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Abstract

The heart of climate analysis is a rational effort to understand the causes behind the
purely observational data. Latent driving forces, such as atmospheric processes,
play a critical role in temporal dynamics, and the task of inferring such latent forces
is often a problem of Causal Representation Learning (CRL). Moreover, geograph-
ically nearby regions may directly interact with each other, and such direct causal
relations among the observed data are often not modeled in traditional CRL, mak-
ing the problem more challenging. In this paper, we propose a unified framework
that can uncover not only the latent driving forces, but also the causal relations
among the observed variables. We establish conditions under which the hidden
dynamic process and the relations among the observed variables are simultaneously
identifiable from time-series data. Even without parametric assumptions on the
causal relations, we provide identifiability guarantees for recovering latent variables
and the relations among the observed variables via contextual information. Guided
by these insights, we propose a framework for nonparametric Causal Discovery
and Representation learning (CaDRe), based on a time-series generative model
with structural constraints. Synthetic data validates our theoretical claims. On
real-world climate datasets, CaDRe achieves competitive forecasting performance
and offers the visualized causal graphs consistent with domain knowledge, which
is expected to improve our understanding of the climate systems.

1 Introduction

Understanding the causal structure of climate systems is fundamental not only to scientific rea-
soning [68], but also to reliable modeling and prediction. Given the observed data with d, vari-
ables: x; = [z41,...,%4,4,], our goal is twofold: (1) to discover the underlying latent variables
Z; = [2t1,...,%4,) and their temporal interactions, and (2) to identify causal relations among
observed variables. To better understand this problem, we describe it using a causal modeling perspec-
tive. As depicted in Figure 1, latent drivers z;, such as pressure and precipitation [9], are not directly
measured but significantly influence the observed dynamics. These latent processes evolve jointly
and stochastically, exhibiting both instantaneous and time-lagged causal dependencies [5 1, 66]. They
govern observable quantities x; like temperature, which reflect underlying dynamics and also exhibit
spatial interactions through emergent weather patterns, such as wind circulation systems.

Identifying these underlying hidden variables and temporal relations is the central objective of Causal
Representation Learning (CRL) [71] problem. Recent advances in identifiability theory and practical
algorithm design fall under the framework of nonlinear Independent Component Analysis (ICA).
These approaches typically rely on auxiliary variables [28, 29, 27, 86], sparsity [39, 97, 98, 38, 6],
or restricted generative functions [ 18], and generally assume a noise-free and invertible generation
from z; to x;, in order to directly recover latent space. However, climatic measurements exhibit
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(a) Illustration of real- (b) Temporal data
.. world climate system. /' generation process. 3

Figure 1: From climate system to causal graph. x; represent observed data and z; denotes unobserved
variables behind x;, €] denotes the stochasticility in latent causal process, and s; denotes the noise
variable varying with z;, e.g., human activities [9].

both observational dependencies and stochastic noise, violating these assumptions and limiting the
applicability of existing CRL approaches.

This problem can also be cast as the problem of causal discovery [75, 59] in the presence of latent
processes. Causal discovery often relies on parametric models, such as linear non-Gaussianity [72],
nonlinear additive [23, 37], post-nonlinear models [92], as well as nonparametric methods with [26,

, 54] or without auxiliary variables [74, 96, 93]. However, generally speaking, they cannot identify
latent variables, their interrelations, and their causal influence on observed variables. For example,
Fast Causal Inference (FCI) algorithm [74] produces asymptotically correct results in the presence
of latent confounders by exploiting conditional independence relations, but its result is often not
informative enough; for instance, it cannot recover causally-related latent variables.

This above underscores the need for a unified framework capable of modeling both the observational
causal structure, defined as the relations among the observed variables, and latent dynamic processes
inherent to real-world climate systems. We understand the climate system through a causal lens and
establish the identifiability guarantees for jointly recovering latent dynamics and observational causal
graphs. Intuitively, the temporal structure enables leveraging contextual observable information to
identify latent factors, while the inferred latent dynamics, in turn, modulate how observational causal
graphs evolve. We instantiate this insight in a state-space Variational AutoEncoder (VAE), which can
conduct nonparametric Causal Discovery and Representation learning (CaDRe) simultaneously.

CaDRe employs parallel flow-based priors to learn independent components to reflect structural
dependencies, and introduces gradient-based structural penalties on both latent transitions and
decoders to ensure identifiability. Extensive synthetic experiments on the identification of latent
representation learning and causal discovery validate our theoretical guarantees. On real-world
climate data, CaDRe achieves competitive forecasting accuracy, indicating the effectiveness of the
learned temporal process. The visualized causal graphs align with known scientific phenomena, e.g.,
wind circulation and land—sea interactions, and further reveal structural patterns that may inspire new
hypotheses in climate science.

2 Problem Setup

Technical Notations. We present the notations in a climate system, a terminology widely used
in ICA literature [28]. We observed a time-series of observed variables X = [x1,Xa, - ,X7],
whereas their underlying factors Z = [z, z2, - - - , z7] are unobservable. Regarding the system in
one time-step, as depicted in Figure 1, it consists of observed variables x; := [z ;];ez With index set
Z=1{1,2,...,d,}, and latent variables z, := [z, j]je7 indexed by J = {1,2,...,d,}. Let pa(-)
denotes the parent variables, pa,(-) refers to observable parents, and pa; (-) indicates the latent
parents. In particular, pa; (-) comprises latent variables from both the current and previous time step.
Throughout the paper, the hat notation, e.g., X;, denotes estimated variables or functions.

Data Generating Process. Given time series data X = [xy, ..., xr|, we model climate evolution
with the Structural Equation Model (SEM) [59]:

T = 9i(Pap (Te,i), Pag (i), st.i), 2t = fi(Pap(ze5), €t ), St = gs,(ze,€;;), (1)
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where g;, f; are differentiable, and noises €7 ;, €/ ; are mutually independent. Each observed z ;
depends on other observed variables and latent factors z; (e.g., temperature influenced by solar
radiation and neighboring regions). The stochastic term s; ; captures variability conditioned on z;
(e.g., COq perturbations [76]), while latent variables z; evolve through both contemporaneous and
time-lagged interactions. Additionally, we adopt an assumption [75] in causal discovery:

Assumption 1. The distribution over (X, Z) is Markov and faithful to a Directed Acyclic Graph (DAG).

3 Identification Theory

3.1 Latent Space Recovery and Latent Variables Identification

We consider, without loss of generality, a first-order Markov structure, in which three consecutive
observations {x;_1, X¢, X¢+1 } are used as contextual information. The generalization to higher-order
Markov structures is discussed in Appendix F.1. To formalize the stochastic generation process,
we first introduce an operator L [13] to represent distribution-level transformations, that is, how
one probability distribution is pushed forward to another. Given two random variables a and b with
supports A and B respectively, the transformation p, — p; is formalized as:

Py = Lb\a © Pa; where Lb|a O Pa = /Apba(' ‘ a)pa(a)da- 2

For example, operators Ly, |z, and Ly, . |x,,, denote the distributional transformations p,, — px,,,
and py, , + px,_,. Using such operators, we address the challenge of recovering latent space under
"causally-related" observations. When the observed causal graph is a DAG, information flows along
causal pathways without being trapped in self-loops, allowing causal influence to be traced back
through the reverse DAG direction via the "short reaction lag" [15]. This requires the generative
operator to be injective, ensuring that transformations preserve full distributional information:

Lemma 1. (Injective DAG Operator) Under Assumption I, Ly, s, is injective for all t € T.

This result shows that the nonlinear causal DAG over x; does not hinder latent space recovery. A
key challenge, however, is that z; cannot be recovered from a single noisy x;, since the stochasticity
makes the value-level mapping ill-posed. We therefore target identifiability at the distributional
level. Crucially, neighboring observations x;_; and x;; carry informative signals about z, when
they undergo minimal changes. We formalize this in the following theorem, which establishes
nonparametric identifiability of the latent submanifold via distributional variations in context.

Theorem 1. (Identifiability of Latent Space) Suppose observed variables and hidden variables
follow the data-generating process in Eq. (1), and estimated observations match the true joint
distribution of {x;_1, X, X¢+1}. The following assumptions are imposed:

Al (Computable Probability:) The joint, marginal, and conditional distributions of (x:,2:) are all
bounded and continuous.

A2 (Contextual Variability:) The operators L
2)

X1 |z and L
A3 (Latent Drift:) For any zgl), zg € Z, where zgl) # z£2), we have p(xt\zgl)) # p(xt|z§2)).

A4 (Differentiability:) There exists a functional M such that M [px,|,, (- | z;)] = h.(z) for all
z; € Z;, where h, is differentiable.

xs_1|xe41 @F€ injective and bounded.

Then we have z; = h,(z;), where h, : R — R js an invertible and differentiable function.

After recovering the latent space, we aim to enhance interpretability by ensuring that each latent
component corresponds to a distinct physical variable. To achieve this, we introduce a sparsity
assumption on the latent dynamics, which is motivated by that physical climate factors—such as
solar radiation, atmospheric pressure, or ocean currents—tend to exhibit localized sparse influences.
Please refer to Appendix A.3 for the component-wise identifiability of latent variables.

3.2 Nonparametric Causal Discovery with the Hidden Dynamic Process

Building upon the results on recovering latent representations, we now seek to identify general
nonlinear causal graphs over x;, even if they are modulated by a hidden dynamic process. Recent
works [54, 64] extend the ICA-based Causality Discovery (CD) [72] to nonparametric settings via
nonlinear ICA [31]. However, these methods are not applicable in the presence of latent confounders.
To overcome this limitation, we establish a refined connection between SEMs and nonlinear ICA.
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Lemma 2. (Nonlinear SEM < Nonlinear ICA) There exists a function m;, which is differentiable
w.r.t. s ; and Xy, for any fixed s; ; and z., such that the following two representations,

Ty = gi(Pap(Tes), Par (Te4),504) and  x; = m; (2zg,S;) 3)

describe the same data-generating process. That is, both expressions yield the same value of ;.

Figure 2: Equivalent SEM and ICA. The gray

D e +---Zt—---> " line in SEM denotes the influence z,2 — =1

\ / \ / \ / N\ / through the observation causal relation, which is

— N\ equivalently represented as an indirect effect (the

Al T2 Tt1 Tt2  orange line): 59 --» 4, in ICA, which can be
SEM ICA decomposed into s; 9 — x4 2 and Ty 92 —> Ty 1.

After establishing this equivalence, we proceed to perform CD via the nonlinear ICA with latent
variables. We begin by introducing the Jacobian matrices on this data generating process, as they serve

as proxies for the (nonlinear) adjacency matrix. For all (i, j) € Z x Z, we define [J,,(s;)]; ; = g:f’;j,

[Jy(x))i; = 2244 and Dy, (s;) = diag(2rer, 92e2 - O%ude) T, g the identity matrix in

ozt Os¢1 Ose,27 "7 Os¢,ay,
Rd=*ds  Here, J,,(s;) corresponds to the mixing process of nonlinear ICA, as described on the
R.H.S. of Eq. (3). Note that J,(x;) signifies the observational causal graph in the nonlinear SEM,
the L.H.S. of Eq. (3), provided the faithfulness assumption outlined below holds.

Assumption 2 (Functional Faithfulness). The causal adjacency structure among observed variables
is given by the support of the Jacobian matrix J 4(x;).

This assumption implies edge minimality in causal graphs, analogous to the structural minimality
discussed in [60] (Remark 6.6) and minimality in [9 1], which enables us to establish a equivalence
between the observational causal graph in SEM and the mixing structure in nonlinear ICA.

Theorem 2. (Functional Equivalence) Consider the two types of data generating process described
in Eq. (3), the following equation always holds:

Jo(x0)Im(st) = Im(se) — Dy (se). 4)
Building upon these SEM-ICA connections, we derive sufficient conditions under which the observa-
tional causal graph becomes identifiable in virtue of the recovered latent processes.

Theorem 3. (Identifiability of Observational Causal Graph) Let A, ;; = logp(ss x|2¢), assume
that A, j, is twice differentiable in s, j, and is differentiable in z;;, where l = 1,2, ...,d,. Suppose
Assumption 1, 2 holds true, and

A5 (Generation Variability). For any estimated §,,, that makes x; = X; = m(Z,$;), let

[ oA, 92A, [ oA A, |7
V(t7 k) o |:8St,,katZt,l LA aSt,kazt,dz:| ,U(t7 k) o [ast,kaézt,l e 85t,k62tzt,dz ’
where for k = 1,2,...,d,, 2d, vector functions V (t,1),...,V(t,d,),U(t, 1),...,U(t,d,) are
linearly independent. Then we attain ordered component-wise identifiability (Definition 4), and the
structure of the observational causal graph is identifiable, i.e., supp(J4(x:)) = supp(J5(X¢)).

Based on the theoretical guarantees above, we present the estimation methodology in Appendix C,
and provide the experimental results in both simulated and real-world datasets in the Appendix D.

4 Conclusion

We focused on the causal understanding of climate science and proposed a causal model with latent
processes and directly causally-related observed variables. We establish identifiability results and
develop an estimation approach to uncovering the latent causal variables, latent causal process,
and observational causal structures from the climate system, aiming to shed light on answering
“why" questions in climate. Simulated experiments validate our theoretical findings, and real-world
experiments offer causal insights for climate science.

Limitations. Our method shows performance degradation as the data dimensionality increases.
A potential solution is to adopt a divide-and-conquer strategy by partitioning the variables into
lower-dimensional subsets using prior geographical information.
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1 A Theorem Proofs

452 A.1 Notation List

This section collects the notations used in the theorem proofs for clarity and consistency.

Table Al: List of notations, explanations, and corresponding values.

Index Explanation Support
dy number of observed variables dy € Nt
d, number of latent variables d, €Nt andd, <d,
t time index teNtandt >3
T index set of observed variables Z=A12,...,d,;}
J index set of latent variables J={1,2,...,d.}
Variable
X support of observed variables in time-index ¢ X, C R4
Z; support of latent variables Z, C R%
X observed variables in time-index ¢ X € Xy
Zy latent variables in time-index ¢ 7y € Z4
St dependent noise of observations in time-index ¢ s, € R
€x, independent noise for generating s; in time-index ¢ €x, ~ De,
€, independent noise of latent variables in time-index ¢ €2, ~ De.
Zg\ [i,] latent variables except for z; ; and z; ; in time-index ¢
Function
Pajp(- | D) density function of a given b /
Paplc(a,- | c)  joint density function of (a, b) given a and ¢ /
pa(:) variable’s parents /
pao(-) variable’s parents in observed space /
pa;(-) variable’s parents in latent space /
g(*) generating function of SEM from (z;, ¢, X;) to x; Rd:1+2dz _ Rz
m(-) mixing function of ICA from (z;, s;) to x; Ré:tde _; R
h:(+) invertible transformation from z; to z; R — Rd=
() permutation function Riz — Rd=
supp(-) support matrix of Jacobian matrix Rdexde — [(), 1 }doxda
Symbol
A—B A causes B directly /
A--+B A causes B indirectly /
Jg(x¢) Jacobian matrix representing observed causal DAG J,(x;) € RI=xda
Jg(x¢,8¢) Jacobian matrix representing mixing structure from (x¢,s;) tox;  Jg(x¢,8¢) € Rz X da
Jon(st) Jacobian matrix representing mixing structure from s; to x; Jon(st) € RIexda
J(z¢-1) Jacobian matrix representing latent time-lagged structure J,(z4—1) € RE=Xd=
J(z¢) Jacobian matrix representing instantaneous latent causal graph J,(z;) € R%=xd=

453

454 A2 Proof of Theorem 1

455 We first introduce another operator to represent the point-wise distributional multiplication.
456 maintain generality, we denote two variables as a and b, with respective support sets .4 and B.

457 Definition 1. (Diagonal Operator) Consider two random variable a and b, density functions p,
458 and py are defined on some support A and B, respectively. The diagonal operator Dy, maps the
459 density function p, to another density function Dy, © p,, defined by the pointwise multiplication of
460  the function py|, at a fixed point b:

pbla(b | )pa = Db|a O Pa, Where Dbla = pbla(b | ) (A1)
461 Proof. x;_1,Xy, X1 are conditional independent given z;, which implies two equations:
p(xt—l \ Xt,Zt) :p(xt—l | Zt)7 p(Xt+1 \ Xt,Xt—th) = p(Xt+1 | Zt)- (A2)
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462
463

464

471

472

473
474
475

476
477

478
479
480
481

482

We can obtain p(x¢11,X; | X¢—1) directly from the observations, p(x;—1) and p(x¢41, Xt, X¢—1), and
then the transformation in density function are established by

P(Xep1, X | Xio1) :/ P(Xtt1,Xt,2¢ | X¢—1)d2ze :/ P(Xet1 | Xe, 26, X 1)p(Xe, 2t | X¢—1)dz
Z Zy

integration over Z¢ factorization of joint conditional probability

= / p(Xt+1 | Zt)p(XuZt | thl)dzt :/ P(Xt+1 ‘ Zt)p(xt | Zt)P(Zt | thl)dzﬂ
24

t

by p(x¢41|x¢,X¢—1,2¢)=p(X¢41|2¢) by p(x¢—1]x¢,2¢)=p(x¢—1|2¢)
(A3)
Then we show how to transform the Eq. (A3) to the form of spectral decomposition:
= P(Xeq1, X | Xy—1)p(Xp—1)dxy—1 =
Xi—1
R e P P e o (Ad)
Xi—1 /2
= [th;XH,] ‘ng1p] (Xt+1) = |:th+] ‘Zt Dxtlzr th|xt,1p] (Xt+1)3 (AS)
= th§xt+1|xt—1 th+1|Ztht|ZtLZt\Xt 1 (A6)
= / th;xt+1\xt—1 dXt Xf+1\Zf xf|Ztht|xt—1 dxt (A7)
Xt EX Xt EX
= th+1|xt71 = th+1|thzt|xt71 (AS)
-1
= th+1|thxt+1|xt71 = th\xt71 (A9)
= th;xt+1|xt—1 = th+1Izthtlth;t+1|thxt+1|Xt—1 (A10)
= th;xt+1\xt 1L;,+1|x, 1 th+1|ztht|th;t+1|z, (All)
— th+1\Ztht|th;+1\zt (CLy, 12 P) (P~ Dy, P) (P~ leiuth‘l)
(A12)
= fo,+1|Zf, = Cfo+1\ZfP DX1|Zf - P Dxt\ZfP (A13)
where

* in Eq. (A4), we add the integration over X;_; in both sides of Eq. (A3). s

* in Eq. (AS), we replace the probability with operators by using Eq. (2) and Definition 1. Specifi-
cally, we have: Ly, .x, \|x,, = th_l Py (X5 | Xem1)p(Xp—1)dxp_1.

* in Eq. (A9), the operator Ly, .4, i8 injective by Assumption 1

in Eq. (A10), the L, |,_, in Eq. (A6) is substituted by Eq. (A9):

* in Eq. (Al1),if L

xi_1|xe41 18 Injective, then L;tl+1 xe_1 exists and is densely defined over F(X;41).

1 . .
Xe3Xs41[Xo— 1fo+1 Ixs1 is bounded; by the uniqueness of
D

spectral decomposition (see e.g., [11] Ch. VIl and [13] Theorem XV 4.5), Ly, ||z, ;t+1 ™
admits a unique spectral decomposition in which the eigenvalues, i.e., Dy, ., which are precisely
the entries of {px, |, (X: | Z¢)}, and eigenfunctions, i.e., Dy, ,,, which columns are {py, |z, (- |
z¢)}, up to standard indeterminacies. C'is an nonzero scalar rescaling eigenvalues, and P is a
operator permuting the eigenvalues and eigenfunctions.

* in Eq. (A13), Assumption | ensures that L

X¢|Z¢

We obtain a unique spectral decomposition in Eq. (A13) with permutation and scaling indeterminacies.
In the following, we will show how these indeterminacies can be resolved—if not, what informative
results can still be inferred.

First, considering the arbitrary scaling C, since the normalizing condition

/ pxt+1|2t dXt+1 = 1 (A14)
Xy

must hold for every z, one only solution of th+1 Cpxi 1)z, d%t11 = listoset C' = 1.
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Second, regarding the permutation indeterminacy, we start from Dy,|,, = P~'Dy, 5, P. The
operator, Dy, ., corresponding to the set {py, |5, (x; | z¢)} for fixed x; and all z;, admits a unique
solution (P only change the entry position):

{Pxe)ze (Xt | 26)} = {Px 12, (%t | 2¢)},  forall 24,2, (A15)

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to
exchange the conditioning variables, that is,

1 2 ~(1 ~(2
(rcoton (%t | 28) D (%0 | 287), 0} = Py (30 | 287, (0 | 267, )
(A16)

(1 (2 ~(m(1 ~A(m(2
= Do (%0 1 27 ), D (50 1 27 D), ] = [ (%0 | 28, s, (x| 287,
(A17)

where superscript (-) denotes the index of a conditioning variable, and 7 is reindexing the conditioning
variables. We use a relabeling map h to represent its corresponding value mapping:

Dxi|ze (X | 1M(Z¢)) = P, |2, (Xe | 2¢),  forall z, 2. (A18)

By Assumption 1, different z; corresponds to different py,|,, (x; | z;), there is no repeated element
in {px, |z, (X¢ | 2:)} (and {px, |z, (X; | Z¢)}). Hence, the relabelling map / is one-to-one (invertible).
Furthermore, Assumption 4 implies that py,|,, (X; | h(z;)) determines a unique h(z;). The same
holds for the py, |5, (X; | Z¢), implying that

Dxcylze (Xt | 1(2t)) = D2, (Xt | 2¢) = 20 = h(24). (A19)

Next, Assumption 1 implies that the function ~ must be differentiable. Since the VAE is differentiable,
we can learn a differentiable function A that satisfies Assumption 1. Consider z; related to z; via
z; = h(z;). Then, we have

M [pyjz, (- | 26)] = M [px, 1z, (- | h(2))] = h(z1), (A20)

which is equal to z; only if h is differentiable.
To ensure the latent dimension d, is also identifiable, we analyze two scenarios :

i. ds > d,: d, latent components in z; are sufficient to explain x;, i.e.,

P | Zrsdema 2, ) = P(Xe | Zodid 2y g ), (A21)

which contradicts the Assumption 1.

ii. dz < d,: This suggests that only d; dimensions are sufficient to reconstruct x;, leaving d, — dz
components constant, which violates that there are d latent variables.

O

More Discussions of Assumption 1 The injectivity of the operator enables us to take inverses of
certain operators, which is commonly made in nonparametric identification [24, 7, 25]. Intuitively,
different input distribution correpsonds to different output distribution. In the context of the climate
system, it represent the necessity of temporal variability. However, it is difficult to formalize it in
terms of functions. We give some examples in terms of p, = p; to make it understandable:

Example 1. b = g(a), where g is an invertible function.

Example 2. b = a + €, where p(€) must not vanish everywhere after the Fourier transform (Theorem
2.1in [53]).

Example 3. b = g(a) + ¢, where the same conditions from Examples 1 and 2 are required.

Example 4. b = g1(g2(a) + €), a post-nonlinear model with invertible nonlinear functions g1, g2,
combining the assumptions in Examples 1-3.

Example 5. b = g(a, €), where the joint distribution p(a, b) follows an exponential family.

Example 6. b = g(a, €), a general nonlinear formulation. Certain deviations from the nonlinear
additive model (Example 3), e.g., polynomial perturbations, can still be tractable.
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A.3 Component-Wise Identifiability of Latent Variables

Theorem Al. (Component-Wise Identifiability of Latent Variables [43]) Let c; = {z;_1,2:} and
M, be the variable set of two consecutive timestamps and the corresponding Markov network,
respectively. Suppose the following assumptions hold:
i. (Smooth and Positive Density): The probability function of the latent variables c, is smooth and
positive, i.e., pe, is third-order differentiable and p., > 0 over R27,
ii. (Sufficient Variability)s: Denote | M, | as the number of edges in Markov network M.,. Let

w(m) = <53 logp(ce|ze—2) & Ing(Ct|Zt2)> .

2 R 2
act,lazt_gm act72n8zt_2,m

(32 log p(ct|ze—2) ? 10gp(0t|zt—2)) o (33 log p(ct|z¢—2) )
8ct?iact,j82t,2’m (i,j)EE(Mct)

8Ct,1azt72,m Y 3Ct,2n32t72,m ’
(A22)
where @ denotes the concatenation operation and (i, j) € E(Me,) denotes all pairwise indices
such that ¢y ;, ¢ ; are adjacent in Me,. Form € {1,...,n}, there exist 4n + 2| M, | different

values of zy_o , as the 4n + 2| M., | values of vector functions w(m) are linearly independent.

iii. (Sparse Latent Process): For any z;; € 2z, the intimate neighbor set of z,; is an empty set,
where the intimate neighbor set is defined as

Definition 2. (Intimate Neighbor Set) Consider a Markov network M z over variables set Z,
and the intimate neighbor set of variable z ; is

U, (cri) = {cm (A23)

¢t,; is adjacent to ¢y ; and also adjacent
to all other neighbors of ¢, ;, ¢ j € ¢ \ {cri}

iv. (Transition Variability): For any pair of adjacent latent variables z; ;, 2 j at time step t, their
time-delayed parents are not identical, i.e., pa(z:,;) # pa(z;).

Then for any two different entries . 1, C:; € C; that are not adjacent in the Markov network Mg,
over estimated Cq,

i. The estimated Markov network Mg, is isomorphic to the ground-truth Markov network Mq,.

ii. There exists a permutation 7 of the estimated latent variables, such that z;; and Zi ;) is
one-to-one corresponding, 1.e., z; ; is component-wise identifiable.

iti. The causal graph of the latent causal process is identifiable.

Proof Sketch and Discussions. Once latent space is recovered by Theorem 1, i.e., (i) Z2; = h,(z) is
established, leveraging two properties of latent space—namely, (ii) the sparsity in the latent Markov
network, and (iii) z¢; 1L 24 j | Z¢—1,2¢)[5 5] if 2t,i, 20,5 (i # j) are not adjacent in Markov network,
we can obtain the component-wise identifiability of latent variables under sufficient variability
assumption. In contrast to prior work on CRL with component-wise identifiability [94, 43], which
typically requires the full invertible mapping g, and assume multiple distributions or temporal steps
while only uses a single measurement for the latent space recovery, our approach fully exploits the
temporally adjacent measurements, thereby avoiding the need for strong assumption.

Furthermore, we show that using three adjacent time steps, including future observations rather
than relying solely on the past, suffices to recover the entire latent process. This temporal window
matches that in Theorem 1. Having established the required conditions, we can directly apply the
identifiability result from [43] to complete the proof of the identifiable latent causal process.

A.4 Proof of Lemma 2

Definition 3. (Causal Order) x; is in the T-th causal order if only observed variables in the
(1 — 1)-th causal order directly influence it. We specify z. is in the 0-th causal order.

For an observed variable x; ;, we define the set P to include all variables in x; involved in generating
x1;, initialized as P = pag(x;). The upper bound of the cardinality of P is given by U(|P|),
which satisfies U (|P|) = d, — 1 initially. Let Q denote the set of latent variables, and define the
separated set as S, where g, (pay (21,:), €z, ;) is denoted by s; ;. Initially, S = {s;;}. We express
zi;as Ty = ¢; (P, S, Q), and traverse all z; ; € x; in descending causal order 7;, performing the
following operations:
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i. Remove x; ; from P and apply Eq. (1) to obtain

ri = f1 (P\{ze;},S, Q,pap(xrj), pag(e;), st.5) - (A24)

Then, update P < (P \ {z;}) Upay(z: ;) and Q < QU pay(z¢,;). By Assumption 1, z;
cannot reappear in the set of its ancestors, resulting in U (|P]) < U(|P]) — 1.

ii. Assumption 1 also ensures that a variable with a lower causal order does not appear in the
generation of its descendants. Hence, x; ; cannot appear in the generation of its descendants,
since their causal orders are larger than 7;. Similarly, s, ;, which is involved in generating x; ;,
does not appear in the generation of its descendants. Thus, s; ; ¢ S. Define the new separated
setas S «— S U {sy;}, giving

= f2(P,S,9), (A25)
where the new cardinality is updated as |S| < |S| + 1.

Given that U(|P|) > |P], U(|P|) ensures that this iterative process can be performed until |P| = 0.
According to the definition of data generating process, all the aforementioned functions are partially
differentiable w.r.t. s; and x, or they are compositions of such functions. As aresult, @ = an,, (),
and there exists a function g,,,, such that

Tt = Gm; (anzt (xt,i)7 St)'

Moreover, we observe that s; is in fact the ancestors an, (xt i) = {€z,, | 8¢5 € S}, which are
implied in this derivation process since €, ; is in one- -to-one correspondence with s; ; through
indexing.

A.5 Proof of Theorem 2

Considering the mixing function m, and the functional relation s; ; — x ;, corresponding [T (s)ls, s
where i, j indicates the row and column index of the Jacobian matrix, respectively.
For the elements ¢ # j: If there is a directed functional relationship z; ; — x ;, the corresponding

Lt,i

element of the Jacobian matrix is g . If the relationship is indirect: z; ; --+ x;, then for each

Ttk € Pag (), there must exist elther an indirect-direct path x4 ; --» ¢, — x4 ; or a direct-direct
path Ty j — Ty — Ty;. In summary, through the chain rule, we obtain

Oxti Oxypp
Jm ij = — - —.
CECOIFE D DR S (A26)
Tt k€EPAG (Tt,i) ’ ’
For each z; 1, ¢ pap(xi), gxt = =0, Eq. (A26) could be rewritten as
0zt ; aﬂﬁt,k axt,i 8$t,k
D ST - T

8xt7k 8St,j (93;}71@- 63,57]‘

Ty, kEPAG (Tt,i) Ty, kEPaG (Tt,i)

J (A27)
Oxi; Oxyk =

de
- il Z[Jg(Xt)L’,k [T (8)]k -

ox O8¢5
k=1 bk i p—1

For the elements i = j: For each x; ;, € pay(z;), DAG structure ensures that z, ; does not appear
in the set of ancestors of itself. Consequently, due to the one-to-one correspondence between s;  and

Z4,;, we also have that I' ’; = 0. Thus, we obtain
d
Oz Oz -
Jm i = ’ ik 1J A28
Im(slii = 5o +0= 50" +k2:jl o(x0)lik - [Tom(80)]k - (A28)
Since for k = ¢, it holds that [J4(x;)];,x = 0, and for k # i, we have [J,,, (s¢)]x,; = 0.
Defining D, (s;) = diag(gf,t’"i ey gfzjf ), we can summarize the result as
Jg(Xt)Jm(St) = Jm(st) - Dm(st)- (A29)
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A.6 Proof of Corollary Al

We establish two results that strengthen the SEM-ICA connection by relaxing modeling assumptions
and enabling its practical application within generative models.

Corollary Al. Under Assumption 1, given any z; € Z;, J,,(st) is a invertible matrix.

This result unveils that the DAG structure among observed variables implies the invertibility of the
mixing function m in the nonlinear ICA. As a direct consequence, by left-multiplying both sides of
Eq. (4) with J,1(s;), we obtain the following expression:

Corollary A2. Observational causal graphs are represented by J;(x:) = Ly, — Dy (s¢)J 0 (st).
Proof. Eq. (A29) states that

(Ia, — Jg(x¢))Tmm(st) = D (). (A30)

From the DAG structure specified in Condition 1 and the functional faithfulness assumption in
Assumption 2, the Jacobian matrix J,(x;) can be permuted into a lower triangular form via identical
row and column permutations. Thus, the matrix I, — J,(x;) is invertible for all x, € X;.

Since D, (s;) is obtained via multiplication with (I, — J4(x;)), it follows that

(Ta, = Jg(x4)) ' Din(st) (A31)

is well-defined and invertible. This, in turn, implies that J,, (s;) is invertible.
Furthermore, we establish that

supp (Ta, — Jg(x1)) = supp (J4(x:, 1)) (A32)
since the diagonal entries of J;(x;, s;) are nonzero. Given that J,(x;, s;) inherits the lower triangular
structure after permutation, it must also be invertible.
A.7 Proof of Theorem 3
We present some useful definitions and lemmas in our proof.

Definition 4. (Ordered Component-wise Identifiability) Variables s; € R% and 8; € R are
identified component-wise if 5;; = hg, (8¢ x(;)) with invertible function h, and 7(i) = i.

Lemma 3 (Lemma 1 in LINGAM [72]). Assume M is lower triangular and all diagonal elements
are non-zero. A permutation of rows and columns of M has only non-zero entries in the diagonal if
and only if the row and column permutations are equal.

Lemma 4 (Proposition in [44]). Suppose that 5, ; and 3, ; are conditionally independent given z.
Then, for all z,,

0?logp(8: | 2¢) _o.
054,08
Proof. Let (%, 8¢, §m ) be the estimations of (z, s, g, ). By Lemma 2,
Xt = gm(2¢,5t); Xt = Jm(2¢,8¢) (A33)
Suppose we reconstruct observations well: x; = X;. Combined with Theorem 1,
p(xe [ 2¢) = p(xi | ha(ze)) = p(xe [ 2e) = P(gm(St,2e) | 2e) = (G (S, 2¢) [ 2¢).  (A34)

Corollary A1 has shown that J,,,(s,) and J;,, (§;) are invertible matrices, by the definition of partial

Jacobian matrix: [J,,,(s¢)];; = g”s”ffvf _ 99m;(s,2)
t,7

Ost,;
ol | ) = (e | 2) (A35)
T o P\St | Z) = 7P St | Z¢)-
[Jom (se)] J5,.(80)]
We define hs := m~! o gy, for any fixed z; and 2, hence, |J;_(8;)| = Il‘?’"((sit))‘l and §; = hs(sy).

Therefore, we have

. 1 . .
(8¢ | z¢) = mp(st | z;) = logp(s; | 2¢) = logp(ss | z¢) — log|In,(8:)].  (A36)
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The second-order partial derivative of log p(8¢ | ;) W.r.t. (844, 8¢ ;) is

Ologp(8, | 2.) Ay Osir Olog|dp, (S1)| OAvr oy Olog|Jn, (80)]
8815 Ji Z ast,k &ém 8st i Z ast k )}k,z aétﬂ' ’
9% logp(8¢ | 2¢) Ay . . Ak OTn,(8)lki | 9% log|Tn, (30)]
08,08, Z 957}, In Gl - In el + Bsep O3 05,05
(A37)
2 s
Since for any (¢,7,t) € J x J x T, we have s;; L s; ; | z;, Lemma 4 tells us %a(zw =0.
Therefore, its partial derivative w.r.t. z,; (I € J) is always O: '
8310 pé Z i 83Ak N R 82Ak aJh,é ki
OIS ) S o 60 [ (3 + i St ) —
ast,iast,jaztyl =1 8St7kaztvl 8825 kf)zt 1 85,57]'

(A38)
) do not depend on z; ;. By Assumption 3, maintaining this equality requires
k,j = 0fori # j, which implies Jp,_ (§;) is a monomial matrix.

since entries of Jp_(

St
I 50k - In, (50)]
Eliminate the Permutation Indeterminacy. We leverage the following properties:

1. The inverse of a lower triangular matrix remains a lower triangular matrix.

2. A matrix representing a DAG can always be permuted into a lower-triangular form using appropri-
ate row and column permutations.

3. Corollary A2 states that:

Jou(x¢) =Lg, = Dyr(s)I, 1 (s0); Tg(xe) =Ta, — Di(s)J,) (s) (A39)

where J ;. (x;) and J,,,z (s;) are (strictly) lower triangular matrices obtained by permuting J ,(x;)
and J,, (s:), respectively. D,z (s;) is the diagonal matrix extracted from J,,z (s;). Consequently,
we can express the relationship between J,,, (s;) and J,,,z (s;) as follows:

Jyr(x¢) =Pa, Jg(xt)Py. = T(st) = Py, Je(s)D L (s0)Py Din(se), (A40)

where P is the Jacobian matrix of a permutation function on the d,-dimensional vector. Conse-
quently, by J.,.(s) = J;,. (8¢)Jn, (st), we obtain

35, (80) =Pa, T (s0)D, ) (50)P g Din(se)T;  (se), (A41)

Using Lemma 3, we obtain deD;blL (st)P(LDm(st)JhS (8:) = I, which implies J,;l(st) =
D, } (Sf)DmL (st), a diagonal matrix. Consequently, J; . (8;) and J,,,(s;) have the same support,
meaning J;(%;) and J4(x;) share the same support as well, according to Corollary A2. Thus, by
Assumption 2, the structure of the observational causal graph is identifiable. O

Discussion on Assumptions. To enhance understanding of our theoretical results, we provide some
explanations of the assumptions, their connections to real-world scenarios, as well as the potential
boundaries of theoretical results.

i. Generation Variability. Sufficient changes on generation 3 is widely used in identifiable nonlinear
ICA/causal representation learning [27, 39, 32, 94, 86]. In practical climate science, it has been
demonstrated that, within a given region, human activities (s, ;) are strongly impacted by certain
high-level climate latent variables z; [!], following a process with sufficient changes [51].

ii. Functional faithfulness. Functional faithfulness corresponds to the edge minimality [91, 42, 60]
for the Jacobian matrix J,(x;) representing the nonlinear SEM x; = g¢(xy, 2, €x,), where
Oxy Oz,

. = 0 implies no causal edge, and ax‘ 5-=L = 0 indicates causal relation x;; — x; ;. This

assumption is fundamental to ensuring that the Jacobian matrix reflects the true causal graph.
If our functional faithfulness is violated, the results can be misleading, but in theory (classical)
faithfulness [75] is generally possible as discussed in [42] (2.3 Minimality). As a weaker version
of it, edge minimality holds the same property. If needed, violations of faithfulness can be testable
except in the triangle faithfulness situation [91]. As opposed to classical faithfulness [75], for
example, this is not an assumption about the underlying world, but a convention to avoid redundant
descriptions.
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injective function injective operator

Figure A3: Invertible Function v.s. Injective Operator. (Left) Consider two variables a and b
connected by the function b = g(a), where g is invertible. (Right) Alternatively, their relationship can
be expressed as p(b) = Ly, © p(a), where Ly, is an injective operator. The grid represents p(b | a),
with color indicating non-zero values and white representing zero. Intuitively, in the discrete case, a
full-rank matrix corresponds to this relationship.

A.8 Proof of Lemma 1

(We delay the section of this proof since it relies on previous results.) The injectivity of a operator is
formally characterized by the completeness of the conditional density function p(a | b) used in the
operator, as defined below.

Definition 5 (Completeness). A family of conditional density functions p g is said to be complete if
the only solution to [, p(a)papp(a | b) da =0, ¥b € Bis p(a) = 0.

Since the transformation from s; to x; is invertible and deterministic, given a §; € S;, the probability

71 =
density function for x; can be expressed as: p(x;) = “]m(s’f)‘p(st)’ Xt m(st). Hence, the
0’ Xt # m(st)
conditional probability can be represented using the Dirac delta function:
p(x¢ | s¢) = 6(x¢ —m(st)) = p(xt) = Ly,|s, 0 p(st) = 6(x¢ —m(se))p(st) dsy.
Se

By recalling Eq. (2), we can rewrite p(x;) in terms of the operator Ly, |, acting on ps,. We consider
p(x; | s¢) as an infinite-dimensional vector, and the operator Ly, |s, as an infinite-dimensional matrix
where

.
Ly,js, = [0(xe — m(st))x, ex, -

By Corollary A2, since J,,(s;) is invertible, for any two different points sﬁl), S,E?) € S; (st # s}), we

have m(sgl)) # m(sf)). This implies that the supports of §(x; — m(sgl))) and (x; — m(sgm)) are

disjoint. Thus, [6(x; — m(st))];eXt

null [0(x; — m(St))]IteXt = {O(oo)}v

which denotes the completeness of Ly, s, stated in Definition 5, indicating that Ly, s, is injective.
The visualization in Figure A3 highlights why Assumption 1 is significantly less restrictive than the
invertibility assumption adopted in most of the previous CRL literature [28, 29, 31, 34, 94, 43].

preserves a one-to-one correspondence across the A}, ensuring:

A.9 Comparison with Existing Methods

Our method targets the joint identification of latent causal graphs and observational causal structures
in time series. This is essential for domains such as climate science, where latent processes govern
observed dynamics. In contrast, IDOL [43] focuses solely on recovering latent variables and assumes
a deterministic mixing function without any causal relations among observed variables. As a result, it
cannot recover the observational causal graph and fails in contexts like climate systems, where both
latent and observational structures are crucial.

Prior works [54, 64] use nonlinear ICA to recover causal relations among observed variables, assum-
ing known domain variables and non-i.i.d. data. However, (1) CaDRe does not require predefined
domain variables and instead leverages contextual information to infer latent variables as conditional
priors; (2) ICA-based methods are not robust under latent confounding, as spurious correlations may
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obscure true causal links; (3) they do not identify the latent variables or their underlying dynamics;
(4) they require invertibility of g and m, an assumption we relax in Corollary Al.

The FCI algorithm [74] allows for latent confounding and uses conditional independence tests to
infer causal relations among observed variables. However, it cannot recover the latent variables
themselves or their causal influence on observations. Furthermore, the causal structure is expressed as
a Partial Ancestral Graph (PAG), which represents an equivalence class and may contain ambiguous
or uncertain edges. Such ambiguity is particularly problematic for applications like climate analysis,
which demand interpretable and stable causal structures.

B Related Work
B.1 Climate Analysis

Climate analysis is learning to address the complex, nonlinear, and high-dimensional nature of Earth
system dynamics. A prominent line of work focuses on using neural networks for weather and climate
forecasting, including data-driven models such as FourCastNet [58] and GraphCast [4 1], which
demonstrate remarkable predictive performance by modeling spatiotemporal dependencies. However,
these methods often lack interpretability and fail to reveal the underlying causal mechanisms driving
climate variability. To address this issue, recent research has integrated causal discovery into climate
science. For instance, [68] introduces causal inference frameworks tailored to climate time series,
incorporating techniques such as PCMCI to infer lagged and contemporaneous dependencies. Other
approaches employ structural causal models (SCMs) for identifying interactions between climate
variables under interventions [63]. Beyond shallow models, efforts have emerged to disentangle
latent variables in high-dimensional climate data using variational autoencoders [35]. While effective,
most of these methods do not guarantee identifiability or robust generalization across regimes.
More recently, hybrid models that couple dynamical systems theory with deep learning have shown
promise in capturing climate processes with greater fidelity. Examples include integrating physics-
based constraints into latent state-space models [4] and learning interpretable representations for
climate variability modes such as the Madden-Julian Oscillation [77]. These works highlight the
growing interest in combining structure learning, causal inference, and deep latent modeling to move
beyond black-box predictions towards actionable scientific understanding.

B.2 Causal Representation Learning

Achieving causal representations for time series data [01] often relies on nonlinear ICA to recover
latent variables with identifiability guarantees [85, 71]. Classical ICA methods assume a linear mixing
function between latent and observed variables [ 10]. To move beyond this linearity assumption, recent
advances in nonlinear ICA have established identifiability under various alternative assumptions,
including the use of auxiliary variables or structural sparsity [97, 30, 27]. One prominent line of work
introduces auxiliary variables to facilitate identifiability. For instance, [32] achieves identifiability by
assuming latent sources follow an exponential family distribution and incorporating side information
such as domain, time, or class labels [28, 29, 31]. To relax the exponential family requirement, [36]
establishes component-wise identifiability using 2n + 1 auxiliary variables for n latent components.
Another direction pursues identifiability in a fully unsupervised setting by leveraging structural spar-
sity. [39] propose a sparsity-based inductive bias to disentangle latent causal factors, demonstrating
identifiability in multi-task learning and related settings. They further extend these results to establish
identifiability up to a consistency class [38], allowing partial disentanglement. Complementarily, [97]
and [94, 43] exploit sparse latent structures under distributional shifts to obtain identifiability results
without relying on auxiliary information.

B.3 Causal Discovery

Existing causal discovery methods in climate analysis primarily build on extensions of PCMCI [69],
which effectively captures time-lagged and instantaneous linear dependencies, and its nonlinear
variant [67]. However, both approaches assume fully observed systems and neglect latent variables,
limiting their applicability to complex climate dynamics. Recent causal representation learning
methods motivated by climate science attempt to address this gap: [6] imposes strong identifiability
assumptions via single-node structures, while [84] adopts an ODE-based model to study climate-
zone classification, though these methods often overlook dependencies among observed variables.
Beyond climate, a class of nonlinear causal discovery methods leverages Jacobian information for
identifiability and acyclicity [37, 65], including applications to structural equation models [2], Markov
structures [96], independent mechanisms [18], and non-i.i.d. settings [64]. While [12] propose a
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general framework that accounts for hidden variables by using rank conditions on the observed
covariance matrix, their model is restricted to linear relationships and cannot recover nonlinear latent
dynamics in time-series data. In contrast, our method, CaDRe, recovers latent causal structures under
nonlinear dependencies, though it currently does not support cases where observed variables act as
causes of latent ones—a limitation we leave to future work. Considering the nonlinear CD based on
continuous optimization, we additionally provide the Table A2 for comparison.

B.4 Time-Series Forecasting

Time series forecasting has seen rapid progress with deep learning methods that leverage various
neural architectures. RNN-based models [22, 40, 70] focus on sequential dependencies, while CNN-
based approaches [3, 79, 81] capture local temporal patterns. State-space models [20, 19, 21] offer
structured modeling of latent dynamics. Transformer-based methods [99, 82, 57] further advance
long-range forecasting through attention mechanisms. However, most existing methods neglect
instantaneous dependencies among variables, limiting their ability to fully capture the joint dynamics
of multivariate time series.

Table A2: Comparison of different methods based on their properties in function type (f), data,
Jacobian (J), capability of performing Causal Discovery (CD) and Causal Representation Learning
(CRL), and whether they achieve identifiability.

Method f Data J CD CRL Identifiability
LiINGAM [72] Linear Non-Gaussian Jp v X v
GraN-DAG [37] Additive Gaussian Jp v X X

IMA [18] IMA All Jy X X v
G-SCM [96] Sparse All Jy X X v
Score-Based FCMs [65] Additive Gaussian IV, 1og (@) v X X
DynGEN [2] Cyclic (ODE) All Jy v X X

JCD [64] All Assums. 2,F 1 Jp v X v
CausalScore [47] Mixed Gaussian IV, log () v X Partial
CaDRe (Ours) All All Jj-1 v v 4

C Estimation Methodology

Our theoretical insights shed light on the practical implementations. As shown in Figure AS, we in-
stantiate these insights into an estimation framework for Causal Discovery and causal Representation
learning (CaDRe) in the nonparametric setting, enabling direct inference of causal structures.

Overall Architecture. The proposed architecture is built upon the variational autoencoder [33]. In
light of data generating process 1, we establish the Evidence Lower BOund (ELBO) as follows:

LerBo = Eg(sy.r|x1.0) l0gp(X1.7 | S1.7, Z1:7)] —

A42
M Dk (g(s1r | x1:7) || p(sir | 21.7)) — XeDxe (q(z1.7 | x1.7) || p(21.7)) (A42)

where A\; and )y are hyperparameters, and D, represents the Kullback-Leibler divergence. We set
A1 =4 x 1072 and Ao = 1.0 x 10~2 to achieve the best performance. In Figure A5, the z-encoder,
s-encoder and decoder are implemented by Multi-Layer Perceptrons (MLPs) as follows:

Zy.7 = d)(xl:T)a S1.7 = n(xl:T)a )A{lzT = 7/)(21:T,51:T)7 (A43)

respectively, where the z-encoder ¢ learns the latent variables through denoising, and s-encoder ¢
and decoder 7 approximate functions for encoding s; and reconstructing observations, respectively.

Prior Estimation of z; and s;. We propose using the s-prior network and z-prior network to
recover the independent noise €; and €7, respectively, thereby estimating the prior distribution of
latent variables z; and dependent noise S;. Specifically, we first let ; be the i-th learned inverse
transition function that takes the estimated latent variables as input to recover the noise term, e.g.,
éfji = r;(Zt—1,2¢). Bach r; is implemented by MLPs. Sequentially, we devise a transformation

K= {21_1,%2+} — {21_1, €7}, whose Jacobian can be formalized as J,, = (Jd(iI D 3 ?2 )>
t— r\4t
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Figure A4: The estimation procedure
of CaDRe. The model framework

decoder reconstructs observations from
these variables. Additionally, prior net-
works estimate the prior distribution us-
ing normalizing flow, target on learning
causal structure based on the Jacobian

Zr,3 017 0.00

Ze1 2ep 2t3 L \ Zt1 Ze2 Ze3

2¢-1,3/019

K ime-Delay —— \ . z-en r
Time-Del e L € L “Instantaneous ™, includes two encoders: encode

! Latent Structure '+ S DKLI d | Latent Structure ! . .

! i i ¢ for extracting latent variables z;, and
v Zeqq 0.29 1 1 247000 009 033 ' .

o i 2y} ' s-encoder for extracting s;. A
\ Zpoq2021 004 ) V22026 000 '

: - - :

: " 1 :

' ' ' !

Xy, Xz, ony X7 ----1---- matrix. £s imposes a sparsity constraint
 bservational’, ok, orioooeeees and Qd enforc.es the DAG structure on
| Causal Graph ! m agf}—»; ij-ng Structure‘: Jacobian matrix. D.K L enforces. an in-
| 2u1low oo oo m: o ﬂam ; dependence constraint on the estimated
D 2022000 000 | * i Sz 02 1 pojse by minimizing its KL divergence
RS Ls"'i §¢3 0% ¢ w.r.t. N(0,I). In summary, this method

SECR X . fufe s learns independent noise to inversely in-
fer the causal structures.

Then we have Eq. (A44) derived from normalizing flow to estimate the prior distribution:

log p(2¢,2¢—1) = logp(Z¢—1, €;) + log CYE (A44)

ti
According to the generation process, the noise €; ; is independent of z;_;, allowing us to enforce
independence on the estimated noise term € w1th Dx 1. Consequently, Eq. (A44) can be rewritten
as:

T /d,
log p(z1.7) = p(21) H Zlogp(@T i Zlo 5A , (A45)

=2 \i=1
where p(é7 ;) is assumed to follow a Gaussian distribution. Slmllarly, we estimate the prior of s;
using éfﬂ- = w; (24, $¢), and model the transformation between §; and z; as follows:

W’ . (A46)

dy
logp(S1T|ZlT H Zlogp 7.1 +Zlog aéi
P} Tyi

T=1 \i=1

Specifically, to ensure the conditional independence of components in Z; and §;, we using D, to
minimize the KL divergence from the distributions of €7 and €7 to the distribution A/(0, I).

Structure Learning. The variables r; and w; are designed to capture causal dependencies among
latent and observed variables, respectively. We denote J;(z;—1) as the Jacobian matrix of the
function r, which implies the estimated time-lagged latent causal structure; J,.(z;), which implies
the estimation of instantaneous latent causal structure; and J g(fct), which implies the estimated
observational causal graph. Considering the observational causal graph, we compute J ,(§;) from the
decoder, and instantly obtain the observational causal graph J;(%;) via Corollary A2. Notably, the
entries of J(X;) vary with other variables such as 2, resulting in a DAG that could change over time.
For the latent structure, we directly compute J4(2;—1) and J,.(2;) from z-prior network as the
time-lagged structure and instantaneous structure in latent space, respectively. To prevent redundant
edges and cycles, a sparsity penalty £ are imposed on each learned structure, and DAG constraints
L, are imposed on the observational causal graph and instantaneous latent causal DAG. Specifically,
the Markov network structure for latent variables is derived as M(J) = I+ J)T(I+ J) — L
Formally, we define these penalties as follows:

D Lo = IMI @)+ IMTae )+ 135Gl Y La= 1)) + D(J(21))-
(A47)
where D(A) = tr [(I + A0 A)?] — d is the DAG constraint from [89], with A being an d-
dimensionality matrix. || - ||; denotes the matrix I; norm. In summary, the overall loss function of the
CaDRe model integrates ELBO and penalties for structural constraints, which is formalized as:

Larr = LerBo + « Z Ls+ 0 Z La, (A48)
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Table A3: Results under Varying Observational Dimensionality (d,). Each setting is repeated
with 5 random seeds. For evaluation, the best-converged result per seed is selected to avoid local
minima.

d, dy ‘ SHD (J (%)) TPR Precision MCC (s;) ‘ MCC (z;) SHD (J,-(z;)) SHD (Jq(z;—1)) R?
3 0 1 1 0.9775+ 001 | 09721+ 0.01 0.27+0.05 0.26+ 0.03 0.90+ 0.05
6 0.18+ 0.06 0.83+005  0.80+004 0.9583+0.02 | 0.9505+ 0.01 0.24-+0.06 0.33+0.09 0.92+0.01
3 8 0.29+ 0.05 0.78+005  0.76+004  0.9020+0.03 | 0.9601+ 0.03 0.36+0.11 0.31+0.12 0.93+0.02
10 0.43+ 005 0.65+008  0.63+0.14  0.8504-+ 007 | 0.9652+ 0.02 0.29+ 0.04 0.40+ 0.05 0.92+0.02
100* 0.17-+ 0.02 0.80+ 005 0.81+002 09131+0.02 | 0.9565+ 0.02 0.21+ 0.01 0.29+0.10 0.93+ 0.03

Figure A6: Comparison with Constraint-Based CD. We set d, = 6 and d, = 3. We run
experiments using 5 different random seeds, and report the average performance on evaluation
metrics.
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where v = 1.0 x 10~* and 3 = 5.0 x 10~° are hyperparameters. The discussions about hyperpa-
rameter selections and their effects on performance are given in Appendix E.2.

D Experimental Results

Based on the proposed framework, we conduct extensive experiments on both synthetic and real-
world climate data to examine the identifiability of the latent process and observational causal graph,
as well as climate forecasting and scientific interpretability in realistic climate systems.

D.1 On Synthetic Climate Data

Baselines. The data simulation processes and evaluation metrices are presented in Appendix E.2. In
CD, we compare CaDRe with several constraint-based methods suited for nonparametric settings.
Specifically, we include FCI [73] and CD-NOD [26], which handle latent confounders, and time-
series methods PCMCI [69] and LPCMCI [17], which account for instantaneous and lagged effects
with latent confounding. In CRL, we benchmark against CaRiNG [8], TDRL [86], LEAP [87],
SlowVAE [34], PCL [29], i-VAE [32], TCL [28], and models that handle instantaneous effects,
including iCITRIS [45] and G-CaRL [55]. Details are presented in Appendix E.2.

D.2 On Real-World Climate Data

Baselines. Details about the climate datasets are presented in Appendix E.3. We consider the
following state-of-the-art deep forecasting models for time series forecasting. First, we consider the
conventional methods for time series forecasting, including Autoformer [82], TimesNet [81] and
MICN [79]. Moreover, we consider several latest methods for time series analysis like CARD [80],
FITS [83], and iTransformer [48]. Finally, we consider the TDRL [86]. We repeat each experiment
over 3 random seeds and publish the average performance.

Causal Discovery Consistency. As the ground-truth causal graph is inaccessible in real climate
data, we adopt the contemporaneous wind field [62] as a surrogate for evaluation. As shown in
Figure A7, CaDRe recovers observational causal graphs closely consistent with physical wind
patterns, serving as a scientific support. Specifically, CaDRe captures large-scale physical patterns
(e.g., westward flows in equatorial oceans, southwestward propagation near Central America), while
revealing structurally complex zones along coastal boundaries. These dense, irregular edges may
reflect coupled land—atmosphere dynamics or anthropogenic influences [78, 5]. The latent transition
Z¢—1 — 24 is also visualized to unveil the hidden dynamic process in the scientific discovery.

Weather Prediction. We evaluate our method on the CESM2 sea surface temperature dataset for
real-world temperature forecasting. As summarized in Table AS, our approach outperforms existing
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Table A4: Identification Results on Simulated Data. We set the dimensions as d, = 3 and d, = 10,
and consider three scenarios according to our theory: i) Independent: z; ; and z; ; are conditionally
independent given z;_1; ii) Sparse: z;; and z; ; are dependent given z;_1, but the latent Markov
network G,, and time-lagged latent structure are sparse; iii) Dense: No sparsity restrictions on latent
causal graph. Bold numbers indicate the best performance.

Setting | Metric | CaDRe iCITRIS G-CaRL CaRiNG TDRL LEAP SlowVAE PCL i-VAE TCL

Independent MCC | 0.9811 0.6649 0.8023 0.8543  0.9106 0.8942 0.4312 0.6507 0.6738 0.5916

P Rr? 0.9626 0.7341 0.9012 0.8355  0.8649 0.7795 0.4270 0.4528 0.5917 0.3516

Sparse MCC | 0.9306 0.4531 0.7701 0.4924  0.6628 0.6453 0.3675 0.5275 0.4561 0.2629

P Rr? 0.9102 0.6326 0.5443 0.2897  0.6953 0.4637 0.2781 0.1852  0.2119 0.3028
Dense

RZ

MCC | 0.6750  0.3274 0.6714 0.4893  0.3547 0.5842  0.1196 03865 0.2647 0.1324
0.9204  0.6875 0.8032 0.4925  0.7809 0.7723  0.5485 0.6302 0.1525 0.2060

Table AS5: Results on Temperature Forecasting. Lower MSE/MAE is better. Bold numbers
represent the best performance among the models, while underlined numbers denote the second-best.

Dataset | Predicted | CaDRe TDRL CARD FITS MICN iTransformer TimesNet Autoformer
| Length | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0410 0483 | 0439 0.507 | 0.409 0.484 | 0.439 0.508 | 0.417 0.486 | 0.422 0.491 | 0.415 0.486 | 0.959 0.735

CESM2 | 192 0.412 0487 | 0440 0508 | 0.422 0.493 | 0447 0.515 | 1.559 0984 | 0425 0495 | 0417 0497 | 1.574 0972
336 0.413 0485 | 0441 0505 | 0.421 0497 | 0482 0.536 | 2.091 1.173 | 0.426 0.494 | 0423 0.499 | 1.845 1.078

time-series forecasting models in precision, due to existing models struggling with causally-related
observations and non-contaminated generation, restricting their usability in real-world climate data.

E Experiment Details

E.1 Experiment Results on Simulated Datasets

Empirical Study. We show performance on the CD and CRL in Table A3, and investigate different
dimensionalities of observed variables. Our results on both latent representation learning metrics
verify the effectiveness of our methodology under identifiabilty, and the result on d,, = 100 makes it
scalable to high-dimensional data, if prior knowledge of the elimination of some dependences are
provided by the physical law of climate [14] or LLM [50], supports our subsequent experiment on
real-world data. Additionally, the study on different d, can be found in Appendix E.2.

Comparison with Constraint-Based CD. Figure A6 shows that CaDRe consistently outperforms all
baselines across varying sample sizes, with performance improving as more data becomes available.
In contrast, FCI performs poorly when latent confounders are dependent, often leading to low recall.
CD-NOD relies on pseudo-causal sufficiency, assuming that latent variables are functions of surrogate
variables, which does not hold in general latent settings. PCMCI ignores latent dynamics altogether,
while LPCMCI assumes no causal relations among latent confounders, limiting its applicability
in complex systems. These comparisons highlight the effectiveness of CaDRe in addressing the
limitations of existing constraint-based methods.

Comparison with Temporal CRL. The MCC and R? results for the independent and sparse settings
demonstrate that our model achieves component-wise identifiability (Theorem A.3). In contrast, other
considered methods fail to recover latent variables, as they cannot properly address cases where the
observed variables are causally-related. For the dense setting, our approach achieves monoblock
identifiability (Theorem 1) with the highest R?, while other methods exhibit significant degradation
because they are not specifically tailored to handle scenarios involving general noise in the generating
function. These outcomes are consistent with our theoretical analysis.

E.2 On Simulation Dataset

Data Simulation. We generate time series data with latent variables z; € R% and observed
variables x; € R%, where d, < d,. The latent dynamics follow a leaky non-linear autoregressive
model:
L
zi=0|Y Wz | +e, € ~N(0,02), (A49)
=1

where o(-) is leaky ReLU, and W) are lag-/ transition matrices modulated by class-specific
parameters. Instantaneous causal relations among x; are defined by an Erdés-Rényi DAG B €
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Figure A7: Top: Estimated instantaneous causal graph over climate grids. Bottom: Reference wind
field from [62]. Blue arrows denote learned causal directions; red arrows indicate wind vectors.

{0,1}% >4 with time-varying edge weights:
27t
B:=a(t)-B, «ft)=ajcos <;) + as. (A50)

The observed variable x; is first generated by a multilayer mixing of (z,, s;), followed by additive
and autoregressive noise:

Xt = fmix(zta St) + S¢, St = Etm + fdep(xt—l)a (ASI)

where €/ ~ U[0, 0,]. Then, causal effects among observed variables are injected based on B; in
topological order:

Tri 4 i+ D Bijic i, (A52)
jepa(?)
where pa(i) = {j | B:,;,; # 0} are the causal parents of variable ¢ under B,.

Various Datasets. We generate simulated time-series data using the fixed latent causal process
described in Eq. (1) and illustrated in Figure 1. To comprehensively evaluate our theoretical results, we
construct synthetic datasets with varying observed dimensionalities, including d,, = 3, 6,8, 10, 100*!
and latent dimensionalities d, = 2, 3, 4, specified for each experiment. Additionally, we simulate
different levels of structural sparsity in the latent process under three regimes: Independent, Sparse,
and Dense. For evaluation, we use SHD, TPR, Precision, and Recall for causal structure recovery,
and MCC and R? for assessing latent representation identifiability. As defined in Eq. (1), under
the Independent setting for the latent temporal process and dependent noise variable s;, we use the
generation process from [86], meaning there are no instantaneous dependencies within the z;. For
Sparse and Dense settings, we gradually increase the graph degree after removing diagonals. Each
independent noise is sampled from normal distributions.

Evaluation Metrics. We evaluate the recovery of latent variables and causal structures using the
following metrics:

i. Latent Space Recovery. Following the identifiability result in Theorem 1, we measure the
alignment between the estimated latent variables z; and the true latent variables z; using the
coefficient of determination R?, where R? = 1 indicates perfect alignment. A nonlinear
mapping is estimated using kernel regression with a Gaussian kernel.

ii. Latent Component Recovery. To evaluate component-wise identifiability as discussed in
Theorem A1, we use the Spearman Mean Correlation Coefficient (MCC), which assesses the
monotonic relationship between estimated and true latent components.

iii. Latent Causal Structure. For evaluating the recovery of latent causal graphs, both instantaneous
and time-lagged, we compute the Structural Hamming Distance (SHD) between the learned
and true adjacency matrices. Given the permutation indeterminacy of latent variables, we align
the estimated latent causal structures J,.(z;) and J,(2;—1) with the ground truth by applying
consistent permutations.

!* indicates the use of a masking scheme simulated from geographical information (see Appendix E.2)
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iv. Observational Source Recovery. As a surrogate for evaluating the observational causal graph,
we use MCC [32] to assess the recovery of s;. Unlike latent variables, this metric does not allow
permutations and reflects the identifiability condition stated in Theorem 3.

v. Causal Structure Accuracy. The recovered latent and observational causal DAGs are also
evaluated using SHD, normalized by the total number of possible edges to facilitate comparison
across different graph sizes.

vi. Graph-Level Metrics. In addition to SHD, we report true positive rate (TPR), precision, and F1
score to benchmark our method against constraint-based approaches in causal graph recovery.

Implementation Details of CRL Baselines. We employed publicly available implementations
for TDRL, CaRiNG, and iCRITIS, which cover most of the baselines used in our experiments.
For G-CaRL, whose official code was not released, we re-implemented the method based on the
descriptions in the original paper. Furthermore, because the original iCRITIS framework was tailored
for image-based inputs, we adapted it to our setting by replacing its encoder and decoder with a VAE
architecture, using the same hyperparameters as in CaDRe.

Mask by Inductive Bias. Continuous optimization faces challenges like local minima [56, 52],
making it difficult to scale to higher dimensions. However, incorporating prior knowledge on the low
probability of certain dependencies [75, 69] enables us to compute a mask. To validate this approach
using physical laws as observed DAG initialization E.3 in climate data, we mask 75% of the lower
triangular elements in a simulation with d, = 100, a ratio much lower than in real-world applications.

Comparison with Constraint-Based Methods. We compare our method against a series of
constraint-based causal discovery algorithms, which rely on Conditional Independence (CI) tests
without assuming a specific form for the SEMs. These approaches are nonparametric and model-
agnostic, but they typically return equivalence classes of graphs rather than fully identifiable structures.
For instance, FCI outputs Partial Ancestral Graphs (PAGs), while CD-NOD returns equivalence
classes reflecting causal ambiguity under the observed CI constraints. For a fair comparison, we
adopt near-optimal configurations of the most representative constraint-based methods. Specifically,
we use the Causal-learn package [95] to implement FCI and CD-NOD, and the Tigramite
library [69] for PCMCI and LPCMCI. Each method is run under recommended hyperparameter
settings as reported in their respective documentation or prior studies, ensuring a reliable and balanced
comparison.

i. FCI: We use Fisher’s Z conditional independence test. For the obtained PAG, we enumerate all
possible adjacency matrices and select the one closest to the ground truth by minimizing the
SHD.

ii. CD-NOD: We concatenate the time indices [1,2, ..., T] of the simulated data into the observed
variables and only consider the edges that exclude the time index. We use kernel-based CI test
since it demonstrates superior performance here. We consider all obtained equivalence classes
and select the result that minimizes SHD relative to the ground truth.

iii. PCMCI: We use partial correlation as the metric of the conditional independence test. We
enforce no time-lagged relationships in PCMCI and run it to focus exclusively on contempo-
raneous (instantaneous) causal relationships. In the Tigramite library, this can be achieved
by setting the maximum time lag 7,,x to zero. This effectively disables the search for lagged
causal dependencies. We select contemporary relationships as the ultimate result.

iv. LPCMCI: Similarly to PCMCI, we use partial correlation as the metric of CI test, and select
the contemporary relationships as the obtained causal graph.

Study on Dimension of Latent Variables. We fix d,, = 6 and vary d, = {2, 3,4} as shown in
Table A6. The results indicate that both the Markov network and time-lagged structure are identifiable
for lower dimensions. However, as the latent dimension increases, it witnesses a decline in the MCC,
which is still the challenge in the continuous optimization of latent process identification [94, 43].
Nevertheless, the identifiability of latent space (R?) remains satisfied across different settings.

Ablation Study on Conditions. We further conduct simulation studies to validate the theoretical
identifiability guarantees under controlled settings with latent dimension d, = 3 and observation
dimension d, = 6. To explicitly assess the necessity of key assumptions in our theory, we intentionally
remove specific conditions, which are critical to the identifiability results. The following cases
illustrate three distinct violations:
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Table A6: Results on Different Latent Dimensions. We run simulations with 5 random seeds,
selected based on the best-converged results to avoid local minima.
dy | d. | SHD (Gy,) TPR Precision MCC(sy) | MCC(z) SHD (G:,)  SHD (Mqq) R?

2 | 0.12(£0.04) 0.86(£0.02) 0.85(4+0.04) 0.9864 (£0.01) | 0.9741 (+0.03) 0.15(£0.03) 0.21 (£0.05) 0.95 (+0.01)
3 | 0.18(£0.06) 0.83 (£0.02) 0.80 (+0.04) 0.9583 (£0.02) | 0.9505 (+0.01) 0.24 (£0.06) 0.33 (£0.09) 0.92 (+0.01)
4 ] 0.23(£0.02) 0.80(£0.06) 0.74 (£0.01) 0.9041 (£0.02) | 0.8931 (£0.03) 0.33 (£0.03) 0.48 (£0.05) 0.91 (£0.02)

6

Table A7: Assumption Ablation Study. These results verify the necessity of our assumptions in the
theoretical analysis.

Setting | MCC (s;) R?

A 0.6328 0.34
B 0.7563  0.67
C 0.7052  0.85

i. A (Violation of contextual measurement condition in Theorem 1): We enforce conditional
independence among z; and replace the latent transition with an orthogonal mapping, thereby
violating the 3-measurement condition required for block identifiability [24].

ii. B (Violation of Assumption 1): To violate the injectivity of linear operators, we use a simple
autoregressive process z; = z;_1 + €, with €,, ~ Uniform(0, 1), which fails the injectivity
requirement for L, ., , and Ly, ¢, ,, [53].

iii. C (Violation of Assumption 3): We constrain the generation variability by setting s, =
q(zt) + €,, where ¢ is a fixed mixing function and €,, ~ A(0,I; ). This results in a
linear Gaussian model without heteroscedasticity, undermining the necessary distributional
variability, as discussed in [86].

As shown in Table A7, the removal of these assumptions leads to a substantial drop in both R? and
MCC for sy, indicating a failure to recover the latent space and the observation-level causal structure.
These findings empirically substantiate the necessity of our theoretical assumptions and delineate the
conditions under which identifiability breaks down.

Hyperparameter Sensitivity. We test the hyperparameter sensitivity of CaDRe w.r.t. the sparsity
and DAG penalty, as these hyperparameters have a significant influence on the performance of
structure learning. In this experiment, we set d, = 3 and d, = 6. As shown in Table AS, the results
demonstrate robustness across different settings, although the performance of structure learning is
particularly sensitive to the sparsity constraint.

Table A8: Hyperparameter Sensitivity. We run experiments using 5 different random seeds for data
generation and estimation procedures, reporting the average performance on evaluation metrics. "/"
indicates loss of explosion. Notably, an excessively large DAG penalty at the beginning of training
can result in a loss explosion or the failure of convergence.

a 1x107%° 5x107° 1x107* 5x107% 1x107% 1x1072
SHD 0.23 0.22 0.18 0.27 0.32 0.67

B 1x107% 5x107° 1x107% 5x107% 1x107% 1x10"2
SHD 0.37 0.18 0.20 / / /

E.3 On Real-world Dataset

Dataset Description.

1. Weather ? dataset offers 10-minute summaries from an automated rooftop station at the Max
Planck Institute for Biogeochemistry in Jena, Germany.

Zhttps://www.bgc-jena.mpg.de/wetter/
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Table A9: Extended Results on Weather Forecasting. Lower MSE/MAE is better. Bold numbers
represent the best performance among the models, while underlined numbers denote the second-best.

Dataset | Length | CaDRe iTransformer Informer PatchTST DLinear+FAN TimesNet DLinear N-Transformer
| | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

48 0.125  0.167 | 0.140 0.179 | 0.177 0218 | 0.148 0.188 | 0.158 0.217 | 0.138 0.191 | 0.156 0.198 | 0.143  0.195
Weather 96 0.157 0203 | 0.168 0.214 | 0.225 0.259 | 0.187 0.226 | 0.199 0.256 | 0.180 0.231 | 0.186 0.229 | 0.199  0.246
144 0.180 0.225 | 0.172 0.225 | 0.278 0.297 | 0.207 0242 | 0.312 0.274 | 0.190 0.244 | 0.199 0.244 | 0.225  0.267
192 0.207 0.248 | 0.193 0241 | 0.354 0.348 | 0.234 0.265 | 0.238 0.298 | 0.212 0.265 | 0.217 0.261 | 2.960  0.315

2. CESM2 Pacific SST dataset employs monthly Sea Surface Temperature (SST) data generated
from a 500-year pre-2020 control run of the CESM2 climate model. The dataset is restricted
to oceanic regions, excluding all land areas, and retains its native gridded structure to
preserve spatial correlations. It encompasses 6000 temporal steps, representing monthly
SST values over the designated period. Spatially, the dataset comprises a grid with 186
latitude points and 151 longitude points, resulting in 28086 spatial variables, including 3337
land points where SST is undefined, and 24749 valid SST observations. To accommodate
computational constraints, a downsampled version of the data, reduced to 84 grid points
(6 x 14), is utilized in our experiment.

3. WeatherBench [62] is a benchmark dataset specifically tailored for data-driven weather
forecasting. We specifically selected wind direction data for visualization comparisons
within the same period, maintaining the original 350,640 timestamps.

Extended Weather Forecasting Results. To show the effectiveness of our approach, we evaluate
additional large-scale time series forecasting models on the Weather dataset, a widely used benchmark
in this domain. The selected models include iTransformer [48], PatchTST [57], Informer [46],
DLinear [90], FAN [88], TimesNet [81], and N-Transformer [49]. As shown in Table A9, their results
are reported to provide a comprehensive comparison with our method.

Initialization of Observational Causal Graph. To improve the stability of continuous optimization
and avoid poor local minima in estimating the causal structure matrix th, we incorporate a prior
based on the Spatial Autoregressive (SAR) model. The SAR model, widely applied in geography,
economics, and environmental science, captures spatial dependencies through the formulation:

X =ZB+ AWX +E,

where W is the spatial weights matrix, 3 is a regression coefficient, and E is a noise term. To simplify
the model and isolate the spatial interaction component, we set 3 = 0 and A = 1, resulting in the
canonical SAR model:

X=WX+E.

The core assumption is that instantaneous interactions between regions are unlikely if they are
separated by a substantial spatial distance. Therefore, we initialize W using a binary spatial adjacency
matrix M, defined as

[(Mioclij = 1(Ilsi — s;l2 < 50),

where s; and s; denote the spatial coordinates of regions ¢ and j, respectively. This constraint
enforces that only regions within a Euclidean distance of 50 units are considered spatially adjacent.
We then estimate A and update W by fitting the linear model X = WX + E via least squares. The
resulting matrix W is used as the initialization for the observational causal graph, denoted My.

Compute the Observational Causal Graphs. Using a mask gradient-based approach, we compute
an initial estimate of the Jacobian J;(x;), which encodes local sensitivities. However, these Jacobian
matrices are typically dense and difficult to interpret directly. To produce a more interpretable visual-
ization of the observational causal graph, we apply a masking operation followed by elementwise
thresholding:

Ge, = 1 (|Tg(xt) © Miie| > 7), (A53)
where © denotes the elementwise (Hadamard) product, and I(+) is the indicator function that outputs 1
if the condition is true and 0 otherwise. We set the threshold to 7 = (.15 to obtain a binary adjacency
matrix. My is the initialization mask.
To compute the partial Jacobian J ;(x;) with respect to s, while keeping z, fixed, we disable gradient
tracking for z, by setting requires_grad=False, and use autograd.functional. jacobian in
PyTorch.
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Table A10: Architecture details. T, length of time series. |x;|: input dimension. n: latent dimension.
LeakyReLU: Leaky Rectified Linear Unit. Tanh: Hyperbolic tangent function.

Configuration | Description | Output

10} | z-encoder |

Input:x;.¢ Observed time series Batch SizexT'x d
Dense d; neurons Batch SizexT' X d,
Concat zero concatenation Batch SizexT' X d
Dense d neurons Batch SizexT x d.
n | s-encoder |

Input:x.¢ Observed time series Batch SizexT'x d
Dense d, neurons Batch SizexT' X d
Concat zero concatenation Batch SizexT X d,
Dense d, neurons Batch SizexT' X d
) | decoder |

Input:z1.7 Latent Variable Batch SizexT X (d. + dz)
Dense d; neurons, Tanh Batch SizexT' X d,
r | Modular Prior Networks |

Input: z1.7 Latent Variable Batch Sizex (d. + 1)
Dense 128 neurons,LeakyReLU | (d. + 1)x128
Dense 128 neurons,LeakyReLU | 128x128

Dense 128 neurons,LeakyReLU | 128x128

Dense 1 neuron Batch Sizex 1
Jacobian Compute | Compute log(det(J)) Batch Size
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T T T T
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Figure A8: Comparison of Computational Cost. Different colors represent different methods, while
the size of the circles corresponds to memory usage. The prediction length is set to 96.

Runtime and Computational Efficiency. We report the computational cost of the different meth-
ods considered. The comparison considers metrics including training time, memory usage, and
corresponding performance MSE in the forecasting task. Note that inference time is not included in
the comparison, as our work focuses on causal structure learning through continuous optimization
rather than constraint-based methods. Figure A8 shows that our CaDRe method simultaneously
learns the causal structure while achieving the lowest MSE, highlighting the importance of building a
transparent and interpretable model. Furthermore, CaDRe exhibits similar training time and memory
usage compared to mainstream time-series forecasting models in the lightweight track.
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Model Structure We choose MICN [79] as the encoder backbone of our model on real-world
datasets. Specifically, given that the MICN extracts the hidden feature, we apply a variational
inference block and then an MLP-based decoder. Architecture details of the proposed method are
shown in Table A10.

F More Discussions

F.1 Identifiability of Latent Space in n-order Markov Process

Theorem A2. (Identifiability of Latent Space in n-Order Markov Process) Suppose observed
variables and hidden variables follow the data-generating process in Eq. (1), and estimated observa-
tions match the true joint distribution of {X¢—n, ...y Xt—1,Xty -y Xtbns Xebnt1y - - - s Xeton |- The
following assumptions are imposed:
A1’ (Computable Probability:) The joint, marginal, and conditional distributions of (x;, ) are all
bounded and continuous.

A2’ (Contextual Variability:) The operators L
tive and bounded.

A3’ (Latent Drift:) For any zg}t)_‘_n, zgi)_,_n € Z, where Z:E:lt)—i-n # ZIE:215)+71,’ we have p(xt|z§:1t)+n) #
2

Pl

A4’ (Differentiability:) There exists a functional M such that M [pxt:t+n‘zt:t+n(~ | zt:H_")]

h.(Zi.440) for all Zy.iyy € Zi.44n, where h, is differentiable.

Xttntl:t42n|Bettn and th—n:t—l|xt+n+1:t+2n are injec-

Then we have 2.ty n, = h.(Zs.14n ), where h, : R%=X" — R%=X" is an invertible and differentiable
Sfunction.

If an n-order Markov process exhibits conditional independence across different time lags, block-wise
identifiability of the conditioning variables can still be achieved using 3n measurements. For instance,
when the lag is 2, once block-wise identifiability of the joint variables [z, z;11] and 241, Z42] is
established, and given the known temporal direction z; — z;41, one can disambiguate z; and z;
under mild variability assumptions. Subsequently, the same strategy as in Theorem A1 can be applied
to achieve component-wise identifiability of z; and z;,; by leveraging conditional independencies
given z;_o and z;_1.

F.2 Allowing Time-Lagged Causal Relationships in Observations

In this section, we demonstrate that our proposed framework is compatible with the consideration of
time-lagged effects, by providing potential solutions.

Figure A9: 4-measurement model with time-lagged effects in observed space. x; could be
considered as the directed (dominating) measurement of z;, and x;_o, xX;_1, and x;4; provide
indirect measurements of z;. For identifying the time-lagged causal relationships in observed space,
we consider z} = (z;_1,2) as the new latent variables, and x}; = (x:—_1,X;) as the new observed
variables, to apply our functional equivalence in Theorem 2.

F.2.1 Phase I: Identifying Latent Variables from Time-Lagged Causally-Related Observations

For the identification of latent variables, we adopt the strategy outlined in [7, 25] to construct a
spectral decomposition. We extend this approach to develop a proof strategy that establishes the
identifiability of the latent space, as stated in Corollary A2.

We begin by defining the 4-measurement model, which includes time-series data with time-lagged
effects in the observed space as a special case.
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Definition 6 (4-Measurement Model). Z = {z;_o,Z;_1, Zt, Z1.1 } represents latent variables in four
continuous time steps, respectively. Similarly, X = {X¢_a,X1_1,X¢, Xyt1} are observed variables
that directly measure z,_o,7y_1, %, Z11 using the same generating functions g. The model is defined
by the following properties:

* The transformation within z;_o,Zy_1, 2, Zy1 IS not measure-preserving.
* Joint density of X¢_o,X¢—1,Xt, X¢+1, Z¢ IS a product measure w.r.t. the Lebesgue measure
on Xy_o X Xy_1 X Xy X Xyy1 X Zy and a dominating measure (i is defined on Z;.

* Limited feedback: p(x: | xXi—1,2¢,2:—1) = p(Xt | X¢—1, 2¢)-

o The distribution over (X, Z) is Markov and faithful to a DAG.
Limited feedback explicitly assumes that future events do not cause past events and excludes instanta-
neous effects from x; to z;. As illustrated in Figure A9, x;_o, X;_1, X, X;41 are defined as different
measurements of z;, forming a temporal structure characteristic of a typical 4-measurement model.
Under the data-generating process depicted in Figure A9, and based on the assumption of limited
feedback, we propose the following framework:

p(Xt—17Xt,Xt+1,Xt+2) :/ p(Xt+1 |Xt,Zt)p(Xt|Xt—1,Zt)p(Xt—l,Xt—mZt)dZt
2 (A54)
:/ p(Xt+1 | Xt’Zt)p(Xt,Xt—l,Zt)p(Xt—z | Zt,Xt—l)dZt-
Zy

Discussion of achieving the identifiability of latent space. Comparing Eq. A54 with Eq. A3,
which represents the foundational result for proving the identifiability of latent space under the

3-measurement model, we extend the identification strategy from [7, 25] to the 4-measurement model.
This forms the critical step in our identification process. We adopt assumptions analogous to those in
[7, 25] and Theorem 1, and suppose the followings:

i. The joint distribution of (X, Z) and all their marginal and conditional densities are bounded and
continuous.

ii. The linear operators L
space.

cosrlee,z @04 Loy 5 o, ) a4y 2,y =, are injective for bounded function

iii. Forall z;,z; € Z; (z; # z}), the set {x; : p(x¢|z:) # p(x¢|z})} has positive probability.

hold true. Similar to the proof of our identifiability of latent space in Section A.2, except for
the conditional independence introduced by the temporal structure, the key assumptions include
an injective linear operator to enable the recovery of the density function of latent variables and
distinctive eigenvalues to prevent eigenvalue degeneracy. The primary difference is the property
limited feedback, where we can adopt the strategy in [7] to construct a unique spectral decomposition,
where (X¢—2,X¢—1,X¢, X¢41, Zt) correspond to (X, S, Z, Y, X*), respectively.

Following this, we apply the key steps of our identification process as detailed in the Appendix A.2.
Ultimately, we can establish that the block (2, x;) is identifiable up to an invertible transformation:

(28,%t) = he 2 (2, X¢). (A55)

where h, , : RéFd: — Rd=td= jg g invertible function. Since the observation x; is known and
suppose X; = X, this relationship indeed represents an invertible transformation between z, and z;
as

Zt = h,(Z). (A56)

With an additional assumption of a sparse latent Markov network, we achieve component-wise
identifiability of the latent variables, as stated in Theorem Al in appendix, leveraging the proof
strategies of [94, 43]. These results are stronger than those in [7].

F.2.2 Phase II: Identifying Time-Lagged Observation Causal Graph

Unified Modeling across Neighboring Time Points. In the presence of time-lagged effects in the
observed space, such as x;_1 — Xy, alongside the causal DAG within x;, as depicted in Figure A9,
we show that by introducing an expanded set of latent variables z, = (z;_1,2;) and an expanded
set of observed variables x; = (x;_1,X¢), the property of functional equivalence is preserved.
Moreover, identifiability continues to hold, and, broadly speaking, it becomes more accessible due to
the incorporation of Granger causality principles in time-series data [16], if we assume that future
events cannot influence or cause past events.
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Figure A10: Equivalent time-lagged SEM and ICA in the case with time-lagged causal relationships
in observed space. The red lines in Figure A10a indicate that information are transmitted by the
instantaneous and the time-lagged observational causal graphs, while the gray lines in Figure A10b
represent that the information transitions are equivalent to originating from contemporary s; and
previous (z¢, s;—1 2) within the mixing structure.

Functional Equivalence in Presence of Time-Lagged Effects. As shown in Figure A10, we show
that, if we consider the time-lagged causal relationship in observed space, it still can be processed
with the technique as in our paper proposed, through considering time-lagged causal relationships
as a part of observational causal graph, by reformulating z, = (z;_1,2¢), X; = (X;_1,%;) and
s; = (s¢—1, St), to apply the Corollary A2. Specifically, the time-lagged effects from x;_o can be
considered as side information, which does not make difference to causal relationships from x;_; to
x; and its corresponding ICA form.

F.2.3 Estimation Methodology

Slided Window. Building on the analysis above, we aggregate two adjacent time-indexed observa-
tions into a single new observation. By employing a sliding window with a step size of 1, we obtain
T — 1 new observations along with their corresponding latent variables, thereby aligning with the
estimation methodology described in Section C.

Structure Prunning. For structure learning, given the assumption that future climate cannot cause
past climate, we can mask i of elements in the causal adjacency matrix during implementation, as
depicted in Figure A11. Compared with the original implementation, the masking simplifies the
difficulty of optimization by reducing the degrees of freedom in the graph.
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Figure A11: Interpreting Figure A10 with causal adjacency matrix of the SEM and the mixing matrix
of the equivalent ICA. The diagonal lines indicate masked elements, as future events cannot cause past
events, and self-loops are not permitted. Black blocks represent the presence of a causal relationship
or functional dependency in the generating function g,,, while white blocks indicate the absence of
such a relationship.

G Broader Impacts

The proposed CaDRe framework offers a substantial advancement in climate science by enabling
the joint identification of latent dynamic processes and observational causal structures from purely
observational data. Understanding these structures is critical for interpreting complex atmospheric
phenomena, improving forecasting accuracy, and informing climate-related decision-making. By
providing identifiability guarantees without relying on restrictive assumptions, CaDRe addresses
fundamental limitations in existing climate modeling approaches, particularly in the presence of
latent confounders and observational noise.

The ability to recover interpretable latent drivers and causal graphs directly from climate data enhances
scientific understanding and supports more transparent and robust climate models. This is especially
valuable for anticipating and responding to climate variability and extreme events. Moreover, the
theoretical framework underlying CaDRe extends to other scientific domains involving spatiotemporal
processes, but its primary impact lies in improving the causal interpretability and empirical grounding
of climate analyses. As such, CaDRe represents a step toward causally principled climate modeling,
with the potential to inform both scientific inquiry and policy development.
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