embedding: for each (b, t) compute τb,t ← ϕt(tb,t) ∈ Rdmodel , where ϕt is an MLP.
2: State embedding: for each b compute sb ← ϕs(x0,b) ∈ Rdmodel , where ϕs is an MLP.
3: Token sequence: form Tb ←

[
sb, τb,1, . . . , τb,T

]
∈ R(T+1)×dmodel for each b; stack to T ∈

R(T+1)×B×dmodel .
4: Transformer encoding: E ← Encoderθ(T ) ∈ R(T+1)×B×dmodel ▷ stack of K encoder layers

with width dmodel

5: Discard state token: E1:T ← E[2 :] ∈ RT×B×dmodel .
6: Projection to coefficients: for each (t, b) compute

at,b ← Projθ
(
Et,b

)
∈ Rdr·6, Projθ =

{
Linear(dmodel → dr · 6), single layer,

Linear→ GELU→ Linear, low rank option.

7: Reshape: Cθ[b, t, :, :]← reshape
(
at,b, dr, 2n

)
for all (b, t).

8: return Cθ.

A.5 ALGORITHM

In this subsection, we present the algorithmic components that realize the proposed Neural–Poisson
framework in a form suitable for direct implementation. Each algorithm corresponds to a distinct
stage of the overall pipeline: the construction of the truncated polynomial generator set and its
Lie–algebraic structure, the generation of time–conditioned Hamiltonian coefficients by a neural
network, the parallel composition of elementary flows via an associative scan, and the high–order
symplectic integration of the resulting vector fields. Together, these procedures provide a complete,
self–contained specification of the model from algebraic preprocessing to numerical time stepping.
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Neural-Polynomial Coefficient Network. Algorithm 1 specifies the coefficient–generation module
COEFNETθ, which defines the parametrization map from the conditioning variables to the coefficients
of a truncated polynomial Hamiltonian. Given the normalized time grid and the flattened initial
state, the network produces the coefficient tensor Cθ ∈ RB×T×dr×6 whose entries determine the
time–dependent polynomial force field employed in the subsequent symplectic integration.

The procedure begins by embedding each time token tb,t into a latent vector τb,t = ϕt(tb,t) ∈
Rdmodel using a dedicated multi–layer perceptron, and mapping the flattened initial state x0,b

into sb = ϕs(x0,b) ∈ Rdmodel through a separate multi–layer perceptron. The initial–state em-
bedding is prepended as a special token to the sequence of time embeddings, yielding a tensor
in R(T+1)×B×dmodel . This sequence is processed by a Transformer encoder Encoderθ, whose
self–attention layers allow each time step to condition on the initial state and to exchange information
with other time steps, thereby capturing global temporal dependencies in the coefficient representation.
After encoding, the state token is discarded, and each remaining time–step embedding is mapped by a
projection head Projθ to a vector in Rdr·6 corresponding to the coefficients of all dr basis monomials
for the six coordinate components. These vectors are then reshaped to form Cθ, which is returned as
the network output. This architecture realises a sequence–to–tensor regression map whose inductive
biases, consisting of distinct embeddings for time and state, a shared latent representation, and global
self–attention, are chosen to respect the structural constraints inherent in Hamiltonian dynamics.

Algorithm 2 BUILDNP DAG: Neural–Poisson Composition DAG construction

Require: Polynomial degree bound r ≥ 1, DAG depth K ≥ 0, local phase dimension d.
Ensure: Nodes G(≤K) =

⋃K
k=0 G(k), lookup map idx : Exp → {1, . . . , dr}, and structure tensor

C ∈ Rdr×dr×dr satisfying {mi,mj} =
∑

m Cijmmm on P≤r.
1: Construct the truncated monomial basis P≤r = span{mα : qapb | |a|+|b| ≤ r} and its exponent

list Exp = {(a, b)} in N2d.
2: Set G(0) ← P≤r and initialize G(≤0) ← G(0).
3: Build idx by assigning a unique index to each exponent in Exp and set dr ← |Exp|.
4: Initialize C ← 0 in Rdr×dr×dr .
5: for k = 1 to K do
6: C ← ∅ ▷ candidate set at layer k
7: for each g ∈ G(k−1) and each h ∈ G(≤k−1) do
8: u← π≤r(gh) ▷ projected product
9: v ← π≤r{g, h} ▷ projected Poisson bracket

10: Add u and v to C
11: end for
12: G(k) ← unique elements of C under exponent equality
13: G(≤k) ← G(≤k−1) ∪ G(k)
14: end for
15: Structure tensor C: for monomials mi = qaipbi and mj = qajpbj ,
16: for i = 1 to dr do
17: for j = 1 to dr do
18: for ℓ = 1 to d do
19: s← a

(ℓ)
i b

(ℓ)
j − a

(ℓ)
j b

(ℓ)
i

20: if s ̸= 0 then
21: a← ai + aj − eℓ, b← bi + bj − eℓ
22: if (a, b) ∈ Exp with index m = idx(a, b) then
23: Cijm ← Cijm + s
24: end if
25: end if
26: end for
27: end for
28: end for
29: return

(
G(≤K), idx, C

)
xxxvi
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Neural–Poisson Composition DAG construction. Algorithm 2 describes the construction of the
Neural–Poisson composition directed acyclic graph (DAG), which encodes the closure of a truncated
polynomial Hamiltonian basis under both pointwise multiplication and the Poisson bracket. The
procedure begins by generating the set of all monomials mα = qapb whose total degree satisfies
|a|+ |b| ≤ r, forming the truncated polynomial space P≤r together with its exponent list Exp. This
list is used to initialise the zeroth layer G(0) of the DAG, which contains all basis monomials, and to
build an index map idx assigning a unique integer to each exponent tuple. The integer dr = |Exp|
records the size of the basis.

Subsequent layers are constructed iteratively up to depth K. At each layer k, all possible projected
products π≤r(gh) and projected Poisson brackets π≤r{g, h} are computed between generators g

from the previous layer G(k−1) and generators h from all earlier layers G(≤k−1). These operations
are projected back into P≤r to preserve the degree bound. The set of distinct resulting monomials,
identified by their exponent tuples, forms the new layer G(k), which is then added to the cumulative
set G(≤k).

After the generator set is complete, the algorithm computes the structure tensor C ∈ Rdr×dr×dr ,
which encodes the Poisson bracket structure on P≤r. For each ordered pair of basis monomials
(mi,mj), the integer coefficient s = a

(ℓ)
i b

(ℓ)
j − a

(ℓ)
j b

(ℓ)
i is evaluated for each coordinate index ℓ,

reflecting the antisymmetry of the canonical Poisson structure. When the resulting exponent tuple
(a, b) lies in Exp, the corresponding structure constant Cijm is incremented by s. The output of the
procedure is the complete generator set G(≤K), the exponent–to–index map idx, and the structure
tensor C, which together provide an explicit, finite–dimensional Lie algebra representation of the
truncated Hamiltonian vector fields.

Algorithm 3 PARALLELSCAN: Associative prefix composition of Lie coefficients

Require: Initial state z0 ∈ RB×N×2d, horizon T , repeat factor L ≥ 1, step size ε, coefficient
network output {ct}Tt=1 with ct ∈ RB×dr×6, structure tensor C from Alg. 2.

Ensure: Trajectory (z0, z1, . . . , zT ) with zt ∈ RB×N×2d.
1: Define the bilinear Poisson contraction on coefficients

[c(1), c(2)]C with
(
[c(1), c(2)]C

)
b,m,γ

=
∑
i,j

c
(1)
b,i,γ c

(2)
b,j,γ Cijm.

2: Define the associative combine operator

cnew ⊕ cacc = cnew + cacc + 1
2ε[c

new, cacc]C .

3: Form the length TL sequence by repetition c̃(t−1)L+ℓ ← ct for t = 1, . . . , T and ℓ = 1, . . . , L.
4: Compute scanned coefficients by an associative prefix scan

sk = c̃1 ⊕ c̃2 ⊕ · · · ⊕ c̃k for k = 1, . . . , TL

using a tree based parallel scan with depth O(log TL).
5: Extract the effective per step coefficients cefft ← stL+L−1 for t = 1, . . . , T .
6: Set z ← z0 and initialize Traj← [z0].
7: for t = 1 to T do
8: z ← APPLYLIE(z, cefft , C, ε) ▷ r-th order symplectic update in code
9: Append z to Traj

10: end for
11: return Traj

Parallel Scanning. Algorithm 3 implements the associative parallel–scan procedure used to compose,
in logarithmic depth, the sequence of truncated Hamiltonian flows generated by the coefficient
network. The method operates entirely in coefficient space by exploiting the bilinearity and an-
tisymmetry of the Poisson bracket, together with the finite–dimensional closure property of the
Neural–Poisson algebra. Given the initial state z0 ∈ RB×N×2d, the per–step coefficients {ct}Tt=1
produced by COEFNETθ, and the structure tensor C computed from Algorithm 2, the first step defines
the bilinear Poisson contraction [c(1), c(2)]C , which maps a pair of coefficient tables to the coefficient
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table of their Poisson bracket. This operation realises the algebraic commutator of the corresponding
truncated Hamiltonian vector fields.

An associative binary operator ⊕ is then defined on coefficient tables by

cnew ⊕ cacc = cnew + cacc + 1
2ε[c

new, cacc]C ,

which corresponds to the second–order Baker–Campbell–Hausdorff truncation for composing two
infinitesimal Hamiltonian flows with step size ε. The sequence {ct} is repeated L times per physical
time step to form a length–TL list {c̃k}, allowing for sub–stepping or repeated application of the
same coefficients.

The algorithm then applies a tree–based associative prefix scan with the operator⊕ to {c̃k}, producing
the partial compositions sk = c̃1 ⊕ · · · ⊕ c̃k in O(log TL) parallel depth. From these, the effective
coefficients cefft for each physical step are extracted as cefft = stL+L−1.

Finally, starting from z0, the state is advanced sequentially by applying the symplectic Lie integrator
APPLYLIE with coefficients cefft and step size ε for t = 1, . . . , T . The trajectory {zt}Tt=0 so obtained
matches, up to the truncation order of ⊕, the result of composing all T Hamiltonian flows in the order
prescribed by the Neural–Poisson Lie–group walk, while benefiting from the parallel efficiency of
the scan.

Algorithm 4 APPLYLIE R (explicit, even r): r-th order symplectic update via Suzuki–Yoshida
composition

Require: Current state z ∈ RB×N×2d, coefficient table c ∈ RB×dr×6, exponent tensor Exp, step
size ε > 0, target order r ∈ 2N (even).

Ensure: Next state z+ = Φr(ε)z.
1: Base 2nd–order kernel (Störmer–Verlet):

KERNELSV(z, h) :

g1 ← ∇q,pĤ(z; c,Exp)

q̇1 ← ∂pĤ(z), ṗ1 ← −∂qĤ(z), p1/2 ← p+ h
2 ṗ1, q′ ← q + hq̇1

g2 ← ∇q,pĤ
(
(q′, p1/2); c,Exp

)
, ṗ2 ← −∂qĤ(q′, p1/2), p′ ← p1/2 +

h
2 ṗ2

return z′ = (q′, p′)

2: Yoshida/Suzuki coefficient recursion (order 2→ 4→ · · · → r):
• Initialize the coefficient list for order 2: W(2) ← [1].

• For m = 1 to r/2− 1: set α← 21/(2m+1), w1 ←
1

2− α
, w0 ← −

α

2− α
, and

W(2m+2) ←
[
w1W(2m), w0W(2m), w1W(2m)

]
(concatenation with all entries scaled by the prefactors).

3: Explicit composition: set z(0) ← z and let {wj}Sj=1 ←W(r).
4: for j = 1 to S do
5: z(j) ← KERNELSV

(
z(j−1), wjε

)
6: end for
7: return z+ ← z(S).

Algorithm 4 implements an explicit rth–order symplectic Lie–integration scheme for truncated
polynomial Hamiltonian systems, where r is even. The method is based on the Suzuki–Yoshida
composition of a symmetric second–order kernel, which in this context is given by the Störmer–Verlet
splitting of the Hamiltonian vector field.

The input consists of the current state z = (q, p) ∈ RB×N×2d, the coefficient table c defining the
truncated Hamiltonian Ĥ(·; c,Exp) in the monomial basis indexed by Exp, a time step ε > 0, and the
target even order r. The procedure begins by defining the base integrator KERNELSV, which applies
one step of the symmetric Störmer–Verlet method to Ĥ with step size h. This kernel consists of a
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first half–step update of the momenta (kick), a full–step update of the positions (drift), and a final
half–step update of the momenta, where the forces are obtained from the gradient∇q,pĤ computed
by the truncated polynomial gradient routine.

To reach order r > 2, the algorithm constructs the Yoshida–Suzuki composition coefficientsW(r)

recursively. Starting fromW(2) = [1] for the base kernel, each stage m is extended to order 2m+ 2
by computing α = 21/(2m+1) and the weights

w1 =
1

2− α
, w0 = − α

2− α
,

and concatenating the sequence [w1W(2m), w0W(2m), w1W(2m)]. This recursion preserves the
symmetry of the composition and ensures that the local error order increases by two at each step.

In the final composition phase, the method applies the base kernel KERNELSV successively with
scaled step sizes wjε for each weight wj in W(r), propagating the state from z(0) = z through
intermediate states z(j) until z(S), where S = |W(r)|. The output z+ = z(S) is the state advanced
by a single rth–order symplectic step of size ε. This explicit composition preserves the symplectic
structure exactly and achieves the prescribed order r for smooth truncated polynomial Hamiltonians,
making it suitable for high–accuracy long–time integration in the Neural–Poisson framework.
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A.6 IMPLEMENTATION DETAILS

This section specifies the choices required to reproduce our results, including the experimental setup,
baseline families, evaluation metrics, runtime and memory protocol, and hyperparameters. It then
details the datasets and physical models used in our studies. Unless stated otherwise, all methods
share the same splits, physical step size, trajectory length, and device configuration. Any deviations
are explicitly highlighted in the corresponding paragraphs and in the appendix.

A.6.1 EXPERIMENTAL SETUP

Baselines. We group methods into three families that mirror the table layout in Fig. 2 and Ta-
ble 1. (A) Classical symplectic and high-order integrators using the ground-truth Hamiltonian
include Störmer–Verlet (Verlet, 1967), Forest–Ruth 4th order (Forest & Ruth, 1990), and the s = 2
Gauss–Legendre collocation scheme (Hairer et al., 2006). Learned Hamiltonian generators include
SymODEN (Zhong et al., 2020), SRNN (Chen et al., 2020), and Nonseparable Symplectic Neural Net-
works (Xiong et al., 2021). (B) We include KoVAE, a Koopman-regularized variational autoencoder
for dynamical data (Naiman et al., 2024), and SKOLR, a structured Koopman-operator linear RNN
forecaster (Zhang et al., 2025b). (C) For a line of research in this group, we evaluate EqMotion (Xu
et al., 2023), a learned SE(3)-equivariant motion model for atomic trajectories. GeoTDM (Han et al.,
2024), a diffusion model over geometric trajectories that enforces SE(3)-equivariance and ET-SEED
(Tie et al., 2025), a recent deep generative trajectory model. These methods serve as representative
black-box generative baselines that do not incorporate Hamiltonian or Koopman structure.

Evaluation Metrics. We assess prediction accuracy and symplectic structure preservation using four
complementary metrics. Prediction accuracy is quantified by the Average and Final Displacement
Error, given by ADE = 1

N

∑N
i=1

1
Ti

∑Ti

t=1 ∥zi,t− ẑi,t∥ and FDE = 1
N

∑N
i=1 ∥zi,Ti

− ẑi,Ti
∥, respec-

tively, where zi,t are predicted states, ẑi,t are ground-truth states, and Ti is the length of the i-th
trajectory. Lower values of ADE and FDE indicate superior trajectory prediction accuracy. Structure
preservation is evaluated via energy drift (∆E) and symplectic-form violation (∆ω). Energy drift
is measured as the average Hamiltonian difference, ∆E = 1

N

∑N
i=1

1
Ti

∑Ti

t=1 |H(zi,t) −H(ẑi,t)|.
Symplectic-form violation, defined as ∆ω = ∥J⊤∇J +∇J⊤J∥F quantifies deviations from canoni-
cal symplectic structure. Lower values of ∆E and ∆ω indicate better physical consistency.

Runtime and Memory Measurement. We report Inference (seconds per T–step rollout) and,
when available, peak GPU memory under a standardized protocol. Specifically, this value shows the
wall–clock time to propagate a single initialization z0 through a T–step rollout (no backward pass),
while the training wall–clock per iteration divided by T (one full rollout + loss + backward + optimizer
step, normalized by the physical horizon). All timings are obtained with device–synchronized
hardware timers. and the memory is reported as the peak device–resident allocation recorded by the
runtime. We average over three runs after a short warm-up, and keep the device type, batch size,
trajectory length, and numerical step size identical across methods to ensure fair comparison.

Hyperparameters. Unless otherwise noted, the Poisson basis degree and DAG depth are set to
(r,K) = (5, 2), and the model step is matched to the data step, ε = ∆t. Associative composition uses
the first-order BCH correction where higher-order variants and sensitivity to (r,K) are reported in
ablation study. Random seeds are fixed for data generation and training, and validation performance
(ADE) is used for early stopping and minor tuning of method-specific regularization where applicable.
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A.6.2 SPIN DYNAMICS

In our first experiment, we consider the classical dynamics of spin systems arranged on periodic
lattices in one, two, or three dimensions. Each spin is described by a unit vector Si ∈ S2, representing
a classical magnetic moment at lattice site i. A representative atomistic Hamiltonian capturing the
principal interactions typically encountered in magnetic simulations and experiments is expressed as
follows:

H = −
∑
⟨ij⟩

JijSi · Sj +
∑
⟨ij⟩

Dij · (Si × Sj)−K
∑
i

(
Si · n̂

)2 −∑
i

h · Si

+
1

2

∑
i ̸=j

S⊤
i TijSj −

∑
⟨⟨ij⟩⟩

J
(2)
ij Si · Sj . (44)

Each term within this Hamiltonian corresponds to a distinct physical mechanism shaping the static and
dynamic properties of spin systems. Below, we briefly describe the nature and physical implications
of each interaction.

(i) Heisenberg exchange interaction. The nearest-neighbor Heisenberg exchange interaction, given
by the first term −

∑
⟨ij⟩ JijSi · Sj , primarily governs the alignment between neighboring spins. For

positive exchange coefficients (Jij > 0), parallel spin alignment is energetically favored, thus leading
to ferromagnetic ordering. Conversely, negative coefficients (Jij < 0) promote antiparallel alignment,
resulting in antiferromagnetic configurations. This interaction sets the fundamental energy scale for
magnetic ordering phenomena and determines short-range correlations and spin-wave excitations
observed in spin lattices (Heisenberg, 1928).

(ii) Dzyaloshinskii–Moriya interaction (DMI). The second term, known as the Dzyaloshin-
skii–Moriya interaction, arises from antisymmetric spin-orbit coupling effects inherent in crystal
structures lacking inversion symmetry. Formally represented as

∑
⟨ij⟩ Dij · (Si × Sj), the DMI pro-

motes non-collinear spin textures exhibiting distinct chirality, such as helices, spirals, and skyrmions.
This interaction competes with the symmetric exchange and magnetic anisotropy terms, thus signifi-
cantly influencing the formation and stabilization of complex spin configurations (Dzyaloshinskii,
1958; Moriya, 1960).

(iii) Magnetocrystalline anisotropy. The magnetocrystalline anisotropy, expressed by the uniaxial
term −K

∑
i(Si · n̂)2, incorporates crystal-field effects and spin-orbit coupling that energetically

distinguish particular crystallographic directions. Depending on the sign of the anisotropy constant
K, spins preferentially align either along a particular axis (easy-axis anisotropy for K > 0) or within
a particular plane (easy-plane anisotropy for K < 0). This term strongly influences critical mag-
netic properties such as coercivity, domain-wall structure, and ferromagnetic resonance frequencies
(Aharoni, 1996).

(iv) Zeeman interaction (external field coupling). The Zeeman interaction, represented as
−
∑

i h · Si, captures the response of magnetic moments to external magnetic fields. This term
governs magnetization reversal processes, field-driven hysteresis loops, and spin-wave frequency
shifts induced by external magnetic fields. By controlling external fields, experimentalists exploit
this coupling to study fundamental spin dynamics and to manipulate spin textures and magnetization
states (Evans et al., 2014).

(v) Dipolar (magnetostatic) interaction. The long-range dipolar, or magnetostatic, interaction is
encapsulated by the term 1

2

∑
i ̸=j S

⊤
i TijSj , where

Tij = µ0µ
2
sr

−3
ij

(
I− 3r̂ij r̂

⊤
ij

)
.

This interaction accounts for the internal demagnetizing fields arising from spatially distributed
magnetic moments. It profoundly influences domain formation, domain-wall structures, and shape-
dependent magnetic phenomena such as thin-film magnetism, shape anisotropy, and vortex formation
(Aharoni, 1996).
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(vi) Next-nearest neighbor exchange (J2). Finally, the next-nearest neighbor exchange interaction
−
∑

⟨⟨ij⟩⟩ J
(2)
ij Si ·Sj introduces competing interactions, thus inducing magnetic frustration in the spin

system. The competition between nearest and next-nearest neighbor exchanges (J1-J2 models) can
lead to complex ground states including spirals, stripes, or even disordered spin liquids, depending
sensitively on the relative magnitude of J2/J1. Such interactions are critical in understanding
frustrated magnetic materials and their associated spin-wave spectra and phase transitions (??).

A.6.3 MOLECULAR DYNAMICS

In this work, we study two prototypical molecular systems: aspirin (SMILES:
CC(=O)OC1=CC=CC=C1C(=O)O) and methane (SMILES: C). For each molecule, we
first generate the initial three-dimensional atomic coordinates directly from their respective SMILES
strings using RDKit with the ETKDGv3 embedding algorithm. Hydrogen atoms are explicitly added,
and the resulting molecular structures undergo a brief geometry optimization step using the Universal
Force Field (UFF).

System construction (OpenMM). We then construct corresponding molecular systems based
on these optimized geometries using OpenMM. The molecular interactions are parameterized via
template generators provided by the openmmforcefields package. Unless stated otherwise, we
employ the OpenFF Sage 2.1.0 force field via the SMIRNOFFTemplateGenerator, utilizing
the parameter file openff-2.1.0.offxml. Additionally, for comparison and ablation purposes,
we optionally adopt the GAFF-2.11 force field. Nonbonded interactions default to the NoCutoff
method, which is suitable for small isolated molecular systems, though the Particle-Mesh Ewald
(PME) method is also supported and can be used if required. Constraints are disabled, and the removal
of center-of-mass (COM) motion is explicitly enabled at the system-building stage.

Unit conventions. Throughout the experiments, all public API interfaces strictly follow standard
OpenMM unit conventions. Specifically, atomic positions q ∈ RN×3 are expressed in nanometers
(nm); atomic momenta p ∈ RN×3 are given in units of dalton·nm/ps; energies, including kinetic (K),
potential (U ), and total Hamiltonian (H), are consistently reported in kilojoules per mole (kJ/mol).
Atomic velocities are similarly represented in nm/ps.

Hamiltonian evaluation. We evaluate the total Hamiltonian energy as H(q, p) = K(p) + U(q),
utilizing a lightweight OpenMM Context. The potential energy U(q) is directly obtained from the
OpenMM context via the getState() function. Similarly, the kinetic energy K(p) is computed
from the context using getKineticEnergy() after atomic velocities are set according to their
corresponding momenta and masses (v = p/m). Furthermore, each force term (e.g., bond, angle,
torsion, nonbonded) in the system is assigned a unique force-group identifier, enabling individual
extraction and analysis of potential energy contributions per term.

Initialization. Initial atomic coordinates q0 are generated based on the RDKit molecular embed-
dings, followed by the addition of small, independent Gaussian perturbations to prevent initial
structural biases. Specifically, the perturbation magnitude σ

Å
is set to 0.02 Å for aspirin and 0.01 Å

for methane, balancing the need for structural variability without inducing significant distortions:

q0 ← q0 + δ, δ ∼ N (0, σ2

Å
I) (Å), then converted to nm.

Initial atomic momenta p0 are sampled according to the Maxwell–Boltzmann distribution at a chosen
temperature of T = 1000K, implemented via OpenMM’s setVelocitiesToTemperature
method. The sampled velocities are subsequently mapped to momenta using atomic masses (p0 =
mv0). Unless specifically noted, we do not remove the system’s total center-of-mass momentum. All
random seeds used during initialization (i.e., ETKDGv3 embedding seed (= 7) and velocity sampling
seed (= 2025)) are explicitly fixed to ensure reproducibility across experiments.

Time integration (NVE). We propagate classical Hamiltonian dynamics under microcanonical
(NVE) conditions, thereby ensuring the conservation of total energy without introducing external
thermostats. Specifically, we employ the standard Velocity Verlet integrator, adopting a time step of
1.0fs and simulating each trajectory for a total of 1000 integration steps unless otherwise indicated.
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Table 4: Key simulation settings used for the aspirin and methane molecular dynamics simulations. Both molecules are parameterized using
the OpenFF Sage 2.1.0 force field without cutoffs for nonbonded interactions. Initial atomic coordinates (q0) are perturbed by Gaussian noise
with standard deviations (σ

Å
) specified below. Initial atomic momenta (p0) are sampled from a Maxwell–Boltzmann distribution at temperature

T = 1000K. Center-of-mass momentum removal is not performed. Trajectories are propagated using the Velocity Verlet integrator with a
1.0fs timestep and run for 1000 integration steps. Atomic coordinates from each integration step are exported in XYZ format for visualization.

Aspirin Methane

SMILES CC(=O)OC1=CC=CC=C1C(=O)O C
Force field OpenFF 2.1.0 (main) OpenFF 2.1.0 (main)
Nonbonded NoCutoff NoCutoff
σ
Å

(coord. jitter) 0.02 0.01
T for p0 (K) 1000 1000
COM momentum removal No No
Time step (fs) 1.0 1.0
Steps 1000 1000
Trajectory export XYZ (stride 1) XYZ (stride 1)

At each integration step, the atomic forces are computed directly from OpenMM by querying the state
with getState(getForces=True) at the current molecular coordinates. Subsequently, atomic
positions and momenta are updated according to the classical Velocity Verlet scheme, implemented
explicitly in Python. We utilize OpenMM’s built-in VerletIntegrator solely for initializing
the simulation context, whereas the explicit propagation is conducted externally to provide precise
control and transparent tracking of energy accounting throughout each trajectory.

Observables and logging. Throughout the simulation trajectory, we record the instantaneous
kinetic energy Kt, potential energy Ut, and total Hamiltonian Ht = Kt+Ut at every integration step,
with energies consistently expressed in kilojoules per mole (kJ/mol). Additionally, we separately
log the contributions of individual potential energy terms (e.g., bonds, angles, torsions, nonbonded
interactions) enabled by the unique assignment of force-group identifiers. The quality of energy
conservation during simulation is characterized by analyzing the energy drift ∆Ht = Ht − H0,
from which summary statistics including mean, maximum, and root-mean-square (RMS) deviations
are computed over each trajectory. For external analysis and visualization purposes (such as with
OVITO), multi-frame atomic trajectories are also exported in XYZ format (positions in Å).

Platform configuration. Unless explicitly noted, all simulations presented here are conducted
OpenMM CUDA platform configured with Precision=’mixed’ to achieve an optimal balance
between computational efficiency and numerical accuracy, thereby enhancing energy conservation
while maintaining high throughput. Unless otherwise stated, results reported throughout the main
text are generated using this mixed-precision setting on the specified computational platform.
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