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Abstract

The heart of climate analysis is a rational effort to understand the causes behind the1

purely observational data. Latent driving forces, such as atmospheric processes,2

play a critical role in temporal dynamics, and the task of inferring such latent forces3

is often a problem of Causal Representation Learning (CRL). Moreover, geograph-4

ically nearby regions may directly interact with each other, and such direct causal5

relations among the observed data are often not modeled in traditional CRL, mak-6

ing the problem more challenging. In this paper, we propose a unified framework7

that can uncover not only the latent driving forces, but also the causal relations8

among the observed variables. We establish conditions under which the hidden9

dynamic process and the relations among the observed variables are simultaneously10

identifiable from time-series data. Even without parametric assumptions on the11

causal relations, we provide identifiability guarantees for recovering latent variables12

and the relations among the observed variables via contextual information. Guided13

by these insights, we propose a framework for nonparametric Causal Discovery14

and Representation learning (CaDRe), based on a time-series generative model15

with structural constraints. Synthetic data validates our theoretical claims. On16

real-world climate datasets, CaDRe achieves competitive forecasting performance17

and offers the visualized causal graphs consistent with domain knowledge, which18

is expected to improve our understanding of the climate systems.19

1 Introduction20

Understanding the causal structure of climate systems is fundamental not only to scientific rea-21

soning [68], but also to reliable modeling and prediction. Given the observed data with dx vari-22

ables: xt = [xt,1, . . . , xt,dx
], our goal is twofold: (1) to discover the underlying latent variables23

zt = [zt,1, . . . , zt,dz
] and their temporal interactions, and (2) to identify causal relations among24

observed variables. To better understand this problem, we describe it using a causal modeling perspec-25

tive. As depicted in Figure 1, latent drivers zt, such as pressure and precipitation [9], are not directly26

measured but significantly influence the observed dynamics. These latent processes evolve jointly27

and stochastically, exhibiting both instantaneous and time-lagged causal dependencies [51, 66]. They28

govern observable quantities xt like temperature, which reflect underlying dynamics and also exhibit29

spatial interactions through emergent weather patterns, such as wind circulation systems.30

Identifying these underlying hidden variables and temporal relations is the central objective of Causal31

Representation Learning (CRL) [71] problem. Recent advances in identifiability theory and practical32

algorithm design fall under the framework of nonlinear Independent Component Analysis (ICA).33

These approaches typically rely on auxiliary variables [28, 29, 27, 86], sparsity [39, 97, 98, 38, 6],34

or restricted generative functions [18], and generally assume a noise-free and invertible generation35

from zt to xt, in order to directly recover latent space. However, climatic measurements exhibit36
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Figure 1: From climate system to causal graph. xt represent observed data and zt denotes unobserved
variables behind xt, ϵzt denotes the stochasticility in latent causal process, and st denotes the noise
variable varying with zt, e.g., human activities [9].

both observational dependencies and stochastic noise, violating these assumptions and limiting the37

applicability of existing CRL approaches.38

This problem can also be cast as the problem of causal discovery [75, 59] in the presence of latent39

processes. Causal discovery often relies on parametric models, such as linear non-Gaussianity [72],40

nonlinear additive [23, 37], post-nonlinear models [92], as well as nonparametric methods with [26,41

64, 54] or without auxiliary variables [74, 96, 93]. However, generally speaking, they cannot identify42

latent variables, their interrelations, and their causal influence on observed variables. For example,43

Fast Causal Inference (FCI) algorithm [74] produces asymptotically correct results in the presence44

of latent confounders by exploiting conditional independence relations, but its result is often not45

informative enough; for instance, it cannot recover causally-related latent variables.46

This above underscores the need for a unified framework capable of modeling both the observational47

causal structure, defined as the relations among the observed variables, and latent dynamic processes48

inherent to real-world climate systems. We understand the climate system through a causal lens and49

establish the identifiability guarantees for jointly recovering latent dynamics and observational causal50

graphs. Intuitively, the temporal structure enables leveraging contextual observable information to51

identify latent factors, while the inferred latent dynamics, in turn, modulate how observational causal52

graphs evolve. We instantiate this insight in a state-space Variational AutoEncoder (VAE), which can53

conduct nonparametric Causal Discovery and Representation learning (CaDRe) simultaneously.54

CaDRe employs parallel flow-based priors to learn independent components to reflect structural55

dependencies, and introduces gradient-based structural penalties on both latent transitions and56

decoders to ensure identifiability. Extensive synthetic experiments on the identification of latent57

representation learning and causal discovery validate our theoretical guarantees. On real-world58

climate data, CaDRe achieves competitive forecasting accuracy, indicating the effectiveness of the59

learned temporal process. The visualized causal graphs align with known scientific phenomena, e.g.,60

wind circulation and land–sea interactions, and further reveal structural patterns that may inspire new61

hypotheses in climate science.62

2 Problem Setup63

Technical Notations. We present the notations in a climate system, a terminology widely used64

in ICA literature [28]. We observed a time-series of observed variables X = [x1,x2, · · · ,xT ],65

whereas their underlying factors Z = [z1, z2, · · · , zT ] are unobservable. Regarding the system in66

one time-step, as depicted in Figure 1, it consists of observed variables xt := [xt,i]i∈I with index set67

I = {1, 2, . . . , dx}, and latent variables zt := [zt,j ]j∈J indexed by J = {1, 2, . . . , dz}. Let pa(·)68

denotes the parent variables, paO(·) refers to observable parents, and paL(·) indicates the latent69

parents. In particular, paL(·) comprises latent variables from both the current and previous time step.70

Throughout the paper, the hat notation, e.g., x̂t, denotes estimated variables or functions.71

Data Generating Process. Given time series data X = [x1, . . . ,xT ], we model climate evolution72

with the Structural Equation Model (SEM) [59]:73

xt,i = gi(paO(xt,i),paL(xt,i), st,i), zt,j = fj(paL(zt,j), ϵ
z
t,j), st,i = gsi(zt, ϵ

x
t,i), (1)
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where gi, fj are differentiable, and noises ϵzt,j , ϵ
x
t,i are mutually independent. Each observed xt,i74

depends on other observed variables and latent factors zt (e.g., temperature influenced by solar75

radiation and neighboring regions). The stochastic term st,i captures variability conditioned on zt76

(e.g., CO2 perturbations [76]), while latent variables zt evolve through both contemporaneous and77

time-lagged interactions. Additionally, we adopt an assumption [75] in causal discovery:78

Assumption 1. The distribution over (X,Z) is Markov and faithful to a Directed Acyclic Graph (DAG).79

3 Identification Theory80

3.1 Latent Space Recovery and Latent Variables Identification81

We consider, without loss of generality, a first-order Markov structure, in which three consecutive82

observations {xt−1,xt,xt+1} are used as contextual information. The generalization to higher-order83

Markov structures is discussed in Appendix F.1. To formalize the stochastic generation process,84

we first introduce an operator L [13] to represent distribution-level transformations, that is, how85

one probability distribution is pushed forward to another. Given two random variables a and b with86

supports A and B respectively, the transformation pa 7→ pb is formalized as:87

pb = Lb|a ◦ pa, where Lb|a ◦ pa :=

∫
A
pb|a(· | a)pa(a)da. (2)

For example, operatorsLxt+1|zt
andLxt−1|xt+1

denote the distributional transformations pzt
7→ pxt+1

88

and pxt+1
7→ pxt−1

. Using such operators, we address the challenge of recovering latent space under89

"causally-related" observations. When the observed causal graph is a DAG, information flows along90

causal pathways without being trapped in self-loops, allowing causal influence to be traced back91

through the reverse DAG direction via the "short reaction lag" [15]. This requires the generative92

operator to be injective, ensuring that transformations preserve full distributional information:93

Lemma 1. (Injective DAG Operator) Under Assumption 1, Lxt|st is injective for all t ∈ T .94

This result shows that the nonlinear causal DAG over xt does not hinder latent space recovery. A95

key challenge, however, is that zt cannot be recovered from a single noisy xt, since the stochasticity96

makes the value-level mapping ill-posed. We therefore target identifiability at the distributional97

level. Crucially, neighboring observations xt−1 and xt+1 carry informative signals about zt when98

they undergo minimal changes. We formalize this in the following theorem, which establishes99

nonparametric identifiability of the latent submanifold via distributional variations in context.100

Theorem 1. (Identifiability of Latent Space) Suppose observed variables and hidden variables101

follow the data-generating process in Eq. (1), and estimated observations match the true joint102

distribution of {xt−1,xt,xt+1}. The following assumptions are imposed:103

A1 (Computable Probability:) The joint, marginal, and conditional distributions of (xt, zt) are all104

bounded and continuous.105

A2 (Contextual Variability:) The operators Lxt+1|zt
and Lxt−1|xt+1

are injective and bounded.106

A3 (Latent Drift:) For any z
(1)
t , z

(2)
t ∈ Zt where z

(1)
t ̸= z

(2)
t , we have p(xt|z(1)t ) ̸= p(xt|z(2)t ).107

A4 (Differentiability:) There exists a functional M such that M
[
pxt|zt

(· | zt)
]
= hz(zt) for all108

zt ∈ Zt, where hz is differentiable.109

Then we have ẑt = hz(zt), where hz : Rdz → Rdz is an invertible and differentiable function.110

After recovering the latent space, we aim to enhance interpretability by ensuring that each latent111

component corresponds to a distinct physical variable. To achieve this, we introduce a sparsity112

assumption on the latent dynamics, which is motivated by that physical climate factors—such as113

solar radiation, atmospheric pressure, or ocean currents—tend to exhibit localized sparse influences.114

Please refer to Appendix A.3 for the component-wise identifiability of latent variables.115

3.2 Nonparametric Causal Discovery with the Hidden Dynamic Process116

Building upon the results on recovering latent representations, we now seek to identify general117

nonlinear causal graphs over xt, even if they are modulated by a hidden dynamic process. Recent118

works [54, 64] extend the ICA-based Causality Discovery (CD) [72] to nonparametric settings via119

nonlinear ICA [31]. However, these methods are not applicable in the presence of latent confounders.120

To overcome this limitation, we establish a refined connection between SEMs and nonlinear ICA.121
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Lemma 2. (Nonlinear SEM⇔ Nonlinear ICA) There exists a function mi, which is differentiable122

w.r.t. st,i and xt, for any fixed st,i and zt, such that the following two representations,123

xt,i = gi(paO(xt,i),paL(xt,i), st,i) and xt,i = mi (zt, st) (3)

describe the same data-generating process. That is, both expressions yield the same value of xt,i.124

xt,1 xt,2

st,1 st,2zt

SEM

⇐⇒
xt,1 xt,2

st,1 st,2zt

ICA

Figure 2: Equivalent SEM and ICA. The gray
line in SEM denotes the influence xt,2 → xt,1
through the observation causal relation, which is
equivalently represented as an indirect effect (the
orange line): st,2 99K xt,1 in ICA, which can be
decomposed into st,2 → xt,2 and xt,2 → xt,1.

After establishing this equivalence, we proceed to perform CD via the nonlinear ICA with latent125

variables. We begin by introducing the Jacobian matrices on this data generating process, as they serve126

as proxies for the (nonlinear) adjacency matrix. For all (i, j) ∈ I × I , we define [Jm(st)]i,j =
∂xt,i

∂st,j
,127

[Jg(xt)]i,j =
∂xt,i

∂xt,j
, and Dm(st) = diag(∂xt,1

∂st,1
,
∂xt,2

∂st,2
, . . . ,

∂xt,dx

∂st,dx
), Idx is the identity matrix in128

Rdx×dx . Here, Jm(st) corresponds to the mixing process of nonlinear ICA, as described on the129

R.H.S. of Eq. (3). Note that Jg(xt) signifies the observational causal graph in the nonlinear SEM,130

the L.H.S. of Eq. (3), provided the faithfulness assumption outlined below holds.131

Assumption 2 (Functional Faithfulness). The causal adjacency structure among observed variables132

is given by the support of the Jacobian matrix Jg(xt).133

This assumption implies edge minimality in causal graphs, analogous to the structural minimality134

discussed in [60] (Remark 6.6) and minimality in [91], which enables us to establish a equivalence135

between the observational causal graph in SEM and the mixing structure in nonlinear ICA.136

Theorem 2. (Functional Equivalence) Consider the two types of data generating process described137

in Eq. (3), the following equation always holds:138

Jg(xt)Jm(st) = Jm(st)−Dm(st). (4)

Building upon these SEM–ICA connections, we derive sufficient conditions under which the observa-139

tional causal graph becomes identifiable in virtue of the recovered latent processes.140

Theorem 3. (Identifiability of Observational Causal Graph) Let At,k = log p(st,k|zt), assume141

that At,k is twice differentiable in st,k and is differentiable in zt,l, where l = 1, 2, ..., dz . Suppose142

Assumption 1, 2 holds true, and143

A5 (Generation Variability). For any estimated ĝm that makes xt = x̂t = m̂(ẑt, ŝt), let144

V(t, k) :=
[

∂2At,k

∂st,k∂zt,1
, . . . ,

∂2At,k

∂st,k∂zt,dz

]
,U(t, k) :=

[
∂3At,k

∂st,k∂2zt,1
, . . . ,

∂3At,k

∂st,k∂2zt,dz

]T
,

where for k = 1, 2, . . . , dx, 2dx vector functions V(t, 1), . . . ,V(t, dx),U(t, 1), . . . ,U(t, dx) are145

linearly independent. Then we attain ordered component-wise identifiability (Definition 4), and the146

structure of the observational causal graph is identifiable, i.e., supp(Jg(xt)) = supp(Jĝ(x̂t)).147

Based on the theoretical guarantees above, we present the estimation methodology in Appendix C,
and provide the experimental results in both simulated and real-world datasets in the Appendix D.

148

4 Conclusion149

We focused on the causal understanding of climate science and proposed a causal model with latent150

processes and directly causally-related observed variables. We establish identifiability results and151

develop an estimation approach to uncovering the latent causal variables, latent causal process,152

and observational causal structures from the climate system, aiming to shed light on answering153

“why" questions in climate. Simulated experiments validate our theoretical findings, and real-world154

experiments offer causal insights for climate science.155

Limitations. Our method shows performance degradation as the data dimensionality increases.156

A potential solution is to adopt a divide-and-conquer strategy by partitioning the variables into157

lower-dimensional subsets using prior geographical information.158
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A Theorem Proofs451

A.1 Notation List452

This section collects the notations used in the theorem proofs for clarity and consistency.

Table A1: List of notations, explanations, and corresponding values.
Index Explanation Support

dx number of observed variables dx ∈ N+

dz number of latent variables dz ∈ N+ and dz ≤ dx
t time index t ∈ N+ and t ≥ 3
I index set of observed variables I = {1, 2, . . . , dx}
J index set of latent variables J = {1, 2, . . . , dz}

Variable

Xt support of observed variables in time-index t Xt ⊆ Rdx

Zt support of latent variables Zt ⊆ Rdz

xt observed variables in time-index t xt ∈ Xt

zt latent variables in time-index t zt ∈ Zt

st dependent noise of observations in time-index t st ∈ Rdx

ϵxt independent noise for generating st in time-index t ϵxt ∼ pϵx
ϵzt independent noise of latent variables in time-index t ϵzt ∼ pϵz

zt\[i,j] latent variables except for zt,i and zt,j in time-index t /

Function
pa|b(· | b) density function of a given b /

pa,b|c(a, · | c) joint density function of (a, b) given a and c /
pa(·) variable’s parents /
paO(·) variable’s parents in observed space /
paL(·) variable’s parents in latent space /
g(·) generating function of SEM from (zt, st,xt) to xt Rdz+2dx → Rdx

m(·) mixing function of ICA from (zt, st) to xt Rdz+dx → Rdx

hz(·) invertible transformation from zt to ẑt Rdz → Rdz

π(·) permutation function Rdx → Rdx

supp(·) support matrix of Jacobian matrix Rdx×dx → {0, 1}dx×dx

Symbol
A→ B A causes B directly /
A 99K B A causes B indirectly /
Jg(xt) Jacobian matrix representing observed causal DAG Jg(xt) ∈ Rdx×dx

Jg(xt, st) Jacobian matrix representing mixing structure from (xt, st) to xt Jg(xt, st) ∈ Rdx×dx

Jm(st) Jacobian matrix representing mixing structure from st to xt Jm(st) ∈ Rdx×dx

Jr(zt−1) Jacobian matrix representing latent time-lagged structure Jr(zt−1) ∈ Rdz×dz

Jr(zt) Jacobian matrix representing instantaneous latent causal graph Jr(zt) ∈ Rdz×dz

453

A.2 Proof of Theorem 1454

We first introduce another operator to represent the point-wise distributional multiplication. To455

maintain generality, we denote two variables as a and b, with respective support sets A and B.456

Definition 1. (Diagonal Operator) Consider two random variable a and b, density functions pa457

and pb are defined on some support A and B, respectively. The diagonal operator Db|a maps the458

density function pa to another density function Db|a ◦ pa defined by the pointwise multiplication of459

the function pb|a at a fixed point b:460

pb|a(b | ·)pa = Db|a ◦ pa,where Db|a = pb|a(b | ·). (A1)

Proof. xt−1,xt,xt+1 are conditional independent given zt, which implies two equations:461

p(xt−1 | xt, zt) = p(xt−1 | zt), p(xt+1 | xt,xt−1, zt) = p(xt+1 | zt). (A2)
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We can obtain p(xt+1,xt | xt−1) directly from the observations, p(xt−1) and p(xt+1,xt,xt−1), and462

then the transformation in density function are established by463

p(xt+1,xt | xt−1) =

∫
Zt

p(xt+1,xt, zt | xt−1)dzt︸ ︷︷ ︸
integration over Zt

=

∫
Zt

p(xt+1 | xt, zt,xt−1)p(xt, zt | xt−1)dzt︸ ︷︷ ︸
factorization of joint conditional probability

=

∫
Zt

p(xt+1 | zt)p(xt, zt | xt−1)dzt︸ ︷︷ ︸
by p(xt+1|xt,xt−1,zt)=p(xt+1|zt)

=

∫
Zt

p(xt+1 | zt)p(xt | zt)p(zt | xt−1)dzt︸ ︷︷ ︸
by p(xt−1|xt,zt)=p(xt−1|zt)

.

(A3)

Then we show how to transform the Eq. (A3) to the form of spectral decomposition:464

=⇒
∫
Xt−1

p(xt+1,xt | xt−1)p(xt−1)dxt−1 =∫
Xt−1

∫
Zt

p(xt+1 | zt)p(xt | zt)p(zt | xt−1)p(xt−1)dztdxt−1 (A4)

=⇒ [Lxt;xt+1|xt−1
p](xt+1) = [Lxt+1|zt

Dxt|zt
Lzt|xt−1

p](xt+1), (A5)

=⇒ Lxt;xt+1|xt−1
= Lxt+1|zt

Dxt|zt
Lzt|xt−1

(A6)

=⇒
∫
xt∈Xt

Lxt;xt+1|xt−1
dxt =

∫
xt∈Xt

Lxt+1|zt
Dxt|zt

Lzt|xt−1
dxt (A7)

=⇒ Lxt+1|xt−1
= Lxt+1|zt

Lzt|xt−1
(A8)

=⇒ L−1
xt+1|zt

Lxt+1|xt−1
= Lzt|xt−1

(A9)

=⇒ Lxt;xt+1|xt−1
= Lxt+1|zt

Dxt|zt
L−1
xt+1|zt

Lxt+1|xt−1
(A10)

=⇒ Lxt;xt+1|xt−1
L−1
xt+1|xt−1

= Lxt+1|zt
Dxt|zt

L−1
xt+1|zt

. (A11)

=⇒ Lxt+1|zt
Dxt|zt

L−1
xt+1|zt

= (CLxt+1|zt
P )(P−1Dxt|zt

P )(P−1L−1
xt+1|zt

C−1)

(A12)

=⇒ Lxt+1|zt
= CLxt+1|ẑt

P, Dxt|zt
= P−1Dxt|ẑt

P (A13)

where465

• in Eq. (A4), we add the integration over Xt−1 in both sides of Eq. (A3). s466

• in Eq. (A5), we replace the probability with operators by using Eq. (2) and Definition 1. Specifi-467

cally, we have: Lxt;xt+1|xt−1
=
∫
Xt−1

pxt+1
(xt, · | xt−1)p(xt−1)dxt−1.468

• in Eq. (A9), the operator Lxt+1|zt
is injective by Assumption 1469

• in Eq. (A10), the Lzt|xt−1
in Eq. (A6) is substituted by Eq. (A9):470

• in Eq. (A11), ifLxt−1|xt+1
is injective, thenL−1

xt+1|xt−1
exists and is densely defined overF(Xt+1).471

• in Eq. (A13), Assumption 1 ensures that Lxt;xt+1|xt−1
L−1
xt+1|xt−1

is bounded; by the uniqueness of472

spectral decomposition (see e.g., [11] Ch. VII and [13] Theorem XV 4.5), Lxt+1|zt
Dxt|zt

L−1
xt+1|zt

473

admits a unique spectral decomposition in which the eigenvalues, i.e., Dxt|zt
, which are precisely474

the entries of {pxt|zt
(xt | zt)}, and eigenfunctions, i.e., Dxt|zt

, which columns are {pxt+1|zt
(· |475

zt)}, up to standard indeterminacies. C is an nonzero scalar rescaling eigenvalues, and P is a476

operator permuting the eigenvalues and eigenfunctions.477

We obtain a unique spectral decomposition in Eq. (A13) with permutation and scaling indeterminacies.478

In the following, we will show how these indeterminacies can be resolved—if not, what informative479

results can still be inferred.480

First, considering the arbitrary scaling C, since the normalizing condition481 ∫
Xt+1

pxt+1|ẑt
dxt+1 = 1 (A14)

must hold for every ẑt, one only solution of
∫
Xt+1

Cpxt+1|zt
dxt+1 = 1 is to set C = 1.482
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Second, regarding the permutation indeterminacy, we start from Dxt|zt
= P−1Dxt|ẑt

P . The483

operator, Dxt|zt
, corresponding to the set {pxt|zt

(xt | zt)} for fixed xt and all zt, admits a unique484

solution (P only change the entry position):485

{pxt|zt
(xt | zt)} = {pxt|ẑt

(xt | ẑt)}, for all zt, ẑt (A15)

Due to the set is unorder, the only way to match the R.H.S. with the L.H.S. in a consistent order is to486

exchange the conditioning variables, that is,487

{pxt|zt
(xt | z(1)t ), pxt|zt

(xt | z(2)t ), . . .} = {pxt|ẑt
(xt | ẑ(1)t ), pxt|ẑt

(xt | ẑ(2)t ), . . .}
(A16)

=⇒ [pxt|zt
(xt | z(π(1))t ), pxt|zt

(xt | z(π(2))t ), . . .] = [pxt|ẑt
(xt | ẑ(π(1))t ), pxt|ẑt

(xt | ẑ(π(2))t ), . . .]
(A17)

where superscript (·) denotes the index of a conditioning variable, and π is reindexing the conditioning488

variables. We use a relabeling map h to represent its corresponding value mapping:489

pxt|zt
(xt | h(zt)) = pxt|ẑt

(xt | ẑt), for all zt, ẑt. (A18)

By Assumption 1, different zt corresponds to different pxt|zt
(xt | zt), there is no repeated element490

in {pxt|zt
(xt | zt)} (and {pxt|ẑt

(xt | ẑt)}). Hence, the relabelling map h is one-to-one (invertible).491

Furthermore, Assumption 4 implies that pxt|zt
(xt | h(zt)) determines a unique h(zt). The same492

holds for the pxt|ẑt
(xt | ẑt), implying that493

pxt|zt
(xt | h(zt)) = pxt|ẑt

(xt | ẑt) =⇒ ẑt = h(zt). (A19)

Next, Assumption 1 implies that the function hmust be differentiable. Since the VAE is differentiable,494

we can learn a differentiable function h that satisfies Assumption 1. Consider ẑt related to zt via495

ẑt = h(zt). Then, we have496

M
[
pxt|ẑt

(· | zt)
]
=M

[
pxt|zt

(· | h(zt))
]
= h(zt), (A20)

which is equal to ẑt only if h is differentiable.497

To ensure the latent dimension dz is also identifiable, we analyze two scenarios :498

i. dẑ > dz: dz latent components in ẑt are sufficient to explain xt, i.e.,499

p(xt | zt,:dẑ−dz , z
(1)
t,dẑ−dz :

) = p(xt | zt,:dẑ−dz , z
(2)
t,dẑ−dz :

), (A21)

which contradicts the Assumption 1.500

ii. dẑ < dz: This suggests that only dẑ dimensions are sufficient to reconstruct xt, leaving dz − dẑ501

components constant, which violates that there are dz latent variables.502

503

More Discussions of Assumption 1 The injectivity of the operator enables us to take inverses of504

certain operators, which is commonly made in nonparametric identification [24, 7, 25]. Intuitively,505

different input distribution correpsonds to different output distribution. In the context of the climate506

system, it represent the necessity of temporal variability. However, it is difficult to formalize it in507

terms of functions. We give some examples in terms of pa ⇒ pb to make it understandable:508

Example 1. b = g(a), where g is an invertible function.509

Example 2. b = a+ ϵ, where p(ϵ) must not vanish everywhere after the Fourier transform (Theorem510

2.1 in [53]).511

Example 3. b = g(a) + ϵ, where the same conditions from Examples 1 and 2 are required.512

Example 4. b = g1(g2(a) + ϵ), a post-nonlinear model with invertible nonlinear functions g1, g2,513

combining the assumptions in Examples 1-3.514

Example 5. b = g(a, ϵ), where the joint distribution p(a, b) follows an exponential family.515

Example 6. b = g(a, ϵ), a general nonlinear formulation. Certain deviations from the nonlinear516

additive model (Example 3), e.g., polynomial perturbations, can still be tractable.517
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A.3 Component-Wise Identifiability of Latent Variables518

Theorem A1. (Component-Wise Identifiability of Latent Variables [43]) Let ct ≜ {zt−1, zt} and519

Mct be the variable set of two consecutive timestamps and the corresponding Markov network,520

respectively. Suppose the following assumptions hold:521

i. (Smooth and Positive Density): The probability function of the latent variables ct is smooth and522

positive, i.e., pct is third-order differentiable and pct > 0 over R2n.523

ii. (Sufficient Variability)s: Denote |Mct
| as the number of edges in Markov networkMct

. Let524

w(m) =

(
∂3 log p(ct|zt−2)

∂c2t,1∂zt−2,m
, . . . ,

∂3 log p(ct|zt−2)

∂c2t,2n∂zt−2,m

)
⊕(

∂2 log p(ct|zt−2)

∂ct,1∂zt−2,m
, . . . ,

∂2 log p(ct|zt−2)

∂ct,2n∂zt−2,m

)
⊕
(
∂3 log p(ct|zt−2)

∂ct,i∂ct,j∂zt−2,m

)
(i,j)∈E(Mct )

,

(A22)
where ⊕ denotes the concatenation operation and (i, j) ∈ E(Mct

) denotes all pairwise indices525

such that ct,i, ct,j are adjacent inMct
. For m ∈ {1, . . . , n}, there exist 4n+ 2|Mct

| different526

values of zt−2,m as the 4n+ 2|Mct
| values of vector functions w(m) are linearly independent.527

iii. (Sparse Latent Process): For any zt,i ∈ zt, the intimate neighbor set of zt,i is an empty set,528

where the intimate neighbor set is defined as529

Definition 2. (Intimate Neighbor Set) Consider a Markov networkMZ over variables set Z,530

and the intimate neighbor set of variable zt,i is531

ΨMct
(ct,i) ≜

{
ct,j

∣∣∣∣ ct,j is adjacent to ct,i and also adjacent
to all other neighbors of ct,i, ct,j ∈ ct \ {ct,i}

}
(A23)

iv. (Transition Variability): For any pair of adjacent latent variables zt,i, zt,j at time step t, their532

time-delayed parents are not identical, i.e., pa(zt,i) ̸= pa(zt,j).533

Then for any two different entries ĉt,k, ĉt,l ∈ ĉt that are not adjacent in the Markov networkMĉt
534

over estimated ĉt,535

i. The estimated Markov networkMĉt
is isomorphic to the ground-truth Markov networkMct

.536

ii. There exists a permutation π of the estimated latent variables, such that zt,i and ẑt,π(i) is537

one-to-one corresponding, i.e., zt,i is component-wise identifiable.538

iii. The causal graph of the latent causal process is identifiable.539

Proof Sketch and Discussions. Once latent space is recovered by Theorem 1, i.e., (i) ẑt = hz(zt) is540

established, leveraging two properties of latent space—namely, (ii) the sparsity in the latent Markov541

network, and (iii) zt,i ⊥⊥ zt,j | zt−1, zt/[i,j] if zt,i, zt,j (i ̸= j) are not adjacent in Markov network,542

we can obtain the component-wise identifiability of latent variables under sufficient variability543

assumption. In contrast to prior work on CRL with component-wise identifiability [94, 43], which544

typically requires the full invertible mapping g, and assume multiple distributions or temporal steps545

while only uses a single measurement for the latent space recovery, our approach fully exploits the546

temporally adjacent measurements, thereby avoiding the need for strong assumption.547

Furthermore, we show that using three adjacent time steps, including future observations rather548

than relying solely on the past, suffices to recover the entire latent process. This temporal window549

matches that in Theorem 1. Having established the required conditions, we can directly apply the550

identifiability result from [43] to complete the proof of the identifiable latent causal process.551

A.4 Proof of Lemma 2552

Definition 3. (Causal Order) xt,i is in the τ -th causal order if only observed variables in the553

(τ − 1)-th causal order directly influence it. We specify zt is in the 0-th causal order.554

For an observed variable xt,i, we define the set P to include all variables in xt involved in generating555

xt,i, initialized as P = paO(xt,i). The upper bound of the cardinality of P is given by U(|P|),556

which satisfies U(|P|) = dx − 1 initially. Let Q denote the set of latent variables, and define the557

separated set as S, where gsi(paL(xt,i), ϵxt,i
) is denoted by st,i. Initially, S = {st,i}. We express558

xt,i as xt,i = gi (P,S,Q), and traverse all xt,j ∈ xt in descending causal order τj , performing the559

following operations:560
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i. Remove xt,j from P and apply Eq. (1) to obtain561

xt,i = f1 (P \ {xt,j},S,Q,paO(xt,j),paL(xt,j), st,j) . (A24)

Then, update P ← (P \ {xt,j}) ∪ paO(xt,j) and Q ← Q∪ paL(xt,j). By Assumption 1, xt,j562

cannot reappear in the set of its ancestors, resulting in U(|P|)← U(|P|)− 1.563

ii. Assumption 1 also ensures that a variable with a lower causal order does not appear in the564

generation of its descendants. Hence, xt,j cannot appear in the generation of its descendants,565

since their causal orders are larger than τj . Similarly, st,j , which is involved in generating xt,j ,566

does not appear in the generation of its descendants. Thus, st,j /∈ S. Define the new separated567

set as S ← S ∪ {st,j}, giving568

xt,i = f2 (P,S,Q) , (A25)

where the new cardinality is updated as |S| ← |S|+ 1.569

Given that U(|P|) ≥ |P|, U(|P|) ensures that this iterative process can be performed until |P| = 0.570

According to the definition of data generating process, all the aforementioned functions are partially571

differentiable w.r.t. st and xt, or they are compositions of such functions. As a result,Q = anzt
(xt,i),572

and there exists a function gmi such that573

xt,i = gmi(anzt(xt,i), st).

Moreover, we observe that st is in fact the ancestors anϵxt
(xt,i) = {ϵxt,j | st,j ∈ S}, which are574

implied in this derivation process since ϵxt,j is in one-to-one correspondence with st,j through575

indexing.576

A.5 Proof of Theorem 2577

Considering the mixing functionm, and the functional relation st,j → xt,i, corresponding [Jm(st)]i,j ,578

where i, j indicates the row and column index of the Jacobian matrix, respectively.579

For the elements i ̸= j: If there is a directed functional relationship xt,j → xt,i, the corresponding580

element of the Jacobian matrix is ∂xt,i

∂xt,j
. If the relationship is indirect: xt,j 99K xt,i, then for each581

xt,k ∈ paO(xt,i), there must exist either an indirect-direct path xt,j 99K xt,k → xt,i or a direct-direct582

path xt,j → xt,k → xt,i. In summary, through the chain rule, we obtain583

[Jm(st)]i,j =
∑

xt,k∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

. (A26)

For each xt,k /∈ paO(xt,i),
∂xt,i

∂xt,k
= 0, Eq. (A26) could be rewritten as584

[Jm(st)]i,j =
∑

xt,k∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

+
∑

xt,k /∈paO(xt,i)

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

=

dx∑
k=1

∂xt,i
∂xt,k

· ∂xt,k
∂st,j

=

dx∑
k=1

[Jg(xt)]i,k · [Jm(st)]k,j .

(A27)

For the elements i = j: For each xt,k ∈ paO(xt,i), DAG structure ensures that xt,i does not appear585

in the set of ancestors of itself. Consequently, due to the one-to-one correspondence between st,k and586

xt,i, we also have that ∂xt,k

∂st,i
= 0. Thus, we obtain587

[Jm(st)]i,i =
∂xt,i
∂st,i

+ 0 =
∂xt,i
∂st,i

+

dx∑
k=1

[Jg(xt)]i,k · [Jm(st)]k,i. (A28)

Since for k = i, it holds that [Jg(xt)]i,k = 0, and for k ̸= i, we have [Jm(st)]k,i = 0.588

Defining Dm(st) = diag(∂xt,1

∂st,1
, . . . ,

∂xt,dx

∂st,dx
), we can summarize the result as589

Jg(xt)Jm(st) = Jm(st)−Dm(st). (A29)

16



A.6 Proof of Corollary A1590

We establish two results that strengthen the SEM–ICA connection by relaxing modeling assumptions591

and enabling its practical application within generative models.592

Corollary A1. Under Assumption 1, given any zt ∈ Zt, Jm(st) is a invertible matrix.593

This result unveils that the DAG structure among observed variables implies the invertibility of the594

mixing function m in the nonlinear ICA. As a direct consequence, by left-multiplying both sides of595

Eq. (4) with J−1
m (st), we obtain the following expression:596

Corollary A2. Observational causal graphs are represented by Jg(xt) = Idx
−Dm(st)J

−1
m (st).597

Proof. Eq. (A29) states that598

(Idx − Jg(xt))Jm(st) = Dm(st). (A30)

From the DAG structure specified in Condition 1 and the functional faithfulness assumption in599

Assumption 2, the Jacobian matrix Jg(xt) can be permuted into a lower triangular form via identical600

row and column permutations. Thus, the matrix Idx
− Jg(xt) is invertible for all xt ∈ Xt.601

Since Dm(st) is obtained via multiplication with (Idx
− Jg(xt)), it follows that602

(Idx − Jg(xt))
−1Dm(st) (A31)

is well-defined and invertible. This, in turn, implies that Jm(st) is invertible.603

Furthermore, we establish that604

supp (Idx
− Jg(xt)) = supp (Jg(xt, st)) (A32)

since the diagonal entries of Jg(xt, st) are nonzero. Given that Jg(xt, st) inherits the lower triangular605

structure after permutation, it must also be invertible.606

A.7 Proof of Theorem 3607

We present some useful definitions and lemmas in our proof.608

Definition 4. (Ordered Component-wise Identifiability) Variables st ∈ Rdx and ŝt ∈ Rdx are609

identified component-wise if ŝt,i = hsi(st,π(i)) with invertible function hsi and π(i) = i.610

Lemma 3 (Lemma 1 in LiNGAM [72]). Assume M is lower triangular and all diagonal elements611

are non-zero. A permutation of rows and columns of M has only non-zero entries in the diagonal if612

and only if the row and column permutations are equal.613

Lemma 4 (Proposition in [44]). Suppose that ŝt,i and ŝt,j are conditionally independent given ẑt.614

Then, for all ẑt,615

∂2 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j

= 0.

Proof. Let (ẑt, ŝt, ĝm) be the estimations of (zt, st, gm). By Lemma 2,616

xt = gm(zt, st); x̂t = ĝm(ẑt, ŝt) (A33)

Suppose we reconstruct observations well: xt = x̂t. Combined with Theorem 1,617

p(xt | ẑt) = p(xt | hz(zt)) = p(xt | zt) =⇒ p(gm(st, zt) | zt) = p(ĝm(ŝt, ẑt) | ẑt). (A34)

Corollary A1 has shown that Jm(st) and Jĝm(ŝt) are invertible matrices, by the definition of partial618

Jacobian matrix: [Jm(st)]i,j =
∂xt,i

∂st,j
=

∂gmi
(st,zt)

∂st,j
,619

1

|Jm(st)|
p(st | zt) =

1

|Jĝm(ŝt)|
p(ŝt | zt). (A35)

We define hs := m−1 ◦ ĝm for any fixed zt and ẑt, hence, |Jhs
(ŝt)| = |Jĝm (ŝt)|

|Jm(st)| and ŝt = hs(st).620

Therefore, we have621

p(ŝt | zt) =
1

|Jhs(ŝt)|
p(st | zt) =⇒ log p(ŝt | ẑt) = log p(st | zt)− log |Jhs(ŝt)|. (A36)
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The second-order partial derivative of log p(ŝt | ẑt) w.r.t. (ŝt,i, ŝt,j) is622

∂ log p(ŝt | ẑt)
∂ŝt,i

=

n∑
k=1

∂At,k

∂st,k
· ∂st,k
∂ŝt,i

− ∂ log |Jhs(ŝt)|
∂ŝt,i

=

n∑
k=1

∂At,k

∂st,k
· [Jhs(ŝt)]k,i −

∂ log |Jhs(ŝt)|
∂ŝt,i

,

∂2 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j

=

n∑
k=1

(
∂2At,k

∂s2t,k
· [Jhs(ŝt)]k,i · [Jhs(ŝt)]k,j +

∂At,k

∂st,k
· ∂[Jhs(ŝt)]k,i

∂ŝt,j

)
− ∂2 log |Jhs(ŝt)|

∂ŝt,i∂ŝt,j
.

(A37)
Since for any (i, j, t) ∈ J × J × T , we have st,i ⊥⊥ st,j | zt, Lemma 4 tells us ∂2 log p(ŝt|ẑt)

∂ŝt,i∂ŝt,j
= 0.623

Therefore, its partial derivative w.r.t. zt,l (l ∈ J ) is always 0:624

∂3 log p(ŝt | ẑt)
∂ŝt,i∂ŝt,j∂zt,l

=

n∑
k=1

(
∂3At,k

∂s2t,k∂zt,l
· [Jhs(ŝt)]k,i · [Jhs(ŝt)]k,j +

∂2At,k

∂st,k∂zt,l
· ∂[Jhs(ŝt)]k,i

∂ŝt,j

)
≡ 0,

(A38)
since entries of Jhs(ŝt) do not depend on zt,l. By Assumption 3, maintaining this equality requires625

[Jhs(ŝt)]k,i · [Jhs(ŝt)]k,j = 0 for i ̸= j, which implies Jhs(ŝt) is a monomial matrix.626

Eliminate the Permutation Indeterminacy. We leverage the following properties:627

1. The inverse of a lower triangular matrix remains a lower triangular matrix.628

2. A matrix representing a DAG can always be permuted into a lower-triangular form using appropri-629

ate row and column permutations.630

3. Corollary A2 states that:631

JgL(xt) = Idx
−DmL(st)J

−1
mL(st); Jg(xt) = Idx

−Dm(st)J
−1
m (st) (A39)

where JgL(xt) and JmL(st) are (strictly) lower triangular matrices obtained by permuting Jg(xt)632

and Jm(st), respectively. DmL(st) is the diagonal matrix extracted from JmL(st). Consequently,633

we can express the relationship between Jm(st) and JmL(st) as follows:634

JgL(xt) = Pdx
Jg(xt)P

⊤
dx

=⇒ Jm(st) = Pdx
JmL(st)D

−1
mL(st)P

⊤
dx
Dm(st), (A40)

where Pdx
is the Jacobian matrix of a permutation function on the dx-dimensional vector. Conse-635

quently, by Jm(st) = Jĝm(ŝt)Jhs
(st), we obtain636

Jĝm(ŝt) = Pdx
JmL(st)D

−1
mL(st)P

⊤
dx
Dm(st)J

−1
hs

(st), (A41)

Using Lemma 3, we obtain PdxD
−1
mL(st)P

⊤
dx
Dm(st)Jhs(ŝt) = Idx , which implies J−1

hs
(st) =637

D−1
m (st)DmL(st), a diagonal matrix. Consequently, Jĝm(ŝt) and Jm(st) have the same support,638

meaning Jĝ(x̂t) and Jg(xt) share the same support as well, according to Corollary A2. Thus, by639

Assumption 2, the structure of the observational causal graph is identifiable.640

Discussion on Assumptions. To enhance understanding of our theoretical results, we provide some641

explanations of the assumptions, their connections to real-world scenarios, as well as the potential642

boundaries of theoretical results.643

i. Generation Variability. Sufficient changes on generation 3 is widely used in identifiable nonlinear644

ICA/causal representation learning [27, 39, 32, 94, 86]. In practical climate science, it has been645

demonstrated that, within a given region, human activities (st,i) are strongly impacted by certain646

high-level climate latent variables zt [1], following a process with sufficient changes [51].647

ii. Functional faithfulness. Functional faithfulness corresponds to the edge minimality [91, 42, 60]648

for the Jacobian matrix Jg(xt) representing the nonlinear SEM xt = g(xt, zt, ϵxt
), where649

∂xt,j

∂xt,i
= 0 implies no causal edge, and ∂xt,j

∂xt,i
̸= 0 indicates causal relation xt,i → xt,j . This650

assumption is fundamental to ensuring that the Jacobian matrix reflects the true causal graph.651

If our functional faithfulness is violated, the results can be misleading, but in theory (classical)652

faithfulness [75] is generally possible as discussed in [42] (2.3 Minimality). As a weaker version653

of it, edge minimality holds the same property. If needed, violations of faithfulness can be testable654

except in the triangle faithfulness situation [91]. As opposed to classical faithfulness [75], for655

example, this is not an assumption about the underlying world, but a convention to avoid redundant656

descriptions.657
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complete
= 0

≠ 0

Figure A3: Invertible Function v.s. Injective Operator. (Left) Consider two variables a and b
connected by the function b = g(a), where g is invertible. (Right) Alternatively, their relationship can
be expressed as p(b) = Lb|a ◦ p(a), where Lb|a is an injective operator. The grid represents p(b | a),
with color indicating non-zero values and white representing zero. Intuitively, in the discrete case, a
full-rank matrix corresponds to this relationship.

A.8 Proof of Lemma 1658

(We delay the section of this proof since it relies on previous results.) The injectivity of a operator is659

formally characterized by the completeness of the conditional density function p(a | b) used in the660

operator, as defined below.661

Definition 5 (Completeness). A family of conditional density functions pA|B is said to be complete if662

the only solution to
∫
A
p(a)pa|b(a | b) da = 0, ∀b ∈ B is p(a) = 0.663

Since the transformation from st to xt is invertible and deterministic, given a ṡt ∈ St, the probability664

density function for xt can be expressed as: p(xt) =

{
1

|Jm(st)|p(st), xt = m(st)

0, xt ̸= m(st)
. Hence, the665

conditional probability can be represented using the Dirac delta function:666

p(xt | st) = δ(xt −m(st)) =⇒ p(xt) = Lxt|St
◦ p(st) =

∫
St

δ(xt −m(st))p(st) dst.

By recalling Eq. (2), we can rewrite p(xt) in terms of the operator Lxt|st acting on pst . We consider667

p(xt | st) as an infinite-dimensional vector, and the operator Lxt|st as an infinite-dimensional matrix668

where669

Lxt|st = [δ(xt −m(st))]
⊤
xt∈Xt

.

By Corollary A2, since Jm(st) is invertible, for any two different points s(1)t , s
(2)
t ∈ St (st ̸= s′t), we670

have m(s
(1)
t ) ̸= m(s

(2)
t ). This implies that the supports of δ(xt −m(s

(1)
t )) and δ(xt −m(s

(2)
t )) are671

disjoint. Thus, [δ(xt −m(st))]
⊤
xt∈Xt

preserves a one-to-one correspondence across the Xt, ensuring:672

null [δ(xt −m(st))]
⊤
xt∈Xt

= {0(∞)},

which denotes the completeness of Lxt|st stated in Definition 5, indicating that Lxt|st is injective.673

The visualization in Figure A3 highlights why Assumption 1 is significantly less restrictive than the674

invertibility assumption adopted in most of the previous CRL literature [28, 29, 31, 34, 94, 43].675

A.9 Comparison with Existing Methods676

Our method targets the joint identification of latent causal graphs and observational causal structures677

in time series. This is essential for domains such as climate science, where latent processes govern678

observed dynamics. In contrast, IDOL [43] focuses solely on recovering latent variables and assumes679

a deterministic mixing function without any causal relations among observed variables. As a result, it680

cannot recover the observational causal graph and fails in contexts like climate systems, where both681

latent and observational structures are crucial.682

Prior works [54, 64] use nonlinear ICA to recover causal relations among observed variables, assum-683

ing known domain variables and non-i.i.d. data. However, (1) CaDRe does not require predefined684

domain variables and instead leverages contextual information to infer latent variables as conditional685

priors; (2) ICA-based methods are not robust under latent confounding, as spurious correlations may686
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obscure true causal links; (3) they do not identify the latent variables or their underlying dynamics;687

(4) they require invertibility of g and m, an assumption we relax in Corollary A1.688

The FCI algorithm [74] allows for latent confounding and uses conditional independence tests to689

infer causal relations among observed variables. However, it cannot recover the latent variables690

themselves or their causal influence on observations. Furthermore, the causal structure is expressed as691

a Partial Ancestral Graph (PAG), which represents an equivalence class and may contain ambiguous692

or uncertain edges. Such ambiguity is particularly problematic for applications like climate analysis,693

which demand interpretable and stable causal structures.694

B Related Work695

B.1 Climate Analysis696

Climate analysis is learning to address the complex, nonlinear, and high-dimensional nature of Earth697

system dynamics. A prominent line of work focuses on using neural networks for weather and climate698

forecasting, including data-driven models such as FourCastNet [58] and GraphCast [41], which699

demonstrate remarkable predictive performance by modeling spatiotemporal dependencies. However,700

these methods often lack interpretability and fail to reveal the underlying causal mechanisms driving701

climate variability. To address this issue, recent research has integrated causal discovery into climate702

science. For instance, [68] introduces causal inference frameworks tailored to climate time series,703

incorporating techniques such as PCMCI to infer lagged and contemporaneous dependencies. Other704

approaches employ structural causal models (SCMs) for identifying interactions between climate705

variables under interventions [63]. Beyond shallow models, efforts have emerged to disentangle706

latent variables in high-dimensional climate data using variational autoencoders [35]. While effective,707

most of these methods do not guarantee identifiability or robust generalization across regimes.708

More recently, hybrid models that couple dynamical systems theory with deep learning have shown709

promise in capturing climate processes with greater fidelity. Examples include integrating physics-710

based constraints into latent state-space models [4] and learning interpretable representations for711

climate variability modes such as the Madden-Julian Oscillation [77]. These works highlight the712

growing interest in combining structure learning, causal inference, and deep latent modeling to move713

beyond black-box predictions towards actionable scientific understanding.714

B.2 Causal Representation Learning715

Achieving causal representations for time series data [61] often relies on nonlinear ICA to recover716

latent variables with identifiability guarantees [85, 71]. Classical ICA methods assume a linear mixing717

function between latent and observed variables [10]. To move beyond this linearity assumption, recent718

advances in nonlinear ICA have established identifiability under various alternative assumptions,719

including the use of auxiliary variables or structural sparsity [97, 30, 27]. One prominent line of work720

introduces auxiliary variables to facilitate identifiability. For instance, [32] achieves identifiability by721

assuming latent sources follow an exponential family distribution and incorporating side information722

such as domain, time, or class labels [28, 29, 31]. To relax the exponential family requirement, [36]723

establishes component-wise identifiability using 2n+ 1 auxiliary variables for n latent components.724

Another direction pursues identifiability in a fully unsupervised setting by leveraging structural spar-725

sity. [39] propose a sparsity-based inductive bias to disentangle latent causal factors, demonstrating726

identifiability in multi-task learning and related settings. They further extend these results to establish727

identifiability up to a consistency class [38], allowing partial disentanglement. Complementarily, [97]728

and [94, 43] exploit sparse latent structures under distributional shifts to obtain identifiability results729

without relying on auxiliary information.730

B.3 Causal Discovery731

Existing causal discovery methods in climate analysis primarily build on extensions of PCMCI [69],732

which effectively captures time-lagged and instantaneous linear dependencies, and its nonlinear733

variant [67]. However, both approaches assume fully observed systems and neglect latent variables,734

limiting their applicability to complex climate dynamics. Recent causal representation learning735

methods motivated by climate science attempt to address this gap: [6] imposes strong identifiability736

assumptions via single-node structures, while [84] adopts an ODE-based model to study climate-737

zone classification, though these methods often overlook dependencies among observed variables.738

Beyond climate, a class of nonlinear causal discovery methods leverages Jacobian information for739

identifiability and acyclicity [37, 65], including applications to structural equation models [2], Markov740

structures [96], independent mechanisms [18], and non-i.i.d. settings [64]. While [12] propose a741
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general framework that accounts for hidden variables by using rank conditions on the observed742

covariance matrix, their model is restricted to linear relationships and cannot recover nonlinear latent743

dynamics in time-series data. In contrast, our method, CaDRe, recovers latent causal structures under744

nonlinear dependencies, though it currently does not support cases where observed variables act as745

causes of latent ones—a limitation we leave to future work. Considering the nonlinear CD based on746

continuous optimization, we additionally provide the Table A2 for comparison.747

B.4 Time-Series Forecasting748

Time series forecasting has seen rapid progress with deep learning methods that leverage various749

neural architectures. RNN-based models [22, 40, 70] focus on sequential dependencies, while CNN-750

based approaches [3, 79, 81] capture local temporal patterns. State-space models [20, 19, 21] offer751

structured modeling of latent dynamics. Transformer-based methods [99, 82, 57] further advance752

long-range forecasting through attention mechanisms. However, most existing methods neglect753

instantaneous dependencies among variables, limiting their ability to fully capture the joint dynamics754

of multivariate time series.

Table A2: Comparison of different methods based on their properties in function type (f ), data,
Jacobian (J), capability of performing Causal Discovery (CD) and Causal Representation Learning
(CRL), and whether they achieve identifiability.

Method f Data J CD CRL Identifiability

LiNGAM [72] Linear Non-Gaussian Jf−1 " % "

GraN-DAG [37] Additive Gaussian Jf−1 " % %

IMA [18] IMA All Jf % % "

G-SCM [96] Sparse All Jf % % "

Score-Based FCMs [65] Additive Gaussian J∇x log p(x) " % %

DynGFN [2] Cyclic (ODE) All Jf " % %

JCD [64] All Assums. 2, F. 1 Jf−1 " % "

CausalScore [47] Mixed Gaussian J∇x log p(x) " % Partial
CaDRe (Ours) All All Jf−1 " " "

755

C Estimation Methodology756

Our theoretical insights shed light on the practical implementations. As shown in Figure A5, we in-757

stantiate these insights into an estimation framework for Causal Discovery and causal Representation758

learning (CaDRe) in the nonparametric setting, enabling direct inference of causal structures.759

Overall Architecture. The proposed architecture is built upon the variational autoencoder [33]. In760

light of data generating process 1, we establish the Evidence Lower BOund (ELBO) as follows:761

LELBO = Eq(s1:T |x1:T ) [log p(x1:T | s1:T , z1:T )]−
λ1DKL (q(s1:T | x1:T ) ∥ p(s1:T | z1:T ))− λ2DKL (q(z1:T | x1:T ) ∥ p(z1:T )) ,

(A42)

where λ1 and λ2 are hyperparameters, and DKL represents the Kullback-Leibler divergence. We set762

λ1 = 4× 10−3 and λ2 = 1.0× 10−2 to achieve the best performance. In Figure A5, the z-encoder,763

s-encoder and decoder are implemented by Multi-Layer Perceptrons (MLPs) as follows:764

z1:T = ϕ(x1:T ), s1:T = η(x1:T ), x̂1:T = ψ(z1:T , s1:T ), (A43)

respectively, where the z-encoder ϕ learns the latent variables through denoising, and s-encoder ψ765

and decoder η approximate functions for encoding st and reconstructing observations, respectively.766

Prior Estimation of zt and st. We propose using the s-prior network and z-prior network to767

recover the independent noise ϵ̂xt and ϵ̂zt , respectively, thereby estimating the prior distribution of768

latent variables ẑt and dependent noise ŝt. Specifically, we first let ri be the i-th learned inverse769

transition function that takes the estimated latent variables as input to recover the noise term, e.g.,770

ϵ̂zt,i = ri(ẑt−1, ẑt). Each ri is implemented by MLPs. Sequentially, we devise a transformation771

κ := {ẑt−1, ẑt} → {ẑt−1, ϵ̂
z
t }, whose Jacobian can be formalized as Jκ =

(
I 0

Jd(ẑt−1) Jr(ẑt)

)
.772
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Figure A4: The estimation procedure
of CaDRe. The model framework
includes two encoders: z-encoder
for extracting latent variables zt, and
s-encoder for extracting st. A
decoder reconstructs observations from
these variables. Additionally, prior net-
works estimate the prior distribution us-
ing normalizing flow, target on learning
causal structure based on the Jacobian
matrix. Ls imposes a sparsity constraint
and Ld enforces the DAG structure on
Jacobian matrix. DKL enforces an in-
dependence constraint on the estimated
noise by minimizing its KL divergence
w.r.t. N (0, I). In summary, this method
learns independent noise to inversely in-
fer the causal structures.

Then we have Eq. (A44) derived from normalizing flow to estimate the prior distribution:773

log p(ẑt, ẑt−1) = log p(ẑt−1, ϵ̂
z
t ) + log | ∂ri

∂ẑt,i
|. (A44)

According to the generation process, the noise ϵzt,i is independent of zt−1, allowing us to enforce774

independence on the estimated noise term ϵ̂zt,i with DKL. Consequently, Eq. (A44) can be rewritten775

as:776

log p(ẑ1:T ) = p(ẑ1)

T∏
τ=2

(
dz∑
i=1

log p(ϵ̂zτ,i) +

dz∑
i=1

log | ∂ri
∂ẑτ,i

|

)
, (A45)

where p(ϵ̂zτ,i) is assumed to follow a Gaussian distribution. Similarly, we estimate the prior of st777

using ϵ̂xt,i = wi(ẑt, ŝt), and model the transformation between ŝt and ẑt as follows:778

log p (ŝ1:T | ẑ1:T ) =
T∏

τ=1

(
dx∑
i=1

log p
(
ϵ̂xτ,i
)
+

dx∑
i=1

log

∣∣∣∣ ∂wi

∂ŝτ,i

∣∣∣∣
)
. (A46)

Specifically, to ensure the conditional independence of components in ẑt and ŝt, we using DKL to779

minimize the KL divergence from the distributions of ϵ̂xt and ϵ̂zt to the distribution N (0, I).780

Structure Learning. The variables ri and wi are designed to capture causal dependencies among781

latent and observed variables, respectively. We denote Jd(ẑt−1) as the Jacobian matrix of the782

function r, which implies the estimated time-lagged latent causal structure; Jr(ẑt), which implies783

the estimation of instantaneous latent causal structure; and Jĝ(x̂t), which implies the estimated784

observational causal graph. Considering the observational causal graph, we compute Jm̂(ŝt) from the785

decoder, and instantly obtain the observational causal graph Jĝ(x̂t) via Corollary A2. Notably, the786

entries of Jĝ(x̂t) vary with other variables such as ẑt, resulting in a DAG that could change over time.787

For the latent structure, we directly compute Jd(ẑt−1) and Jr(ẑt) from z-prior network as the788

time-lagged structure and instantaneous structure in latent space, respectively. To prevent redundant789

edges and cycles, a sparsity penalty Ls are imposed on each learned structure, and DAG constraints790

Ld are imposed on the observational causal graph and instantaneous latent causal DAG. Specifically,791

the Markov network structure for latent variables is derived as M(J) = (I + J)⊤(I + J) − I.792

Formally, we define these penalties as follows:793 ∑
Ls = ∥M(Jr(ẑt))∥1 + ∥M(Jd(ẑt−1))∥1 + ∥Jĝ(x̂t)∥1 ,

∑
Ld = D(Jĝ(x̂t)) +D(Jr(ẑt)).

(A47)
where D(A) = tr

[
(I + 1

dA ◦A)
d
]
− d is the DAG constraint from [89], with A being an d-794

dimensionality matrix. || · ||1 denotes the matrix l1 norm. In summary, the overall loss function of the795

CaDRe model integrates ELBO and penalties for structural constraints, which is formalized as:796

LALL = LELBO + α
∑

Ls + β
∑

Ld, (A48)
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Table A3: Results under Varying Observational Dimensionality (dx). Each setting is repeated
with 5 random seeds. For evaluation, the best-converged result per seed is selected to avoid local
minima.

dz dx SHD (Jĝ(x̂t)) TPR Precision MCC (st) MCC (zt) SHD (Jr(ẑt)) SHD (Jd(ẑt−1)) R2

3

3 0 1 1 0.9775± 0.01 0.9721± 0.01 0.27± 0.05 0.26± 0.03 0.90± 0.05

6 0.18± 0.06 0.83± 0.03 0.80± 0.04 0.9583± 0.02 0.9505± 0.01 0.24± 0.06 0.33± 0.09 0.92± 0.01

8 0.29± 0.05 0.78± 0.05 0.76± 0.04 0.9020± 0.03 0.9601± 0.03 0.36± 0.11 0.31± 0.12 0.93± 0.02

10 0.43± 0.05 0.65± 0.08 0.63± 0.14 0.8504± 0.07 0.9652± 0.02 0.29± 0.04 0.40± 0.05 0.92± 0.02

100∗ 0.17± 0.02 0.80± 0.05 0.81± 0.02 0.9131± 0.02 0.9565± 0.02 0.21± 0.01 0.29± 0.10 0.93± 0.03

Figure A6: Comparison with Constraint-Based CD. We set dx = 6 and dz = 3. We run
experiments using 5 different random seeds, and report the average performance on evaluation
metrics.
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where α = 1.0× 10−4 and β = 5.0× 10−5 are hyperparameters. The discussions about hyperpa-797

rameter selections and their effects on performance are given in Appendix E.2.798

D Experimental Results799

Based on the proposed framework, we conduct extensive experiments on both synthetic and real-800

world climate data to examine the identifiability of the latent process and observational causal graph,801

as well as climate forecasting and scientific interpretability in realistic climate systems.802

D.1 On Synthetic Climate Data803

Baselines. The data simulation processes and evaluation metrices are presented in Appendix E.2. In804

CD, we compare CaDRe with several constraint-based methods suited for nonparametric settings.805

Specifically, we include FCI [73] and CD-NOD [26], which handle latent confounders, and time-806

series methods PCMCI [69] and LPCMCI [17], which account for instantaneous and lagged effects807

with latent confounding. In CRL, we benchmark against CaRiNG [8], TDRL [86], LEAP [87],808

SlowVAE [34], PCL [29], i-VAE [32], TCL [28], and models that handle instantaneous effects,809

including iCITRIS [45] and G-CaRL [55]. Details are presented in Appendix E.2.810

D.2 On Real-World Climate Data811

Baselines. Details about the climate datasets are presented in Appendix E.3. We consider the812

following state-of-the-art deep forecasting models for time series forecasting. First, we consider the813

conventional methods for time series forecasting, including Autoformer [82], TimesNet [81] and814

MICN [79]. Moreover, we consider several latest methods for time series analysis like CARD [80],815

FITS [83], and iTransformer [48]. Finally, we consider the TDRL [86]. We repeat each experiment816

over 3 random seeds and publish the average performance.817

Causal Discovery Consistency. As the ground-truth causal graph is inaccessible in real climate818

data, we adopt the contemporaneous wind field [62] as a surrogate for evaluation. As shown in819

Figure A7, CaDRe recovers observational causal graphs closely consistent with physical wind820

patterns, serving as a scientific support. Specifically, CaDRe captures large-scale physical patterns821

(e.g., westward flows in equatorial oceans, southwestward propagation near Central America), while822

revealing structurally complex zones along coastal boundaries. These dense, irregular edges may823

reflect coupled land–atmosphere dynamics or anthropogenic influences [78, 5]. The latent transition824

ẑt−1 → ẑt is also visualized to unveil the hidden dynamic process in the scientific discovery.825

Weather Prediction. We evaluate our method on the CESM2 sea surface temperature dataset for826

real-world temperature forecasting. As summarized in Table A5, our approach outperforms existing827
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Table A4: Identification Results on Simulated Data. We set the dimensions as dz = 3 and dx = 10,
and consider three scenarios according to our theory: i) Independent: zt,i and zt,j are conditionally
independent given zt−1; ii) Sparse: zt,i and zt,j are dependent given zt−1, but the latent Markov
network Gzt and time-lagged latent structure are sparse; iii) Dense: No sparsity restrictions on latent
causal graph. Bold numbers indicate the best performance.

Setting Metric CaDRe iCITRIS G-CaRL CaRiNG TDRL LEAP SlowVAE PCL i-VAE TCL

Independent MCC 0.9811 0.6649 0.8023 0.8543 0.9106 0.8942 0.4312 0.6507 0.6738 0.5916
R2 0.9626 0.7341 0.9012 0.8355 0.8649 0.7795 0.4270 0.4528 0.5917 0.3516

Sparse MCC 0.9306 0.4531 0.7701 0.4924 0.6628 0.6453 0.3675 0.5275 0.4561 0.2629
R2 0.9102 0.6326 0.5443 0.2897 0.6953 0.4637 0.2781 0.1852 0.2119 0.3028

Dense MCC 0.6750 0.3274 0.6714 0.4893 0.3547 0.5842 0.1196 0.3865 0.2647 0.1324
R2 0.9204 0.6875 0.8032 0.4925 0.7809 0.7723 0.5485 0.6302 0.1525 0.2060

Table A5: Results on Temperature Forecasting. Lower MSE/MAE is better. Bold numbers
represent the best performance among the models, while underlined numbers denote the second-best.

Dataset Predicted CaDRe TDRL CARD FITS MICN iTransformer TimesNet Autoformer
Length MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

CESM2
96 0.410 0.483 0.439 0.507 0.409 0.484 0.439 0.508 0.417 0.486 0.422 0.491 0.415 0.486 0.959 0.735
192 0.412 0.487 0.440 0.508 0.422 0.493 0.447 0.515 1.559 0.984 0.425 0.495 0.417 0.497 1.574 0.972
336 0.413 0.485 0.441 0.505 0.421 0.497 0.482 0.536 2.091 1.173 0.426 0.494 0.423 0.499 1.845 1.078

time-series forecasting models in precision, due to existing models struggling with causally-related828

observations and non-contaminated generation, restricting their usability in real-world climate data.829

E Experiment Details830

E.1 Experiment Results on Simulated Datasets831

Empirical Study. We show performance on the CD and CRL in Table A3, and investigate different832

dimensionalities of observed variables. Our results on both latent representation learning metrics833

verify the effectiveness of our methodology under identifiabilty, and the result on dx = 100 makes it834

scalable to high-dimensional data, if prior knowledge of the elimination of some dependences are835

provided by the physical law of climate [14] or LLM [50], supports our subsequent experiment on836

real-world data. Additionally, the study on different dz can be found in Appendix E.2.837

Comparison with Constraint-Based CD. Figure A6 shows that CaDRe consistently outperforms all838

baselines across varying sample sizes, with performance improving as more data becomes available.839

In contrast, FCI performs poorly when latent confounders are dependent, often leading to low recall.840

CD-NOD relies on pseudo-causal sufficiency, assuming that latent variables are functions of surrogate841

variables, which does not hold in general latent settings. PCMCI ignores latent dynamics altogether,842

while LPCMCI assumes no causal relations among latent confounders, limiting its applicability843

in complex systems. These comparisons highlight the effectiveness of CaDRe in addressing the844

limitations of existing constraint-based methods.845

Comparison with Temporal CRL. The MCC and R2 results for the independent and sparse settings846

demonstrate that our model achieves component-wise identifiability (Theorem A.3). In contrast, other847

considered methods fail to recover latent variables, as they cannot properly address cases where the848

observed variables are causally-related. For the dense setting, our approach achieves monoblock849

identifiability (Theorem 1) with the highest R2, while other methods exhibit significant degradation850

because they are not specifically tailored to handle scenarios involving general noise in the generating851

function. These outcomes are consistent with our theoretical analysis.852

E.2 On Simulation Dataset853

Data Simulation. We generate time series data with latent variables zt ∈ Rdz and observed854

variables xt ∈ Rdx , where dz ≤ dx. The latent dynamics follow a leaky non-linear autoregressive855

model:856

zt = σ

(
L∑

ℓ=1

W(ℓ)zt−ℓ

)
+ ϵzt , ϵzt ∼ N (0, σ2

zI), (A49)

where σ(·) is leaky ReLU, and W(ℓ) are lag-ℓ transition matrices modulated by class-specific857

parameters. Instantaneous causal relations among xt are defined by an Erdős-Rényi DAG B ∈858
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Figure A7: Top: Estimated instantaneous causal graph over climate grids. Bottom: Reference wind
field from [62]. Blue arrows denote learned causal directions; red arrows indicate wind vectors.

{0, 1}dx×dx , with time-varying edge weights:859

Bt = α(t) ·B, α(t) = a1 cos

(
2πt

T

)
+ a2. (A50)

The observed variable xt is first generated by a multilayer mixing of (zt, st), followed by additive860

and autoregressive noise:861

xt = fmix(zt, st) + st, st = ϵxt + fdep(xt−1), (A51)

where ϵxt ∼ U [0, σx]. Then, causal effects among observed variables are injected based on Bt in862

topological order:863

xt,i ← xt,i +
∑

j∈pa(i)

Bt,j,i · xt,j , (A52)

where pa(i) = {j | Bt,j,i ̸= 0} are the causal parents of variable i under Bt.864

Various Datasets. We generate simulated time-series data using the fixed latent causal process865

described in Eq. (1) and illustrated in Figure 1. To comprehensively evaluate our theoretical results, we866

construct synthetic datasets with varying observed dimensionalities, including dx = 3, 6, 8, 10, 100∗1867

and latent dimensionalities dz = 2, 3, 4, specified for each experiment. Additionally, we simulate868

different levels of structural sparsity in the latent process under three regimes: Independent, Sparse,869

and Dense. For evaluation, we use SHD, TPR, Precision, and Recall for causal structure recovery,870

and MCC and R2 for assessing latent representation identifiability. As defined in Eq. (1), under871

the Independent setting for the latent temporal process and dependent noise variable st, we use the872

generation process from [86], meaning there are no instantaneous dependencies within the zt. For873

Sparse and Dense settings, we gradually increase the graph degree after removing diagonals. Each874

independent noise is sampled from normal distributions.875

Evaluation Metrics. We evaluate the recovery of latent variables and causal structures using the876

following metrics:877

i. Latent Space Recovery. Following the identifiability result in Theorem 1, we measure the878

alignment between the estimated latent variables ẑt and the true latent variables zt using the879

coefficient of determination R2, where R2 = 1 indicates perfect alignment. A nonlinear880

mapping is estimated using kernel regression with a Gaussian kernel.881

ii. Latent Component Recovery. To evaluate component-wise identifiability as discussed in882

Theorem A1, we use the Spearman Mean Correlation Coefficient (MCC), which assesses the883

monotonic relationship between estimated and true latent components.884

iii. Latent Causal Structure. For evaluating the recovery of latent causal graphs, both instantaneous885

and time-lagged, we compute the Structural Hamming Distance (SHD) between the learned886

and true adjacency matrices. Given the permutation indeterminacy of latent variables, we align887

the estimated latent causal structures Jr(ẑt) and Jr(ẑt−1) with the ground truth by applying888

consistent permutations.889

1∗ indicates the use of a masking scheme simulated from geographical information (see Appendix E.2)
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iv. Observational Source Recovery. As a surrogate for evaluating the observational causal graph,890

we use MCC [32] to assess the recovery of st. Unlike latent variables, this metric does not allow891

permutations and reflects the identifiability condition stated in Theorem 3.892

v. Causal Structure Accuracy. The recovered latent and observational causal DAGs are also893

evaluated using SHD, normalized by the total number of possible edges to facilitate comparison894

across different graph sizes.895

vi. Graph-Level Metrics. In addition to SHD, we report true positive rate (TPR), precision, and F1896

score to benchmark our method against constraint-based approaches in causal graph recovery.897

Implementation Details of CRL Baselines. We employed publicly available implementations898

for TDRL, CaRiNG, and iCRITIS, which cover most of the baselines used in our experiments.899

For G-CaRL, whose official code was not released, we re-implemented the method based on the900

descriptions in the original paper. Furthermore, because the original iCRITIS framework was tailored901

for image-based inputs, we adapted it to our setting by replacing its encoder and decoder with a VAE902

architecture, using the same hyperparameters as in CaDRe.903

Mask by Inductive Bias. Continuous optimization faces challenges like local minima [56, 52],904

making it difficult to scale to higher dimensions. However, incorporating prior knowledge on the low905

probability of certain dependencies [75, 69] enables us to compute a mask. To validate this approach906

using physical laws as observed DAG initialization E.3 in climate data, we mask 75% of the lower907

triangular elements in a simulation with dx = 100, a ratio much lower than in real-world applications.908

Comparison with Constraint-Based Methods. We compare our method against a series of909

constraint-based causal discovery algorithms, which rely on Conditional Independence (CI) tests910

without assuming a specific form for the SEMs. These approaches are nonparametric and model-911

agnostic, but they typically return equivalence classes of graphs rather than fully identifiable structures.912

For instance, FCI outputs Partial Ancestral Graphs (PAGs), while CD-NOD returns equivalence913

classes reflecting causal ambiguity under the observed CI constraints. For a fair comparison, we914

adopt near-optimal configurations of the most representative constraint-based methods. Specifically,915

we use the Causal-learn package [95] to implement FCI and CD-NOD, and the Tigramite916

library [69] for PCMCI and LPCMCI. Each method is run under recommended hyperparameter917

settings as reported in their respective documentation or prior studies, ensuring a reliable and balanced918

comparison.919

i. FCI: We use Fisher’s Z conditional independence test. For the obtained PAG, we enumerate all920

possible adjacency matrices and select the one closest to the ground truth by minimizing the921

SHD.922

ii. CD-NOD: We concatenate the time indices [1, 2, . . . , T ] of the simulated data into the observed923

variables and only consider the edges that exclude the time index. We use kernel-based CI test924

since it demonstrates superior performance here. We consider all obtained equivalence classes925

and select the result that minimizes SHD relative to the ground truth.926

iii. PCMCI: We use partial correlation as the metric of the conditional independence test. We927

enforce no time-lagged relationships in PCMCI and run it to focus exclusively on contempo-928

raneous (instantaneous) causal relationships. In the Tigramite library, this can be achieved929

by setting the maximum time lag τmax to zero. This effectively disables the search for lagged930

causal dependencies. We select contemporary relationships as the ultimate result.931

iv. LPCMCI: Similarly to PCMCI, we use partial correlation as the metric of CI test, and select932

the contemporary relationships as the obtained causal graph.933

Study on Dimension of Latent Variables. We fix dx = 6 and vary dz = {2, 3, 4} as shown in934

Table A6. The results indicate that both the Markov network and time-lagged structure are identifiable935

for lower dimensions. However, as the latent dimension increases, it witnesses a decline in the MCC,936

which is still the challenge in the continuous optimization of latent process identification [94, 43].937

Nevertheless, the identifiability of latent space (R2) remains satisfied across different settings.938

Ablation Study on Conditions. We further conduct simulation studies to validate the theoretical939

identifiability guarantees under controlled settings with latent dimension dz = 3 and observation940

dimension dx = 6. To explicitly assess the necessity of key assumptions in our theory, we intentionally941

remove specific conditions, which are critical to the identifiability results. The following cases942

illustrate three distinct violations:943
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Table A6: Results on Different Latent Dimensions. We run simulations with 5 random seeds,
selected based on the best-converged results to avoid local minima.
dx dz SHD (Gxt ) TPR Precision MCC (st) MCC (zt) SHD (Gzt ) SHD (Mlag) R2

6
2 0.12 (±0.04) 0.86 (±0.02) 0.85 (±0.04) 0.9864 (±0.01) 0.9741 (±0.03) 0.15 (±0.03) 0.21 (±0.05) 0.95 (±0.01)
3 0.18 (±0.06) 0.83 (±0.02) 0.80 (±0.04) 0.9583 (±0.02) 0.9505 (±0.01) 0.24 (±0.06) 0.33 (±0.09) 0.92 (±0.01)
4 0.23 (±0.02) 0.80 (±0.06) 0.74 (±0.01) 0.9041 (±0.02) 0.8931 (±0.03) 0.33 (±0.03) 0.48 (±0.05) 0.91 (±0.02)

Table A7: Assumption Ablation Study. These results verify the necessity of our assumptions in the
theoretical analysis.

Setting MCC (st) R2

A 0.6328 0.34
B 0.7563 0.67
C 0.7052 0.85

i. A (Violation of contextual measurement condition in Theorem 1): We enforce conditional944

independence among zt and replace the latent transition with an orthogonal mapping, thereby945

violating the 3-measurement condition required for block identifiability [24].946

ii. B (Violation of Assumption 1): To violate the injectivity of linear operators, we use a simple947

autoregressive process zt = zt−1 + ϵzt with ϵzt ∼ Uniform(0, 1), which fails the injectivity948

requirement for Lzt|zt−1
and Lxt−1|xt+1

[53].949

iii. C (Violation of Assumption 3): We constrain the generation variability by setting st =950

q(zt) + ϵxt
, where q is a fixed mixing function and ϵxt

∼ N (0, Idx
). This results in a951

linear Gaussian model without heteroscedasticity, undermining the necessary distributional952

variability, as discussed in [86].953

As shown in Table A7, the removal of these assumptions leads to a substantial drop in both R2 and954

MCC for st, indicating a failure to recover the latent space and the observation-level causal structure.955

These findings empirically substantiate the necessity of our theoretical assumptions and delineate the956

conditions under which identifiability breaks down.957

Hyperparameter Sensitivity. We test the hyperparameter sensitivity of CaDRe w.r.t. the sparsity958

and DAG penalty, as these hyperparameters have a significant influence on the performance of959

structure learning. In this experiment, we set dz = 3 and dz = 6. As shown in Table A8, the results960

demonstrate robustness across different settings, although the performance of structure learning is961

particularly sensitive to the sparsity constraint.962

Table A8: Hyperparameter Sensitivity. We run experiments using 5 different random seeds for data
generation and estimation procedures, reporting the average performance on evaluation metrics. "/"
indicates loss of explosion. Notably, an excessively large DAG penalty at the beginning of training
can result in a loss explosion or the failure of convergence.

α 1 × 10−5 5 × 10−5 1 × 10−4 5 × 10−4 1 × 10−3 1 × 10−2

SHD 0.23 0.22 0.18 0.27 0.32 0.67

β 1 × 10−5 5 × 10−5 1 × 10−4 5 × 10−4 1 × 10−3 1 × 10−2

SHD 0.37 0.18 0.20 / / /

E.3 On Real-world Dataset963

964

Dataset Description.965

1. Weather 2 dataset offers 10-minute summaries from an automated rooftop station at the Max966

Planck Institute for Biogeochemistry in Jena, Germany.967

2https://www.bgc-jena.mpg.de/wetter/
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Table A9: Extended Results on Weather Forecasting. Lower MSE/MAE is better. Bold numbers
represent the best performance among the models, while underlined numbers denote the second-best.

Dataset Length CaDRe iTransformer Informer PatchTST DLinear+FAN TimesNet DLinear N-Transformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

48 0.125 0.167 0.140 0.179 0.177 0.218 0.148 0.188 0.158 0.217 0.138 0.191 0.156 0.198 0.143 0.195
96 0.157 0.203 0.168 0.214 0.225 0.259 0.187 0.226 0.199 0.256 0.180 0.231 0.186 0.229 0.199 0.246
144 0.180 0.225 0.172 0.225 0.278 0.297 0.207 0.242 0.312 0.274 0.190 0.244 0.199 0.244 0.225 0.267
192 0.207 0.248 0.193 0.241 0.354 0.348 0.234 0.265 0.238 0.298 0.212 0.265 0.217 0.261 2.960 0.315

2. CESM2 Pacific SST dataset employs monthly Sea Surface Temperature (SST) data generated968

from a 500-year pre-2020 control run of the CESM2 climate model. The dataset is restricted969

to oceanic regions, excluding all land areas, and retains its native gridded structure to970

preserve spatial correlations. It encompasses 6000 temporal steps, representing monthly971

SST values over the designated period. Spatially, the dataset comprises a grid with 186972

latitude points and 151 longitude points, resulting in 28086 spatial variables, including 3337973

land points where SST is undefined, and 24749 valid SST observations. To accommodate974

computational constraints, a downsampled version of the data, reduced to 84 grid points975

(6× 14), is utilized in our experiment.976

3. WeatherBench [62] is a benchmark dataset specifically tailored for data-driven weather977

forecasting. We specifically selected wind direction data for visualization comparisons978

within the same period, maintaining the original 350,640 timestamps.979

Extended Weather Forecasting Results. To show the effectiveness of our approach, we evaluate980

additional large-scale time series forecasting models on the Weather dataset, a widely used benchmark981

in this domain. The selected models include iTransformer [48], PatchTST [57], Informer [46],982

DLinear [90], FAN [88], TimesNet [81], and N-Transformer [49]. As shown in Table A9, their results983

are reported to provide a comprehensive comparison with our method.984

Initialization of Observational Causal Graph. To improve the stability of continuous optimization985

and avoid poor local minima in estimating the causal structure matrix Ĝxt , we incorporate a prior986

based on the Spatial Autoregressive (SAR) model. The SAR model, widely applied in geography,987

economics, and environmental science, captures spatial dependencies through the formulation:988

X = Zβ + λWX+E,

where W is the spatial weights matrix, β is a regression coefficient, and E is a noise term. To simplify989

the model and isolate the spatial interaction component, we set β = 0 and λ = 1, resulting in the990

canonical SAR model:991

X = WX+E.

The core assumption is that instantaneous interactions between regions are unlikely if they are992

separated by a substantial spatial distance. Therefore, we initialize W using a binary spatial adjacency993

matrixMloc, defined as994

[Mloc]i,j = I (∥si − sj∥2 ≤ 50) ,

where si and sj denote the spatial coordinates of regions i and j, respectively. This constraint995

enforces that only regions within a Euclidean distance of 50 units are considered spatially adjacent.996

We then estimate λ and update W by fitting the linear model X = WX+E via least squares. The997

resulting matrix W is used as the initialization for the observational causal graph, denotedMinit.998

Compute the Observational Causal Graphs. Using a mask gradient-based approach, we compute999

an initial estimate of the Jacobian Jĝ(xt), which encodes local sensitivities. However, these Jacobian1000

matrices are typically dense and difficult to interpret directly. To produce a more interpretable visual-1001

ization of the observational causal graph, we apply a masking operation followed by elementwise1002

thresholding:1003

Ĝxt
= I (|Jĝ(xt)⊙Minit| > τ) , (A53)

where⊙ denotes the elementwise (Hadamard) product, and I(·) is the indicator function that outputs 11004

if the condition is true and 0 otherwise. We set the threshold to τ = 0.15 to obtain a binary adjacency1005

matrix.Minit is the initialization mask.1006

To compute the partial Jacobian Jĝ(xt) with respect to st while keeping zt fixed, we disable gradient1007

tracking for zt by setting requires_grad=False, and use autograd.functional.jacobian in1008

PyTorch.1009
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Table A10: Architecture details. T , length of time series. |xt|: input dimension. n: latent dimension.
LeakyReLU: Leaky Rectified Linear Unit. Tanh: Hyperbolic tangent function.

Configuration Description Output

ϕ z-encoder

Input:x1:t Observed time series Batch Size×T× dx
Dense dx neurons Batch Size×T × dx
Concat zero concatenation Batch Size×T × dx
Dense dz neurons Batch Size×T × dz

η s-encoder

Input:x1:t Observed time series Batch Size×T× dx
Dense dx neurons Batch Size×T × dx
Concat zero concatenation Batch Size×T × dx
Dense dx neurons Batch Size×T × dx

ψ decoder

Input:z1:T Latent Variable Batch Size×T × (dz + dx)
Dense dx neurons, Tanh Batch Size×T × dx

r Modular Prior Networks

Input: z1:T Latent Variable Batch Size×(dz + 1)
Dense 128 neurons,LeakyReLU (dz + 1)×128
Dense 128 neurons,LeakyReLU 128×128
Dense 128 neurons,LeakyReLU 128×128
Dense 1 neuron Batch Size×1
Jacobian Compute Compute log(det(J)) Batch Size
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Figure A8: Comparison of Computational Cost. Different colors represent different methods, while
the size of the circles corresponds to memory usage. The prediction length is set to 96.

Runtime and Computational Efficiency. We report the computational cost of the different meth-1010

ods considered. The comparison considers metrics including training time, memory usage, and1011

corresponding performance MSE in the forecasting task. Note that inference time is not included in1012

the comparison, as our work focuses on causal structure learning through continuous optimization1013

rather than constraint-based methods. Figure A8 shows that our CaDRe method simultaneously1014

learns the causal structure while achieving the lowest MSE, highlighting the importance of building a1015

transparent and interpretable model. Furthermore, CaDRe exhibits similar training time and memory1016

usage compared to mainstream time-series forecasting models in the lightweight track.1017
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Model Structure We choose MICN [79] as the encoder backbone of our model on real-world1018

datasets. Specifically, given that the MICN extracts the hidden feature, we apply a variational1019

inference block and then an MLP-based decoder. Architecture details of the proposed method are1020

shown in Table A10.1021

F More Discussions1022

F.1 Identifiability of Latent Space in n-order Markov Process1023

Theorem A2. (Identifiability of Latent Space in n-Order Markov Process) Suppose observed1024

variables and hidden variables follow the data-generating process in Eq. (1), and estimated observa-1025

tions match the true joint distribution of {xt−n, . . . ,xt−1,xt, . . . ,xt+n,xt+n+1, . . . ,xt+2n}. The1026

following assumptions are imposed:1027

A1’ (Computable Probability:) The joint, marginal, and conditional distributions of (xt, zt) are all1028

bounded and continuous.1029

A2’ (Contextual Variability:) The operators Lxt+n+1:t+2n|zt:t+n
and Lxt−n:t−1|xt+n+1:t+2n

are injec-1030

tive and bounded.1031

A3’ (Latent Drift:) For any z
(1)
t:t+n, z

(2)
t:t+n ∈ Zt where z

(1)
t:t+n ̸= z

(2)
t:t+n, we have p(xt|z(1)t:t+n) ̸=1032

p(xt|z(2)t:t+n).1033

A4’ (Differentiability:) There exists a functional M such that M
[
pxt:t+n|zt:t+n

(· | zt:t+n)
]
=1034

hz(zt:t+n) for all zt:t+n ∈ Zt:t+n, where hz is differentiable.1035

Then we have ẑt:t+n = hz(zt:t+n), where hz : Rdz×n → Rdz×n is an invertible and differentiable1036

function.1037

If an n-order Markov process exhibits conditional independence across different time lags, block-wise1038

identifiability of the conditioning variables can still be achieved using 3n measurements. For instance,1039

when the lag is 2, once block-wise identifiability of the joint variables [zt, zt+1] and [zt+1, zt+2] is1040

established, and given the known temporal direction zt → zt+1, one can disambiguate zt and zt+11041

under mild variability assumptions. Subsequently, the same strategy as in Theorem A1 can be applied1042

to achieve component-wise identifiability of zt and zt+1 by leveraging conditional independencies1043

given zt−2 and zt−1.1044

F.2 Allowing Time-Lagged Causal Relationships in Observations1045

In this section, we demonstrate that our proposed framework is compatible with the consideration of1046

time-lagged effects, by providing potential solutions.1047

xt−2 xt−1 xt xt+1

zt−1zt−2 zt zt+1

z′t

x′
t

Figure A9: 4-measurement model with time-lagged effects in observed space. xt could be
considered as the directed (dominating) measurement of zt, and xt−2, xt−1, and xt+1 provide
indirect measurements of zt. For identifying the time-lagged causal relationships in observed space,
we consider z′t = (zt−1, zt) as the new latent variables, and x′

t = (xt−1,xt) as the new observed
variables, to apply our functional equivalence in Theorem 2.

F.2.1 Phase I: Identifying Latent Variables from Time-Lagged Causally-Related Observations1048

For the identification of latent variables, we adopt the strategy outlined in [7, 25] to construct a1049

spectral decomposition. We extend this approach to develop a proof strategy that establishes the1050

identifiability of the latent space, as stated in Corollary A2.1051

We begin by defining the 4-measurement model, which includes time-series data with time-lagged1052

effects in the observed space as a special case.1053
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Definition 6 (4-Measurement Model). Z = {zt−2, zt−1, zt, zt+1} represents latent variables in four1054

continuous time steps, respectively. Similarly, X = {xt−2,xt−1,xt,xt+1} are observed variables1055

that directly measure zt−2, zt−1, zt, zt+1 using the same generating functions g. The model is defined1056

by the following properties:1057

• The transformation within zt−2, zt−1, zt, zt+1 is not measure-preserving.1058

• Joint density of xt−2,xt−1,xt,xt+1, zt is a product measure w.r.t. the Lebesgue measure1059

on Xt−2 ×Xt−1 ×Xt ×Xt+1 ×Zt and a dominating measure µ is defined on Zt.1060

• Limited feedback: p(xt | xt−1, zt, zt−1) = p(xt | xt−1, zt).1061

• The distribution over (X,Z) is Markov and faithful to a DAG.1062

Limited feedback explicitly assumes that future events do not cause past events and excludes instanta-1063

neous effects from xt to zt. As illustrated in Figure A9, xt−2,xt−1,xt,xt+1 are defined as different1064

measurements of zt, forming a temporal structure characteristic of a typical 4-measurement model.1065

Under the data-generating process depicted in Figure A9, and based on the assumption of limited1066

feedback, we propose the following framework:1067

p(xt−1,xt,xt+1,xt+2) =

∫
Zt

p(xt+1 | xt, zt)p(xt|xt−1, zt)p(xt−1,xt−2, zt)dzt

=

∫
Zt

p(xt+1 | xt, zt)p(xt,xt−1, zt)p(xt−2 | zt,xt−1)dzt.

(A54)

Discussion of achieving the identifiability of latent space. Comparing Eq. A54 with Eq. A3,1068

which represents the foundational result for proving the identifiability of latent space under the1069

3-measurement model, we extend the identification strategy from [7, 25] to the 4-measurement model.1070

This forms the critical step in our identification process. We adopt assumptions analogous to those in1071

[7, 25] and Theorem 1, and suppose the followings:1072

i. The joint distribution of (X,Z) and all their marginal and conditional densities are bounded and1073

continuous.1074

ii. The linear operators Lxt+1|xt,zt and Lxt−2,xt−1,xt,xt+1,zt are injective for bounded function1075

space.1076

iii. For all zt, z′t ∈ Zt (zt ̸= z′t), the set {xt : p(xt|zt) ̸= p(xt|z′t)} has positive probability.1077

hold true. Similar to the proof of our identifiability of latent space in Section A.2, except for1078

the conditional independence introduced by the temporal structure, the key assumptions include1079

an injective linear operator to enable the recovery of the density function of latent variables and1080

distinctive eigenvalues to prevent eigenvalue degeneracy. The primary difference is the property1081

limited feedback, where we can adopt the strategy in [7] to construct a unique spectral decomposition,1082

where (xt−2,xt−1,xt,xt+1, zt) correspond to (X,S,Z, Y,X∗), respectively.1083

Following this, we apply the key steps of our identification process as detailed in the Appendix A.2.1084

Ultimately, we can establish that the block (zt,xt) is identifiable up to an invertible transformation:1085

(ẑt, x̂t) = hx,z(zt,xt). (A55)

where hx,z : Rdx+dz → Rdx+dz is a invertible function. Since the observation xt is known and1086

suppose x̂t = xt, this relationship indeed represents an invertible transformation between ẑt and zt1087

as1088

ẑt = hz(zt). (A56)

With an additional assumption of a sparse latent Markov network, we achieve component-wise1089

identifiability of the latent variables, as stated in Theorem A1 in appendix, leveraging the proof1090

strategies of [94, 43]. These results are stronger than those in [7].1091

F.2.2 Phase II: Identifying Time-Lagged Observation Causal Graph1092

Unified Modeling across Neighboring Time Points. In the presence of time-lagged effects in the1093

observed space, such as xt−1 → xt, alongside the causal DAG within xt, as depicted in Figure A9,1094

we show that by introducing an expanded set of latent variables z′t = (zt−1, zt) and an expanded1095

set of observed variables x′
t = (xt−1,xt), the property of functional equivalence is preserved.1096

Moreover, identifiability continues to hold, and, broadly speaking, it becomes more accessible due to1097

the incorporation of Granger causality principles in time-series data [16], if we assume that future1098

events cannot influence or cause past events.1099
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xt,1 xt,2

st,1 st,2zt

xt−1,1 xt−1,2

st−1,1 st−1,2zt−1

(a) Time-lagged SEM.

xt,1 xt,2

st,1 st,2zt

xt−1,1 xt−1,2

st−1,1 st−1,2zt−1

(b) Equivalent ICA.

Figure A10: Equivalent time-lagged SEM and ICA in the case with time-lagged causal relationships
in observed space. The red lines in Figure A10a indicate that information are transmitted by the
instantaneous and the time-lagged observational causal graphs, while the gray lines in Figure A10b
represent that the information transitions are equivalent to originating from contemporary st and
previous (zt, st−1,2) within the mixing structure.

Functional Equivalence in Presence of Time-Lagged Effects. As shown in Figure A10, we show1100

that, if we consider the time-lagged causal relationship in observed space, it still can be processed1101

with the technique as in our paper proposed, through considering time-lagged causal relationships1102

as a part of observational causal graph, by reformulating z′t = (zt−1, zt), x′
t = (xt−1,xt) and1103

s′t = (st−1, st), to apply the Corollary A2. Specifically, the time-lagged effects from xt−2 can be1104

considered as side information, which does not make difference to causal relationships from xt−1 to1105

xt and its corresponding ICA form.1106

F.2.3 Estimation Methodology1107

Slided Window. Building on the analysis above, we aggregate two adjacent time-indexed observa-1108

tions into a single new observation. By employing a sliding window with a step size of 1, we obtain1109

T − 1 new observations along with their corresponding latent variables, thereby aligning with the1110

estimation methodology described in Section C.1111

Structure Prunning. For structure learning, given the assumption that future climate cannot cause1112

past climate, we can mask 1
4 of elements in the causal adjacency matrix during implementation, as1113

depicted in Figure A11. Compared with the original implementation, the masking simplifies the1114

difficulty of optimization by reducing the degrees of freedom in the graph.1115
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(a) Causal adjacency matrix of SEM.
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(b) Mixing matrix of equivalent ICA.

Figure A11: Interpreting Figure A10 with causal adjacency matrix of the SEM and the mixing matrix
of the equivalent ICA. The diagonal lines indicate masked elements, as future events cannot cause past
events, and self-loops are not permitted. Black blocks represent the presence of a causal relationship
or functional dependency in the generating function gm, while white blocks indicate the absence of
such a relationship.

G Broader Impacts1116

The proposed CaDRe framework offers a substantial advancement in climate science by enabling1117

the joint identification of latent dynamic processes and observational causal structures from purely1118

observational data. Understanding these structures is critical for interpreting complex atmospheric1119

phenomena, improving forecasting accuracy, and informing climate-related decision-making. By1120

providing identifiability guarantees without relying on restrictive assumptions, CaDRe addresses1121

fundamental limitations in existing climate modeling approaches, particularly in the presence of1122

latent confounders and observational noise.1123

The ability to recover interpretable latent drivers and causal graphs directly from climate data enhances1124

scientific understanding and supports more transparent and robust climate models. This is especially1125

valuable for anticipating and responding to climate variability and extreme events. Moreover, the1126

theoretical framework underlying CaDRe extends to other scientific domains involving spatiotemporal1127

processes, but its primary impact lies in improving the causal interpretability and empirical grounding1128

of climate analyses. As such, CaDRe represents a step toward causally principled climate modeling,1129

with the potential to inform both scientific inquiry and policy development.1130
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