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Abstract

The effectiveness of deep learning models heavily relies on the quality and di-1

versity of their training data. However, datasets collected from different sources2

often introduce simplicity biases, where a models rely on easily learnable but3

non-predictive (spurious) features for its predictions. While existing debiasing4

techniques focus on model robustness, they leave the data untouched. Further,5

they require manual group annotation of the entire training data or changes in6

training strategy, which are often constrained by privacy, regulatory, or proprietary7

constraints. As data becomes increasingly valuable, identifying and mitigating8

bias directly at the data level has gained importance. Recently, data attribution9

has emerged as a promising tool for uncovering issues in training data, yet its10

vulnerability to simplicity bias has received limited attention. In this work, we11

propose a novel data deletion framework that combines Neural Tangent Kernel12

(NTK)-based data attribution with textual descriptions of bias to identify and re-13

move training samples that do not significantly affect model performance. We first14

demonstrate that NTK-based data attribution methods can themselves be influenced15

by spurious features. Subsequently, to mitigate this, we use available metadata16

or, when unavailable, a vision-language model, to annotate a small validation set17

and extract a textual description of the bias. Based on this description, we identify18

training samples that are semantically aligned with the spurious feature and exhibit19

high detrimental attribution scores. Removing these samples from the training20

data and retraining the model on the new training set improves its performance.21

Our approach achieves better average and worst-group accuracy, outperforming22

existing attribution-based baselines.23

1 Introduction24

The success of deep learning models is strongly influenced by the quality and quantity of the dataset25

used for training [1–4]. These data are often collected via web scraping [5, 6], and external data26

providers [7, 8]. However, such datasets can inadvertently contain illegal content [9] and can27

encode negative societal biases [10, 11] that can influence model performance. In addition, data28

collected from such varied sources can introduce distributional shifts, where subpopulations with29

specific features may be overrepresented or underrepresented in the training data compared to the test30

data [12].31

These imbalances can introduce simplicity bias [13–15] where the model, due to high correlations32

between specific features and the prediction task, relies on simpler, non-robust (spurious) features33

instead of learning predictive features for classification. Several methods have been proposed to handle34

such biases in the model. However, instead of addressing the data as the fundamental source of bias,35

they primarily focus on improving model robustness by reweighting the loss function [16], modifying36
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the training objective [17–19], and model fine-tuning [20]. While effective, they inadvertently modify37

the standard training pipeline, which can increase the model’s susceptibility to adversarial attacks [21–38

24], and could conflict with regulatory requirements, especially in safety-critical settings [25, 26],39

which require adherence to a specific training regime for theoretical guarantees. Further, considering40

the inherent proprietary value of data [27] and the monetary investment needed for collecting a new41

dataset, it has become increasingly important to address these challenges at the data level.42

A viable alternative in these scenarios could be to remove training samples containing spurious43

features [28, 29, 11], by ensuring that these samples don’t hurt the overall performance of the model,44

as in data attribution and Leave-One-Out (LOO) techniques [30–32]. Data attribution methods aim to45

estimate a model’s performance when specific training samples are excluded, enabling the evaluation46

of counterfactual scenarios—such as assessing the impact on test accuracy if certain subsets of47

the training data were omitted [31, 33, 34]. However, many of these methods are computationally48

expensive and can underperform in non-convex settings. Recent advancements in data attribution49

methods, such as Trak [32], leverage neural tangent kernels (NTK) to enable scalable data attribution50

for non-convex models [32]. However, the impact of spurious features on the data attribution scores51

generated by such methods remains an open question.52

In our work, we demonstrate (Proposition 1, Appendix J) that in the presence of data bias, methods53

like Trak [32] can undervalue the attribution scores for training samples with spurious features [13–54

15]. This misattribution can hinder the identification of detrimental samples, especially for methods55

that rely solely on the magnitude of attribution scores [35, 31].56

Motivated by these observations, we propose a two-stage strategy to mitigate the impact of spurious57

features - (a) In the first stage, we focus on identifying such features within the dataset using available58

meta-data or annotations generated by a vision language model. (b) In the second stage, we use59

multimodal embeddings, such as CLIP [36] to learn a metric [37, 38] that identifies training examples60

that are semantically similar to the spurious features identified in the first step and whose removal61

can improve the model’s performance as per the attribution scores.62

The spurious features in the first stage are identified using metadata wherever available. In cases where63

metadata is unavailable, we utilize a vision-language model (VLM) to annotate a small validation64

set with its respective attributes and their associated values that are likely to introduce simplicity65

biases [39–41]. By evaluating the model’s performance on these attribute-value pairs and comparing66

it to the overall performance on the validation dataset [42], we identify potential spurious features67

and generate a corresponding textual description of these biases [43]. This textual representation68

enables targeted data pruning and helps to mitigate the impact of spurious features without relying on69

manual group annotations in the training dataset.70

In summary, our contributions in this paper are as follows:71

• We propose a novel data-centric approach that combines NTK-based data attribution methods72

with textual descriptions of underlying bias to mitigate the impact of spurious features in73

training datasets.74

• We first theoretically demonstrate that NTK-based attribution scores can be influenced75

by spurious features, which may limit the effectiveness of methods that rely solely on76

these scores for data pruning. To overcome this limitation, we introduce a metric learning-77

based data deletion strategy that selectively removes training samples aligned with textual78

descriptions of spurious features and exhibiting low attribution scores.79

• Our approach achieves up to a 4% gain in average accuracy, 18% in worst-group accuracy,80

and a 50% improvement in class-level performance across various datasets. Additionally, it81

outperforms NTK-based methods like Trak on average by 10.6% in worst-group accuracy82

for different biased datasets.83

2 Related Work84

2.1 Data Attribution85

Data attribution methods provide a framework to relate a model’s predictions to its training dataset86

and have been used in a wide range of tasks, including model debugging and repair [44–47], subset87

selection [33, 34, 48], group robustness [11] and removing poisoning attacks [49].88
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The idea of linking a model’s predictions to its training data has been studied for decades under various89

names, including influence functions [50], regression analysis [51], and jackknife methods [52].90

However, most of these early works focused on linear models and aimed to predict changes in the91

optimal parameters when individual or groups of samples were excluded during the learning process.92

Recent works have tried to extend influence function and jacknife-based attribution methods to93

non-linear models and bigger datasets [30, 53, 54]. However, despite their promising predictive94

capabilities, these methods often make strong assumptions of strong convexity and the existence of a95

unique global solution, which are not applicable for neural networks [55]. Furthermore, Basu et al.96

[56], Hammoudeh and Lowd [57] have demonstrated the fragile nature of methods like influence97

functions across different architectures, showing that they sometimes fail basic sanity checks. Various98

approaches have been proposed to address the limitations of influence functions, including gradient99

agreement scoring [58], training models to predict attribution scores, as in DataModels [59], and100

methods like Trak [32], which leverage concepts from the Neural Tangent Kernel (NTK) for data101

attribution. Unlike other approaches, such as DataModels, Trak does not require training thousands of102

models [32, 59] or tracking the loss changes over the entire training process, making it more efficient.103

However, the impact of spurious features within the dataset on the data attribution method like Trak104

remains largely unexplored.105

2.2 Spurious Features and Simplicity Bias106

Spurious features often arise from selection bias in the dataset [60], where, in the presence of107

multiple hypotheses for prediction, the model tends to rely on the simplest feature [61, 14, 13]. This108

preference can lead to suboptimal model performance, as it often ignores more robust and meaningful109

features that are essential for generalization in real-world scenarios. Various methods have been110

proposed to address spurious features in models. These include data augmentation techniques [62–111

67], and learning strategies that change the training objectives to make the model robust to spurious112

features [17, 68, 69, 19, 16, 70, 20]. However, many of these changes are restricted under the113

regulatory policy for safety-critical applications [71–74], especially considering privacy concerns114

associated with collecting datasets and model certification-based requirements [75, 76]. Recent115

work has explored data deletion as a strategy for mitigating spurious features [28, 29, 11]. These116

methods use group annotation of the dataset to remove random samples from majority groups [28,117

29] or those with high detrimental attribution scores [11]. However, these methods often require118

manual group annotation of training [28, 29] or validation data [11], which is costly and time-119

consuming. Further, in real-world settings, where biases are identified post hoc after deployment120

and evolve over time [77], generating such annotations is often impractical, and enforcing a balance121

among different groups may result in excessive data removal from the majority group and can harm122

generalization [29]. Our method circumvents these limitations by using text-guided data attribution123

to efficiently remove harmful samples within a deletion budget, without relying on group labels or124

hurting model performance. Further details on limitations and capabilities of existing methods are125

discussed in Appendix E.126

3 Proposed Method127

3.1 Problem Definition128

Consider a classification setting with a training dataset Dtrain = {z1, . . . , zn}, where each sample129

zi = (xi, yi), consisting of an input (xi) and associated class label (yi) and a validation dataset,130

Dval = {v1, . . . , vm} with validation samples vj = (xj , yj). The training dataset (Dtrain) is used to131

train a neural network with optimal parameters θ∗(Dtrain). Additionally, we assume that |Dval| ≪132

|Dtrain|.133

Suppose for every training sample z there exists t underlying hidden discrete attributes, A
′
=134 {

a1, . . . , at
}

and for each attribute
(
aj
)

there are o possible values denoted as V
(
aj
)
∈
{
bj1 . . . b

j
o

}
.135

In real-world settings, neural networks (θ∗) trained on Dtrain often associate class labels (y) with136

specific attribute-value pairs
(
am, bmt

)
[43, 13, 14]. For example, a model trained to predict gender137

might associate it with the feature "beard" (present/absent). However, feature imbalance in the datasets138

can lead to misleading associations. If most of the male images in a dataset include smiles, the model139

might spuriously link "male" with "smiling" rather than "beard." This can cause misclassification,140
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Figure 1: The figure illustrates the key steps in identifying detrimental samples. First, the performance
of the model across different attribute value pairs is analyzed to identify and textually describe the
underlying bias. Then, training samples that align with this bias and exhibit high detrimental
attribution scores are selected for removal.

like predicting smiling females as males. We term such misleading attribute-value pairs as spurious141

features. In these scenarios, the primary objective of our work is to identify a set of detrimental142

examples, Sdeter ∈ Dtrain, that “correspond" to the spurious features and might degrade the model’s143

performance. The model is then retrained from scratch on the filtered dataset,
(
Dtrain \ Sdeter

)
, to144

reduce the influence of the spurious feature in the training dataset similar to prior work like Chaudhuri145

et al. [28].146

Our method for identifying Sdeter involves two steps: (1) Annotate attribute–value pairs in the147

validation set to detect potential spurious features and generate a textual description of the bias; (2)148

Select Sdeter ⊂ Dtrain as samples semantically aligned with the bias and whose removal as per the149

data attribution scores does not degrade model performance.150

3.2 Attribute Annotation and Spurious Feature Identification151

A key component to identify spurious features is the availability of attribute–value annotations for the152

validation dataset. However, in many practical scenarios, such annotations are often missing from153

the metadata. Chen et al. [39] has shown that in the absence of such information, large language154

and vision models can be used to generate annotations necessary to identify the underlying spurious155

features. Hence, for datasets without pre-annotated attributes, we annotate the validation set with156

potential attribute–value pairs to assist in identifying spurious features.157

To generate candidate attribute–value pairs, we leverage large language models such as ChatGPT [39].158

ChatGPT is provided with a simple task description and prompted to suggest relevant attributes and159

associated values. For example, for a gender classification task, it can generate attributes like “smile",160

“beard", with possible values as “presence" or “absence". We adopt task-specific prompts proposed161

by Chen et al. [39] to guide this process. Once the attribute–value pairs are generated, the next step is162

to annotate the validation dataset. However, considering the limitations associated with ChatGPT163

for this task [39], we use Llama 3.2 [78], a vision–language model, to annotate the images in the164

validation dataset. Further details about the prompts can be found in Appendix G.165

3.2.1 Spurious Feature Identification166

To identify spurious features, we take motivation from recent work that tries to identify systematic167

bias in a model [42, 43] based on its accuracy and errors on the validation dataset. However, unlike168

previous methods, which try to identify underperforming subgroups that may require collecting169

additional data, we try to determine the overperforming attribute-value pair as a possible candidate170

for data deletion [79, 28]. For this, we take inspiration from Johnson et al. [42] and compare the171

performance of the dataset associated with each attribute-value pair to the performance of the entire172

dataset. If the performance gap exceeds a predefined threshold, the corresponding attribute-value pair173

is flagged as a potential spurious feature in the model. Formally, this is expressed as:174
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1∣∣Dα

∣∣ ∑
(x,y)∈Dα

1
(
h(x) = y

)
− 1∣∣Dval

∣∣ ∑
(x,y)∈Dval

1
(
h(x) = y

)
> τ, (1)

where, Dα is a subset of validation data Dval associated with av attribute and it’s jth value bvj . The175

indicator function 1 indicates the correct prediction made by the model. The function h(x) represents176

the prediction made by the model for a given input x, and y as the corresponding true class label. The177

parameter τ denotes the minimum threshold.178

Once an attribute-value pair exceeds the threshold, a textual description is generated to describe179

the spurious feature. For example: "Images with {a} as {b}." Here, (a, b) is the attribute value pair180

selected as per Equation 1. Details about the textual description are provided in Appendix H.4.181

3.3 Coherent Data Attribution182

After generating the desired text, the next task is to select a subset of data that is semantically coherent183

with the given text and whose removal can improve the performance of the model [80].184

Since our task involves efficient subset selection, we formally define data attribution as follows:185

Definition 1 (Data Attribution and Leave-one-out Influence Score [32]). Given training dataset186

Dtrain, and a model’s utility function f
(
v; θ

)
that measures the performance of the model, the data187

attribution score α : Dtrain × Dval → R is defined as the change in the model’s prediction for a188

validation sample vi with respect to the optimal parameters when the training example zk is excluded189

from the training dataset during the learning of the optimal parameters θ∗. Formally,190

α
(
vi; zk

)
= f

(
vi; θ

∗(Dtrain
))

− f

(
vi; θ

∗(Dtrain\zk
))

(2)

For a classification task, the utility function f(z; θ) for a sample z = (x, y), [32], is defined as:191

f(z; θ) = log

(
p(z; θ)

1− p(z; θ)

)
, (3)

where p(z; θ) represents the probability assigned to the correct class by the softmax function of192

a neural network parameterized by θ. A high f(z; θ) corresponds to a high likelihood for a given193

sample (z).194

The NTK-based methods like Trak, have a closed-form formulation for data attribution score (α)195

(Definition 1) expressed as:196

α(vj , zi) =
1

N

N∑
n=1

(
ϕn(vj)

⊤(Φ⊤
nΦn)

−1ϕn(zi)

)

× 1

N

N∑
n=1

(
1− pzin

)
(4)

where, for N different checkpoints of model (θ∗), {pzin } represents the probability assigned by nth197

set of parameters to the correct class (yi), for sample zi = (xi, yi). The terms ϕn(vj) and ϕn(zi)198

denote the projected gradients of the validation sample vj and the training sample zi with respect199

to the nth set of optimal parameters, and for the utility function
(
f(·; θ∗n)

)
. Additionally, Φn is200

the projected gradient for the entire training dataset. Further details about Trak can be found in201

Appendix B.202

To quantify the impact of removing a data sample z from the training dataset on the performance of203

the entire validation dataset, we define the metric A(z) as a detrimental attribution score associated204

with the validation dataset for sample z. This metric measures the change in the model’s performance205 (
f
)

for the validation dataset when z is excluded from the training dataset.206

A(zi) = −
∑

vj∈Dval

α(vj , zi)

=
∑

vj∈Dval

(
f(vj ; θ

∗(Dtrain \ zi))− f(vj ; θ
∗(Dtrain))

)
(5)
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where zi ∈ Dtrain. Unlike the data attribution score defined in Definition 1, A(zi) is the negative207

of the general definition and evaluates the contribution of each training sample to the likelihood of208

the entire validation dataset. A higher value of A(zi) indicates that removing the training sample zi209

and retraining the model with the updated dataset leads to an optimal parameter θ∗ that improves210

the likelihood of the validation dataset (Equation 3). In other words, training examples that degrade211

overall validation performance are assigned higher A(zi) values. Once A(zi) is calculated, it is212

normalized and used for further steps.213

While removing samples with high A
(
z) values can improve the model’s performance; however,214

its impact on the downstream model is often tied up with its capability to remove samples with215

spurious features. During training, spurious features present in the dataset can result in gradient216

starvation [81, 61], a phenomenon that can hamper the learning of predictive features. Under such217

scenarios, we theoretically show that the detrimental attribution score(A) for a data sample containing218

a spurious feature (f1) can be lower than that of a data sample with predictive features (f2), even219

when both features are equally represented. Consequently, deletion strategies based solely on high220

attribution scores may inadvertently remove examples with predictive rather than spurious features221

(Proposition 1) and can fail to capture the impact of removing data associated with spurious features222

on the overall generalization.223

Proposition 1 (Under Valuation of Attribution Scores). Consider a neural network in the neural224

tangent kernel (NTK) regime, trained using binary cross-entropy loss with two equally informative225

features, f1 and f2. lets assume that due to learning dynamics f1 becomes dominant and causes226

gradient starvation of f2 as per Pezeshki et al. [61]. Then, for two training samples zi and zj with227

equal representation of dominating features f1 and f2, respectively. The attribution score for zi can228

be systematically undervalued relative to zj . Formally:229

∣∣A(zi)
∣∣ < ∣∣A(zj)

∣∣
The proof of Proposition 1, along with further details on gradient starvation, is provided in Appendix F.230

Empirical evidence supporting this phenomenon is presented in Appendix J.231

This limitation of attribution scores motivates the need for a targeted removal strategy that specifically232

identifies and eliminates training samples sharing similar spurious features and exhibiting high A(z)233

scores. In many practical scenarios, the information about spurious features is missing in the data.234

Although annotating the entire training dataset using VLM-based models is possible, this approach is235

often excessively time-consuming and practically infeasible, particularly for large-scale datasets [40].236

To address this, we adopt a zero-shot approach [82] and leverage textual descriptions of bias and CLIP237

embeddings to select data samples that are semantically similar to the identified textual descriptions.238

Specifically, we convert the textual description (Section 3.2) of the potential spurious feature into239

an embedding Ctext. Similarly, we convert all images in the training dataset into their corresponding240

CLIP embeddings Ci
image for i ∈ 1, . . . , |Dtrain|. Each training sample zi is then assigned a score ki,241

reflecting its semantic similarity to the identified bias as per the given equation :242

ki = exp

(
−
(
Ctext − Ci

image
)
M
(
Ctext − Ci

image
)⊤

2

)
,

where, M = LL⊤, L ∈ RD×t, t ≪ D (6)

The text and image features, denoted as Ctext, Ci
image ∈ R1×D are represented as row vectors in a243

D-dimensional space. The matrix M is a positive semi-definite matrix, constructed as the outer244

product of a low-rank matrix L (rank at most t), and can serve as a learnable transformation. Since M245

defines the distance metric, varying the values of L allows us to generate different similarity measures246

for comparing data points [37, 38].247

We aim to remove data samples that have high A scores and are semantically aligned with the248

identified bias. To achieve this, we learn the matrix L [83, 37, 38] by maximizing the weighted249

A score for each sample, where higher weights indicate stronger semantic alignment with bias as250

per Equation 6. To maintain semantic coherence with the bias description, the cumulative score for251

the dataset is enforced to exceed a threshold T , defined as a fraction (β) of the total training size252

(|Dtrain|). A larger T emphasizes semantic alignment, while a smaller T allows for flexibility in253
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sample selection based on A scores. The complete optimization objective is described as below :254

max
L

|Dtrain|∑
i=1

(
ki∑
j kj

)
A(zi)

s.t.
|Dtrain|∑
i=1

ki ≥ T , T = β × |Dtrain|. (7)

To ensure that the optimization remains tractable, we replace the hard constraint with a soft penalty255

term [83] in the objective function. Further detail on this is provided in Appendix C.256

Once the optimization is complete, a subset of training data with ki scores greater than the hyper-257

parameter γ is selected for removal (Sdeter). The model is then retrained with the updated training258

dataset (Dtrain\Sdeter) where, Sdeter = {zi ∈ Dtrain | ki > γ}. A sensitivity analysis of all the259

hyperparameters, and comparison with only CLIP and only data attribution on overall performance is260

provided in Appendix Q and Appendix M, respectively.261

4 Experiments262

4.1 Setting263

We evaluate the performance of our method across various datasets and compare it with existing data264

attribution techniques, including original training of model with complete dataset (original), Random265

deletion of data points (Random), Influence Function (IF) [30], TracIN [58], EWC Repair [31], and266

Trak [32]. The datasets used in our experiments include WaterBirds [84], Animal with attributes267

(AWA2) [85], German Traffic Sign Recognition Benchmark (GTSRB) [86], CELEBA [87, 43, 88]268

(Appendix H), CIFAR-10 [89], and ImageNet-100 [90, 91]. Further comparisons with robustness-269

based methods(groupDRO [17], JTT [16]) and group balancing methods are provided in Appendix I.270

For datasets such as GTSRB, CIFAR-10, and WaterBirds, we utilized attributes generated by ChatGPT271

and VLM models. To further assess the impact of metadata availability, we created two variants272

for the AWA2 datasets. The first variant, AWA2-A, includes class-specific annotations provided by273

the original datasets. The second variant, AWA2-B, uses attributes generated using ChatGPT and274

VLM-based annotation techniques (Section 3.2). All Primary experiments were conducted using a275

ResNet-18 model, which is the base architecture used in NTK-based data attribution methods such as276

Trak [32] for the image classification task. Additional experiments using alternative architectures277

and vision transformer models are presented in Appendix N and Appendix O, respectively. We278

have reported the worst group accuracy and average accuracy based on prior work on spurious279

features [67, 17, 28]. However, due to the absence of well-defined group structures in many real-280

world datasets [17], we have compared these datasets on average accuracy and class-level accuracy.281

All the experiments were conducted on two NVIDIA A6000 GPUs. Further details on training,282

hyperparameters, and subset size are provided in Appendix H. Algorithm 1 (Appendix) illustrates the283

overall workflow of our approach. We also report time and memory overheads associated with subset284

selection in Appendix R and Appendix S, respectively. Sample images from the selected subset Sdeter285

are shown in Appendix U.286

4.2 Improvement in Average Accuracy287

Table 1 reports the improvement in average accuracy achieved by our method compared to existing288

baselines. On average, our method outperforms Trak by 1.4%, EWC by 1.6%, TracIN by 1.4%,289

Influence Functions by 2.0%, and the original full-dataset training baseline by 1.7%. Notably,290

we observe gains of 1.9%, 2.5%, and 2.4% over Trak on AWA2-B, WaterBirds, and AWA2-A,291

respectively. The performance improvement highlights the efficiency of our method in removing the292

detrimental samples associated with spurious features. We further saw a substantial improvement in293

under represented class as discussed in Section 4.3. Additional experiments on worst-group accuracy294

and architectural ablations for WaterBirds are provided in Appendix N.295

4.3 Class Level Improvement after Data Deletion296

Table 2 presents class-level accuracy for datasets with more than two classes. As per the results, our297

method improves the accuracy of a significant number of classes across datasets. For example, in298
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Table 1: Comparative evaluation of average accuracy of our proposed method (Ours) against baseline
approaches across multiple datasets. The results report mean accuracy scores over three independent
runs, with the best-performing values highlighted in bold. Entries with a gain of more than 1.5%
over full-data training are highlighted in orange, while those exceeding 3% are shown in blue.

Dataset Original Random IF TracIN EWC Trak Ours
WaterBirds 0.638 0.606 0.603 0.652 0.650 0.656 0.681
AWA2-A 0.644 0.622 0.644 0.652 0.642 0.638 0.662
CELEBA 0.895 0.893 0.890 0.893 0.890 0.898 0.906
GTSRB 0.969 0.966 0.973 0.971 0.975 0.971 0.980
AWA2-B 0.644 0.622 0.644 0.652 0.642 0.638 0.657

CIFAR-10 0.774 0.787 0.798 0.784 0.789 0.793 0.801
ImageNet-100 0.440 0.436 0.429 0.423 0.423 0.435 0.438

Table 2: Class-level accuracy improvement(Imp) after data removal across datasets. The table shows
the maximum improvement in any class, the number of improved classes, and the mean improvement
across them.

Dataset Max Imp # Imp Classes Mean Imp
Awa2-A 16.27% 6 / 10 11.12%
Awa2-B 29.16% 4 / 10 17.98%
CIFAR-10 10.39% 7 / 10 5.59%
GTSRB 50.00% 22 / 43 5.69%
ImageNet-100 36.00 % 51 / 100 10.15%

Awa2-A, Awa2-B, ImageNet-100, and CIFAR-10, over 40% of the classes show improvement, with299

some achieving gains as high as 29.16%. Notably, in GTSRB, 22 out of 43 classes benefit, with a300

maximum per-class improvement of 50%. The improvement in average accuracy highlights that the301

improvement in underperforming classes is attained without substantially degrading the performance302

of other classes. Details on worst-class accuracy are provided in Appendix K.

Table 3: Comparison of best average accuracy across different data attribution methods for different
spurious attributes. The table reports the mean accuracy across three independent runs. Entries with a
gain of more than 1.5% over full-data training are highlighted in orange, while those exceeding 3%
are shown in blue.

Target Spurious Attribute Original Maj.-Rand Random IF EWC TracIN Trak Ours
arched eyebrows receding hairline 0.713 0.740 0.739 0.716 0.724 0.730 0.722 0.736
attractive mouth slightly open 0.628 0.627 0.668 0.640 0.633 0.631 0.658 0.673
big nose male 0.771 0.770 0.770 0.764 0.751 0.745 0.756 0.780
goatee bushy eyebrows 0.946 0.931 0.947 0.938 0.951 0.953 0.949 0.953
mouth slightly open smiling 0.869 0.871 0.877 0.877 0.860 0.876 0.867 0.877
mouth slightly open wearing lipstick 0.820 0.804 0.801 0.828 0.834 0.816 0.801 0.839
narrow eyes eyeglasses 0.840 0.858 0.862 0.856 0.858 0.860 0.855 0.862
pointy nose mouth slightly open 0.690 0.714 0.676 0.689 0.695 0.709 0.694 0.698
receding hairline rosy cheeks 0.921 0.909 0.920 0.921 0.920 0.916 0.911 0.930
male pointy nose 0.919 0.931 0.907 0.909 0.911 0.906 0.915 0.921

303

4.4 Performance across Different Spurious Attributes304

To further investigate the impact of spurious features on both worst-group and average performance,305

we follow the setup of Eyuboglu et al. [43] and select a subset of the CELEBA dataset where the target306

attribute is strongly correlated with a spurious feature. We compare the average and worst-group307

performance achieved by our method against other baselines in Table 3 and Table 4. Additionally,308

considering the benefit of random data deletion in biased dataset [28] we introduce a new baseline,309

Maj.-Rand, where the subset of data is randomly deleted from the majority group. As shown in the310

results, our method outperforms other baselines in average accuracy in 7 and worst-group accuracy311

in 8 out of 10 settings, respectively. Notably, we observe a gain of over 4% in average accuracy for312

the target attribute attractive, compared to training on the original dataset. Similarly, worst-group313

accuracy improves by over 15% for attractive, receding hairline, and arched eyebrows, and by more314

than 5% for big nose, goatee, and male.315
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Table 4: Comparison of best worst-group accuracy across different data attribution methods for
different spurious attributes. The table reports the mean accuracy across three independent runs.
Entries with a gain of more than 5% over full-data training are highlighted in green, while those
exceeding 15% are shown in violet.

Target Spurious Attribute Original Maj.-Rand Random IF EWC TracIN Trak Ours
arched eyebrows receding hairline 0.187 0.314 0.113 0.247 0.262 0.196 0.099 0.354
attractive mouth slightly open 0.213 0.242 0.347 0.266 0.241 0.205 0.392 0.407
big nose male 0.131 0.076 0.096 0.143 0.092 0.113 0.172 0.221
goatee bushy eyebrows 0.432 0.493 0.287 0.437 0.439 0.387 0.278 0.548
mouth slightly open smiling 0.524 0.415 0.552 0.418 0.441 0.487 0.433 0.489
mouth slightly open wearing lipstick 0.555 0.471 0.557 0.598 0.594 0.549 0.486 0.612
narrow eyes eyeglasses 0.208 0.052 0.119 0.000 0.092 0.128 0.024 0.151
pointy nose mouth slightly open 0.045 0.044 0.046 0.034 0.028 0.021 0.040 0.084
receding hairline rosy cheeks 0.121 0.228 0.131 0.179 0.241 0.254 0.201 0.296
male pointy nose 0.840 0.882 0.824 0.833 0.861 0.870 0.875 0.903

Table 5: Comparison of best average and best
worst-group accuracy between metadata-driven
and VLM-guided textual description.

Target Sp. Attribute Meta Data VLM
Avg. Acc. WG Acc. Avg. Acc. WG Acc.

bangs black hair 0.922 0.649 0.916 0.624
big nose wearing necklace 0.787 0.347 0.776 0.236
heavy makeup straight hair 0.826 0.716 0.835 0.716
wearing earrings bags under eyes 0.798 0.281 0.791 0.214

Table 6: Comparison of best average and best
worst-group accuracy between our method and
D3M across different spurious attributes.

Target Spurious Attribute Ours D3M
Avg. Acc. WG Acc. Avg. Acc. WG Acc.

bangs black hair 0.922 0.649 0.920 0.627
big nose wearing necklace 0.787 0.347 0.747 0.173
heavy makeup straight hair 0.826 0.716 0.821 0.654
wearing earrings bags under eyes 0.798 0.281 0.787 0.068

4.5 Ablation between Meta Data and VLM-based Description316

Table 5 compares the performance of our method when using metadata versus VLM-generated textual317

descriptions of the spurious feature. While both strategies show comparable performance in terms318

of average accuracy, the metadata-driven variant generally achieves higher worst-group accuracy.319

This shows that a better annotation of underlying bias can help in the targeted removal of detrimental320

samples. However, even in the absence of such annotation, LLM and VLM-based methods can321

generate comparative performance.322

4.6 Comparison with Group Annotation based Subset Selection323

Table 6 presents a comparative evaluation between our method, which relies on the textual description324

of bias, against a technique that can use group annotation of spurious features in the validation325

dataset. To compare with such a method, we define group structure based on different values of326

Spurious Attribute and Target, and then use the method proposed by Jain et al. [11] (D3M) for subset327

selection. As per the result, on average, our method consistently outperforms D3M across both the328

best average and worst-group accuracy with a gain of 1.5% in best average accuracy and 11.8% in329

best worst group accuracy without using the explicit group annotation. This highlights the efficiency330

of the soft comparison scheme of clip features in handling partially visible features and the proposed331

optimization scheme compared to hard thresholding used in group annotation.332

5 Conclusion333

In this work, we propose a data deletion framework to mitigate the impact of spurious biases in the334

training dataset and enhance model performance. Our method employs metric learning techniques335

to target and remove training samples that are semantically aligned with the textual description of336

identified biases and whose removal, based on attribution scores, does not adversely affect model337

performance. To the best of our knowledge, this is the first approach to use text-guided data attribution338

scores to mitigate simplicity bias in models. However, its effectiveness depends on the quality of the339

textual descriptions used to capture spurious biases, and the current framework is limited to image340

datasets. In future work, we aim to incorporate a human-in-the-loop framework to better mitigate341

complex biases and to extend it to NLP tasks.342
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NeurIPS Paper Checklist620

1. Claims621

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s622

contributions and scope?623

Answer:[Yes]624

Justification: The abstract and introduction clearly articulate the primary contributions of the paper.625

Guidelines:626

• The answer NA means that the abstract and introduction do not include the claims made in the627

paper.628

• The abstract and/or introduction should clearly state the claims made, including the contributions629

made in the paper and important assumptions and limitations. A No or NA answer to this630

question will not be perceived well by the reviewers.631

• The claims made should match theoretical and experimental results, and reflect how much the632

results can be expected to generalize to other settings.633

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not634

attained by the paper.635

2. Limitations636

Question: Does the paper discuss the limitations of the work performed by the authors?637

Answer: [Yes]638

Justification: The paper explicitly discusses the limitations of existing methods in the Conclusion639

section, highlighting areas where current approaches fall short and talks about future research direction.640

Guidelines:641

• The answer NA means that the paper has no limitation while the answer No means that the paper642

has limitations, but those are not discussed in the paper.643

• The authors are encouraged to create a separate "Limitations" section in their paper.644

• The paper should point out any strong assumptions and how robust the results are to violations of645

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,646

asymptotic approximations only holding locally). The authors should reflect on how these647

assumptions might be violated in practice and what the implications would be.648

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested649

on a few datasets or with a few runs. In general, empirical results often depend on implicit650

assumptions, which should be articulated.651

• The authors should reflect on the factors that influence the performance of the approach. For652

example, a facial recognition algorithm may perform poorly when image resolution is low or653

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide654

closed captions for online lectures because it fails to handle technical jargon.655

• The authors should discuss the computational efficiency of the proposed algorithms and how656

they scale with dataset size.657

• If applicable, the authors should discuss possible limitations of their approach to address problems658

of privacy and fairness.659

• While the authors might fear that complete honesty about limitations might be used by reviewers660

as grounds for rejection, a worse outcome might be that reviewers discover limitations that661

aren’t acknowledged in the paper. The authors should use their best judgment and recognize662

that individual actions in favor of transparency play an important role in developing norms that663

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize664

honesty concerning limitations.665

3. Theory assumptions and proofs666

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete667

(and correct) proof?668

Answer: [Yes]669

Justification: All assumptions and detailed proofs are provided in Appendix F.670

Guidelines:671

• The answer NA means that the paper does not include theoretical results.672

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.673

• All assumptions should be clearly stated or referenced in the statement of any theorems.674
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in675

the supplemental material, the authors are encouraged to provide a short proof sketch to provide676

intuition.677

• Inversely, any informal proof provided in the core of the paper should be complemented by678

formal proofs provided in appendix or supplemental material.679

• Theorems and Lemmas that the proof relies upon should be properly referenced.680

4. Experimental result reproducibility681

Question: Does the paper fully disclose all the information needed to reproduce the main experimental682

results of the paper to the extent that it affects the main claims and/or conclusions of the paper683

(regardless of whether the code and data are provided or not)?684

Answer: [Yes]685

Justification: The codebase for reproducing the results is linked in the Abstract, and Appendix H686

provides additional implementation details.687

Guidelines:688

• The answer NA means that the paper does not include experiments.689

• If the paper includes experiments, a No answer to this question will not be perceived well by the690

reviewers: Making the paper reproducible is important, regardless of whether the code and data691

are provided or not.692

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make693

their results reproducible or verifiable.694

• Depending on the contribution, reproducibility can be accomplished in various ways. For695

example, if the contribution is a novel architecture, describing the architecture fully might suffice,696

or if the contribution is a specific model and empirical evaluation, it may be necessary to either697

make it possible for others to replicate the model with the same dataset, or provide access to698

the model. In general. releasing code and data is often one good way to accomplish this, but699

reproducibility can also be provided via detailed instructions for how to replicate the results,700

access to a hosted model (e.g., in the case of a large language model), releasing of a model701

checkpoint, or other means that are appropriate to the research performed.702

• While NeurIPS does not require releasing code, the conference does require all submissions703

to provide some reasonable avenue for reproducibility, which may depend on the nature of the704

contribution. For example705

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to706

reproduce that algorithm.707

(b) If the contribution is primarily a new model architecture, the paper should describe the708

architecture clearly and fully.709

(c) If the contribution is a new model (e.g., a large language model), then there should either be710

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,711

with an open-source dataset or instructions for how to construct the dataset).712

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are713

welcome to describe the particular way they provide for reproducibility. In the case of714

closed-source models, it may be that access to the model is limited in some way (e.g.,715

to registered users), but it should be possible for other researchers to have some path to716

reproducing or verifying the results.717

5. Open access to data and code718

Question: Does the paper provide open access to the data and code, with sufficient instructions to719

faithfully reproduce the main experimental results, as described in supplemental material?720

Answer: [Yes]721

Justification: The codebase for reproducing the results is linked in the Abstract, and Appendix H722

provides additional implementation details.723

Guidelines:724

• The answer NA means that paper does not include experiments requiring code.725

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/726

guides/CodeSubmissionPolicy) for more details.727

• While we encourage the release of code and data, we understand that this might not be possible,728

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless729

this is central to the contribution (e.g., for a new open-source benchmark).730

• The instructions should contain the exact command and environment needed to run to reproduce731

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/732

guides/CodeSubmissionPolicy) for more details.733
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• The authors should provide instructions on data access and preparation, including how to access734

the raw data, preprocessed data, intermediate data, and generated data, etc.735

• The authors should provide scripts to reproduce all experimental results for the new proposed736

method and baselines. If only a subset of experiments are reproducible, they should state which737

ones are omitted from the script and why.738

• At submission time, to preserve anonymity, the authors should release anonymized versions (if739

applicable).740

• Providing as much information as possible in supplemental material (appended to the paper) is741

recommended, but including URLs to data and code is permitted.742

6. Experimental setting/details743

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,744

how they were chosen, type of optimizer, etc.) necessary to understand the results?745

Answer: [Yes]746

Justification: The aforementioned details are available in Appendix H.747

Guidelines:748

• The answer NA means that the paper does not include experiments.749

• The experimental setting should be presented in the core of the paper to a level of detail that is750

necessary to appreciate the results and make sense of them.751

• The full details can be provided either with the code, in appendix, or as supplemental material.752

7. Experiment statistical significance753

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-754

tion about the statistical significance of the experiments?755

Answer: [Yes]756

Justification: The mean across three runs is reported in the main draft.757

Guidelines:758

• The answer NA means that the paper does not include experiments.759

• The authors should answer "Yes" if the results are accompanied by error bars, confidence760

intervals, or statistical significance tests, at least for the experiments that support the main claims761

of the paper.762

• The factors of variability that the error bars are capturing should be clearly stated (for example,763

train/test split, initialization, random drawing of some parameter, or overall run with given764

experimental conditions).765

• The method for calculating the error bars should be explained (closed form formula, call to a766

library function, bootstrap, etc.)767

• The assumptions made should be given (e.g., Normally distributed errors).768

• It should be clear whether the error bar is the standard deviation or the standard error of the769

mean.770

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report771

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is772

not verified.773

• For asymmetric distributions, the authors should be careful not to show in tables or figures774

symmetric error bars that would yield results that are out of range (e.g. negative error rates).775

• If error bars are reported in tables or plots, The authors should explain in the text how they were776

calculated and reference the corresponding figures or tables in the text.777

8. Experiments compute resources778

Question: For each experiment, does the paper provide sufficient information on the computer779

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?780

Answer: [Yes]781

Justification: Memory and time complexities are reported in Appendix S and Appendix R, respectively.782

Additional details can be found in the Experiments section.783

Guidelines:784

• The answer NA means that the paper does not include experiments.785

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud786

provider, including relevant memory and storage.787
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• The paper should provide the amount of compute required for each of the individual experimental788

runs as well as estimate the total compute.789

• The paper should disclose whether the full research project required more compute than the790

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into791

the paper).792

9. Code of ethics793

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code794

of Ethics https://neurips.cc/public/EthicsGuidelines?795

Answer: [Yes]796

Justification: Most ethical concerns are either not applicable to this work or have been appropriately797

addressed.798

Guidelines:799

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.800

• If the authors answer No, they should explain the special circumstances that require a deviation801

from the Code of Ethics.802

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due803

to laws or regulations in their jurisdiction).804

10. Broader impacts805

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts806

of the work performed?807

Answer: [NA]808

Justification: This work does not pose any specific societal risks; on the contrary, the proposed method809

actively addresses and mitigates model biases.810

Guidelines:811

• The answer NA means that there is no societal impact of the work performed.812

• If the authors answer NA or No, they should explain why their work has no societal impact or813

why the paper does not address societal impact.814

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,815

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-816

ment of technologies that could make decisions that unfairly impact specific groups), privacy817

considerations, and security considerations.818

• The conference expects that many papers will be foundational research and not tied to particular819

applications, let alone deployments. However, if there is a direct path to any negative applications,820

the authors should point it out. For example, it is legitimate to point out that an improvement in821

the quality of generative models could be used to generate deepfakes for disinformation. On the822

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks823

could enable people to train models that generate Deepfakes faster.824

• The authors should consider possible harms that could arise when the technology is being used825

as intended and functioning correctly, harms that could arise when the technology is being used826

as intended but gives incorrect results, and harms following from (intentional or unintentional)827

misuse of the technology.828

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies829

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-830

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the831

efficiency and accessibility of ML).832

11. Safeguards833

Question: Does the paper describe safeguards that have been put in place for responsible release of834

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or835

scraped datasets)?836

Answer: [NA]837

Justification: This work does not pose any such risks.838

Guidelines:839

• The answer NA means that the paper poses no such risks.840

• Released models that have a high risk for misuse or dual-use should be released with necessary841

safeguards to allow for controlled use of the model, for example by requiring that users adhere to842

usage guidelines or restrictions to access the model or implementing safety filters.843
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should844

describe how they avoided releasing unsafe images.845

• We recognize that providing effective safeguards is challenging, and many papers do not require846

this, but we encourage authors to take this into account and make a best faith effort.847

12. Licenses for existing assets848

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,849

properly credited and are the license and terms of use explicitly mentioned and properly respected?850

Answer: [Yes]851

Justification: Our code provides credit to external codebases in github repository.852

Guidelines:853

• The answer NA means that the paper does not use existing assets.854

• The authors should cite the original paper that produced the code package or dataset.855

• The authors should state which version of the asset is used and, if possible, include a URL.856

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.857

• For scraped data from a particular source (e.g., website), the copyright and terms of service of858

that source should be provided.859

• If assets are released, the license, copyright information, and terms of use in the package should860

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for861

some datasets. Their licensing guide can help determine the license of a dataset.862

• For existing datasets that are re-packaged, both the original license and the license of the derived863

asset (if it has changed) should be provided.864

• If this information is not available online, the authors are encouraged to reach out to the asset’s865

creators.866

13. New assets867

Question: Are new assets introduced in the paper well documented and is the documentation provided868

alongside the assets?869

Answer: [NA]870

Justification: We have not introduced any new assets in this work.871

Guidelines:872

• The answer NA means that the paper does not release new assets.873

• Researchers should communicate the details of the dataset/code/model as part of their sub-874

missions via structured templates. This includes details about training, license, limitations,875

etc.876

• The paper should discuss whether and how consent was obtained from people whose asset is877

used.878

• At submission time, remember to anonymize your assets (if applicable). You can either create an879

anonymized URL or include an anonymized zip file.880

14. Crowdsourcing and research with human subjects881

Question: For crowdsourcing experiments and research with human subjects, does the paper include882

the full text of instructions given to participants and screenshots, if applicable, as well as details about883

compensation (if any)?884

Answer: [NA]885

Justification: No crowdsourcing-based experiments were conducted in this work.886

Guidelines:887

• The answer NA means that the paper does not involve crowdsourcing nor research with human888

subjects.889

• Including this information in the supplemental material is fine, but if the main contribution of the890

paper involves human subjects, then as much detail as possible should be included in the main891

paper.892

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other893

labor should be paid at least the minimum wage in the country of the data collector.894

15. Institutional review board (IRB) approvals or equivalent for research with human subjects895

Question: Does the paper describe potential risks incurred by study participants, whether such896

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an897

equivalent approval/review based on the requirements of your country or institution) were obtained?898
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Answer: [NA]899

Justification: No experiments involving human subjects were conducted for this work900

Guidelines:901

• The answer NA means that the paper does not involve crowdsourcing nor research with human902

subjects.903

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be904

required for any human subjects research. If you obtained IRB approval, you should clearly state905

this in the paper.906

• We recognize that the procedures for this may vary significantly between institutions and907

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for908

their institution.909

• For initial submissions, do not include any information that would break anonymity (if applica-910

ble), such as the institution conducting the review.911

16. Declaration of LLM usage912

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard913

component of the core methods in this research? Note that if the LLM is used only for writing,914

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or915

originality of the research, declaration is not required.916

Answer: [Yes]917

Justification: Our work builds on the approach proposed by HiBug [39] and leverages large language918

models (LLMs) and vision-language models (VLMs) for data annotation.919

Guidelines:920

• The answer NA means that the core method development in this research does not involve LLMs921

as any important, original, or non-standard components.922

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what923

should or should not be described.924
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A Algorithm925

Algorithm 1 Proposed Method
Require: Training Dataset (Dtrain), Validation Dataset (Dvalid), Number of Checkpoints (M ), Rank

for Metric Learning (t), Min Weight Fraction (β), Cutoff for Subset Selection (γ), CLIP Embed-
ding Model (C), Epochs for Classifier Training (E), Optimization Iterations for Metric Learning
(I).

1: ## Classifier Training
2: i=0
3: for epoch ∈ [0 . . . E ] do
4: Train the classifier using Dtrain.
5: if epoch ∈ [E , E − 2, E − 4, E − 6, E − 8] then
6: Save the checkpoint θi.
7: i+=1
8: end if
9: end for

10: Save N = [θ0, θ1, θ2, θ3, θ4] checkpoints for the calculation of attribution score as per Equation 4.
11: ## Spurious Feature Identification
12: Generate a list of possible attributes and corresponding values for Dvalid using ChatGPT (Sec-

tion 3.2).
13: for i ∈ [1 . . . |Dval|] do
14: Annotate attribute-value pairs for sample vi using a Llama-based VLM model (Section 3.2).
15: end for
16: ## Calculating the Detrimental Attribution Score
17: for zi ∈ {z1 . . . zn} do
18: Calculate the attribution score A(zi) using the saved checkpoints (Equations 4 and 5).
19: end for
20: Compare the accuracy of each attribute-value pair using Equation 1. Flag an attribute-value pair

as spurious if its accuracy exceeds the average dataset accuracy by a threshold τ .
21: Generate a textual representation of flagged attribute-value pairs under the context of the dataset

(Appendix H.4).
22: Create a CLIP embedding of the textual representation (Ctext).
23: ## Metric Learning
24: for i ∈ [1 . . . |Dtrain|] do
25: Calculate the CLIP image embedding (Ci

image) for each sample zi in Dtrain.
26: end for
27: for i ∈ [0 . . . I] do
28: Optimize the loss L using Ctext, Cimage, and A(z) as per Equation 10 to generate the metric k

using the hyperparameter t, β.
29: end for
30: Use the score k, γ to identify Sdeter and retrain the model on Dtrain \ Sdeter.

B Details on Trak926

α(vj , zi) =
1

N

N∑
n=1

(
ϕn(vj)

⊤(Φ⊤
nΦn)

−1ϕn(zi)

)
× 1

N

N∑
n=1

(
1− pzin

)
where, pzin = (1 + exp(−yif(xi; θ

∗
n)))

−1,ϕn(vj) = P⊤∇θf(vj ; θ
∗
n),

ϕn(zi) = P⊤∇θf(zi; θ
∗
n), Φn =

[
ϕn(z1)

⊤; . . . ;ϕn(z|Dtrain|)
⊤]

Φn ∈ Rm×k,P ∼ N (0, 1)p×k, k ≪ p. (8)

Equation 8, illustrates the calculation of the trak score. Scores consist of an average of the data attribution score927

calculated over multiple checkpoints (N). The terms ϕn(vj) and ϕn(zi) denote the projected gradients of the928

validation sample vj and the training sample zi for the nth set of parameters and projection matrix P . This929

projection matrix reduces the dimension of the gradient ∇θf(z; θ
∗
n) ∈ Rp to a lower-dimensional space Rk,930

where k ≪ p, while approximately preserving the inner product, as per the classical Johnson-Lindenstrauss931

theorem [92].932
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C Soft Penalty for Optimization933

For efficient optimisation of the constrained objective presented in Equation 7, we have replaced the hard934

constraint with a soft constraint
(

d(k)
)

as per d’Eon et al. [83].935

d(k) = C ·max


(∑|Dtrain|

i=1 ki − (T + w)
)2

w2
, 0

 , (9)

This penalty term is quadratic and scaled by a shrinkable weight w, which is gradually reduced throughout the936

optimization process. The overall unconstrained optimization problem is defined in Equation 10 where C is a937

hyperparameter.938

L = max
L

|Dtrain|∑
i=1

(
ki∑
j kj

)
A(zi)− d(k). (10)

D Notations939

Table 7: Notation table for key equation in main draft and proof

Symbol Description
General Definitions

h(x) Model prediction for input x
y True label corresponding to input x
1(h(x) = y) Indicator function: 1 if prediction is correct, else 0
Dval Validation dataset
D(av,bvj )

Subset of validation data with attribute–value pair (av, bvj )
Dtrain Training dataset: Dtrain = {z1, z2, . . . , zn} where zi = (xi, yi)
X ,Y Feature set X = {x1, x2, . . . , xn} and label set Y = {y1, y2, . . . , yn}
zk, zi Training samples from Dtrain
vj Validation sample
ŷ Output of the final logit layer of a neural network
θ Vectorized parameters of the neural network, θ ∈ Rp

ei Standard unit vectors

Neural Tangent Kernel (NTK) Specific

G(X , θ) Neural Tangent Random Feature (NTRF) matrix: G = ∂ŷ(X ;θ)
∂θ

G0 NTRF matrix at initialization: G0 = G(X , θ0)

SVD Decomposition and Gradient Starvation

U, S, V Singular Value Decomposition (SVD) components: Y G0 = USV ⊤

ui, vk Singular vectors from U and V corresponding to features
si Singular value representing the strength of the ith feature
Γ Response of the network to features: Γ = U⊤Y ŷ = SV T θ
Γi Response of the ith feature

Attribution and Trak Scoring
Φn Stacked gradient features of all training points for model n
f(v; θ) Model output used for attribution (e.g., logit or loss) for input v under parameters θ
ϕn(·) Projected gradient feature under model n
α(vj , zi) Attribution score: impact of removing zi on prediction for vj
A(zi) Detrimental attribution score for training sample zi
pzin Predicted probability for zi under model n
P Random projection matrix with entries drawn from N (0, 1)

Optimization and others

Ctext, Ci
image Text and image embeddings respectively

T Trade-off hyperparameter: T = β × |Dtrain|
(
control tradeoff between data attribution and semantic coherence

)
β Hyperparameter associated with T
ki Selection weight for sample i
d(k) Penalty term enforcing deletion constraint
L Final optimization objective including penalty
C Hyperparameter associated with soft penalty Equation 9
M = LL⊤ Metric matrix constructed from L
L ∈ RD×t Learnable matrix under optimization defined by Equation 7
τ Accuracy threshold to detect spurious bias
θ∗(·) Final model parameters trained on the specified dataset

E Methods for Handling Spurious Features940

Table 8 outlines the key capabilities and limitations of existing methods relative to ours. While data augmentation941

techniques [62–67] are widely adopted, they often require external data, which can conflict with privacy and942

regulatory constraints [93–96]. Moreover, without appropriate supervision, they risk introducing new spurious943

features or being vulnerable to data poisoning attacks [97, 98].944
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In contrast, methods such as group annotation-based optimization (e.g., gDRO [17]), loss reweighting techniques945

(e.g., JTT [16]), and final-layer fine-tuning [70, 20] do not pose privacy risks. However, in safety-critical946

applications where models must satisfy stability guarantees [75, 76, 99], these methods can compromise947

robustness, especially when models are required to ensure Lipschitz continuity for certification. Specifically,948

they are susceptible to targeted attacks [21–24], particularly when the training procedure heavily relies on a949

small subset of influential examples [100, 98] used for fine-tuning or reweighting loss values.950

Group-balancing techniques [28, 29] partially address these challenges, but often over-prune majority groups. In951

contrast, our method supports budget-constrained, targeted sample removal, ensuring only detrimental examples952

are excluded during training.953

Furthermore, many of these methods [17, 28, 29] rely on manual group annotations of the training dataset. As954

spurious features [77] evolve post-deployment, maintaining robustness would require repeated manual annotation955

cycles. In contrast, our approach eliminates the need for group labels for the training dataset and leverages956

textual descriptions of bias to guide targeted data removal. The use of a textual description of the bias and957

the proposed metric learning approach provides a zero-shot approach [101, 82] to approximate the underlying958

group structure without having any annotation overhead. This design also allows integration of feedback from959

subject-matter experts, making the process more adaptive and practical.960

Table 8: Comparison of methods across regulatory and robustness capabilities.

Method Regulatory Supports Textual No Group Annotation Privacy Prevent Over pruning of Robust to
Restrictions Descriptions in Training Data Majority Group Adv-Attacks

Data Augmentation ✗ ✗ ✓ ✗ ✓ ✗
Group-Annotation based Optimization ✗ ✗ ✗ ✓ ✓ -
Reweighting Loss/Data ✗ ✗ ✓ ✓ ✓ ✗
Last Layer Fine-Tuning ✗ ✗ ✓ ✓ ✓ ✗
Group Balancing Method ✓ ✗ ✗ ✓ ✗ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

F Theoretical Formulation961

For dataset Dtrain = {z1 . . . zn} where zi = (xi, yi), and xi ∈ Rd, and corresponding labels yi ∈ {−1,+1}n.962

Let ŷ denotes the output of the final logit layer of an L-layer neural network trained using binary cross-entropy,963

and θ ∈ Rp represents a p-dimensional vectorized parameter of the neural network (Equation 4, Equation 8). let964

X = {x1 . . . xn} and Y = {y1 . . . yn} constitute the respective features and class labels.965

In the Neural Tangent Kernel (NTK) framework [102], the final output of a neural network can be approximated966

as a linear function of parameters, whose properties are governed by the Neural Tangent Random Feature (NTRF)967

matrix, defined as:968

G(X , θ) =
∂ŷ(X ; θ)

∂θ
, G ∈ Rn×p. (11)

For wide-width neural networks, the NTRF matrix remains approximately constant during training [61], allowing969

the output of the neural network to be approximated using the initial NTRF matrix, G0 = G(X , θ0), as follows:970

ŷ(X , θ) = G0θ. (12)

The dominant features of the dataset can be estimated using the principal components of G0 = G(X , θ0), which971

are equivalent to the principal components of the NTK gram matrix [103].972

Definition 2 (Features and gradient starvation [61]). Consider a support vector decomposition of Y G0 =973

USV ⊤, where Y = diag(y), the ith feature is represented by (V ⊤)(i,:) or (V )(:,i) with its strength denoted974

as si = (S)ii and its weight across all training samples represented by (U)(:,i). The response of the neural975

network to the ith feature can be expressed as Γi , where:976

Γ := U⊤Y ŷ = SV T θ.

Due to the imbalance in the training dataset, for a given set of features and the optimal parameter θ∗, the977

presence of the ith feature can influence the learning of the jth feature. This phenomenon, referred to as gradient978

starvation, arises in optimal parameters if:979

dΓ∗
j

d(s2i )
< 0
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Definition 2 suggests that as the strength of the ith feature (s2i ) increases, the learning of the jth feature gets980

impacted. This implies that stronger features can dominate the learning process, leading to a reduced contribution981

of other informative features in the model’s predictions.982

Theorem 1 (Gradient Starvation Regime [61]). For a neural network in the linear regime and trained using983

binary cross entropy loss with feature coupling between two features f1 and f2 as defined in Pezeshki et al. [61]984

and with s21 > s22, we have,985

dΓ∗
2

d(s21)
< 0,

Now, under the given setting, we will try to understand the influence of gradient starvation on the performance986

of the NTK-based data attribution methods :987

Proposition 2 (Under Valuation of Trak Scores). Consider a neural network in the neural tangent kernel (NTK)988

regime, trained using binary cross-entropy loss with two equally informative features, f1 and f2. lets assume989

that due to learning dynamics f1 becomes dominant and cause gradient starvation of f2 as per Pezeshki et al.990

[61]. Then, for two training samples zi and zj with equal representation of dominating features f1 and f2991

respectively. The attribution score for zi can be systematically undervalued relative to zj . Formally:992 ∣∣A(zi)
∣∣ < ∣∣A(zj)

∣∣
Proof. For a sigmoid-based activation, the output probability for feature set

(
X
)

is given by:993

p(X ; θ) =
1

1 + exp
(
− ŷ(X ; θ)

) ,
p(X ; θ) ·

(
1 + exp(−ŷ(X ; θ))

)
= 1,

p(X ; θ) · exp
(
− ŷ(x; θ)

)
= 1− p(X ; θ),

ŷ(X ; θ) = log

(
p(X ; θ)

1− p(X ; θ)

)
.

(13)

Hence, the utility function (f ) used in Trak for data attribution (Equation 3) is equivalent to the logit of a binary994

cross entropy (ŷ).995

From the definition of gradients:996

∂ŷ(x; θ)

∂θ
=

∂G0 · θ
∂θ

= G0 (14)

As per Equation 4 and Equation 8, Φm = G0 · P . Now, considering that the projection matrix [92] preserves997

the inner product of the actual gradient vector. We will simplify our argument and calculate the value for the998

unprojected gradients [32]
(
P = Id

)
. Furthermore, under the NTK regime, where the optimal parameters are999

similar [102], we calculate the attribution score for a single checkpoint (M=1). For ease of derivation, we will1000

omit the subscript m i.e., Φ1 = Φ and ϕ1 = ϕ, hence:1001

Φ = G0 (15)

ΦTΦ = GT
0 G0 (16)

Now, as per the feature decomposition defined in Definition 2 :1002

Y G0 = USV ⊤

(
Y G0

)⊤(
Y G0

)
=

(
USV ⊤

)⊤(
USV ⊤

)
GT
0 Y ⊤Y G0 = V S2V T

(17)

Since Y = diag{y1, . . . , yn} and y ∈ {−1, 1}, it follows that:1003

Y TY = I,

GT
0 G0 = V S2V T ,

ΦTΦ = V S2V T . (18)
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The validation attribution score (Equation 5) is given by :1004

A(zi) =
∑

vj∈Dval

−α(vj ; zi)

=
∑

vj∈Dval

−ϕ(vj)
⊤(Φ⊤Φ)−1ϕ(zi)(1− pzi)

(19)

Substituting the value of ΦTΦ:1005

A(zi) =
∑

vj∈Dval

−ϕ(vj)
⊤(V S2V T )

−1
ϕ(zi)(1− pzi)

=

( ∑
vj∈Dval

−ϕ(vj)
⊤
)
(V )−1⊤S−2(V )−1ϕ(zi)(1− pzi)

=

( ∑
vj∈Dval

−ϕ(vj)
⊤
)
V S−2V ⊤ϕ(zi)(1− pzi)

=

( ∑
vj∈Dval

−∇θf(vj , θ)
⊤
)
V S−2V ⊤∇θf(zi, θ)(1− pzi) (since P = I and as per Equation 8 )

=

( ∑
vj∈Dval

−∇θf(vj , θ)
⊤
)
V S−2V ⊤∇θf(zi, θ)(1− pzi)

=
∑
k

((∑
vj∈Dval

−∇θf(vj , θ)
⊤)vk)(v⊤k ∇θf(zi, θ)(1− pzi)

)
s2kk

(20)

where, vk is the kth column of V matrix and representing the kth feature as per Definition 21006

now given the definition of the G0 and as per Equation 8, Equation 13 and Equation 151007

G0 = [∇θf(z1, θ)
⊤; . . . ;∇θf(zn, θ)

⊤)]

Y G0 = USV ⊤

(21)

For the ith training sample, this score can be further simplified by multiplying with the standard unit vector (ei)1008

on both sides:1009

e⊤i Y G0 = e⊤i USV ⊤

yi∇θf(zi, θ)
⊤ = uiSV ⊤

(22)

where ui is a row vector associated with matrix U,1010

multiplying both side with yi and V we get ,1011

yi · yi∇θf(zi, θ)
⊤V = yiu

iS

as y2
i = 1 and further multiplying both side with ek we get1012

∇θf(zi, θ)
⊤V · ek = yiu

iS · ek
∇θf(zi, θ)

⊤vk = yiu
i
kskk (23)

substituting the value in Equation 20 gives :1013

|A(zi)| =
∣∣∣∣∑

k

(∑
vj∈Dval

−∇θf(vj , θ)
⊤)vkyiui

k

(
1− pzi

)
skk

∣∣∣∣ (24)

According to the given equation, for any two data points zi and zj where the dominant features are f1 and f21014

respectively, the contribution of these features, as per Definition 2, is represented by ui
1 and uj

2. When both1015

dominant features are equally represented, it follows that ui
1 = uj

2 and uj
1 < uj

2, ui
2 < ui

1 . Furthermore, if1016

|s11| > |s22| then as per Theorem 1 f1 induces gradient starvation of f2 and results in lower attribution score1017

i.e., |A(zi)| < |A(zj)|.1018
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G Data Annotation1019

G.1 Attribute Generation1020

We utilize ChatGPT to generate attributes for a specific dataset with the following prompt referenced from1021

HiBug [39]. The list of attribute-value pairs generated by ChatGPT is provided in Table 9.1022

You are a helpful assistant to help user work on improving AI visual models. You need to discuss with your user1023

for a description of the task that the model is working for. You need to decide if the description is complete1024

and clear enough. The description should at least contains or infer the task object, task type, task scene. After1025

understanding user’s task description, you should generate related visual attributes that might affect the model’s1026

performance. You should not ask me to provide visual attributes. (Note that this is only an example visual1027

attributes according to the previous example, do not take any of its values as default value!): “Gender , Age1028

, Hairstyle , Hair colour" If user is satisfied with the attributes, generate the attribute form with the header1029

formatted as “//Attribute Form//" and end with “//END//". Attributes in the form should be splited by comma. Do1030

not include the task object, task type, task scene. (Note that this is only an example visual attributes according to1031

the previous example, do not take any of its values as default value!):1032

//Attribute Form// Gender , Age , Hairstyle , Hair colour //END//1033

Table 9: Details of the attribute value pair generated using ChatGPT.

Dataset Attributes Choices

AWA2

Size of the Animal Small, Medium, Large, Very Large
Fur or Skin Texture of Animals Smooth, Rough, Furry, Scaly
Color Pattern on Animal Striped, Spotted, Solid Color, Mixed Colors
Posture of Animal Sitting, Standing, Flying, Running
Visible Markings or Patterns Scars, Spots, Unique Patterns
Lighting Conditions Bright, Dim, Natural, Artificial, Shadowy
Background Complexity Plain, Cluttered, Natural Habitat
Presence of Humans None, Nearby, Interacting
Animal Activity State Resting, Moving, Feeding, Playing
Occlusions Fully Visible, Partially Hidden
Weather Conditions Sunny, Cloudy, Rainy, Foggy, Snowy
Seasonal Variations Summer Coat, Winter Coat, Shedding Fur

CELEBA

Gender Male, Female
Age Child, Teenager, Adult, Elderly
Facial Expression Neutral, Smiling, Frowning, Surprised
Hairstyle Short, Long, Bun, Braided
Hair Color Black, Brown, Blonde, Red
Skin Tone Light, Medium, Dark
Facial Hair Beard, Mustache, Clean-shaven
Presence of Accessories Glasses, Earrings, Necklace
Lighting Conditions Bright, Dim, Shadowed
Makeup Natural, Heavy, None

CIFAR-10

Size Large, Medium, Small
Pose/Orientation Side View, Top View, Angled
Lighting Daylight, Nighttime, Shadows
Background Complexity Plain, Crowded
Object Occlusion Partially Visible, Fully Visible

GTSRB

Shape of Sign Round, Triangular, Rectangular
Color of Sign Red, Blue, Yellow, White
Size of Sign Small, Medium, Large
Weather Conditions Sunny, Rainy, Foggy, Overcast
Lighting Daylight, Nighttime, Shadows, Glare

WaterBirds

Surrounding Environment Forest Floor, Beach, Lake, River, Ocean, Shoreline
Background Elements Trees, Bushes, Rocks, Water Bodies, Sand, Human-made Structures
Lighting Conditions Full Daylight, Shaded Areas, Low-light, Overcast
Weather Conditions Sunny, Cloudy, Rainy, Foggy, Windy

G.2 Attribute-Value Annotation1034

We employ Llama 3.2 [78], a Vision-Language Model (VLM) with 11B parameters, to determine the most1035

suitable value among a set of possible attributes and values for a given dataset. By iterating over a set of images1036

in the validation set, the VLM generates metadata, which is subsequently utilized to identify the spurious1037

features. Each image approximately takes 4-10 seconds on average to annotate, depending on the size of the1038

image. The system prompt provided to Llama 3.2 is as follows:1039

1040

You are an expert in identifying visual attributes in a given image. You will be presented with an im-1041

age along with attributes and a list of choices for each of the attributes. You will be asked to choose the most1042

suited choice for each of the attributes present in the image. Only choose one choice among all given choices1043
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for a particular attribute. Ensure that the choice is a string. Reproduce the attribute and the choice as it is.1044

Preserve the case and the spelling. Respond with only a valid JSON object with the attributes as the keys and the1045

chosen choices as the values, and no other extra fluff. Use double inverted commas.1046

H Training Procedure1047

H.1 Model Configuration and Metrics1048

We maintained consistent hyperparameter settings across all baselines, with the only variation being the subset1049

of training data selected by each method. The validation set was used to identify underlying spurious biases, as1050

outlined in Section 3.2. For baseline comparisons, we utilized publicly available implementations. In cases where1051

the code was not open-sourced or experiments were not conducted on the specific datasets, we implemented1052

the methods and used the respective datasets for evaluation. For TracIN, we employed the fast implementation1053

available in the Captum library [104].1054

Since many real-world datasets lack well-defined group structures [17], which are typically needed for evaluating1055

worst-group accuracy, we compare our method and baselines primarily on average accuracy. Additionally, to1056

understand the influence of deleting data samples in mitigating spurious features, we follow the experiment1057

setup defined by [28, 29, 17] and analyze the worst-case performance improvement. We used the methodology1058

proposed in [43] to create a subset of CELEBA with specific simplicity biases.1059

H.2 Model Training and Datasets1060

All experiments reported in Table 1 were conducted using the ResNet-18 architecture. The models were trained1061

from scratch with random initialization. For the WaterBirds dataset, the classifier was trained for 15 epochs1062

using stochastic gradient descent with a momentum value of 0.9 and a learning rate of 0.001. For all other1063

datasets, we used the Adam optimizer with a learning rate of 0.001.1064

The AWA2-A, AWA2-B, CELEBA, models were trained for 15 epochs, while the GTSRB and CIFAR-10 models1065

were trained for 5 epochs. We have used the same 10 classes as mentioned in Boecking et al. [105] for all1066

experiments related to AWA2. For CELEBA, we used a subset of 10,000 examples from the original dataset,1067

with the target label being hair color (blond) and the spurious feature being gender (male). Additionally, we1068

induced a spurious correlation of 0.4 between the target and spurious features to mimic real-world biases. For1069

experiments related to ImageNet-100, we have considered the subset of the ImageNet dataset with 100 classes as1070

per Tian et al. [91] and trained the model for 10 epochs with the Adam optimizer. We have further considered1071

the attributes related to texture and shape for common classes available for the ImageNet dataset [106]. The1072

cutoff value to mark an attribute-value pair as spurious (τ ) was decided based on the size of the corresponding1073

pair in the validation dataset, and the pair generating the largest difference with respect to the original dataset1074

was picked for analysis.1075

To ensure a fair comparison for subset selection, we maintained uniformity in the training process across both1076

the original model training and the retraining process after data deletion.1077

The experiments reported in Table 3, Table 4 were conducted using the ResNet-18 model, trained for 10 epochs1078

with the Adam optimizer and a learning rate of 0.001. The dataset was created by randomly sampling the1079

correlation factor within the range [0,1] and varying the training data size across [5000, 3000, 7000, 10000]. The1080

correlation attribute and target attribute were selected from the metadata provided in the CELEBA dataset [43].1081

Experiments on the following target–correlated attribute pairs—(arched eyebrows, receding hairline), (attractive,1082

mouth slightly open), (big nose, male), (goatee, bushy eyebrows), (mouth slightly open, smiling), (mouth slightly1083

open, wearing lipstick), (narrow eyes, eyeglasses), (pointy nose, mouth slightly open), (receding hairline, rosy1084

cheeks), and (male, pointy nose) are conducted with varying training dataset sizes of 3000, 5000, 5000, 5000,1085

5000, 5000, 7000, 7000, 7000, and 5000 samples respectively, and corresponding spurious correlation strengths1086

of 0.2, 0.8, 0.4, 0.4, 0.8, 0.9, 0.2, 0.6, 0.6, and 0.6 respectively. Further experiments on the target attributes1087

Bangs, Big Nose, Heavy Makeup, and Wearing Earrings, were conducted with correlation factors of 0.6, 0.2,1088

0.4, and 0.2, and with training sample sizes of 10000, 5000, 3000, and 5000, respectively. Results for these1089

experiments are provided in Table 141090

H.3 Data Attribution1091

For the experiments reported in Table 1, approximately 3% of the data was removed from the training dataset.1092

We fix the data removal budget across all baselines, as it is a design choice best left to domain experts. A1093

smaller removal percentage prevents overpruning of the dataset ( training sample for group land bird on water1094

is around 56 out of 4795 [29] ) and highlights the precision of attribution methods by focusing on the most1095

harmful samples. In contrast, larger removals can obscure differences between methods due to overlapping1096

sample selections. For experiments related to spurious correlation in celeba, considering the stochasticity of the1097
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training sample, we have fixed the budget size to 100 samples. Further ablation on subset size is provided in1098

Appendix Q.1. We ensured uniformity in the data deletion process by basing it on the validation attribution score1099

A, calculated according to the respective definition of data attribution α in each baseline method, using their1100

default hyperparameters.1101

For our proposed method, we performed hyperparameter tuning by selecting the rank parameter (t) from [50, 40,1102

10, 100] and the minimum weight (β) from [0.6, 0.7, 0.8, 0.9, 0.95]. The weight barrier (C) was chosen from1103

[5, 10]. The optimization for Equation 10 was performed for 5000 iterations using the Adam optimizer with a1104

learning rate of 0.0001. The value of γ is decided based on the fraction of the dataset that is removed from the1105

training dataset. For experiments reported in Table 3 and Table 4, hyperparameter tuning was performed over1106

the same range as in previous experiments, optimizing for both best average performance and best worst-group1107

accuracy separately.1108

H.4 Textual Description1109

For different datasets, we used distinct textual representations of the underlying bias. The choice of textual1110

descriptions in our experiments depends not only on the attribute-value pairs but also on the dataset itself. For1111

instance, datasets like AWA2-A contain only label-specific information, such as color and habitat type, without1112

an explicit attribute-value format. Therefore, a suitable textual representation for this dataset could be “It is a1113

(*1) animal." Here, (*1) represents the feature identified as a potential biased candidate. Similarly, for GTSRB,1114

incorporating dataset context improves model performance, and a possible template could be “(*1) of the sign is1115

(2). where (*1) and (*2) are replaced by the corresponding attribute and value pair.1116

For datasets such as WaterBirds, AWA2-A, AWA2-B, CELEBA, GTSRB, CIFAR-10, and ImageNet-100 the1117

textual descriptions used in the experiments related to Table 1 are provided in Table 10:1118

Table 10: Textual Descriptions of Spurious Feature for Different Datasets

Attribute Description Dataset
Surrounding environment in image is forest floor WaterBirds
It is a domestic animal AWA2-A
Size of the animal is very large AWA2-B
Image of a male with blond hair CELEBA
Shape of the sign is round GTSRB
Size of the entity is large CIFAR-10
Object has a spotted pattern ImageNet-100

For all experiments related to Table 3, Table 4, we used a standardized textual format: “Image of a person with1119

(*1) and (2).” where (*1) and (*2) correspond to the target class and the correlated attribute, respectively. Further1120

experiments using VLM-based textual description in Table 5 for the target attributes Wearing Earrings, Bangs,1121

Big Nose, Heavy Makeup use textual description as “Person is wearing glasses", “Image of a male person",1122

“Person has long hair", and “Person is wearing glasses" respectively. For metadata, we used the same format as1123

the Table 3.1124

I Comparison with Other Optimization and Data-Centric Methods1125

In general, ImageNet initialization [107] plays a crucial role in achieving strong worst-group accuracy. However,1126

most of our experiments are conducted without ImageNet pretraining to better reflect practical deployment1127

scenarios, particularly those where spurious correlations can significantly degrade model performance [107]. For1128

a fair comparison with optimization-based methods such as gDRO [17] and JTT [16], we additionally evaluate1129

our method on the Waterbirds dataset using a ResNet-18 model pretrained on ImageNet, along with LLM-1130

generated attribute–value annotations. Results averaged over three independent runs are reported in Table 11.1131

We also include comparisons with data deletion methods like D3M [11] and group-balancing approaches such as1132

SUBG and RWG [29].1133

Table 11 compares the average and worst-group accuracy of our method against various robustness-based1134

approaches on the Waterbirds dataset. Methods are grouped based on whether they require group annotations for1135

the entire training dataset and whether they support textual bias descriptions.1136

Our method achieves a competitive average accuracy (0.855) and strong worst-group accuracy (0.756) without1137

relying on group annotations, while uniquely supporting textual bias descriptions. Compared to other methods1138

like ERM, D3M, and JTT, our method improves worst-group accuracy by +27.9% over ERM, +12% over JTT,1139
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and +1.6% over D3M. Further comparison with D3M with the same training setup as Table 3 is provided in1140

Table 6.1141

Group annotation-based methods like gDRO and RWG perform best on worst-group accuracy, but at the cost of1142

requiring explicit group labels for the entire training dataset.1143

Additional challenges associated with these methods in specific applications are discussed in Section 1, Sec-1144

tion 2.2 and Appendix E.1145

Table 11: Comparison of Average Accuracy and Worst group accuracy achieved by our method in
comparison with other robustness-based methods on Waterbirds.

Method Group Annotation (Train) Supports Textual Bias Description Average Accuracy Worst Group Accuracy
ERM ✗ ✗ 0.819 0.477
D3M ✗ ✗ 0.903 0.740
JTT ✗ ✗ 0.852 0.636
Ours ✗ ✓ 0.855 0.756
RWG ✓ ✗ 0.864 0.822
SUBG ✓ ✗ 0.833 0.814
gDRO ✓ ✗ 0.886 0.836

J Empirical Validation of Theoretical Formulation1146

To validate our theoretical claim, we used the codebase provided by Eyuboglu et al. [43] to sample a 10k subset1147

from CELEBA, where the attributes Male and Smiling are highly correlated. We then computed Trak scores1148

for the training dataset using a ResNet-18 classifier trained to predict the Male label. In this setting, due to the1149

strong correlation between Male and Smiling [43, 108] , smiling may act as a spurious feature. Since the task is1150

to distinguish males from females, we consider features like Beard and Moustache to be more causally relevant,1151

and thus expect that samples with these features to have lower A scores compared to those with Smiling.1152

However, statistical analysis of the detrimental attribution(A) scores using T-test for the training samples reveals1153

that Smiling has lower scores for samples compared to samples with Beard and Moustache (Table 12). The1154

difference is statistically significant for Beard (p < 0.001). This supports Proposition 1, demonstrating that such1155

effects can arise in practical scenarios.1156

Table 12: Mean and standard deviation of detrimental attribution (|A|) scores for different attributes,
along with statistical significance from a two-sample t-test against *Smiling*.

Attribute Mean Std p-value (vs Smiling) Significance
Smiling (spurious) 0.539 0.056 – –
Moustache 0.545 0.044 0.1008 Not significant
Beard 0.544 0.036 0.00039 Significant

K Worst Class Performance1157

Table 13 reports gains in the worst-performing class for each dataset. In Awa2-A and Awa2-B, worst-class1158

accuracy more than doubles, while in GTSRB, it improves from 50% to 70%. These results demonstrate that our1159

method enhances class-level performance with minimal negative impact on other classes.1160

Table 13: Worst-class accuracy before and after retraining. The table shows the original worst-class
accuracy and the corresponding value after retraining with spurious samples removed.

Dataset Original Worst-Class Accuracy Retrained Worst-Class Accuracy
Awa2-A 0.040 0.103
Awa2-B 0.040 0.103
CIFAR-10 0.589 0.575
GTSRB 0.500 0.700
ImageNet-100 0.100 0.100
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L Group-wise Accuracy Improvements1161

Table 14: Comparative evaluation of the proposed method (Ours) with the full training baseline
(Original) and Trak, reporting the best average and best worst group accuracy (meanstd) across three
runs.

Target Attribute Spurious Attribute Average Accuracy Worst Group Accuracy
Original Trak Ours Original Trak Ours

Bangs Black Hair 0.9200.007 0.9210.006 0.9230.006 0.5230.079 0.5710.053 0.6490.049
Big Nose Wearing Necklace 0.7650.032 0.7870.009 0.7870.010 0.1270.065 0.0800.047 0.3470.148

Heavy Makeup Straight Hair 0.8050.031 0.8000.055 0.8260.024 0.6510.137 0.6860.078 0.7160.088
Wearing Earrings Bags Under Eyes 0.7910.020 0.7920.019 0.7980.028 0.0400.029 0.0170.029 0.2810.170

Table 15 presents group-wise accuracy before and after removing samples associated with spurious features1162

associated with Table 14. Groups 1–4 show baseline performance, while Groups 1*–4* report results after1163

pruning. Our method yields notable improvements in some groups without major drops in others.

Table 15: Group-wise accuracy before and after removing spurious samples. The table reports the
mean accuracy and standard deviation over 3 runs. Groups 1–4 represent the training with the original
dataset, while Groups 1*–4* correspond to results after data pruning.

Target Attr Spurious-Attr G1 G2 G3 G4 G1* G2* G3* G4*
Bangs Black Hair 0.730.07 0.970.02 0.530.08 0.980.01 0.780.06 0.960.01 0.590.12 0.970.01
Big Nose Necklace 0.130.06 0.940.04 0.320.11 0.890.07 0.220.09 0.940.03 0.370.11 0.890.06
Heavy Makeup Straight Hair 0.680.14 0.800.12 0.810.08 0.820.07 0.720.11 0.830.02 0.800.06 0.800.02
Earrings Bags Under Eyes 0.090.04 0.990.01 0.040.03 0.990.01 0.280.17 0.960.03 0.320.16 0.910.07

1164

M Ablation of Different Components1165

The ablation study in Table 16 highlights the contribution of key components i.e, data Attribution and CLIP, to1166

the overall performance of our method. For the given experiment, we have used cosine similarity with CLIP1167

(Only CLIP) representation to remove samples that align with the description of the underlying bias. When used1168

independently, both components provide noticeable improvements over the full training baseline, particularly1169

in average accuracy. However, they exhibit limitations in worst-group accuracy when applied in isolation.1170

Notably, combining both Attribution and CLIP in our full method yields the highest performance across nearly1171

all settings, especially in worst-group accuracy, demonstrating the complementary strengths of these components1172

in addressing spurious correlations.

Table 16: Comparative evaluation of the proposed method (Ours) with the full training baseline
(Original), Only Attribution, and Only CLIP, reporting the best average and best worst group accuracy
(meanstd) across three runs.

Target Attribute Spurious Attribute Average Accuracy Worst Group Accuracy
Original Only Attribution Only CLIP Ours Original Only Attribution Only CLIP Ours

Bangs Black Hair 0.9200.007 0.9210.006 0.9220.008 0.9230.006 0.5230.079 0.5710.053 0.5480.074 0.6490.049
Big Nose Wearing Necklace 0.7650.032 0.7870.009 0.7770.002 0.7870.010 0.1270.065 0.0800.047 0.1100.091 0.3470.148

Heavy Makeup Straight Hair 0.8050.031 0.8000.055 0.8130.010 0.8260.024 0.6510.137 0.6860.078 0.7390.045 0.7160.088
Wearing Earrings Bags Under Eyes 0.7910.020 0.7920.019 0.7910.021 0.7980.028 0.0400.029 0.0170.029 0.0090.013 0.2810.170

1173

N Architecture-based Ablation on Worst Group Accuracy and Average1174

Accuracy1175

We further evaluate our method on the WaterBirds dataset across different architectures, including ResNet-1176

18, VGG16, VGG13, AlexNet, and ConvNet. Pham et al. [107] shows that the random initial weights can1177

significantly impact the worst group performance of a model, especially in smaller networks. To replicate this1178

setting, we tested our method under extreme conditions, maintaining consistency in textual instructions and1179

using a single run with the same random seed across all baselines.1180

As shown in Table 18 and Table 17, In comparison with the complete data setting our method achieves an1181

improvement of 5.0%, 1.9%, 3.6%, 3.1%, 12.6% in worst-group accuracy for VGG16, VGG13, Convnet,1182

ResNet18 and AlexNet architecture and an improvement of 5.2%, 7.1% 4.9% and 7.1% for VGG16, ConvNet,1183

ResNet18, and AlexNet in average accuracy respectively.1184
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Furthermore, compared to Trak, our method achieves an improvement of 1.1%, 2.4%, and 4.8% in average group1185

performance for ConvNet, ResNet18, and AlexNet, respectively. Additionally, enhancements of 5.0%, 1.4%,1186

7.8%, 4.5%, and 12.9% in worst-group performance were observed for VGG16, VGG13, ConvNet, ResNet18,1187

and AlexNet.1188

Table 17: Architecture Ablation on WaterBirds (Best Worst Group Accuracy)

Model Original Random IF TracIN EWC Trak Ours
VGG16 0.053 0.050 0.064 0.064 0.062 0.053 0.103
VGG13 0.048 0.053 0.087 0.030 0.065 0.053 0.067
ConvNet 0.090 0.034 0.064 0.033 0.053 0.048 0.126
ResNet18 0.050 0.064 0.067 0.017 0.048 0.036 0.081
AlexNet 0.050 0.048 0.107 0.031 0.042 0.047 0.176

Table 18: Architecture Ablation on WaterBirds (Best Average Accuracy)

Model Original Random IF TracIN EWC Trak Ours
VGG16 0.640 0.669 0.657 0.640 0.683 0.686 0.692
VGG13 0.655 0.640 0.610 0.668 0.660 0.669 0.662
ConvNet 0.654 0.705 0.640 0.721 0.711 0.714 0.725
ResNet18 0.641 0.604 0.600 0.694 0.623 0.666 0.690
AlexNet 0.644 0.650 0.586 0.693 0.658 0.667 0.715

O Experiment on Vision Transformer1189

Existing data attribution methods typically compute gradients over all model parameters, which often causes1190

memory issues for large models like Vision Transformers. To address this, we follow recent works [104, 58] and1191

calculated the gradients only for the final feature layer for both Trak and our method. However, this adaptation1192

was incompatible with other baselines.1193

The results on Waterbirds for both methods are shown in Table 19.1194

Table 19: Best Average Accuracy and Best Worst Group performance analysis of our method in
comparison with Trak and Original training of vision transformer with entire dataset.

Average Accuracy Worst Group Accuracy
original 0.601/0.000 0.104/0.000

Trak 0.644/0.020 0.0740/0.014
ours 0.640/0.027 0.1671/ 0.014

P Relative Comparison with the Baselines1195

For experiments related to Table 14, we have provided a comparison of the relative performance improvement1196

achieved by our method against other baselines over the complete training data setting. As shown in Table 201197

and Table 21, our method, on average, outperforms other baselines in terms of best average accuracy and best1198

worst group accuracy.1199

Table 20: Relative improvement in Best Average Accuracy (%) achieved by our method and other
baselines compared to the complete data setting(Original). The results represent the mean scores
from three independent runs, with the best-performing values highlighted in bold.

Target Attribute Spurious Attribute Random EWC IF TracIN Trak Ours
Bangs Black Hair -0.03 0.37 0.36 -0.07 0.16 1.05

Big Nose Wearing Necklace -0.07 1.66 1.10 -0.17 2.23 2.17
Heavy Makeup Straight Hair -0.44 -1.05 0.95 -2.83 -0.44 2.18

Wearing Earrings Bags Under Eyes 0.3 -0.2 -1.17 -0.57 0.1 0.73
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Table 21: Relative improvement in Best Worst Group Accuracy (%) achieved by our method and
other baselines compared to the complete data setting(Original). The results represent the mean
scores from three independent runs, with the best-performing values highlighted in bold.

Target Attribute Spurious Attribute Random EWC IF TracIN Trak Ours
Bangs Black Hair 6.25 15.62 6.66 7.05 4.77 12.58

Big Nose Wearing Necklace 4.4 -3.57 5.10 4.68 -4.65 22.08
Heavy Makeup Straight Hair 1.84 5.95 4.30 -1.24 3.55 6.54

Wearing Earrings Bags Under Eyes 5.93 1.53 13.54 -3.46 -3.23 24.17

Q Sensitivity Analysis1200

Table 22 and Table 23 show the sensitivity of our proposed method on different hyperparameter values.1201

Table 22: Sensitivity analysis of the average accuracy of our method on the WaterBirds dataset for
hyperparameters like the barrier constant (C), the matrix rank (t) (shown by rows), and the minimum
weight fraction (β, shown by columns).

Barrier (C) Rank (t) 0.6 0.7 0.75 0.8 0.85 0.9

5
40 0.657 0.619 0.648 0.673 0.650 0.640
50 0.673 0.642 0.621 0.618 0.618 0.601
100 0.670 0.678 0.650 0.602 0.632 0.631

10
40 0.690 0.671 0.615 0.634 0.621 0.650
50 0.633 0.679 0.639 0.657 0.629 0.609
100 0.653 0.663 0.602 0.642 0.660 –

Table 23: Sensitivity analysis of the worst group accuracy of our method on the WaterBirds dataset for
hyperparameters like the barrier constant (C), the matrix rank (t) (shown by rows), and the minimum
weight fraction (β, shown by columns).

Barrier (C) rank (t) 0.6 0.7 0.75 0.8 0.85 0.9

5
40 0.037 0.051 0.042 0.020 0.050 0.041
50 0.033 0.042 0.055 0.048 0.056 0.065
100 0.020 0.036 0.041 0.081 0.041 0.050

10
40 0.009 0.037 0.056 0.051 0.044 0.030
50 0.044 0.023 0.053 0.031 0.051 0.061
100 0.045 0.031 0.065 0.034 0.034 –

Q.1 Performance Analysis on Different Subset Size1202

To further analyze model performance across different subset sizes, we conducted an ablation study where the1203

best hyperparameters were kept fixed while varying the proportion of removed training data. The results are1204

summarized in Table 24.1205

Table 24: Sensitivity analysis of the worst group accuracy and average accuracy of our method on the
WaterBirds dataset for different subset sizes.

Metrics 3% 5% 15% 25%
Average Accuracy 0.69 0.645 0.682 0.712

Worst group Accuracy 0.081 0.041 0.037 0.002

R Time Taken for Subset Selection1206

In Figure R, we compare the time taken by our method in comparison with other baselines to select a subset of1207

1200 images from 60,000 images of CIFAR-10 for the instruction mentioned in Table 10. Since our method uses1208

the attribution scores generated by Trak and improves upon it. The time taken by our method is slightly longer1209

than Trak.1210
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Figure 2: Comparison of time taken to select a subset of 1200 samples from a training dataset of
60,000 images of CIFAR-10 by different baselines and (Ours) for a given textual instruction.

S Memory Consumption and Other Training Overhead1211

The Table 25 reports GPU and RAM usage of our method compared to other baselines, using the same setup1212

described in Appendix R.1213

As shown, our method introduces only a marginal computational overhead over Trak, which we use for computing1214

data attribution scores. It is to be noted that, while Trak is more memory-intensive, it produces better linear1215

datamodeling score (LDS) scores than other baselines [32].1216

Table 25: GPU and RAM utilization (in MB) of our method compared to baseline approaches.

Method GPU Memory (MB) RAM Usage (MB)
IF 27,749 10,578
EWC 13,221 10,520
TracIN 44,087 9,629
Trak 48,020 10,710
Ours 48,525 10,722
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T Workflow1217

Figure 3: Diagram depicting the workflow of the proposed method

U Images1218

In this section, we have shown the images that have been removed from the training dataset. Figure 4, Figure 5,1219

Figure 6, and Figure 7 show the set of images that have been removed by our method from the training dataset1220

as (Sdeter). For WaterBirds, GTSRB, CELEBA, and AWA2-B, respectively.1221

Figure 4: Set of images removed by our
method for WaterBirds. The instruction set
used for this experiment is “ The surrounding
environment in the image is forest floor".

Figure 5: Set of Images removed by our
method for GTSRB. The instruction set used
for this experiment is “ Shape of sign is
round."
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Figure 6: Set of Images removed by our
method for CELEBA. The instruction set used
for this experiment is “ Image of a male with
blond hair".

Figure 7: Set of Images removed by our
method for Awa2-B. The instruction set used
for this experiment is “ The size of the animal
is very large."
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