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Abstract

The effectiveness of deep learning models heavily relies on the quality and di-
versity of their training data. However, datasets collected from different sources
often introduce simplicity biases, where a models rely on easily learnable but
non-predictive (spurious) features for its predictions. While existing debiasing
techniques focus on model robustness, they leave the data untouched. Further,
they require manual group annotation of the entire training data or changes in
training strategy, which are often constrained by privacy, regulatory, or proprietary
constraints. As data becomes increasingly valuable, identifying and mitigating
bias directly at the data level has gained importance. Recently, data attribution
has emerged as a promising tool for uncovering issues in training data, yet its
vulnerability to simplicity bias has received limited attention. In this work, we
propose a novel data deletion framework that combines Neural Tangent Kernel
(NTK)-based data attribution with textual descriptions of bias to identify and re-
move training samples that do not significantly affect model performance. We first
demonstrate that NTK-based data attribution methods can themselves be influenced
by spurious features. Subsequently, to mitigate this, we use available metadata
or, when unavailable, a vision-language model, to annotate a small validation set
and extract a textual description of the bias. Based on this description, we identify
training samples that are semantically aligned with the spurious feature and exhibit
high detrimental attribution scores. Removing these samples from the training
data and retraining the model on the new training set improves its performance.
Our approach achieves better average and worst-group accuracy, outperforming
existing attribution-based baselines.

1 Introduction

The success of deep learning models is strongly influenced by the quality and quantity of the dataset
used for training [[1H4]. These data are often collected via web scraping [} [6], and external data
providers [7, 18]. However, such datasets can inadvertently contain illegal content [9]] and can
encode negative societal biases [[10, [11] that can influence model performance. In addition, data
collected from such varied sources can introduce distributional shifts, where subpopulations with
specific features may be overrepresented or underrepresented in the training data compared to the test
data [[12].

These imbalances can introduce simplicity bias [13H15] where the model, due to high correlations
between specific features and the prediction task, relies on simpler, non-robust (spurious) features
instead of learning predictive features for classification. Several methods have been proposed to handle
such biases in the model. However, instead of addressing the data as the fundamental source of bias,
they primarily focus on improving model robustness by reweighting the loss function [[16], modifying
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the training objective [[17H19], and model fine-tuning [20]. While effective, they inadvertently modify
the standard training pipeline, which can increase the model’s susceptibility to adversarial attacks [21-
24], and could conflict with regulatory requirements, especially in safety-critical settings [25, 26]],
which require adherence to a specific training regime for theoretical guarantees. Further, considering
the inherent proprietary value of data [27] and the monetary investment needed for collecting a new
dataset, it has become increasingly important to address these challenges at the data level.

A viable alternative in these scenarios could be to remove training samples containing spurious
features [28| 29/ [11]], by ensuring that these samples don’t hurt the overall performance of the model,
as in data attribution and Leave-One-Out (LOO) techniques [30H32]. Data attribution methods aim to
estimate a model’s performance when specific training samples are excluded, enabling the evaluation
of counterfactual scenarios—such as assessing the impact on test accuracy if certain subsets of
the training data were omitted [31} 33} 34]. However, many of these methods are computationally
expensive and can underperform in non-convex settings. Recent advancements in data attribution
methods, such as Trak [32], leverage neural tangent kernels (NTK) to enable scalable data attribution
for non-convex models [32]. However, the impact of spurious features on the data attribution scores
generated by such methods remains an open question.

In our work, we demonstrate (Proposition [T} Appendix[J]) that in the presence of data bias, methods
like Trak [32] can undervalue the attribution scores for training samples with spurious features [13~
15]]. This misattribution can hinder the identification of detrimental samples, especially for methods
that rely solely on the magnitude of attribution scores [35}31]].

Motivated by these observations, we propose a two-stage strategy to mitigate the impact of spurious
features - (a) In the first stage, we focus on identifying such features within the dataset using available
meta-data or annotations generated by a vision language model. (b) In the second stage, we use
multimodal embeddings, such as CLIP [36] to learn a metric [37,[38] that identifies training examples
that are semantically similar to the spurious features identified in the first step and whose removal
can improve the model’s performance as per the attribution scores.

The spurious features in the first stage are identified using metadata wherever available. In cases where
metadata is unavailable, we utilize a vision-language model (VLM) to annotate a small validation
set with its respective attributes and their associated values that are likely to introduce simplicity
biases [39-41]. By evaluating the model’s performance on these attribute-value pairs and comparing
it to the overall performance on the validation dataset [42]], we identify potential spurious features
and generate a corresponding textual description of these biases [43]]. This textual representation
enables targeted data pruning and helps to mitigate the impact of spurious features without relying on
manual group annotations in the training dataset.

In summary, our contributions in this paper are as follows:

* We propose a novel data-centric approach that combines NTK-based data attribution methods
with textual descriptions of underlying bias to mitigate the impact of spurious features in
training datasets.

* We first theoretically demonstrate that NTK-based attribution scores can be influenced
by spurious features, which may limit the effectiveness of methods that rely solely on
these scores for data pruning. To overcome this limitation, we introduce a metric learning-
based data deletion strategy that selectively removes training samples aligned with textual
descriptions of spurious features and exhibiting low attribution scores.

* Qur approach achieves up to a 4% gain in average accuracy, 18% in worst-group accuracy,
and a 50% improvement in class-level performance across various datasets. Additionally, it
outperforms NTK-based methods like Trak on average by 10.6% in worst-group accuracy
for different biased datasets.

2 Related Work

2.1 Data Attribution

Data attribution methods provide a framework to relate a model’s predictions to its training dataset
and have been used in a wide range of tasks, including model debugging and repair [44-H47], subset
selection [33} (34} 48], group robustness [[L1] and removing poisoning attacks [49].
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The idea of linking a model’s predictions to its training data has been studied for decades under various
names, including influence functions [50], regression analysis [S1], and jackknife methods [52].
However, most of these early works focused on linear models and aimed to predict changes in the
optimal parameters when individual or groups of samples were excluded during the learning process.
Recent works have tried to extend influence function and jacknife-based attribution methods to
non-linear models and bigger datasets [30} 53} |54]. However, despite their promising predictive
capabilities, these methods often make strong assumptions of strong convexity and the existence of a
unique global solution, which are not applicable for neural networks [S5]. Furthermore, Basu et al.
[S6], Hammoudeh and Lowd [57]] have demonstrated the fragile nature of methods like influence
functions across different architectures, showing that they sometimes fail basic sanity checks. Various
approaches have been proposed to address the limitations of influence functions, including gradient
agreement scoring [58]], training models to predict attribution scores, as in DataModels [59], and
methods like Trak [32], which leverage concepts from the Neural Tangent Kernel (NTK) for data
attribution. Unlike other approaches, such as DataModels, Trak does not require training thousands of
models [32,159] or tracking the loss changes over the entire training process, making it more efficient.
However, the impact of spurious features within the dataset on the data attribution method like Trak
remains largely unexplored.

2.2 Spurious Features and Simplicity Bias

Spurious features often arise from selection bias in the dataset [60], where, in the presence of
multiple hypotheses for prediction, the model tends to rely on the simplest feature [61} 14, [13]]. This
preference can lead to suboptimal model performance, as it often ignores more robust and meaningful
features that are essential for generalization in real-world scenarios. Various methods have been
proposed to address spurious features in models. These include data augmentation techniques [62-
67], and learning strategies that change the training objectives to make the model robust to spurious
features [17, 168, 169} [19} [16l [70, 20]. However, many of these changes are restricted under the
regulatory policy for safety-critical applications [[71H74]], especially considering privacy concerns
associated with collecting datasets and model certification-based requirements [75, [76]. Recent
work has explored data deletion as a strategy for mitigating spurious features [28} 29, [11]. These
methods use group annotation of the dataset to remove random samples from majority groups [28,
29] or those with high detrimental attribution scores [11]]. However, these methods often require
manual group annotation of training [28 29] or validation data [11], which is costly and time-
consuming. Further, in real-world settings, where biases are identified post hoc after deployment
and evolve over time [[77]], generating such annotations is often impractical, and enforcing a balance
among different groups may result in excessive data removal from the majority group and can harm
generalization [29]. Our method circumvents these limitations by using text-guided data attribution
to efficiently remove harmful samples within a deletion budget, without relying on group labels or
hurting model performance. Further details on limitations and capabilities of existing methods are
discussed in Appendix [E]

3 Proposed Method

3.1 Problem Definition

Consider a classification setting with a training dataset Dy, = {21, ..., 2, }, Where each sample
z; = (x4,y:), consisting of an input (z;) and associated class label (y;) and a validation dataset,
Dyar = {v1, ..., vy} with validation samples v; = (x;, y;). The training dataset (Dy,in) is used to

train a neural network with optimal parameters 6* (Dy,in). Additionally, we assume that |Dy,| <
|Dtrain|~

Suppose for every training sample z there exists ¢ underlying hidden discrete attributes, A =
{a',...,a'} and for each attribute (a’) there are o possible values denoted as V (a’) € {bj1 e bz,}

In real-world settings, neural networks (0*) trained on Dy.,;, often associate class labels (y) with
specific attribute-value pairs (am, b;") [43L[13[14]]. For example, a model trained to predict gender
might associate it with the feature "beard" (present/absent). However, feature imbalance in the datasets
can lead to misleading associations. If most of the male images in a dataset include smiles, the model
might spuriously link "male" with "smiling" rather than "beard." This can cause misclassification,
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Figure 1: The figure illustrates the key steps in identifying detrimental samples. First, the performance
of the model across different attribute value pairs is analyzed to identify and textually describe the
underlying bias. Then, training samples that align with this bias and exhibit high detrimental
attribution scores are selected for removal.

like predicting smiling females as males. We term such misleading attribute-value pairs as spurious
features. In these scenarios, the primary objective of our work is to identify a set of detrimental
examples, SU € Dy, that “correspond” to the spurious features and might degrade the model’s
performance. The model is then retrained from scratch on the filtered dataset, (Dlrain \ Sdeter), to
reduce the influence of the spurious feature in the training dataset similar to prior work like Chaudhuri
et al. [28]].

Our method for identifying S involves two steps: (1) Annotate attribute—value pairs in the
validation set to detect potential spurious features and generate a textual description of the bias; (2)
Select S C Dyyin as samples semantically aligned with the bias and whose removal as per the
data attribution scores does not degrade model performance.

3.2 Attribute Annotation and Spurious Feature Identification

A key component to identify spurious features is the availability of attribute—value annotations for the
validation dataset. However, in many practical scenarios, such annotations are often missing from
the metadata. Chen et al. [39] has shown that in the absence of such information, large language
and vision models can be used to generate annotations necessary to identify the underlying spurious
features. Hence, for datasets without pre-annotated attributes, we annotate the validation set with
potential attribute—value pairs to assist in identifying spurious features.

To generate candidate attribute—value pairs, we leverage large language models such as ChatGPT [39].
ChatGPT is provided with a simple task description and prompted to suggest relevant attributes and
associated values. For example, for a gender classification task, it can generate attributes like “smile",
“beard", with possible values as “presence" or “absence". We adopt task-specific prompts proposed
by Chen et al. [39] to guide this process. Once the attribute—value pairs are generated, the next step is
to annotate the validation dataset. However, considering the limitations associated with ChatGPT
for this task [39], we use Llama 3.2 [[/8]], a vision—language model, to annotate the images in the
validation dataset. Further details about the prompts can be found in Appendix

3.2.1 Spurious Feature Identification

To identify spurious features, we take motivation from recent work that tries to identify systematic
bias in a model [42] 43]] based on its accuracy and errors on the validation dataset. However, unlike
previous methods, which try to identify underperforming subgroups that may require collecting
additional data, we try to determine the overperforming attribute-value pair as a possible candidate
for data deletion [79, 28]. For this, we take inspiration from Johnson et al. [42] and compare the
performance of the dataset associated with each attribute-value pair to the performance of the entire
dataset. If the performance gap exceeds a predefined threshold, the corresponding attribute-value pair
is flagged as a potential spurious feature in the model. Formally, this is expressed as:
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where, D,, is a subset of validation data D,,,; associated with a" attribute and it’s j th yalue b;?. The
indicator function 1 indicates the correct prediction made by the model. The function h(x) represents
the prediction made by the model for a given input x, and y as the corresponding true class label. The
parameter 7 denotes the minimum threshold.

Once an attribute-value pair exceeds the threshold, a textual description is generated to describe
the spurious feature. For example: "Images with {a} as {b}." Here, (a, b) is the attribute value pair
selected as per Equation |1} Details about the textual description are provided in Appendix

3.3 Coherent Data Attribution

After generating the desired text, the next task is to select a subset of data that is semantically coherent
with the given text and whose removal can improve the performance of the model [80]].

Since our task involves efficient subset selection, we formally define data attribution as follows:

Definition 1 (Data Attribution and Leave-one-out Influence Score [32]]). Given training dataset
Dirain, and a model’s utility function f (v; 9) that measures the performance of the model, the data
attribution score & : Dyuin X Dyyy — R is defined as the change in the model’s prediction for a
validation sample v; with respect to the optimal parameters when the training example zy, is excluded
from the training dataset during the learning of the optimal parameters 0*. Formally,

a(vi; Zk) = f <vi; 0* (Dtrain)) - f(vu 9* (Dtrain\zk>> (2)

For a classification task, the utility function f(z; @) for a sample z = (z,y), [32], is defined as:
0y — p(z;0)
£les0) =tog (2ED ), ®

where p(z; 0) represents the probability assigned to the correct class by the softmax function of
a neural network parameterized by 6. A high f(z;8) corresponds to a high likelihood for a given
sample (2).

The NTK-based methods like Trak, have a closed-form formulation for data attribution score (&)
(Definition [T)) expressed as:

N
a(ijZi) = %Z <¢n(vj)T(q)z(bvz)_l‘f)n(zi))
n=1
1 N
« Ly (1_pf;v> )

where, for N different checkpoints of model (6*), {pZ } represents the probability assigned by n*"
set of parameters to the correct class (y;), for sample z; = (z;,;). The terms ¢,,(v;) and ¢, (z;)
denote the projected gradients of the validation sample v; and the training sample z; with respect
to the nt" set of optimal parameters, and for the utility function ( f(s 9;)) Additionally, ®,, is
the projected gradient for the entire training dataset. Further details about Trak can be found in
Appendix [B]

To quantify the impact of removing a data sample z from the training dataset on the performance of

the entire validation dataset, we define the metric .A(z) as a detrimental attribution score associated
with the validation dataset for sample z. This metric measures the change in the model’s performance

( f ) for the validation dataset when z is excluded from the training dataset.

Alz)=— > (v, 2)

v €Dyyl

= 5 (£ Puan\ 20) = F(0530 (Do) ©

v; €Dyl
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where z; € Dyin. Unlike the data attribution score defined in Definition |1} A(z;) is the negative

of the general definition and evaluates the contribution of each training sample to the likelihood of
the entire validation dataset. A higher value of .4(z;) indicates that removing the training sample z;
and retraining the model with the updated dataset leads to an optimal parameter 6* that improves
the likelihood of the validation dataset (Equation [3). In other words, training examples that degrade
overall validation performance are assigned higher A(z;) values. Once A(z;) is calculated, it is
normalized and used for further steps.

While removing samples with high A(z) values can improve the model’s performance; however,
its impact on the downstream model is often tied up with its capability to remove samples with
spurious features. During training, spurious features present in the dataset can result in gradient
starvation [81} 61], a phenomenon that can hamper the learning of predictive features. Under such
scenarios, we theoretically show that the detrimental attribution score(.4) for a data sample containing
a spurious feature (f1) can be lower than that of a data sample with predictive features (f2), even
when both features are equally represented. Consequently, deletion strategies based solely on high
attribution scores may inadvertently remove examples with predictive rather than spurious features
(Proposition 1)) and can fail to capture the impact of removing data associated with spurious features
on the overall generalization.

Proposition 1 (Under Valuation of Attribution Scores). Consider a neural network in the neural
tangent kernel (NTK) regime, trained using binary cross-entropy loss with two equally informative
features, f1 and fs. lets assume that due to learning dynamics f, becomes dominant and causes
gradient starvation of fo as per Pezeshki et al. [61|]. Then, for two training samples z; and z; with
equal representation of dominating features f1 and fo, respectively. The attribution score for z; can
be systematically undervalued relative to z;. Formally:

The proof of Proposition[I] along with further details on gradient starvation, is provided in Appendix|F]
Empirical evidence supporting this phenomenon is presented in Appendix|[]]

This limitation of attribution scores motivates the need for a targeted removal strategy that specifically
identifies and eliminates training samples sharing similar spurious features and exhibiting high A(z)
scores. In many practical scenarios, the information about spurious features is missing in the data.
Although annotating the entire training dataset using VLM-based models is possible, this approach is
often excessively time-consuming and practically infeasible, particularly for large-scale datasets [40].
To address this, we adopt a zero-shot approach [82] and leverage textual descriptions of bias and CLIP
embeddings to select data samples that are semantically similar to the identified textual descriptions.
Specifically, we convert the textual description (Section [3.2)) of the potential spurious feature into
an embedding Cy. Similarly, we convert all images in the training dataset into their corresponding
CLIP embeddings Cfmage fori € 1,...,|Dyain|. Each training sample z; is then assigned a score k;,
reflecting its semantic similarity to the identified bias as per the given equation :

k; = exp < _ (C‘C’“ — ciimagE)]\é (Clexl — Ciimﬂge)T )7

where, M = LL",L e R°*' t <« D (6)

The text and image features, denoted as Ciex, Cfmage € R'™P are represented as row vectors in a
D-dimensional space. The matrix M is a positive semi-definite matrix, constructed as the outer
product of a low-rank matrix L (rank at most t), and can serve as a learnable transformation. Since M
defines the distance metric, varying the values of L allows us to generate different similarity measures
for comparing data points [37,[38].

We aim to remove data samples that have high .4 scores and are semantically aligned with the
identified bias. To achieve this, we learn the matrix L [83} 37, 38] by maximizing the weighted
A score for each sample, where higher weights indicate stronger semantic alignment with bias as
per Equation [6] To maintain semantic coherence with the bias description, the cumulative score for
the dataset is enforced to exceed a threshold 7, defined as a fraction (/3) of the total training size
(|Dyain])- A larger T emphasizes semantic alignment, while a smaller 7 allows for flexibility in
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sample selection based on A scores. The complete optimization objective is described as below :
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ma A(zi
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S.t. Z ki > T, T = 6 X ‘Dtrain‘A (7
=1

To ensure that the optimization remains tractable, we replace the hard constraint with a soft penalty
term [83]] in the objective function. Further detail on this is provided in Appendix [C]

Once the optimization is complete, a subset of training data with k; scores greater than the hyper-
parameter + is selected for removal (S%tr). The model is then retrained with the updated training
dataset (Digin\S®") where, S%" = {2, € Dyin | ki > 7}. A sensitivity analysis of all the
hyperparameters, and comparison with only CLIP and only data attribution on overall performance is
provided in Appendix [Q]and Appendix [M] respectively.

4 Experiments

4.1 Setting

We evaluate the performance of our method across various datasets and compare it with existing data
attribution techniques, including original training of model with complete dataset (original), Random
deletion of data points (Random), Influence Function (IF) [30], TracIN [58]], EWC Repair [31], and
Trak [32]]. The datasets used in our experiments include WaterBirds [84]], Animal with attributes
(AWA?2) [85], German Traffic Sign Recognition Benchmark (GTSRB) [86], CELEBA [87, 43} [88]]
(Appendix [H), CIFAR-10 [89]], and ImageNet-100 [90, 91]]. Further comparisons with robustness-
based methods(groupDRO [17], JTT [16]) and group balancing methods are provided in Appendix [I}
For datasets such as GTSRB, CIFAR-10, and WaterBirds, we utilized attributes generated by ChatGPT
and VLM models. To further assess the impact of metadata availability, we created two variants
for the AWA?2 datasets. The first variant, AWA2-A, includes class-specific annotations provided by
the original datasets. The second variant, AWA2-B, uses attributes generated using ChatGPT and
VLM-based annotation techniques (Section [3.2)). All Primary experiments were conducted using a
ResNet-18 model, which is the base architecture used in NTK-based data attribution methods such as
Trak [32] for the image classification task. Additional experiments using alternative architectures
and vision transformer models are presented in Appendix [N] and Appendix [O] respectively. We
have reported the worst group accuracy and average accuracy based on prior work on spurious
features [67, 117, 128]]. However, due to the absence of well-defined group structures in many real-
world datasets [17], we have compared these datasets on average accuracy and class-level accuracy.
All the experiments were conducted on two NVIDIA A6000 GPUs. Further details on training,
hyperparameters, and subset size are provided in Appendix [H Algorithm [T|(Appendix) illustrates the
overall workflow of our approach. We also report time and memory overheads associated with subset
selection in Appendix @ and Appendix [S} respectively. Sample images from the selected subset Sdter
are shown in Appendix [0]

4.2 Improvement in Average Accuracy

Table[T|reports the improvement in average accuracy achieved by our method compared to existing
baselines. On average, our method outperforms Trak by 1.4%, EWC by 1.6%, TracIN by 1.4%,
Influence Functions by 2.0%, and the original full-dataset training baseline by 1.7%. Notably,
we observe gains of 1.9%, 2.5%, and 2.4% over Trak on AWA2-B, WaterBirds, and AWA2-A,
respectively. The performance improvement highlights the efficiency of our method in removing the
detrimental samples associated with spurious features. We further saw a substantial improvement in
under represented class as discussed in Section[4.3] Additional experiments on worst-group accuracy
and architectural ablations for WaterBirds are provided in Appendix [N]

4.3 Class Level Improvement after Data Deletion

Table 2] presents class-level accuracy for datasets with more than two classes. As per the results, our
method improves the accuracy of a significant number of classes across datasets. For example, in
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Table 1: Comparative evaluation of average accuracy of our proposed method (Ours) against baseline
approaches across multiple datasets. The results report mean accuracy scores over three independent
runs, with the best-performing values highlighted in bold. Entries with a gain of more than
over full-data training are highlighted in orange, while those exceeding 3% are shown in blue.

Dataset Original Random IF TracIN EWC Trak Ours
WaterBirds 0.638 0.606 0.603  0.652 0.650 0.656 0.681

AWA2-A 0.644 0.622 0.644  0.652 0.642 0.638 0.662
CELEBA 0.895 0.893 0.890 0.893  0.890 0.898 0.906

GTSRB 0.969 0.966 0973 0971 0975 0971  0.980
AWA2-B 0.644 0.622 0.644  0.652 0.642 0.638 0.657

CIFAR-10 0.774 0.787 0.798  0.784 0.789 0.793  0.801
ImageNet-100 0.440 0.436 0429 0423 0423 0435 0438

Table 2: Class-level accuracy improvement(Imp) after data removal across datasets. The table shows
the maximum improvement in any class, the number of improved classes, and the mean improvement
across them.

Dataset Max Imp #Imp Classes Mean Imp
Awa2-A 16.27% 6/10 11.12%
Awa2-B 29.16% 4/10 17.98%
CIFAR-10 10.39% 7110 5.59%
GTSRB 50.00% 22 /43 5.69%
ImageNet-100  36.00 % 51/100 10.15%

Awa2-A, Awa2-B, ImageNet-100, and CIFAR-10, over 40% of the classes show improvement, with
some achieving gains as high as 29.16%. Notably, in GTSRB, 22 out of 43 classes benefit, with a
maximum per-class improvement of 50%. The improvement in average accuracy highlights that the
improvement in underperforming classes is attained without substantially degrading the performance
of other classes. Details on worst-class accuracy are provided in Appendix [K]

Table 3: Comparison of best average accuracy across different data attribution methods for different
spurious attributes. The table reports the mean accuracy across three independent runs. Entries with a

gain of more than over full-data training are highlighted in orange, while those exceeding 3%

are shown in blue.
Target Spurious Attribute Original Maj.-Rand Random IF EWC TracIN Trak Ours
arched eyebrows receding hairline 0.713 0.740 0.739 0.716  0.724 0.730 0.722  0.736
attractive mouth slightly open 0.628 0.627 0.668 0.640  0.633 0.631 0.658  0.673
big nose male 0.771 0.770 0.770 0.764  0.751 0.745  0.756  0.780
goatee bushy eyebrows 0.946 0.931 0.947 0938 0951 0953 0949 0.953
mouth slightly open  smiling 0.869 0.871 0.877 0.877 0.860 0.876 0.867 0.877
mouth slightly open  wearing lipstick 0.820 0.804 0.801 0.828 0.834 0.816 0.801  0.839
narrow eyes eyeglasses 0.840 0.858 0.862 0.856 0.858 0.860 0.855 0.862
pointy nose mouth slightly open 0.690 0.714 0.676 0.689  0.695 0.709  0.694 0.698
receding hairline rosy cheeks 0.921 0.909 0.920 0921 0920 0916 0911 0.930
male pointy nose 0.919 0.931 0.907 0.909 0911 0906 0915 0.921

4.4 Performance across Different Spurious Attributes

To further investigate the impact of spurious features on both worst-group and average performance,
we follow the setup of Eyuboglu et al. [43]] and select a subset of the CELEBA dataset where the target
attribute is strongly correlated with a spurious feature. We compare the average and worst-group
performance achieved by our method against other baselines in Table [3]and Table d Additionally,
considering the benefit of random data deletion in biased dataset [28]] we introduce a new baseline,
Maj.-Rand, where the subset of data is randomly deleted from the majority group. As shown in the
results, our method outperforms other baselines in average accuracy in 7 and worst-group accuracy
in 8 out of 10 settings, respectively. Notably, we observe a gain of over 4% in average accuracy for
the target attribute attractive, compared to training on the original dataset. Similarly, worst-group
accuracy improves by over 15% for attractive, receding hairline, and arched eyebrows, and by more
than 5% for big nose, goatee, and male.
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Table 4: Comparison of best worst-group accuracy across different data attribution methods for
different spurious attributes. The table reports the mean accuracy across three independent runs.
Entries with a gain of more than over full-data training are highlighted in green, while those
exceeding 15% are shown in violet.

Target Spurious Attribute  Original Maj.-Rand Random IF EWC TracIN Trak Ours
arched eyebrows receding hairline 0.187 0.314 0.113 0.247 0262 0.196 0.099 0.354
attractive mouth slightly open 0.213 0.242 0.347 0.266 0.241 0.205 0.392 0.407
big nose male 0.131 0.076 0.096 0.143  0.092 0.113 0.172 0.221
goatee bushy eyebrows 0.432 0.493 0.287 0.437 0439 0387 0.278 0.548
mouth slightly open  smiling 0.524 0.415 0.552 0418 0.441 0487 0.433 0.489
mouth slightly open  wearing lipstick 0.555 0.471 0.557 0598 0594 0549 0.486 0.612
narrow eyes eyeglasses 0.208 0.052 0.119 0.000 0.092 0.128 0.024 0.151
pointy nose mouth slightly open 0.045 0.044 0.046 0.034 0.028 0.021  0.040 0.084
receding hairline rosy cheeks 0.121 0.228 0.131 0.179 0241 0254 0.201 0.296
male pointy nose 0.840 0.882 0.824 0.833 0861 0.870 0.875 0.903

Table 5: Comparison of best average and best Table 6: Comparison of best average and best
worst-group accuracy between metadata-driven worst-group accuracy between our method and

and VLM-guided textual description. D3M across different spurious attributes.
Target Sp. Attribute Meta Data VLM Target Spurious Attribute Ours D3M
Avg. Acc. WG Ace.  Avg. Ace. WG Ace. Avg. Acc. WG Ace.  Avg. Ace. WG Acc.
bangs black hair 0922 0.649 0916 0.624 bangs black hair 0922 0.649 0920 0.627
big nose wearing necklace  0.787 0.347 0.776 0.236 big nose wearing necklace 0.787 0.347 0.747 0.173
heavy makeup  straight hair 0.826 0.716 0.835 0.716 heavy makeup  straight hair 0.826 0.716 0.821 0.654
wearing earrings ~ bags under eyes 0.798 0.281 0.791 0.214 wearing earrings ~ bags under eyes 0.798 0.281 0.787 0.068

4.5 Ablation between Meta Data and VLM-based Description

Table [5|compares the performance of our method when using metadata versus VLM-generated textual
descriptions of the spurious feature. While both strategies show comparable performance in terms
of average accuracy, the metadata-driven variant generally achieves higher worst-group accuracy.
This shows that a better annotation of underlying bias can help in the targeted removal of detrimental
samples. However, even in the absence of such annotation, LLM and VLM-based methods can
generate comparative performance.

4.6 Comparison with Group Annotation based Subset Selection

Table 6] presents a comparative evaluation between our method, which relies on the textual description
of bias, against a technique that can use group annotation of spurious features in the validation
dataset. To compare with such a method, we define group structure based on different values of
Spurious Attribute and Target, and then use the method proposed by Jain et al. [[11] (D3M) for subset
selection. As per the result, on average, our method consistently outperforms D3M across both the
best average and worst-group accuracy with a gain of 1.5% in best average accuracy and 11.8% in
best worst group accuracy without using the explicit group annotation. This highlights the efficiency
of the soft comparison scheme of clip features in handling partially visible features and the proposed
optimization scheme compared to hard thresholding used in group annotation.

5 Conclusion

In this work, we propose a data deletion framework to mitigate the impact of spurious biases in the
training dataset and enhance model performance. Our method employs metric learning techniques
to target and remove training samples that are semantically aligned with the textual description of
identified biases and whose removal, based on attribution scores, does not adversely affect model
performance. To the best of our knowledge, this is the first approach to use text-guided data attribution
scores to mitigate simplicity bias in models. However, its effectiveness depends on the quality of the
textual descriptions used to capture spurious biases, and the current framework is limited to image
datasets. In future work, we aim to incorporate a human-in-the-loop framework to better mitigate
complex biases and to extend it to NLP tasks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer:[Yes]
Justification: The abstract and introduction clearly articulate the primary contributions of the paper.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims made in the
paper.

» The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses the limitations of existing methods in the Conclusion
section, highlighting areas where current approaches fall short and talks about future research direction.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

¢ The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]
Justification: All assumptions and detailed proofs are provided in Appendix [F]
Guidelines:

¢ The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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675 * The proofs can either appear in the main paper or the supplemental material, but if they appear in

676 the supplemental material, the authors are encouraged to provide a short proof sketch to provide
677 intuition.

678 * Inversely, any informal proof provided in the core of the paper should be complemented by
679 formal proofs provided in appendix or supplemental material.

680 ¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

681 4. Experimental result reproducibility

682 Question: Does the paper fully disclose all the information needed to reproduce the main experimental
683 results of the paper to the extent that it affects the main claims and/or conclusions of the paper
684 (regardless of whether the code and data are provided or not)?

685 Answer: [Yes]

686 Justification: The codebase for reproducing the results is linked in the Abstract, and Appendix
687 provides additional implementation details.

688 Guidelines:

689 * The answer NA means that the paper does not include experiments.

690 « If the paper includes experiments, a No answer to this question will not be perceived well by the
691 reviewers: Making the paper reproducible is important, regardless of whether the code and data
692 are provided or not.

693 « If the contribution is a dataset and/or model, the authors should describe the steps taken to make
694 their results reproducible or verifiable.

695 * Depending on the contribution, reproducibility can be accomplished in various ways. For
696 example, if the contribution is a novel architecture, describing the architecture fully might suffice,
697 or if the contribution is a specific model and empirical evaluation, it may be necessary to either
698 make it possible for others to replicate the model with the same dataset, or provide access to
699 the model. In general. releasing code and data is often one good way to accomplish this, but
700 reproducibility can also be provided via detailed instructions for how to replicate the results,
701 access to a hosted model (e.g., in the case of a large language model), releasing of a model
702 checkpoint, or other means that are appropriate to the research performed.

703 * While NeurIPS does not require releasing code, the conference does require all submissions
704 to provide some reasonable avenue for reproducibility, which may depend on the nature of the
705 contribution. For example

706 (a) If the contribution is primarily a new algorithm, the paper should make it clear how to
707 reproduce that algorithm.

708 (b) If the contribution is primarily a new model architecture, the paper should describe the
709 architecture clearly and fully.

710 (c) If the contribution is a new model (e.g., a large language model), then there should either be
71 a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
712 with an open-source dataset or instructions for how to construct the dataset).

713 (d) We recognize that reproducibility may be tricky in some cases, in which case authors are
714 welcome to describe the particular way they provide for reproducibility. In the case of
715 closed-source models, it may be that access to the model is limited in some way (e.g.,
716 to registered users), but it should be possible for other researchers to have some path to
717 reproducing or verifying the results.

718 5. Open access to data and code

719 Question: Does the paper provide open access to the data and code, with sufficient instructions to
720 faithfully reproduce the main experimental results, as described in supplemental material?

721 Answer: [Yes]

722 Justification: The codebase for reproducing the results is linked in the Abstract, and Appendix [H]
723 provides additional implementation details.

724 Guidelines:

725 * The answer NA means that paper does not include experiments requiring code.

726 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
727 guides/CodeSubmissionPolicy) for more details.

728 * While we encourage the release of code and data, we understand that this might not be possible,
729 so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
730 this is central to the contribution (e.g., for a new open-source benchmark).

731 * The instructions should contain the exact command and environment needed to run to reproduce
732 the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
733 guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: The aforementioned details are available in Appendix [H]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: The mean across three runs is reported in the main draft.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Memory and time complexities are reported in Appendix [S|and Appendix [R] respectively.
Additional details can be found in the Experiments section.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Most ethical concerns are either not applicable to this work or have been appropriately
addressed.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This work does not pose any specific societal risks; on the contrary, the proposed method
actively addresses and mitigates model biases.

Guidelines:

¢ The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: This work does not pose any such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: Our code provides credit to external codebases in github repository.
Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

¢ The authors should state which version of the asset is used and, if possible, include a URL.
¢ The name of the license (e.g., CC-BY 4.0) should be included for each asset.

» For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: We have not introduced any new assets in this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing-based experiments were conducted in this work.
Guidelines:
¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.
* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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899 Answer: [NA]

900 Justification: No experiments involving human subjects were conducted for this work

901 Guidelines:

902 ¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
903 subjects.

904 * Depending on the country in which research is conducted, IRB approval (or equivalent) may be
905 required for any human subjects research. If you obtained IRB approval, you should clearly state
906 this in the paper.

907 * We recognize that the procedures for this may vary significantly between institutions and
908 locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
909 their institution.

910 ¢ For initial submissions, do not include any information that would break anonymity (if applica-
91 ble), such as the institution conducting the review.

912 16. Declaration of LLM usage

913 Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
914 component of the core methods in this research? Note that if the LLM is used only for writing,
915 editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
916 originality of the research, declaration is not required.

917 Answer: [Yes]

918 Justification: Our work builds on the approach proposed by HiBug [39] and leverages large language
919 models (LLMs) and vision-language models (VLMs) for data annotation.

920 Guidelines:

921 * The answer NA means that the core method development in this research does not involve LLMs
922 as any important, original, or non-standard components.

923 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
924 should or should not be described.
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A Algorithm

Algorithm 1 Proposed Method

Require: Training Dataset (Dyi,), Validation Dataset (Dyqjiq4), Number of Checkpoints (M), Rank
for Metric Learning (¢), Min Weight Fraction (), Cutoff for Subset Selection (), CLIP Embed-
ding Model (C), Epochs for Classifier Training (£), Optimization Iterations for Metric Learning
@).
## Classifier Training
i=0
for epoch € [0...&] do
Train the classifier using D .
ifepoch € [£,£ — 2, —4,E —6,E — 8] then
Save the checkpoint 6;.
i+=1
end if
9: end for
10: Save N = [0y, 01, 02, 03, 04] checkpoints for the calculation of attribution score as per Equation
11: ## Spurious Feature Identification
12: Generate a list of possible attributes and corresponding values for D,,;q using ChatGPT (Sec-
tion [3.2).
13: fori € [1...|Dyul] do
14:  Annotate attribute-value pairs for sample v; using a Llama-based VLM model (Section [3.2).
15: end for
16: ## Calculating the Detrimental Attribution Score
17: for z; € {21 ...2,} do
18:  Calculate the attribution score .A(z;) using the saved checkpoints (Equations |4|and .
19: end for
20: Compare the accuracy of each attribute-value pair using Equation[I] Flag an attribute-value pair
as spurious if its accuracy exceeds the average dataset accuracy by a threshold 7.
21: Generate a textual representation of flagged attribute-value pairs under the context of the dataset
(Appendix [H.4).
22: Create a CLIP embedding of the textual representation (Ciext)-
23: ## Metric Learning
24: fori € [1...|Dyain|] do
25:  Calculate the CLIP image embedding (Cfmage) for each sample z; in Dy .
26: end for
27: fori € [0...Z] do
28:  Optimize the loss £ using Ciexi, Cimage» and A(z) as per Equationto generate the metric k
using the hyperparameter t, 3.
29: end for
30: Use the score k, v to identify S and retrain the model on Dy, \ S,

PRIL AR

B Details on Trak

1 & T aTa y—1 1 & 2;
Q(Uj,zi) = N Z (¢n(vj) ((bn (I'n) ¢n(zz)> X N Z (1 _pnl>
n=1 n=1
where, pji = (1 + exp(—yi £ (2:;05))) ", n(v;) = P Vo f(v;:6;),
Gn(2:) =P Vo f(2i305), @n = [dn(z1) 5. s Pn(2D0n)) ']
®, e R™* P~ N0, 1), k<p. 8)

Equation 8] illustrates the calculation of the trak score. Scores consist of an average of the data attribution score
calculated over multiple checkpoints (N). The terms ¢, (v;) and ¢, (2;) denote the projected gradients of the
validation sample v; and the training sample z; for the n*" set of parameters and projection matrix P. This
projection matrix reduces the dimension of the gradient Vg f(z;0;;) € R? to a lower-dimensional space R”,
where k < p, while approximately preserving the inner product, as per the classical Johnson-Lindenstrauss
theorem [92].
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C Soft Penalty for Optimization

For efficient optimisation of the constrained objective presented in Equation m we have replaced the hard
constraint with a soft constraint ( d(k) ) as per d’Eon et al. [83]].

(n-rea) \

d(k) = C - max 2

This penalty term is quadratic and scaled by a shrinkable weight w, which is gradually reduced throughout the

optimization process. The overall unconstrained optimization problem is defined in Equation[I0]where C is a
hyperparameter.

‘ Dirain |

> S g | Al —d(k). (10)

L = max
L

D Notations

Table 7: Notation table for key equation in main draft and proof

Symbol Description

General Definitions
h(x) Model prediction for input
Y True label corresponding to input x
1(h(z) =y) Indicator function: 1 if prediction is correct, else 0
Dyal Validation dataset
Diav ) Subset of validation data with attribute-value pair (a", b7)
Diain Training dataset: Dyain = {21, 22, . .., 25} Where z; = (z;,v;)
X,y Feature set X = {x1,22,...,x,} and label set Y = {y1,v2,...,yn}
Zks Zi Training samples from Dy
vj Validation sample
7 Output of the final logit layer of a neural network
(4 Vectorized parameters of the neural network, # € RP
e; Standard unit vectors

Neural Tangent Kernel (NTK) Specific
G(x,0) Neural Tangent Random Feature (NTRF) matrix: G = %
Go NTRF matrix at initialization: Gy = G(X, 6y)
SVD Decomposition and Gradient Starvation
U,S, vV Singular Value Decomposition (SVD) components: YGy = USV ™
u', v Singular vectors from U and V' corresponding to features
i Singular value representing the strength of the " feature
T Response of the network to features: I = U Y = SV7T9
I Response of the ;" feature
Attribution and Trak Scoring

P, Stacked gradient features of all training points for model n
f(v;0) Model output used for attribution (e.g., logit or loss) for input v under parameters
én() Projected gradient feature under model n
a(v), z;) Attribution score: impact of removing z; on prediction for v;
A(zi) Detrimental attribution score for training sample z;
pi Predicted probability for z; under model n

Random projection matrix with entries drawn from NV(0, 1)

Optimization and others

Cuexts Clmage Text and image embeddings respectively
Trade-off hyperparameter: 7 = 8 X |Dyain| (comml tradeoff between data attribution and semantic coherence)
B Hyperparameter associated with 7~
ki Selection weight for sample i
d(k) Penalty term enforcing deletion constraint
L Final optimization objective including penalty
C Hyperparameter associated with soft penalty EquationE
M =LL"T  Metric matrix constructed from L
L e RPx¢ Learnable matrix under optimization defined by Equalionm
T Accuracy threshold to detect spurious bias
0*() Final model parameters trained on the specified dataset

E Methods for Handling Spurious Features

Table[B]outlines the key capabilities and limitations of existing methods relative to ours. While data augmentation
techniques [62H67] are widely adopted, they often require external data, which can conflict with privacy and
regulatory constraints [93H96]. Moreover, without appropriate supervision, they risk introducing new spurious
features or being vulnerable to data poisoning attacks [97,98]].
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In contrast, methods such as group annotation-based optimization (e.g., gDRO [17]), loss reweighting techniques
(e.g., JTT [16]), and final-layer fine-tuning [[70| [20] do not pose privacy risks. However, in safety-critical
applications where models must satisfy stability guarantees [75, (76} 199, these methods can compromise
robustness, especially when models are required to ensure Lipschitz continuity for certification. Specifically,
they are susceptible to targeted attacks [21H24], particularly when the training procedure heavily relies on a
small subset of influential examples [100, 98] used for fine-tuning or reweighting loss values.

Group-balancing techniques [28l 29]] partially address these challenges, but often over-prune majority groups. In
contrast, our method supports budget-constrained, targeted sample removal, ensuring only detrimental examples
are excluded during training.

Furthermore, many of these methods [17, 28} 29]] rely on manual group annotations of the training dataset. As
spurious features [77]] evolve post-deployment, maintaining robustness would require repeated manual annotation
cycles. In contrast, our approach eliminates the need for group labels for the training dataset and leverages
textual descriptions of bias to guide targeted data removal. The use of a textual description of the bias and
the proposed metric learning approach provides a zero-shot approach [101} 182]] to approximate the underlying
group structure without having any annotation overhead. This design also allows integration of feedback from
subject-matter experts, making the process more adaptive and practical.

Table 8: Comparison of methods across regulatory and robustness capabilities.

Method Regulatory  Supports Textual No Group Annotation Privacy Prevent Over pruning of Robust to

Restrictions Descriptions in Training Data Majority Group Adv-Attacks
Data Augmentation X X v X v X
Group-Annotation based Optimization X X X v v -
Reweighting Loss/Data X X v v v X
Last Layer Fine-Tuning X X v v v X
Group Balancing Method v X X v X v
Ours v v v v v v

F Theoretical Formulation

For dataset Dyain = {21 ... 2n} Where z; = (zi,y;), and @; € R?, and corresponding labels y; € {—1,+1}".
Let ¢ denotes the output of the final logit layer of an L-layer neural network trained using binary cross-entropy,
and 0 € RP” represents a p-dimensional vectorized parameter of the neural network (Equation Equation . let
X={z1...zn}and Y = {y1 ... yn} constitute the respective features and class labels.

In the Neural Tangent Kernel (NTK) framework [102], the final output of a neural network can be approximated
as a linear function of parameters, whose properties are governed by the Neural Tangent Random Feature (NTRF)
matrix, defined as:

09(X;0)

50 G e R"*P, (1)

g(X79) =

For wide-width neural networks, the NTRF matrix remains approximately constant during training [61], allowing
the output of the neural network to be approximated using the initial NTRF matrix, Go = G(X, 0o), as follows:

9(X,0) = Gob. (12)

The dominant features of the dataset can be estimated using the principal components of Go = G(X, 6p), which
are equivalent to the principal components of the NTK gram matrix [103]].

Definition 2 (Features and gradient starvation [61]]). Consider a support vector decomposition of Y Go =
USV'T, where Y = diag(y), the i'" feature is represented by (V") (;..y or (V)(..s) with its strength denoted
as s; = ()i and its weight across all training samples represented by (U) . ;). The response of the neural

network to the i" feature can be expressed as T'; , where:

r:=U"vyg=5sv".

Due to the imbalance in the training dataset, for a given set of features and the optimal parameter 0*, the

presence of the i*"* feature can influence the learning of the j*"* feature. This phenomenon, referred to as gradient
starvation, arises in optimal parameters if:

*

dr’;

d(s?)

7

<0
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Deﬁnition suggests that as the strength of the it" feature (s?) increases, the learning of the ;%" feature gets
impacted. This implies that stronger features can dominate the learning process, leading to a reduced contribution
of other informative features in the model’s predictions.

Theorem 1 (Gradient Starvation Regime [61]). For a neural network in the linear regime and trained using
binary cross entropy loss with feature coupling between two features f1 and f2 as defined in Pezeshki et al. [61)]
and with s% > 5%, we have,
drs
d(s?)

<0,

Now, under the given setting, we will try to understand the influence of gradient starvation on the performance
of the NTK-based data attribution methods :

Proposition 2 (Under Valuation of Trak Scores). Consider a neural network in the neural tangent kernel (NTK)
regime, trained using binary cross-entropy loss with two equally informative features, f1 and fa. lets assume
that due to learning dynamics f1 becomes dominant and cause gradient starvation of f2 as per Pezeshki et al.
[61)]. Then, for two training samples z; and z; with equal representation of dominating features f1 and f»
respectively. The attribution score for z; can be systematically undervalued relative to z;. Formally:

|A(zz)| < !.A(zj)|
Proof. For a sigmoid-based activation, the output probability for feature set (X ) is given by:

1
1+ exp (—g(X;0)
p(X;0) - (14 exp(—g(X;0))) =1
p(X;0) - exp (— g(z;0)) = 1 —p(X;0),

vy p(X;0)
o) = o8 (+250)

p(X;0) =

7

I

13)

Hence, the utility function (f) used in Trak for data attribution (Equation@) is equivalent to the logit of a binary
cross entropy (4).

From the definition of gradients:
0y(x;0)  0Go - 6
00 9

As per Equation[dand Equation[§] ®,, = Go - P. Now, considering that the projection matrix [92]] preserves
the inner product of the actual gradient vector. We will simplify our argument and calculate the value for the
unprojected gradients [32]] (P =1 d). Furthermore, under the NTK regime, where the optimal parameters are
similar [102f], we calculate the attribution score for a single checkpoint (M=1). For ease of derivation, we will
omit the subscript mi.e., ®; = ® and ¢ = ¢, hence:

d =Gy (15)
o"® = GJ G (16)

=Go 14

Now, as per the feature decomposition defined in Definition[2]:

YGo=USV'
(YGo) " (YGo) = (USVT) | (USVT>

gfy'vg, =vsvT

amn
Since Y = diag{y1,...,yn} and y € {—1, 1}, it follows that:
YTy =1,
Ga Go =VS*VT,
»'e=vs*vT. (18)
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1004  The validation attribution score (Equation [3) is given by :

A(zi) = Z —a(vj; 2:)

v; €EDyal
= D> —ow) (@ ®) g(z)(1 - p*)
v;€Dyal
19)
1005 Substituting the value of &7 ®:

Az) = S o) (VSVT) ¢z (1 - p™)

v;€Dyql

< > —<z><vj>T)<V>*”S*2<v>*1<z><zi>(1—p%)

v €Dyal

>T)vs*2vw<zi)<1 )

v EDval

< —Vo f(vj, )T) VST2V Vo f(z,0)(1 — p*) (since P = I and as per Equation[g])
v;E€Dya1
=( X et VI

(Xo,ep0 —Vof(v;,0) )or | (v Vof(zi,0)(1 —p™)
-y

Skk
(20)
1006 where, vy, is the k*" column of V matrix and representing the k%" feature as per Deﬁnition
1007 now given the definition of the Go and as per Equation 8] Equation|I3]and Equation[T3]
Go = [Vof(21,0)";...: VoS (2n,0) )]
YGo=USV'
2D

1008 For the 7' training sample, this score can be further simplified by multiplying with the standard unit vector (e;)
1009  on both sides:

e;-rYQo = e;-rUSV—r
yiVof(zi,0)" =u'SVT
(22)
1010 where ' is a row vector associated with matrix U,
1011 multiplying both side with y; and V' we get ,
yi - yiVof(2:,0) 'V = yu'S
1012 as y? = 1 and further multiplying both side with e;, we get
Vo f(z, O)TV cep = yiu'S - ep
Vof(z:,0) v = yiuiskr (23)
1013 substituting the value in Equation@ gives :
e —Vof(v;,0) " )oryiuj, (1 — p*
A=) = ‘ PR R0 Jurti1 07 24
k

Skk

1015 respectively, the contribution of these features, as per Definition [2} is represented by u} and u3. When both
1016 dominant features are equally represented, it follows that u} = u} and v} < u}, ub < ui . Furthermore, if
1017 |511\ > |s22| then as per Theoreml f1 induces gradient starvation of f> and results in lower attribution score

1018 ie., |A(z)] < |A(z;)]. O

1014 According to the given equation, for any two data points z; and ziwhere the dominant features are f1 and fo
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G Data Annotation

G.1 Attribute Generation

We utilize ChatGPT to generate attributes for a specific dataset with the following prompt referenced from
HiBug [39]. The list of attribute-value pairs generated by ChatGPT is provided in TableEl

You are a helpful assistant to help user work on improving Al visual models. You need to discuss with your user
for a description of the task that the model is working for. You need to decide if the description is complete
and clear enough. The description should at least contains or infer the task object, task type, task scene. After
understanding user’s task description, you should generate related visual attributes that might affect the model’s
performance. You should not ask me to provide visual attributes. (Note that this is only an example visual
attributes according to the previous example, do not take any of its values as default value!): “Gender , Age
, Hairstyle , Hair colour" If user is satisfied with the attributes, generate the attribute form with the header
formatted as “//Attribute Form//" and end with “//END//". Attributes in the form should be splited by comma. Do
not include the task object, task type, task scene. (Note that this is only an example visual attributes according to
the previous example, do not take any of its values as default value!):

//Attribute Form// Gender , Age , Hairstyle , Hair colour //END//

Table 9: Details of the attribute value pair generated using ChatGPT.

Dataset Attributes Choices
Size of the Animal Small, Medium, Large, Very Large
Fur or Skin Texture of Animals Smooth, Rough, Furry, Scaly
Color Pattern on Animal Striped, Spotted, Solid Color, Mixed Colors
Posture of Animal Sitting, Standing, Flying, Running
Visible Markings or Patterns Scars, Spots, Unique Patterns
AWA2 Lighting Conditions Bright, Dim, Natural, Artificial, Shadowy
Background Complexity Plain, Cluttered, Natural Habitat
Presence of Humans None, Nearby, Interacting
Animal Activity State Resting, Moving, Feeding, Playing
Occlusions Fully Visible, Partially Hidden
Weather Conditions Sunny, Cloudy, Rainy, Foggy, Snowy
Seasonal Variations Summer Coat, Winter Coat, Shedding Fur
Gender Male, Female
Age Child, Teenager, Adult, Elderly
Facial Expression Neutral, Smiling, Frowning, Surprised
Hairstyle Short, Long, Bun, Braided
Hair Color Black, Brown, Blonde, Red
CELEBA Skin Tone Light, Medium, Dark
Facial Hair Beard, Mustache, Clean-shaven
Presence of Accessories Glasses, Earrings, Necklace
Lighting Conditions Bright, Dim, Shadowed
Makeup Natural, Heavy, None
Size Large, Medium, Small
Pose/Orientation Side View, Top View, Angled
CIFAR-10  Lighting Daylight, Nighttime, Shadows
Background Complexity Plain, Crowded
Object Occlusion Partially Visible, Fully Visible
Shape of Sign Round, Triangular, Rectangular
Color of Sign Red, Blue, Yellow, White
GTSRB Size of Sign Small, Medium, Large
Weather Conditions Sunny, Rainy, Foggy, Overcast
Lighting Daylight, Nighttime, Shadows, Glare
Surrounding Environment Forest Floor, Beach, Lake, River, Ocean, Shoreline
WaterBirds Background Elements Trees, Bushes, Rocks, Water Bodies, Sand, Human-made Structures
~  Lighting Conditions Full Daylight, Shaded Areas, Low-light, Overcast
Weather Conditions Sunny, Cloudy, Rainy, Foggy, Windy

G.2 Attribute-Value Annotation

We employ Llama 3.2 [78]], a Vision-Language Model (VLM) with 11B parameters, to determine the most
suitable value among a set of possible attributes and values for a given dataset. By iterating over a set of images
in the validation set, the VLM generates metadata, which is subsequently utilized to identify the spurious
features. Each image approximately takes 4-10 seconds on average to annotate, depending on the size of the
image. The system prompt provided to Llama 3.2 is as follows:

You are an expert in identifying visual attributes in a given image. You will be presented with an im-

age along with attributes and a list of choices for each of the attributes. You will be asked to choose the most
suited choice for each of the attributes present in the image. Only choose one choice among all given choices

27



1044
1045
1046

1047

1048

1049
1050
1051
1052
1053
1054

1055
1056
1057
1058
1059

1060

1061
1062
1063
1064

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

1076
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

1091

1092
1093
1094
1095
1096
1097

for a particular attribute. Ensure that the choice is a string. Reproduce the attribute and the choice as it is.
Preserve the case and the spelling. Respond with only a valid JSON object with the attributes as the keys and the
chosen choices as the values, and no other extra fluff. Use double inverted commas.

H Training Procedure

H.1 Model Configuration and Metrics

We maintained consistent hyperparameter settings across all baselines, with the only variation being the subset
of training data selected by each method. The validation set was used to identify underlying spurious biases, as
outlined in Section[3.2} For baseline comparisons, we utilized publicly available implementations. In cases where
the code was not open-sourced or experiments were not conducted on the specific datasets, we implemented
the methods and used the respective datasets for evaluation. For TracIN, we employed the fast implementation
available in the Captum library [[104].

Since many real-world datasets lack well-defined group structures [[17], which are typically needed for evaluating
worst-group accuracy, we compare our method and baselines primarily on average accuracy. Additionally, to
understand the influence of deleting data samples in mitigating spurious features, we follow the experiment
setup defined by [28} 29, [17] and analyze the worst-case performance improvement. We used the methodology
proposed in [43] to create a subset of CELEBA with specific simplicity biases.

H.2 Model Training and Datasets

All experiments reported in Table[I] were conducted using the ResNet-18 architecture. The models were trained
from scratch with random initialization. For the WaterBirds dataset, the classifier was trained for 15 epochs
using stochastic gradient descent with a momentum value of 0.9 and a learning rate of 0.001. For all other
datasets, we used the Adam optimizer with a learning rate of 0.001.

The AWA2-A, AWA2-B, CELEBA, models were trained for 15 epochs, while the GTSRB and CIFAR-10 models
were trained for 5 epochs. We have used the same 10 classes as mentioned in Boecking et al. [105] for all
experiments related to AWA2. For CELEBA, we used a subset of 10,000 examples from the original dataset,
with the target label being hair color (blond) and the spurious feature being gender (male). Additionally, we
induced a spurious correlation of 0.4 between the target and spurious features to mimic real-world biases. For
experiments related to ImageNet-100, we have considered the subset of the ImageNet dataset with 100 classes as
per Tian et al. [91] and trained the model for 10 epochs with the Adam optimizer. We have further considered
the attributes related to texture and shape for common classes available for the ImageNet dataset [[106]. The
cutoff value to mark an attribute-value pair as spurious (7) was decided based on the size of the corresponding
pair in the validation dataset, and the pair generating the largest difference with respect to the original dataset
was picked for analysis.

To ensure a fair comparison for subset selection, we maintained uniformity in the training process across both
the original model training and the retraining process after data deletion.

The experiments reported in Table 3] Table[d] were conducted using the ResNet-18 model, trained for 10 epochs
with the Adam optimizer and a learning rate of 0.001. The dataset was created by randomly sampling the
correlation factor within the range [0,1] and varying the training data size across [5000, 3000, 7000, 10000]. The
correlation attribute and target attribute were selected from the metadata provided in the CELEBA dataset [43]].
Experiments on the following target—correlated attribute pairs—(arched eyebrows, receding hairline), (attractive,
mouth slightly open), (big nose, male), (goatee, bushy eyebrows), (mouth slightly open, smiling), (mouth slightly
open, wearing lipstick), (narrow eyes, eyeglasses), (pointy nose, mouth slightly open), (receding hairline, rosy
cheeks), and (male, pointy nose) are conducted with varying training dataset sizes of 3000, 5000, 5000, 5000,
5000, 5000, 7000, 7000, 7000, and 5000 samples respectively, and corresponding spurious correlation strengths
of 0.2, 0.8, 0.4, 0.4, 0.8, 0.9, 0.2, 0.6, 0.6, and 0.6 respectively. Further experiments on the target attributes
Bangs, Big Nose, Heavy Makeup, and Wearing Earrings, were conducted with correlation factors of 0.6, 0.2,
0.4, and 0.2, and with training sample sizes of 10000, 5000, 3000, and 5000, respectively. Results for these
experiments are provided in Table[T4]

H.3 Data Attribution

For the experiments reported in Table [I] approximately 3% of the data was removed from the training dataset.
We fix the data removal budget across all baselines, as it is a design choice best left to domain experts. A
smaller removal percentage prevents overpruning of the dataset ( training sample for group land bird on water
is around 56 out of 4795 [29] ) and highlights the precision of attribution methods by focusing on the most
harmful samples. In contrast, larger removals can obscure differences between methods due to overlapping
sample selections. For experiments related to spurious correlation in celeba, considering the stochasticity of the
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training sample, we have fixed the budget size to 100 samples. Further ablation on subset size is provided in
Appendix[Q.1] We ensured uniformity in the data deletion process by basing it on the validation attribution score
A, calculated according to the respective definition of data attribution « in each baseline method, using their
default hyperparameters.

For our proposed method, we performed hyperparameter tuning by selecting the rank parameter (¢) from [50, 40,
10, 100] and the minimum weight (8) from [0.6, 0.7, 0.8, 0.9, 0.95]. The weight barrier (C') was chosen from
[5, 10]. The optimization for Equation [I0] was performed for 5000 iterations using the Adam optimizer with a
learning rate of 0.0001. The value of ~ is decided based on the fraction of the dataset that is removed from the
training dataset. For experiments reported in Table[3]and Tabled] hyperparameter tuning was performed over
the same range as in previous experiments, optimizing for both best average performance and best worst-group
accuracy separately.

H.4 Textual Description

For different datasets, we used distinct textual representations of the underlying bias. The choice of textual
descriptions in our experiments depends not only on the attribute-value pairs but also on the dataset itself. For
instance, datasets like AWA2-A contain only label-specific information, such as color and habitat type, without
an explicit attribute-value format. Therefore, a suitable textual representation for this dataset could be “It is a
(*1) animal.” Here, (*1) represents the feature identified as a potential biased candidate. Similarly, for GTSRB,
incorporating dataset context improves model performance, and a possible template could be “(*1) of the sign is
(2). where (*1) and (*2) are replaced by the corresponding attribute and value pair.

For datasets such as WaterBirds, AWA2-A, AWA2-B, CELEBA, GTSRB, CIFAR-10, and ImageNet-100 the
textual descriptions used in the experiments related to Table[T]are provided in Table [T0}

Table 10: Textual Descriptions of Spurious Feature for Different Datasets

Attribute Description Dataset
Surrounding environment in image is forest floor  WaterBirds

It is a domestic animal AWA2-A

Size of the animal is very large AWA?2-B
Image of a male with blond hair CELEBA
Shape of the sign is round GTSRB

Size of the entity is large CIFAR-10
Object has a spotted pattern ImageNet-100

For all experiments related to Table[3] Table[d] we used a standardized textual format: “Image of a person with
(*1) and (2).” where (*1) and (*2) correspond to the target class and the correlated attribute, respectively. Further
experiments using VLM-based textual description in Table[5] for the target attributes Wearing Earrings, Bangs,
Big Nose, Heavy Makeup use textual description as “Person is wearing glasses", “Image of a male person",
“Person has long hair", and “Person is wearing glasses" respectively. For metadata, we used the same format as
the Table

I Comparison with Other Optimization and Data-Centric Methods

In general, ImageNet initialization [107] plays a crucial role in achieving strong worst-group accuracy. However,
most of our experiments are conducted without ImageNet pretraining to better reflect practical deployment
scenarios, particularly those where spurious correlations can significantly degrade model performance [[107]. For
a fair comparison with optimization-based methods such as gDRO [17] and JTT [16], we additionally evaluate
our method on the Waterbirds dataset using a ResNet-18 model pretrained on ImageNet, along with LLM-
generated attribute—value annotations. Results averaged over three independent runs are reported in Table[TT}
We also include comparisons with data deletion methods like D3M [11] and group-balancing approaches such as
SUBG and RWG [29].

Table [T1] compares the average and worst-group accuracy of our method against various robustness-based
approaches on the Waterbirds dataset. Methods are grouped based on whether they require group annotations for
the entire training dataset and whether they support textual bias descriptions.

Our method achieves a competitive average accuracy (0.855) and strong worst-group accuracy (0.756) without
relying on group annotations, while uniquely supporting textual bias descriptions. Compared to other methods
like ERM, D3M, and JTT, our method improves worst-group accuracy by +27.9% over ERM, +12% over JTT,
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and +1.6% over D3M. Further comparison with D3M with the same training setup as Table [3]is provided in
Table

Group annotation-based methods like gDRO and RWG perform best on worst-group accuracy, but at the cost of
requiring explicit group labels for the entire training dataset.

Additional challenges associated with these methods in specific applications are discussed in Section[T} Sec-
tion[2.2]and Appendix [E]

Table 11: Comparison of Average Accuracy and Worst group accuracy achieved by our method in
comparison with other robustness-based methods on Waterbirds.

Method Group Annotation (Train) Supports Textual Bias Description Average Accuracy Worst Group Accuracy

ERM X X 0.819 0.477
D3M X X 0.903 0.740
JTT X X 0.852 0.636
Ours X v 0.855 0.756
RWG 4 X 0.864 0.822
SUBG v X 0.833 0.814
gDRO v X 0.886 0.836

J Empirical Validation of Theoretical Formulation

To validate our theoretical claim, we used the codebase provided by Eyuboglu et al. [43]] to sample a 10k subset
from CELEBA, where the attributes Male and Smiling are highly correlated. We then computed Trak scores
for the training dataset using a ResNet-18 classifier trained to predict the Male label. In this setting, due to the
strong correlation between Male and Smiling [43|[108] , smiling may act as a spurious feature. Since the task is
to distinguish males from females, we consider features like Beard and Moustache to be more causally relevant,
and thus expect that samples with these features to have lower A scores compared to those with Smiling.

However, statistical analysis of the detrimental attribution(.4) scores using T-test for the training samples reveals
that Smiling has lower scores for samples compared to samples with Beard and Moustache (Table[I2). The
difference is statistically significant for Beard (p < 0.001). This supports Proposition[I] demonstrating that such
effects can arise in practical scenarios.

Table 12: Mean and standard deviation of detrimental attribution (|.4|) scores for different attributes,
along with statistical significance from a two-sample t-test against *Smiling*.

Attribute Mean Std p-value (vs Smiling)  Significance
Smiling (spurious) 0.539  0.056 - -
Moustache 0.545 0.044 0.1008 Not significant
Beard 0.544 0.036 0.00039 Significant

K Worst Class Performance

Table [T3]reports gains in the worst-performing class for each dataset. In Awa2-A and Awa2-B, worst-class
accuracy more than doubles, while in GTSRB, it improves from 50% to 70%. These results demonstrate that our
method enhances class-level performance with minimal negative impact on other classes.

Table 13: Worst-class accuracy before and after retraining. The table shows the original worst-class
accuracy and the corresponding value after retraining with spurious samples removed.

Dataset Original Worst-Class Accuracy Retrained Worst-Class Accuracy
Awa2-A 0.040 0.103
Awa2-B 0.040 0.103
CIFAR-10 0.589 0.575
GTSRB 0.500 0.700
ImageNet-100 0.100 0.100
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L. Group-wise Accuracy Improvements

Table 14: Comparative evaluation of the proposed method (Ours) with the full training baseline
(Original) and Trak, reporting the best average and best worst group accuracy (meangg) across three
runs.

. . . Average Accuracy Worst Group Accuracy
Target Attribute Spurious Attribute Original “Trak Ours Original Trak Ours
Bangs Black Hair 0.9200007  0.9210006  0.9230.006 | 0.523p079  0.571o0s3  0.6490.049
Blg Nose Wea.ring Necklace 0.7650_032 0.7870‘009 0.7870,010 0. 1270.065 0.0800,047 0~3470.148
Hcavy Makeup Straight Hair 0.8050.031 0.80000s5 0.8260024 | 0.651p137 0.6860075 0.716¢ 033

Wearing Earrings Bags Under Eyes 0.7910_02() 047920_019 0.7980,023 040400_029 0.0170,029 0.2810_170

Table [T5] presents group-wise accuracy before and after removing samples associated with spurious features
associated with Table[T4 Groups 1-4 show baseline performance, while Groups 1*—4* report results after
pruning. Our method yields notable improvements in some groups without major drops in others.

Table 15: Group-wise accuracy before and after removing spurious samples. The table reports the
mean accuracy and standard deviation over 3 runs. Groups 1—4 represent the training with the original
dataset, while Groups 1*—4* correspond to results after data pruning.

Target Attr Spurious-Attr G1 G2 G3 G4 G1* G2* G3* G4*

Bangs Black Hair 0.730.07 0.970,02 0-530.08 0.980,01 0.78040(, 0.960.01 0.590.12 0.970.01
Blg Nose Necklace 0.1 30.06 0.940‘04 0.32&1 1 0.89()‘07 0.22()‘09 0.940_03 0370 11 0.890_06
Heavy Makeup  Straight Hair 0.68p.14 0.800.12 0.81p0s 0.82007 0.72951 0.83002 0.80006 0.800.02
Earrings Bags Under EyCS 0.090_04 0.990.01 0.040,03 0.990,01 0.280417 096002 0~320.16 0.910.07

M Ablation of Different Components

The ablation study in Table[I6|highlights the contribution of key components i.e, data Attribution and CLIP, to
the overall performance of our method. For the given experiment, we have used cosine similarity with CLIP
(Only CLIP) representation to remove samples that align with the description of the underlying bias. When used
independently, both components provide noticeable improvements over the full training baseline, particularly
in average accuracy. However, they exhibit limitations in worst-group accuracy when applied in isolation.
Notably, combining both Attribution and CLIP in our full method yields the highest performance across nearly
all settings, especially in worst-group accuracy, demonstrating the complementary strengths of these components
in addressing spurious correlations.

Table 16: Comparative evaluation of the proposed method (Ours) with the full training baseline
(Original), Only Attribution, and Only CLIP, reporting the best average and best worst group accuracy
(meangy) across three runs.

Average Accuracy ‘Worst Group Accuracy

Target Attribute  Spurious Attribute | ;i1 Only Atribution Only CLIP  Ours ‘Original Only Atribution  Only CLIP  Ours

Bangs Black Hair 0.9200007 0.9210006 09220008 09230006 | 0523007 0.57 10053 0.548007:  0.649% 019
Big Nose Wearing Necklace | 0.7650 032 0.7870.009 0.7770002  0.7870.010 | 0.1270.065 0.0800.047 0.1100001  0.347.148
Heavy Makeup Straight Hair 0.8050.031 0.8000.0s5 0.813p010  0.8260024 | 0.651¢.137 0.6860.78 0.739.045  0.716,0s3
Wearing Earrings ~ Bags Under Eyes | 0.7919,020 0.7920.019 0.7910021  0.7980.028 | 0.0400.020 0.0170.029 0.0090013  0.2819470

N Architecture-based Ablation on Worst Group Accuracy and Average
Accuracy

We further evaluate our method on the WaterBirds dataset across different architectures, including ResNet-
18, VGG16, VGG13, AlexNet, and ConvNet. Pham et al. [107] shows that the random initial weights can
significantly impact the worst group performance of a model, especially in smaller networks. To replicate this
setting, we tested our method under extreme conditions, maintaining consistency in textual instructions and
using a single run with the same random seed across all baselines.

As shown in Table [I8] and Table [I7] In comparison with the complete data setting our method achieves an
improvement of 5.0%, 1.9%, 3.6%, 3.1%, 12.6% in worst-group accuracy for VGG16, VGG13, Convnet,
ResNet18 and AlexNet architecture and an improvement of 5.2%, 7.1% 4.9% and 7.1% for VGG16, ConvNet,
ResNet18, and AlexNet in average accuracy respectively.
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Furthermore, compared to Trak, our method achieves an improvement of 1.1%, 2.4%, and 4.8% in average group
performance for ConvNet, ResNet18, and AlexNet, respectively. Additionally, enhancements of 5.0%, 1.4%,
7.8%, 4.5%, and 12.9% in worst-group performance were observed for VGG16, VGG13, ConvNet, ResNet18,

and AlexNet.

Table 17: Architecture Ablation on WaterBirds (Best Worst Group Accuracy)

Model Original Random IF TracIN EWC Trak Ours
VGGl16 0.053 0.050 0.064 0.064 0.062 0.053 0.103
VGG13 0.048 0.053 0.087 0.030 0.065 0.053 0.067
ConvNet 0.090 0.034 0.064 0.033 0.053 0.048 0.126
ResNet18 0.050 0.064 0.067 0.017 0.048 0.036 0.081
AlexNet 0.050 0.048 0.107  0.031 0.042 0.047 0.176

Table 18: Architecture Ablation on WaterBirds (Best Average Accuracy)

Model Original Random IF TracIN EWC Trak Ours
VGG16 0.640 0.669 0.657 0.640 0.683 0.686 0.692
VGG13 0.655 0.640 0.610 0.668 0.660 0.669 0.662
ConvNet 0.654 0.705 0.640 0.721  0.711 0.714 0.725
ResNet18 0.641 0.604 0.600 0.694 0.623 0.666 0.690
AlexNet 0.644 0.650 0.586 0.693 0.658 0.667 0.715

O Experiment on Vision Transformer

Existing data attribution methods typically compute gradients over all model parameters, which often causes
memory issues for large models like Vision Transformers. To address this, we follow recent works [104} 58] and
calculated the gradients only for the final feature layer for both Trak and our method. However, this adaptation
was incompatible with other baselines.

The results on Waterbirds for both methods are shown in Table[I0]

Table 19: Best Average Accuracy and Best Worst Group performance analysis of our method in
comparison with Trak and Original training of vision transformer with entire dataset.

Average Accuracy Worst Group Accuracy
original 0.601/0.000 0.104/0.000
Trak 0.644/0.020 0.0740/0.014
ours 0.640/0.027 0.1671/ 0.014

P Relative Comparison with the Baselines

For experiments related to Table[I4] we have provided a comparison of the relative performance improvement
achieved by our method against other baselines over the complete training data setting. As shown in Table 20]
and Table 2T} our method, on average, outperforms other baselines in terms of best average accuracy and best
WOrst group accuracy.

Table 20: Relative improvement in Best Average Accuracy (%) achieved by our method and other
baselines compared to the complete data setting(Original). The results represent the mean scores
from three independent runs, with the best-performing values highlighted in bold.

Target Attribute Spurious Attribute Random EWC IF  TracIN Trak Ours
Bangs Black Hair -0.03 0.37  0.36 -0.07 0.16  1.05

Big Nose Wearing Necklace -0.07 1.66 1.10 -0.17 223 217
Heavy Makeup Straight Hair -0.44 -1.05  0.95 -2.83 -044 218
Wearing Earrings ~ Bags Under Eyes 0.3 -02  -1.17  -0.57 0.1 0.73
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Table 21: Relative improvement in Best Worst Group Accuracy (%) achieved by our method and
other baselines compared to the complete data setting(Original). The results represent the mean
scores from three independent runs, with the best-performing values highlighted in bold.

Target Attribute Spurious Attribute Random EWC IF TracIN Trak Ours

Bangs Black Hair 6.25 15.62 6.66 7.05 477 12.58
Big Nose Wearing Necklace 4.4 -3.57  5.10 4.68 -4.65 22.08
Heavy Makeup Straight Hair 1.84 595 4.30 -1.24 355 6.54

Wearing Earrings ~ Bags Under Eyes 5.93 1.53 1354 346  -3.23 24.17

Q Sensitivity Analysis
Table [22] and Table[23]show the sensitivity of our proposed method on different hyperparameter values.

Table 22: Sensitivity analysis of the average accuracy of our method on the WaterBirds dataset for
hyperparameters like the barrier constant (C'), the matrix rank (f) (shown by rows), and the minimum
weight fraction (5, shown by columns).

Barrier (C) Rank (1) 0.6 0.7 0.75 0.8 0.85 0.9
40 0.657 0.619 0.648 0.673 0.650 0.640
5 50 0.673 0.642 0.621 0.618 0.618 0.601
100 0.670 0.678 0.650 0.602 0.632 0.631
40 0.690 0.671 0.615 0.634 0.621 0.650
10 50 0.633 0.679 0.639 0.657 0.629 0.609
100 0.653 0.663 0.602 0.642 0.660 -

Table 23: Sensitivity analysis of the worst group accuracy of our method on the WaterBirds dataset for
hyperparameters like the barrier constant (C'), the matrix rank (¢) (shown by rows), and the minimum
weight fraction (5, shown by columns).

Barrier (C) rank (t)\ 0.6 0.7 0.75 0.8 0.85 0.9

40 0.037 0.051 0.042 0.020 0.050 0.041
5 50 0.033 0.042 0.055 0.048 0.056 0.065
100 0.020 0.036 0.041 0.081 0.041 0.050
40 0.009 0.037 0.056 0.051 0.044 0.030

10 50 0.044 0.023 0.053 0.031 0.051 0.061
100 0.045 0.031 0.065 0.034 0.034 -

Q.1 Performance Analysis on Different Subset Size

To further analyze model performance across different subset sizes, we conducted an ablation study where the
best hyperparameters were kept fixed while varying the proportion of removed training data. The results are
summarized in Table 24]

Table 24: Sensitivity analysis of the worst group accuracy and average accuracy of our method on the
WaterBirds dataset for different subset sizes.

Metrics 3% 5% 15% 25%
Average Accuracy 0.69 0.645 0.682 0.712
Worst group Accuracy | 0.081 0.041 0.037 0.002

R Time Taken for Subset Selection

In Figure[R] we compare the time taken by our method in comparison with other baselines to select a subset of
1200 images from 60,000 images of CIFAR-10 for the instruction mentioned in Table[T0] Since our method uses
the attribution scores generated by Trak and improves upon it. The time taken by our method is slightly longer
than Trak.
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Figure 2: Comparison of time taken to select a subset of 1200 samples from a training dataset of
60,000 images of CIFAR-10 by different baselines and (Ours) for a given textual instruction.

S Memory Consumption and Other Training Overhead

The Table 23] reports GPU and RAM usage of our method compared to other baselines, using the same setup

described in Appendix

As shown, our method introduces only a marginal computational overhead over Trak, which we use for computing
data attribution scores. It is to be noted that, while Trak is more memory-intensive, it produces better linear
datamodeling score (LDS) scores than other baselines [32].

Table 25: GPU and RAM utilization (in MB) of our method compared to baseline approaches.

Method GPU Memory (MB) RAM Usage (MB)
IF 27,749 10,578
EWC 13,221 10,520
TracIN 44,087 9,629
Trak 48,020 10,710
Ours 48,525 10,722
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Figure 3: Diagram depicting the workflow of the proposed method

U Images

In this section, we have shown the images that have been removed from the training dataset. Figure[d] Figure[5]
Figure@ and Figure[7]show the set of images that have been removed by our method from the training dataset
as (8%

). For WaterBirds, GTSRB, CELEBA, and AWA2-B, respectively.

Figure 4: Set of images removed by our Figure 5: Set of Images removed by our
method for WaterBirds. The instruction set method for GTSRB. The instruction set used
used for this experiment is “ The surrounding for this experiment is “ Shape of sign is
environment in the image is forest floor". round."

35



Figure 6: Set of Images removed by our
method for CELEBA. The instruction set used
for this experiment is “ Image of a male with
blond hair".
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Figure 7: Set of Images removed by our
method for Awa2-B. The instruction set used
for this experiment is “ The size of the animal
is very large."
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