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ABSTRACT

Non-communicable disease is the leading cause of death, emphasizing the need for
accurate prediction of disease progression and informed clinical decision-making.
Machine learning (ML) models have shown promise in this domain by capturing
non-linear patterns within patient features. However, existing ML-based models
cannot provide causal interpretable predictions and estimate treatment effects,
limiting their decision-making perspective. In this study, we propose a novel
model called causal trajectory prediction (CTP) to tackle the limitation. The CTP
model combines trajectory prediction and causal discovery to enable accurate
prediction of disease progression trajectories and uncover causal relationships
between features. By incorporating a causal graph into the prediction process, CTP
ensures that ancestor features are not influenced by the treatment of descendant
features, thereby enhancing the interpretability of the model. By estimating the
bounds of treatment effects, even in the presence of unmeasured confounders,
the CTP provides valuable insights for clinical decision-making. We evaluate the
performance of the CTP using simulated and real medical datasets. Experimental
results demonstrate that our model achieves satisfactory performance, highlighting
its potential to assist clinical decisions.

1 INTRODUCTION

Non-communicable disease (NCD), e.g., Alzheimer’s disease and heart failure, is the leading cause
of death across the world (Bennett et al., 2018). Prognosis prediction is regarded as a method for
achieving precise medicine to NCDs (Gill, 2012). The assumption is that if we can predict prognosis
(e.g., die in one year) accurately, we can adopt target treatment in advance for patients with bad
prognosis, and the bad prognosis may be prevented. The more accurate the model, the more precise
the clinical decision. Under the assumption, recent studies focus on utilizing machine learning (ML)
methods to obtain more accurate prediction models (Coorey et al., 2022).

However, whether the assumption is right in NCDs is challenged by clinicians (Wilkinson et al.,
2020). NCDs usually have heterogeneous etiologies. Different patients usually require different
therapies. Nevertheless, current ML-based models just foreshow the outcome of a patient. No matter
how accurate, they did not inform clinicians which therapy may be helpful, so assisting clinical
decisions is infeasible. What clinicians require are causal interpretable models that not only predict
prognosis accurately but also answer counterfactual inquiries such as “What will happen to the patient
if we control the value of a feature from a to b?” (Moraffah et al., 2020). Clinical decision-making
support is feasible when the model can help clinicians anticipate the consequences of their actions
(Coorey et al., 2022). Most ML models (even explainable ML models) cannot answer such inquiries
as they only capture correlational relationships between features. Although there are studies focused
on estimating treatment effect, their application perspective is restricted because they usually only
investigate the effect of a drug on a predefined binary end-point (Yao et al., 2021).

This study aims to investigate a more general problem that predicts the disease progression trajectory
of a patient when we control the value of a feature according to observational data (Figure 1 (a)).
Compared to previous treatment effect studies, we regard a treatment can be direct, dynamic, and
continuous control to an arbitrary feature and not necessarily the usage of a drug. We regard the
outcomes are continuous trajectories of all interested features rather than a predefined event (Yao
et al., 2021; Ashman et al., 2023). We need to tackle two problems in achieving this goal. First, we
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Figure 1: Goal and challenge. (a) This study investigates the progression of features under dynamic,
continuous control of treatment via observational data. The blue line is the original trajectory while
the red is the trajectory under a treatment, and the red region is the possible bound. (b) The main
challenge is that the causal structure is unknown and there may exist unobserved confounders.

do not know the causal structure between features. A controlled feature A may be a consequence
of interested features Y (i.e., A ← Y ). If A is a consequence of Y , our model is expected to
generate unaffected trajectories of Y when we control A (Figure 1 (b)) (Neal, 2020). Second, as
the development mechanisms of many NCDs are unclear, there may exist unmeasured confounders
that we do not realize. Our models need to generate reliable estimations when a confounder exists
(De Brouwer et al., 2022). Intuitively, our model needs to discover the causal structure between
features from observational datasets and ensure the trajectory of every feature is predicted only by its
historical value and its causative features. Then, we can generate unaffected trajectories of Y under
treatment A when A is a descendant of Y . In this study, we treat all observable features as Y . It’s
important to note that the effect of an unmeasured confounder may be unidentifiable as there may
be infinite models that can generate the observed dataset when an unmeasured confounder exists
(Gunsilius, 2021). Therefore, we additionally estimate the possible bounds of the treatment effect.

We designed a causal trajectory prediction (CTP) model consisting of two phases. The CTP predicts
the progression trajectory of features in a causal interpretable manner in the first phase. It formulates
the trajectory prediction problem as solving ordinary differential equations (ODE). It estimates
features’ derivatives using neural networks, and trajectories can be predicted via a numerical neural
ODE solver (Chen et al., 2018). It also adopts a neural connectivity matrix to evaluate the predictive
effect with respect to each feature pair (Lachapelle et al., 2020). To ensure each feature is predicted
only by its historical value and its causative features, we applied a sparse penalty and a score-based
penalty to the neural connectivity matrix. Previous studies have demonstrated that it is possible
to discover causal structures in a linear dynamical system using penalties (Stanhope et al., 2014;
Brunton et al., 2016; Chen et al., 2021). We extend this approach to a non-linear system in this
study. Once the CTP model is optimized and the causal structure is identified, we retrain a group
of independent CTP models to estimate the bounds of the treatment effect (the second phase). The
training goal is that the group of new CTP models needs to fit the observed dataset accurately and
generate trajectories as different as possible when we apply a treatment. Finally, we estimate the
treatment effect bounds by analyzing trajectories generated by the group of retrained models.

We investigated the performance of the CTP model in discovering causal relationships between
features, predicting feature progression trajectories, and predicting treatment effects. We utilized
one real longitudinal medical dataset and four simulated datasets to evaluate model performance.
Experiment results indicate that our framework is able to reconstruct the causal graph within features,
obtain satisfactory predictive performance, and evaluate the bound of treatment effects well. Therefore,
we believe the CTP model introduces an effective way to assist clinical decisions.

2 METHOD

2.1 PRELIMINARY

We denote a dataset consisting of a sequence of a two-element tuple (si, li)
N
i=1. si =

(vij ,mij , tij)
Ns

i
j=1 indicates a sequence of visit data of a patient until time point tiNs

i
, and Ns

i means
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the number of visits. vi denotes progression trajectory of the i-th patient, and vi(t) is a vector with
K elements that denotes patient characteristics at timepoint t. vij means data in the j-th visit (or
it can be regarded as the abbreviation of vi(tij)), and vkij denotes the value of the k-th feature. vkij
can be a continuous variable or a discrete variable. In this study, we presume discrete variables are
binary for simplicity, while the proposed method can be generalized to handle categorical variables
naturally. mij ∈ {0, 1}K indicates whether a corresponding feature in vij is missing (1 indicates

missing). li = (vij ,mij , tij)
Ns

i +N l
i

j=Ns
i +1 indicates a sequence of (label) data need to be predicted.

We use a numerical adjacency matrix D ∈ R(K+1)×(K+1)
≥0 to describe the casual structure between

features (Bhattacharya et al., 2021). Dkl = 0 indicates the k-th feature is not the cause of the l-th
feature, and Dkl ̸= 0 means k-th feature is a cause of the l-th feature. Without loss of generality, D
uses an extra dimension to model the causal relationship between observed features and unmeasured
confounders (Löwe et al., 2022). In this study, we presume the progression of the unmeasured
confounder is not affected by any observed features.

2.2 CAUSAL TRAJECTORY PREDICTION

We estimate progression trajectories of features v̂i(t) by solving ODEs (Chen et al., 2018). Our CTP
model first estimates the value of patient characteristics v̂i0 ∈ RK+1 at an initial time point t0. We
follow a standard variational autoencoder to estimate the posterior of the q(v̂i0|si), where q(v̂i0|si)
follows a Gaussian distribution with a diagonal covariance matrix, t0 is a custom number. We use a
long-short-term memory (LSTM) network parameterized by ϕ to estimate µi, σi (Equation 1). Then,
we randomly sample the v̂i0 via the reparameterization trick (Equation 2) (Kingma & Welling, 2014).

[µi, σi] = LSTM([vij ,mij , tij ]
Ns

i
j=1;ϕ). (1)

q(v̂i0|si) = N (v̂i0|µi, σi). (2)

v̄ki (t) =

{
v̂ki (t), continuous variable

Gumbel Sigmoid(v̂ki (t)), discrete variable
(3)

dv̂ki (t)

dt
= fθk(v̄i(t) ◦Mk). (4)

v̂i(t) = ODESolver(fθ, v̂i0, t0, t). (5)

We first map the v̂ki (t) to v̄ki (t) (Equation 3), which is an identical mapping for continuous variables
and discretizes logit for discrete variables (Jang et al., 2017). Then, we use K + 1 independent
components fθk to predict each feature derivatives dv̂k

i (t)
dt (Equation 4), where ◦ means element-wise

multiplication, and each fθk is a feed-forward network (FFN).Mk is a causal mask which will be
introduced later and it can be regarded as a vector whose all elements are one at present. The v̂i(t)
can be estimated according to fθ and vi0 via a numerical ODE solver (Equation 5) (Chen et al., 2018).
As ODE-based models are only capable of modeling the dynamics of continuous variables, the v̂ki
represents logit values, rather than the true values, for discrete variables.

The core of causal interpretability is to ensure a feature is predicted only by itself and its cause
features. Here, we introduce the neural connectivity matrix to evaluate the predicted effect of a
feature pair (Lachapelle et al., 2020). Specifically, the form of an FFN (without bias term, the output
is a real number) follows o = WNσ(· · ·σ(W2(σ(W1x)))). x ∈ RK+1 is the input, o ∈ R is the
output, σ is the non-linear activation, and W1, · · · ,WN is a series of weight matrices (vectors). The
connectivity vector C ∈ RK+1 follows:

C = |WN | · · · |W2||W1|. (6)

It is easy to find that Cj = 0 indicates the j-th input element does not affect the output. We can
derive D̃jk = Ck

j , where Ck is the connectivity vector for fθk . D̃ analogs an adjacent matrix where
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D̃jk ̸= 0 represents the j-th feature can predict the k-th feature somehow. We can use sparse penalty
g(θ) =

∑K+1
i=1

∑K+1
j=1 (D̃)ij to remove spurious causal connections (Brunton et al., 2016).

Moreover, the causal relationship between features in many diseases can be characterized as a directed
acyclic graph (DAG) and there is no feedback (Blaser et al., 2015; Suttorp et al., 2015). For example,
the casual relation of features in the amyloid beta pathway in the progression of Alzheimer’s disease
formulates a DAG (Hao et al., 2022). Therefore, we additionally presume the causal graph is a DAG
and applied an extra score-based constraint to D̃ in this study (Equation 7).

h(θ) = Tr(exp((1− I) ◦ D̃))−K, (7)

where Tr means the trace of a matrix, and exp(A) denotes the exponential of a non-negative square
adjacent matrix A that is defined as the infinite Taylor series, i.e., exp(A) =

∑∞
k=0

1
k!A

k, A0 = I .
We use (1− I) to denote we allow self-loop (i.e., a feature is able to predict its derivative). Zheng
et al. (2018) proofed Ak

ij indicates a weighted path count from element i to j after k steps, and the
count is a non-negative number. If the A represents a cyclic graph, there must be some Ak

ii > 0,
and cause Tr(exp(A)) − K > 0. The score-based DAG constraint equals zero if and only if the
(1− I) ◦ D̃ represents a DAG. Once the constrained hold, it is possible that every vki (t) is predicted
only by itself, and its direct cause features.

We optimize parameters by minimizing the L (Equation 8). The optimizing goal is perfectly recon-
structing observed data when j is less or equal to Ns

i , and accurately predicting future trajectory
when j is greater than Ns

i . The mean square error (MSE) is used to measure the difference between
the predicted value and true value in continuous variables, and cross-entropy (CE) is used for discrete
variables. B is a mini batch of dataset and |B| indicates its size.

L =

|B|,Ns
i +N l

i ,K∑
i,j,k


MSE(vkij , v̂

k
ij), v

k
ij is continuous

CE(vkij , v̂
k
ij), v

k
ij is discrete

0, vkij is missing

. (8)

Finally, the objective function of this study follows Equation 9.

min
θ,ϕ

(L+ βg(θ)) s.t. h(θ) = 0, (9)

where β is the weight of the sparse penalty. The augmented Lagrangian method can optimize
parameters by solving a sequence of unconstrained subproblems (Lachapelle et al., 2020; Zheng
et al., 2018). In our study, each subproblem is:

Lfinal = L+ βg(θ) +
ρ

2
h(θ)

2
+ αh(θ), (10)

where ρ, α are penalty weights, respectively. We approximately solve each subproblem via the
stochastic gradient descent method (details in Appendix C.1). We adopted the adjoint sensitive
method to make the ODE solver differentiable (Chen et al., 2018).

2.3 CAUSAL GRAPH IDENTIFICATION

Our CTP model still faces challenges in discovering causal relationships between features. The first
challenge is that the value of D̃ij cannot be penalized to exactly zero, but a very small number, as we
use a numerical optimizer. The model is also fragile because the neural ODE and matrix exponential
operation in the CTP model is sensitive to parameter initialization and input noise (Rodriguez et al.,
2022). Even if the CTP model successfully converges and obtains good prediction performance, it
is easy to identify causal edges with the wrong causal direction. We adopted an iterative algorithm
to tackle the above limitations. The algorithm uses M ∈ {0, 1}(K+1)×(K+1) to describe causal
relation between features and M̃ ∈ {0, 1}(K+1)×(K+1) to determine whether the causal relationship
is certain. We use the Equation 11 to initializeM and M̃, whereMij = 1 indicates i-th feature is
the cause of the j-th feature, and M̃ij = 1 indicates theMij is not certain. In the beginning, most
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causal relations are uncertain. Of note, we setMij = 0 when i = K + 1 and j ≤ K because we
presume the hidden confounder is not the consequence of observed features.

Mij ,M̃ij =


1, j ≤ K

0, j = K + 1 and i ≤ K

1, j = K + 1 and i = K + 1

. (11)

The algorithm first repeatedly optimizes independent CTP models until N models converge success-
fully. We presume these models are more probable to identify correct causal relationships. Then,
we analyze the neural connectivity matrix of each model. We treat elements in neural connectivity
matrix larger than a threshold is valid (Lachapelle et al., 2020). We use the eij/N to determine how
many models treat the connection i→ j is valid, where eij the number of models that regard i→ j
is valid. If the value is larger than an accept ratio ρ, we will treat the connection is certainly valid and
setMij = 1 and M̃ij = 0. eij/N is less than 1− ρ indicates the connection is certainly invalid and
we we setMij = 0 and M̃ij = 0. We repeat the process until all casual relations become certain
(i.e.,

∑
ij(M̃ij) = 0). The pseudocode of the algorithm is described in Appendix C.2.

2.4 TREATMENT EFFECT PREDICTION

We conduct treatment effect prediction under two assumptions. (1) The optimized CTP model
M⋆ predicts the feature progression trajectory accurately. (2) The M⋆ summarizes reliable causal
structure between observed features. However, it is challenging to evaluate the effect of a treatment
when an unmeasured confounder exists because parameters in the M⋆ may be not the only solution
to the prediction problem (Miao et al., 2011). There maybe infinite other parameters that can generate
the observed dataset, and these choices of parameters generate different trajectories under a treatment.
In this study, we presume all these parameters are located in a connected region.

As we lack the ability to identify which choice of parameters is better, this study estimates the feature
trajectories and probable bounds under a treatment, rather than deconfounding (Cao et al., 2023). We
adopt an intuitive idea that retrains a series of new independent CTP models that cover the region
of the parameter. Generally, the new group of retrained CTP models share the same structure and
parameters according to the M⋆. We use do(Ata = a) to denote a treatment, which means fixing the
value of v̄A to a from a time point ta, regardless of its original value. Given patient data si and a
new model M l, we can predict trajectories of other features lv̂ki (t) under the treatment do(Ata = a),
where l is the index of a new CTP model. Of note, M l infers the value of unmeasured confounders
so that we evaluate the effect of confounders. We record the patient characteristics under a treatment
lv̂ki (to) at a randomly selected time point to after treatment. To make trajectories of M l as dissimilar
as possible, we maximize the pair-wise distance between recorded lv̂i(to) (Equation 12). In this study,
we applied the simplest p-norm distance for computational efficiency. However, a more sophisticated
loss function such as Wasserstein distance is also applicable (Balazadeh Meresht et al., 2022). The
optimization problem is a min-max problem that minimizes the prediction loss Lp (Equation 13) and
maximizes the treatment Lt. We use two optimizers to update parameters alternatively (details in
Appendix C.3), which is widely used in similar studies (Kostrikov et al., 2020). Once the series of
new CTP models are retrained, we treat contours (i.e., max(lv̂i(t))/min(lv̂i(t))) as trajectory bounds.
We use the expectation of trajectories of retrained models as the trajectories under the treatment.

Lt =

|B|∑
i=1

L−1∑
j=1

L∑
k=j+1

Distance(j v̂i(to),
k v̂i(to)), (12)

Lp =

L,|B|,K∑
l,i,k

{
MSE(vki (ta),

l v̂ki (ta)), v
k
i (ta) is continuous

CE(vki (ta),
l v̂ki (ta)), v

k
i (ta) is discrete

. (13)
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Hao Zheng MM-25 MM-50 ADNI
# of Samples 1,024 1,024 1,024 1,024 275
Avg. Visit 15 15 15 15 3.7
# Features 4 4 20 45 88
Avg. Interval 1.00 2.00 0.25 0.25 1.65
All Continuous Yes Yes Yes Yes No

Table 1: Dataset Statistics

3 EXPERIMENT

3.1 EXPERIMENT SETTINGS

Dataset. We used one real medical dataset and four simulated data to evaluate the performance
of CTP, whose statistics are in Table 1. Real Dataset: ADNI dataset consists of a comprehensive
collection of multi-modal data from a large cohort of subjects, including healthy controls, individuals
with mild cognitive impairment, and patients with Alzheimer’s disease (Petersen et al., 2010). The
preprocessed ADNI dataset reserved 88 features (23 continuous and 65 discrete) of patients whose
available visit record is equal to or greater than three. Simulated Dataset: Hao dataset records the
progression of four features (amyloid beta (Aβ), phosphorylated tau protein (τp), neurodegeneration
(N ), and cognitive decline score (C)) of late mild cognitive impairment patients (Hao et al., 2022).
Zheng Dataset: it records the progression trajectories of four features (i.e., Aβ , tau protein τ , N ,
and C) of Alzheimer’s disease patients (Zheng et al., 2022). MM-25 and MM-50 datasets: we also
generated two Michaelis-Menten (MM) kinetics datasets to evaluate the model in a high-dimensional
scenario (Zhang et al., 2022). The MM-25 contains 20 features and the MM-50 contains 45 features.
The Zheng dataset is a confounder-free dataset and the other three datasets contain unobservable
confounders. All datasets were normalized before training. More detailed data generation and the
preprocessing process are described in Appendix B.

Baselines. We used two commonly seen models and three recently proposed models as baselines.
LODE: the Linear ODE baseline uses the same structure compared to the CTP, while it uses a linear
function to model the derivatives of features. The LODE used the ridge loss to remove spurious
connections (Brunton et al., 2016). NODE. Neural ODE also uses the same structure compared to the
CTP, while it does not use ridge loss and DAG loss to optimize parameters (Chen et al., 2018). NGM:
NGM uses the same structure compared to our CTP, while it only adds group ridge loss to the first
layer of neural network to extract causality (Bellot et al., 2022). TE-CDE: TE-CDE adopts controlled
differential equations to evaluate patient trajectory at any time point and uses an adversarial training
approach to adjust unmeasured confounding (Seedat et al., 2022). CF-ODE: CF-ODE adopts the
Bayesian framework to predict the impact of treatment continuously over time using NODE equipped
with uncertainty estimates (De Brouwer et al., 2022).

Treatment Settings. We only conducted treatment effect analysis on four simulated datasets because
it is impossible to access the counterfactual result of the ADNI dataset. We run 16 independent
models for each dataset. Hao Dataset: we set the neurodegenerative value (i.e., n) to zero at time
point 52. Then, we observed the feature progression trajectories under the treatment from 52 to 60.
Zheng Dataset: we set the neurodegenerative value (i.e., n) to zero at the DPS time zero. Then, we
observed the feature progression trajectories under the treatment from 0 to 20. MM-25 and MM-50
Dataset. We set the value of the No. 10 node to one at the time point one. We recorded the feature
progression trajectories under the treatment from 1 to 10.

Metrics. Trajectory Prediction: We used MSE to evaluate the prediction performance on continuous
features and the macro average area under the receiver operating curve (AUC) to evaluate the
prediction performance on discrete features. Causal Discovery: We investigated the causal discovery
performance of the CTP and baselines by analyzing the neural connectivity matrix D̃. We regard a
casual edge is inexistent if its corresponding element is less than 0.0001, and vice versa. Then, we
use accuracy, F1, and AUC to evaluate causal discovery performance. Treatment Effect Prediction:
We used the MSE between the true value and estimated trajectories to evaluate the treatment effect
prediction performance.

Extended Experiments. We released extended experiment results in Appendices.
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Model Dataset Reconstruct Predict
MSE AUC MSE AUC

LODE ADNI 0.26±0.02 0.67±0.02 0.26±0.02 0.46±0.02
NODE ADNI 0.22±0.01 0.69±0.01 0.45±0.03 0.54±0.02
NGM ADNI 0.23±0.02 0.68±0.01 0.34±0.02 0.53±0.01
TE-CDE ADNI 0.24±0.01 0.66±0.01 0.30±0.01 0.52±0.01
CF-ODE ADNI 0.21±0.03 0.69±0.02 0.32±0.03 0.54±0.01
CTP ADNI 0.20±0.01 0.73±0.01 0.29±0.02 0.55±0.02

Table 2: ADNI Data Prediction Performance

Model Hao Dataset Zheng Dataset
ACC. F1 AUC ACC. F1 AUC

LODE 0.53±0.01 0.60±0.01 0.67±0.01 0.58±0.01 0.64±0.02 0.64±0.03
NODE 0.50±0.02 0.57±0.03 0.54±0.10 0.49±0.01 0.62±0.02 0.53±0.01
NGM 0.54±0.02 0.60±0.02 0.71±0.05 0.59±0.02 0.65±0.02 0.61±0.01
TE-CDE 0.53±0.02 0.59±0.03 0.57±0.10 0.56±0.03 0.65±0.03 0.54±0.02
CF-ODE 0.54±0.02 0.58±0.03 0.55±0.10 0.57±0.01 0.65±0.02 0.55±0.01
CTP 0.56±0.01 0.62±0.02 0.81±0.03 0.61±0.01 0.67±0.01 0.66±0.00
CTP⋆ 1.00 1.00 / 0.88 0.93 /

MM-25 Dataset MM-50 Dataset
ACC. F1 AUC ACC. F1 AUC

LODE 0.75±0.01 0.76±0.01 0.82±0.01 0.87±0.01 0.87±0.01 0.89±0.01
NODE 0.51±0.02 0.67±0.03 0.53±0.10 0.50±0.02 0.66±0.01 0.57±0.02
NGM 0.80±0.02 0.81±0.02 0.67±0.05 0.87±0.02 0.87±0.01 0.66±0.01
TE-CDE 0.80±0.02 0.81±0.02 0.56±0.05 0.87±0.01 0.87±0.01 0.58±0.02
CF-ODE 0.53±0.01 0.56±0.02 0.53±0.03 0.87±0.03 0.87±0.02 0.58±0.02
CTP 0.82±0.01 0.83±0.02 0.88±0.03 0.89±0.01 0.89±0.01 0.90±0.01
CTP⋆ 0.85 0.88 / 0.93 0.92 /

Table 3: Causal Discovery Performance. “CTP” and “CTP⋆” indicate the causal discovery perfor-
mance of a CTP model without/with using the causal identification algorithm.

3.2 TRAJECTORY PREDICTION

We investigated the disease progression trajectory prediction performance of the CTP model and
baselines. Table 2 indicates that our CTP models obtained comparable performance to baselines in
the ADNI dataset. It obtained the first place in reconstruct MSE (0.20), reconstruct AUC (0.73), and
predict AUC (0.55). The CTP model obtained second place in predict MSE (0.29), which is worse
than the LODE model (0.26). Meanwhile, the experiment results on four simulated datasets showed
our CTP model also obtained better or comparable performance compared to baselines, whose detail
is in Appendix E.1. Although the goal of this study is not to propose a more accurate predictive
model, these experiment results demonstrated our CTP model is able to obtain state-of-the-art (SOTA)
or nearly SOTA performance in prognosis prediction tasks.

3.3 CAUSAL DISCOVERY

We only investigated causal discovery performance on four simulated datasets because we cannot
access the true causal graph of the ADNI dataset (Table 3). It is not surprising that the NODE model
cannot extract causal relations from features, as its AUC is less than 0.57 in all four datasets. The
TE-ODE and CF-ODE also obtained unsatisfactory performance as they are not designed to extract
causal relations between features. They require prior causal information to estimate the treatment
effect. The LODE and NGM achieve significantly better performance benefits from utilizing ridge
loss. The NGM outperforms the LODE, which may be attributed to the usage of neural networks.
Furthermore, We find that our CTP model can identify causal relations between features better than
all baselines, and its performance can be further improved by utilizing the causal identification
algorithm. For example, the original CTP model only obtained 0.56 causal discovery accuracy in the
Hao dataset. However, its causal discovery performance can be significantly improved if we apply
the causal identification algorithm. The CTP⋆ model obtained 0.44, 0.27, 0.03, 0.04 performance
gains in accuracy concerning four datasets and 0.38, 0.26, 0.05, 0.03 performance gains in F1.
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Model Hao Dataset Zheng Dataset
Full Near Far Full Near Far

LODE 0.77±0.08 0.33±0.05 1.37±0.14 0.79±0.05 0.67±0.02 1.05±0.10
NODE 1.08±0.13 0.54±0.08 1.85±0.19 2.32±0.01 1.39±0.00 4.56±0.02
NGM 0.25±0.01 0.25±0.01 0.26±0.01 0.78±0.04 0.66±0.03 1.00±0.03
TE-CDE 0.32±0.02 0.32±0.01 0.31±0.01 3.88±0.01 1.75±0.01 9.21±0.01
CF-ODE 0.57±0.03 0.38±0.02 0.84±0.05 0.36±0.03 0.24±0.02 0.55±0.06
CTP 0.16±0.01 0.16±0.00 0.16±0.01 0.32±0.03 0.26±0.02 0.47±0.03
CTP⋆ 0.13±0.01 0.14±0.00 0.13±0.01 0.29±0.03 0.25±0.02 0.46±0.03

MM-25 Dataset MM-50 Dataset
Full Near Far Full Near Far

LODE 1.13±0.05 1.11±0.07 1.22±0.04 1.51±0.01 1.52±0.00 1.51±0.01
NODE 1.25±0.04 1.23±0.05 1.60±0.03 1.48±0.03 1.43±0.03 1.67±0.02
NGM 0.89±0.03 0.91±0.04 0.79±0.02 2.41±0.08 2.24±0.05 3.12±0.13
TE-CDE 1.25±0.09 1.19±0.11 1.52±0.15 1.50±0.04 1.45±0.05 1.70±0.08
CF-ODE 1.29±0.04 1.22±0.03 1.59±0.05 1.64±0.09 1.58±0.07 1.88±0.13
CTP 0.78±0.03 0.74±0.05 0.88±0.07 1.20±0.06 1.15±0.08 1.43±0.05
CTP⋆ 0.75±0.02 0.73±0.04 0.80±0.05 1.17±0.06 1.11±0.05 1.49±0.06

Table 4: Treatment Effect Prediction. The “Full” column indicates the general difference between
predicted trajectories and oracle trajectories of features. The “Near” column indicates the differences
in the trajectories before treatment and the first half observations after the treatment. The “Far”
column indicates the differences in the second half observations after the treatment.

Figure 2: Treatment Effect Analysis (average trajectories of retrained CTP models and baselines).

3.4 TREATMENT EFFECT PREDICTION

Table 4 describes the performance of predicting progression trajectories under a given treatment of
the CTP model and baselines in four datasets. The CTP (without utilizing a causal identification
algorithm) obtained significantly better performance than all baselines. For example, The full MSE of
NODE in the Hao dataset is 1.08, about six times more than the CTP model (0.16), and the full MSE
of NODE is 1.39, about four times more than the CTP model (0.25). The TE-CDE and CF-ODE also
obtained poor performance, which may be attributed to they only focus on deconfounding when prior
causal information is available. The NGM model obtained the best performance among baselines,
while the CTP model obtained better performance than the NGM. The performance of our CTP model
is significantly better in the MM-25 and MM-50 datasets. These experiment results demonstrate our
CTP model has good scalability. We also find that the CTP⋆ model obtained better performance by
utilizing the causal identification algorithm, though the improvement is not significant.
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Figure 3: Trajectories Bounds under a Treatment of Hao Dataset

We qualitatively analyzed why our CTP model obtained better performance than baselines in Figure
2. For the space limit, we only draw trajectories of two randomly selected samples from the Hao
dataset and Zheng dataset. The figure shows that some trajectories generated by baselines changed
mistakenly after the treatment. For example, the predicted trajectory of a in the Hao dataset of LODE
and NODE decreases rapidly after we apply the treatment, while the treatment does not affect the
trajectory of a because a is an ancestor feature of the n. Similar deviations also occur in other features.
As these baselines utilized correlational relations, the treatment action brings unexpectable influence
to the predicted feature. Although the LODE and the NGM model applied ridge loss to remove
spurious connections, experimental results demonstrated they could not recover causal relations
between features well. The incorporation of score-based DAG loss helps the model predict treatment
effects better when there is no feedback between features.

Dataset Reconstruct Prediction
Origin Retrained Origin Retrained

Hao 0.01 0.01 0.02 0.03
Zheng 0.09 0.07 0.09 0.09
MM-25 0.04 0.03 0.24 0.23
MM-50 0.04 0.04 0.28 0.29

Table 5: Prediction Performance of Retrained Models
(Avg. MSE)

We plot the bound of trajectories of a
randomly selected sample to evaluate
the bound qualitatively. The sample is
from the Hao dataset as it contains an
unobserved confounder (Figure 3). We
find bounds generated by a group of re-
trained CTP models include true trajec-
tories and are not very loose, indicat-
ing the bound may be helpful in clini-
cal decision-making. We also describe
the prediction performance of the re-
trained CTP models (Table 5) to investi-
gate whether the retraining process deteriorates the trajectory prediction performance of models. We
find that the retrained group of CTP models, though have different parameters, obtained the same
or better performance in reconstructing input in the four datasets. They also obtained comparable
performance to the original CTP model in predicting tasks. We may summarize that the retraining
process not only helps us find the bound of treatment effect but also does not affect the prediction
performance of the CTP model. The finding may be indirect evidence that there may be multiple
models that can generate the observed dataset when an unobserved confounder exists.

4 CONCLUSION

We proposed a causal interpretable model that combines trajectory prediction and causal graph
discovery to predict feature progression trajectories. The model ensures that each feature is predicted
only by itself and its causal ancestors and tackles the issue of unmeasured confounders by identifying
correlated errors and constraining the possible effect space of confounders using observed data.
Experimental results demonstrate that the CTP model performs comparably or better than baselines
in trajectory prediction. It obtained significantly better performance in predicting feature trajectories
under a treatment. This model offers a novel approach to support clinical decision-making. In the
future study, we will try to evaluate the causal discovery performance and treatment effect prediction
performance of the CTP model in real medical datasets.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ahmed M Alaa and Mihaela van der Schaar. Attentive state-space modeling of disease progression.
In Advances in neural information processing systems, volume 32, 2019.

Asem Alaa, Erik Mayer, and Mauricio Barahona. Ice-node: Integration of clinical embeddings with
neural ordinary differential equations. In Proceedings of Machine Learning Research, 2022.

Chainarong Amornbunchornvej, Elena Zheleva, and Tanya Berger-Wolf. Variable-lag granger
causality and transfer entropy for time series analysis. ACM Transactions on Knowledge Discovery
from Data, 15(4):1–30, 2021.

Matthew Ashman, Chao Ma, Agrin Hilmkil, Joel Jennings, and Cheng Zhang. Causal reasoning in
the presence of latent confounders via neural admg learning. International Conference on Learning
Representations, 2023.

Vahid Balazadeh Meresht, Vasilis Syrgkanis, and Rahul G Krishnan. Partial identification of treatment
effects with implicit generative models. Advances in Neural Information Processing Systems, 35:
22816–22829, 2022.

Alexis Bellot, Kim Branson, and Mihaela van der Schaar. Neural graphical modelling in continuous-
time: consistency guarantees and algorithms. 2022.

James E Bennett, Gretchen A Stevens, Colin D Mathers, Ruth Bonita, Jürgen Rehm, Margaret E
Kruk, Leanne M Riley, Katie Dain, Andre P Kengne, Kalipso Chalkidou, et al. Ncd countdown
2030: worldwide trends in non-communicable disease mortality and progress towards sustainable
development goal target 3.4. The lancet, 392(10152):1072–1088, 2018.

Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, and Ilya Shpitser. Differentiable causal
discovery under unmeasured confounding. In International Conference on Artificial Intelligence
and Statistics, pp. 2314–2322, 2021.

Ioana Bica, Ahmed Alaa, and Mihaela Van Der Schaar. Time series deconfounder: Estimating
treatment effects over time in the presence of hidden confounders. In International Conference on
Machine Learning, pp. 884–895, 2020.

Nello Blaser, Luisa Salazar Vizcaya, Janne Estill, Cindy Zahnd, Bindu Kalesan, Matthias Egger,
Thomas Gsponer, and Olivia Keiser. Gems: an r package for simulating from disease progression
models. Journal of Statistical Software, 64(10):1, 2015.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Defu Cao, James Enouen, Yujing Wang, Xiangchen Song, Chuizheng Meng, Hao Niu, and Yan Liu.
Estimating treatment effects from irregular time series observations with hidden confounders. In
AAAI Conference on Artificial Intelligence, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, volume 31, 2018.

Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce
data. Nature communications, 12(1):6136, 2021.

Yuxiao Cheng, Runzhao Yang, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He, and Qionghai
Dai. Cuts: Neural causal discovery from irregular time-series data. In International Conference on
Learning Representations, 2023.

Genevieve Coorey, Gemma A Figtree, David F Fletcher, Victoria J Snelson, Stephen Thomas Vernon,
David Winlaw, Stuart M Grieve, Alistair McEwan, Jean Yee Hwa Yang, Pierre Qian, et al. The
health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field.
NPJ digital medicine, 5(1):126, 2022.

10



Under review as a conference paper at ICLR 2024

Edward De Brouwer, Javier Gonzalez, and Stephanie Hyland. Predicting the impact of treatments
over time with uncertainty aware neural differential equations. In International Conference on
Artificial Intelligence and Statistics, pp. 4705–4722, 2022.

Huilong Duan, Zhoujian Sun, Wei Dong, Kunlun He, and Zhengxing Huang. On clinical event
prediction in patient treatment trajectory using longitudinal electronic health records. IEEE Journal
of Biomedical and Health Informatics, 24(7):2053–2063, 2019.

Thomas M Gill. The central role of prognosis in clinical decision making. JAMA, 307(2):199–200,
2012.

Florian Gunsilius. A path-sampling method to partially identify causal effects in instrumental variable
models. arXiv preprint arXiv:1910.09502, 2019.

Florian F Gunsilius. Nontestability of instrument validity under continuous treatments. Biometrika,
108(4):989–995, 2021.

Wenrui Hao, Suzanne Lenhart, and Jeffrey R Petrella. Optimal anti-amyloid-beta therapy for
alzheimer’s disease via a personalized mathematical model. PLoS computational biology, 18(9):
e1010481, 2022.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
International Conference on Learning Representations, 2017.

Junetae Kim, Sangwon Lee, Eugene Hwang, Kwang Sun Ryu, Hanseok Jeong, Jae Wook Lee, Yul
Hwangbo, Kui Son Choi, and Hyo Soung Cha. Limitations of deep learning attention mechanisms
in clinical research: empirical case study based on the korean diabetic disease setting. Journal of
medical Internet research, 22(12):e18418, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.
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APPENDIX

A RELATED WORK

A.1 TRAJECTORY PREDICTION

Recurrent neural networks (RNN) and Transformer are widely used to learn representations from
sequential patient data and predict their feature progression trajectories (Alaa & van der Schaar, 2019;
Lim & van der Schaar, 2018). However, these two types of methods are designed to model discrete
trajectories with fixed time intervals, while we may need to generate continuous patient trajectories.
Recent studies usually adopt two kinds of methods to model continuous trajectories. The first method
is to model the trajectory prediction problem as solving a dynamical system. Benefiting from the
neural ODE solver (Chen et al., 2018), it is possible to optimize a neural network parameterized
dynamical system, so that predicting continuous patient trajectory is feasible. For example, (Seedat
et al., 2022) interprets the data as samples from an underlying continuous-time process and models
its latent trajectory explicitly using controlled differential equations. (Alaa et al., 2022) temporally
integrates embeddings of clinical codes and neural ODEs to learn and predict patient trajectories
in electronic health records. The second method models continuous trajectories by revising the
architecture of the RNN or transformer. For example, (Duan et al., 2019) utilizes the Hawkes process
to learn the effect of time intervals and incorporate the Hawkes process into an RNN model. (Tan et al.,
2020) proposes an end-to-end model that preserves the informative varying intervals by introducing
a time-aware structure to directly adjust the influence of the previous status in coordination with
the elapsed time. Besides, (Tipirneni & Reddy, 2022) regards the irregularity as data missing and
overcomes the pitfall by treating time series as a set of observation triplets instead of using the
standard dense matrix representation.

Although these models claimed they obtained impressive performance, they usually cannot be applied
to treatment effect analysis due to they did not capture casual information within data.

A.2 CAUSAL DISCOVERY

As far as we know, there are generally two kinds of methods that can discover casualties from sequen-
tial data. The first is to use an ODE-based linear dynamic system to model the data-generating process
and adopt a sparse penalty (e.g., ridge loss) to eliminate unnecessary feature interactions. Previous
studies have proved this approach can reconstruct causal structure correctly given observational data
(Wang et al., 2022a). Known as physics informed network (PIN), this method is widely used to
discover governing equations in physical processes (Brunton et al., 2016; Chen et al., 2021). The
second method utilizes the Granger causality assumption that assumes each sampled variable is
affected only by earlier observations. Then they summarize the causal graph by analyzing the Granger
causality information. For example, (Cheng et al., 2023) use a threshold-based method to reserve
probable Granger causality between features. (Amornbunchornvej et al., 2021) propose a regression
and sparse-based algorithm to identify Granger causality from data. In this study, we adopt the first
framework to discover a causal graph in a non-linear dynamic system.

A.3 TREATMENT EFFECT PREDICTION WITH HIDDEN CONFOUNDER

Most previous studies tried to infer the value of the posterior distribution of hidden confounders given
the observed data. Once the value or the distribution of the confounder is inferred, the treatment
effect can be evaluated by adjusting. For example, (Bica et al., 2020) uses an RNN with multitask
output to infer unmeasured confounders that render the assigned treatments conditionally independent.
Similarly, (Ma et al., 2021) aims to learn how hidden confounders’ representation over time by using
observation data and historical information. (Cao et al., 2023) leverages Lipschitz regularization and
neural-controlled differential equations to capture the dynamics of hidden confounders. (Ashman
et al., 2023) develops a gradient and generative-based model to infer the existence and effect of
hidden confounders simultaneously. (Wang et al., 2022b) proposes a clipping strategy to the inverse
propensity score estimation to reduce the variance of the learning objective.

Although these studies obtained impressive progress, they did not discuss whether the effect of the
unmeasured confounder is identifiable. In fact, the effect of unmeasured confounder may be generally
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Figure 4: Causal Graph of simulated amyloid beta pathway data. (a) Hao model. (b) Zheng model.
The causal graph only describes the causal relation between different features.

unidentifiable for both static dataset and sequential datasets (Gunsilius, 2019; 2021; Stanhope et al.,
2014). Therefore, we argue it may be too optimistic to presume deconfounding is feasible and also
try to estimate the bound of the treatment effect when a confounder exists (Balazadeh Meresht et al.,
2022).

B DATA PAREPARING

B.1 ADNI

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multicenter, prospective, naturalis-
tic dataset (Petersen et al., 2010). The ADNI database consists of a comprehensive collection of
neuroimaging, clinical, and genetic data from a large cohort of subjects, including healthy controls,
individuals with mild cognitive impairment, and patients with Alzheimer’s disease. We have tra-
versed the ADNI database, excluding mass spectrometry analysis, to match participant demographic
information, biomarkers, and family cognitive status data.

We only reserved patients whose available visit record is equal to or greater than three to ensure
patient data is longitudinal. Features whose missing rate is larger than 30% were discarded. Finally,
medical records from 275 patients whose ages range from 55 to 90 years old were included. These
patients contain 1,018 admission records and the average admission time is 3.7. The average interval
between two visits is 1.65 years. Each admission record contains 88 features, where 23 features are
continuous and 65 features are discrete. The continuous features consist of important biomarkers,
e.g., tau protein, amyloid beta protein, and cognitive assessment results, e.g., Mini-Mental State
Examination (MMSE). Discrete features recorded the usage of medicines.

B.2 AMYLOID BETA PATHWAY SIMULATED DATASET

We used the amyloid beta pathway, an extensively investigated disease progression pathway of
Alzheimer’s disease, to conduct analysis (Hao et al., 2022; Zheng et al., 2022; Mielke et al., 2017).
We used two recently published ODE-based bio-mathematical models to instantiate the pathway.

Hao model (Hao et al., 2022). This model includes five features, i.e., amyloid beta (Aβ), phosphory-
lated tau protein (τp), nonamyloid-dependent tauopathy (τo), neurodegeneration (N ), and cognitive
decline score (C). It describes the dynamics of the pathway on three different groups of patients,
i.e., Alzheimer’s disease, late mild cognitive impairment (LMCI), and cognitive normal groups. The
dynamics of the three groups share the same form of ODEs but with different parameters (Equation
14). In this study, we chose the group of parameters and initial conditions of LMCI to generate a
simulated dataset. The initial time t0 is 50 and observational interval is one, and the parameters of
the system follows: A0 = 41.57, τp0 = 4.21, τo0 = 28.66, N0 = 0.48, C0 = 6.03, λAβ

= 0.1612,
KAβ

= 264.99, λτ = 0.08, Kτp = 131.66, λτo = 1.74, λNτo
= 0.000424, λNτp

= 0.00737,
KN = 1.02, λCN = 1.26, λCτ = 1.93, KC = 129.4. We chose LMCI because it is a risk state that
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leads the real Alzheimer’s disease. The oracle causal relationship between features is shown in Figure
4(a) (Hao et al., 2022). Compared to the original setting of the Hao model, we add an extra link
between τo and C to introduce a confounder structure but do not re-estimate the parameters (Mielke
et al., 2017). We discard τo during the experiment process to introduce an unmeasured confounder.
Therefore, the dataset has four observable features.



dAβ

dt
= λAβ

Aβ(1−
Aβ

KAβ

)

dτp
dt

= λτAβ(1−
τp
Kτp

)

dτo
dt

= λτo

dN

dt
= (λNτo

τo + λNτp
τp)(1−

N

KN
)

dC

dt
= (λCNN + λCτ (τp + τo))(1−

C

KC
)

. (14)

Zheng Model (Zheng et al., 2022). This model includes four features (i.e., Aβ , tau protein τ , N ,
and C) with the causal structure shown in Figure 4(b). Zheng’s model does not contain unmeasured
features and all four features are observable. Zheng’s model describes the dynamics of LMCI and
Alzheimer’s disease and its form follows Equation 15. The initial DPS time t0 is -10 and observation
interval is two, Aβ(t0) = y0, τp(t0) = 0, τo(t0) = 0, N(t0) = 0, and C(t0) = 0 and the parameters
follows: wA0 = 0, wA1 = 0.745, wA2 = −0.749, wτ0 = 0, wτ1 = 0.689, wτ2 = −0.679, wτ3 = 0,
wτ4 = 0.185, wτ5 = −0.101, wτ6 = 0, wN0 = 0, wN1 = 0.899, wN2 = −0.927, wN3 = 0.554,
wN4 = 1.792, wN5 = −2.127, wC0 = 0, wC1 = 0.134, wC2 = −0.067, wC3 = 0.004, wC4 =
0.007, wC5 = −0.008, y0 = 0.000141.



dAβ

dt
= wA1Aβ + wA2A

2
β

dτ

dt
= wτ1τ + wτ2τ

2 + wτ3Aβ + wτ4A
2
β + wτ5Aβτ

dN

dt
= wN1N + wN2N

2 + wN3τ + wN4τ
2 + wN5τN

dC

dt
= wC1C + wC2C

2 + wC3N + wC4N
2 + wC5NC

. (15)

B.3 MK DATASET

We also generated two Michaelis-Menten kinetics datasets (i.e., MM-25, MM-50) to evaluate the
performance of the CTP model in high-dimensional case (Zhang et al., 2022). The original MM-25
contains 25 nodes and the original MM-50 contains 50 nodes. The causal relation and dynamics of
the two datasets follow Equation 16, where Xi denotes a node and Ni denotes the set of the parent
nodes of Xi. The causal relation was from a randomly generated DAG whose edge probability was
0.15, and the vertices followed the topological order. The initial value of each node is a sample
of a uniform distribution that takes a value between 0.8 and 1.2. The initial time is zero and the
observation interval is 0.25. We discarded the first five nodes to introduce unmeasured confounding.
The final MM-25 and MM-50 dataset contains 20 and 45 observable features, respectively.

dXi

dt
= −Xi +

1

|Ni|
∑
j∈Ni

Xj

1 +Xj
. (16)

B.4 GENERATION OF SIMULATED DATASETS

For each model, we generated training, validation, and test datasets with the same process, respectively
(Virtanen et al., 2020). Each sample contains 15 observations distributed evenly. We randomly
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discarded 5% observations to simulate missing data. We define observations before the eighth
observation is used as the input and reconstruction target of the CTP, and observations after the eighth
observation are only used for prediction. We normalized all variables to a zero mean unit variance
distribution after data data-generating process. Besides the above settings, we generated datasets in
three different configurations.

1. All patients share the same init value with parameters of the dynamic system vary. We added
uniform noise to the parameters of each patient, the noise follows uniform distribution, and
the strength is 10% of the parameters. Therefore, each patient has its disease progression
trajectories.

2. All patients share the same parameters of the dynamic system with initial value varying. We
added uniform noise to the init values for each patient, the noise follows uniform distribution,
and the strength is 10% of the original init value.

3. Each patient has its own parameters and init values. We added uniform noise to the init
values and parameters of each patient, the noises follow uniform distribution, and the
strength is 10%.

We generated 1,024, 128, and 128 samples with respect to training, validation, and test datasets for
the three configurations. We used datasets generated in the third configuration to conduct experiments
in the main body. We also generated a training dataset in the third configuration with 128, 256, and
512 samples in the training set. We conducted low resource analysis and robust analysis according to
the unused datasets, whose details are in Appendix E.
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C ALGORITHM

C.1 CTP MODEL OPTIMIZE

Algorithm 1 CTP Model Optimize Process
Input: training data Dt, validation data Dv, max iteration n, update interval m, convergence

threshold δ, Lagrangian parameters α, ρ, η, γ
Output: Loss L, parameters ϕ, θ

Initialize : ϕ, θ, loss list a1: [], a2: []
1: for i = 1 to n do
2: if i modm = 0 then
3: Calculate Lfinal according Equation 10 given Dv

4: Calculate h(θ) according to Equation 7
5: Append Lfinal to loss list a1
6: Append h(θ) to loss list a2
7: end if
8: if (i modm) == 0 and i > 2m then
9: if a1[−1] < a1[−2] then

10: ∆λ = (a1[−2]− a1[−1])/m
11: if ∆λ < δ then
12: h = a2[−1]
13: ρ = αh+ ρ
14: if a2[−1] > a2[−2]× γ then
15: α = η × α
16: end if
17: end if
18: end if
19: end if
20: Sample mini-batch B from Dt

21: Calculate Lfinal according Equation 10 given B
22: Calculate gradient∇Lfinal w.r.t. ϕ, θ
23: Update ϕ, θ via a stochastic optimizer
24: end for
25: Calculate L according Equation 8 given Dv

26: return L, ϕ, θ

Line 2 to 19 describes the details of generating a Lagrangian multiplier, while line 20 to 24 describes
a normal gradient-based parameters optimization process. During the optimization process, we
calculate and record Lfinal and h(θ) every m steps (line 3-7). We regard a subproblem as solved
when it converges (lines 9-11). Then, we gradually increase the value of α and ρ (lines 13-15) and
establish a new subproblem. Eventually, all connections that violate the DAG assumption between
features will be eliminated.
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C.2 CAUSAL IDENTIFICATION

Algorithm 2 Causal Identification
Input: training data Dt, validation data Dv, accept ratio ρ, model threshold δ, causal threshold φ,

model number N ,
Output: Causal MaskM

Initialize :MM̃ via Eq. 11
1: while

∑
ij(M̃ij) > 0 do

2: Define model list M List = []
3: while Length(M List) < N do
4: Optimize a new model via Alg. 1, obtain L, ϕ, θ
5: Summarize D̃ according θ
6: if L < δ then
7: Append D̃ to M List
8: end if
9: end while

10: for i = 1, j = 1 to K + 1,K + 1 do
11: for n = 1 to N do
12: eij = 0
13: if M List[n]i,j > φ then
14: eij = eij + 1
15: end if
16: end for
17: if M̃ij and eij/N > ρ then
18: Mij = 1

19: M̃ij = 0

20: else if M̃ij and eij/N < (1− ρ) then
21: Mij = 0

22: M̃ij = 0
23: end if
24: end for
25: end while
26: return M

The algorithm first repeatedly optimizes independent CTP models and records N models that can
converge successfully (i.e., validation loss L is less than a predefined threshold δ) (lines 2-8). We
presume these models are more probable to identify correct causal relationships. Then, We analyze
the neural connectivity matrix of each model. We treat elements whose value is less than a threshold
φ as invalid (line 13) (Lachapelle et al., 2020). We use the eij/N to determine how many models
treat the connection i← j as invalid. If the value is larger than an accept ratio ρ, we will treat the
connection as certainly valid and setMij = 1 and M̃ij = 0. eij/N is less than 1− ρ indicates the
connection is certainly invalid and we we setMij = 0 and M̃ij = 0 (line 17-23). We repeat the
process until all casual relations become certain (i.e.,

∑
ij(M̃ij) = 0))
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C.3 INDEPENDENT CTP MODELS OPTIMIZE

Algorithm 3 independent CTP Models Optimize Process
Input: Dt, L, M⋆, lrp, lrt, optimp, optimt

Output: A series of new CTP model {Ml}Ll=1

Initialize : Parameters of {M l}Ll=1 via M⋆

1: for j = 1 to n do
2: Sample mini-batch B from Dt

3: Define prediction loss Lp = 0
4: for l = 1 to L do
5: Calculate Ll via Eq. 8 given B and Ml

6: Lp = Lp + Ll

7: end for
8: Define treatment loss Ltreat = 0
9: Define estimation list EL = []

10: Randomly sample ta > t0 and to > ta
11: for l = 1 to L do
12: Apply treatment do(Ata = a) to Ml

13: for i = 1 to |B| do
14: Calculate lv̂

′

i via Eq. 5 given M l and si from B
15: Append lv̂i(to) to EL
16: end for
17: end for
18: Compute pairwise distance Lt of EL via Eq. 12
19: Calculate gradient∇Lp, and ∇Lt

20: Minimize Lp via ∇Lp, optimp, and lrp
21: Maximize Lt via ∇Lt, optimt, and lrt
22: end for
23: return {M l}Ll=1

We use do(Ata = a) to denote a treatment, which means fixing the value of feature v̄A to a from a
time point ta (line 12), regardless its original value. Given a patient data si (from B) and a model
M l, we can implement treatment effect prediction by performing do(Ata = a). Then, we use an
ODE solver to solve the ODEs, and the solver will generate progression trajectories lv̂i(t) under a
treatment (line 14). Of note, M l evaluates treatment effect appropriately. By utilizing the causal
maskM from M⋆, we can access the causal relationship between features and ensure the dynamics
of ancestral features of A will not be affected. Meanwhile, M l infers the value of the unmeasured
confounder so that we can adjust the confounding bias. We record the patient characteristics lv̂i(to)
at a randomly selected time point to (line 15). To make trajectories of M l as dissimilar as possible,
we maximize the pair-wise distance between recorded lv̂i(to) (Equation 12). In this study, we applied
the simplest p-norm distance for computational efficiency. Then, we alternatively maximize the Lt

and minimize the Lp to keep the group of models can predict trajectories accurately but behave as
differently as possible under a treatment.
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D DISCUSSION

We investigate the performance of the CTP and baselines in trajectory prediction, causal discovery,
and treatment effect prediction. Experimental results demonstrate that our CTP model obtains
SOTA performance or comparable performance to SOTA in trajectory prediction task, indicating
the incorporation of additional penalties does not decrease its prediction performance. The CTP
model obtains significantly better causal discovery performance by incorporating ridge loss, while
the original neural ODE, as well as TE-CDE and CF-ODE, cannot learn the causal relationship well
between features. Meanwhile, its causal discovery performance is further improved by utilizing
the DAG penalty. The advantages in extracting causal relationships help the CTP model obtain
significantly better performance compared to all baselines in the successive treatment effect prediction
test. We also find that the bound generated by the CTP model can include the true trajectories when
unmeasured confounder exists, indicating the model may help clinical decisions for complex NCDs.

The main strength of the CTP is that it can predict disease progression trajectories under a treatment.
Prognostic analysis aims to assist clinical decision-making and improve prognosis (Gill, 2012). This
goal is usually mistakenly understood as developing accurate prediction models. As different NCD
patients usually require different treatments due to patient heterogeneity, merely predicting poor
prognosis in an unexplainable manner is not enough to assist clinicians in implementing treatment in
advance. Clinicians criticized that recent ML-based prognostic models did not help them to deliver
more precise treatment, even these models obtained impressive prediction performance Wilkinson
et al. (2020). Although researchers have tried to propose explainable models, these models have
their shortages. Existing explainable models still rely on capturing correlational relations within
features and merely generating local explanations Loh et al. (2022). They are unlikely can be applied
in answering counterfactual questions Kim et al. (2020). Our experiment result also demonstrats
that the performance of baselines falls sharply under a treatment, indicating they cannot be utilized
in treatment effect analysis. We argue that a model can assist clinical decision-making when it can
answer counterfactual questions. Compared to existing treatment effect models which only investigate
the treatment of a predefined drug to a predefined static outcome, our CTP model can predict the
dynamics of the entire system under a treatment Yao et al. (2021). Of note, the progression of NCD is
usually a longitudinal, complex process that cannot be comprehensively described by the occurrence
of a static binary outcome. Therefore, our CTP model may be deployed in clinical workflow to assist
clinicians in delivering better prescriptions.

This study has two advantages and two shortcomings. The first advantage is that we have fully evalu-
ated the model’s performance in causal discovery and trajectory prediction. We also quantitatively
and qualitatively evaluated the model’s performance in treatment effect analysis. It comprehensively
explains that our model can be used for prognostic prediction and treatment effect analysis of long-
term disease progression trajectories. Previous studies usually do not focus on predicting an entire
trajectory, but only on the prognosis at a single isolated time point. Previous research generally deals
with causal discovery and treatment effect analysis separately, with few studies completing a full in-
ference of causal discovery and treatment effect analysis. The second advantage is that we conducted
comprehensive experiments. In this study, we chose a real public clinical dataset, two simulated
Alzheimer’s disease amyloid deposition datasets, and two completely simulated high-dimensional
datasets for analysis. At the same time, we chose five related models published in recent years as
baselines, fully proving the superior performance and universality of the CTP model. This study
also has two shortcomings. The first shortcoming is that we assumed that the causal structure of the
data constitutes a DAG, which means that our model cannot handle feedback phenomena in dynamic
time series systems. The second shortcoming is that we only conducted complete experiments on
simulated datasets. In future research, we will try to evaluate the performance of model results in
causal analysis on real datasets.
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E EXTENDED EXPERIMENT RESULT

E.1 TRAJECTORY PREDICTION PERFORMANCE ON SIMULATED DATASETS

Table 6 describes the performances of the CTP and baselines in four simulated datasets. Our CTP
model obtained comparable performance to SOTA models.

Model Dataset Reconstruct Predict Dataset Reconstruct Predict
LODE Hao 0.10±0.01 0.12±0.03 MM-25 0.04±0.00 0.26±0.02
NODE Hao 0.01±0.00 0.01±0.00 MM-25 0.02±0.00 0.25±0.01
NGM Hao 0.02±0.01 0.02±0.01 MM-25 0.03±0.01 0.27±0.01
TE-CDE Hao 0.02±0.01 0.01±0.00 MM-25 0.02±0.00 0.25±0.01
CF-ODE Hao 0.02±0.00 0.01±0.00 MM-25 0.02±0.00 0.23±0.01
CTP Hao 0.01±0.01 0.02±0.00 MM-25 0.04±0.01 0.24±0.01
LODE Zheng 0.12±0.03 0.15±0.02 MM-50 0.03±0.00 0.24±0.00
NODE Zheng 0.03±0.01 0.08±0.02 MM-50 0.02±0.00 0.26±0.01
NGM Zheng 0.09±0.01 0.11±0.02 MM-50 0.02±0.01 0.25±0.01
TE-CDE Zheng 0.09±0.01 0.11±0.01 MM-50 0.03±0.00 0.27±0.02
CF-ODE Zheng 0.09±0.02 0.11±0.01 MM-50 0.03±0.01 0.26±0.01
CTP Zheng 0.09±0.01 0.09±0.01 MM-50 0.04±0.01 0.28±0.02

Table 6: Simulated Data Prediction Performance

E.2 INCLUSION RATE

We evaluated whether a true feature value is included in the estimated bound using the inclusion rate
(Figure 5). We found that the inclusion rate is relevant to the number of CTP models. The more the
number of models, the better the performance. For example, the inclusion rate of the Hao dataset is
0.22 when we only use two models, while it gradually increases to 0.71 when we apply 64 models.
The inclusion rate on other datasets also shows a similar tendency. Therefore, we argue that our
method is able to estimate the possible bounds of a treatment, which will assist in better clinical
decisions. It is worth noting that different dataset requires different number of independent models.
The inclusion rate converges when the model number is larger than 32 in the Hao dataset, while it
converges when the model number is larger than eight in the Zheng dataset. The inclusion rate of the
MM-25 dataset and MM-50 dataset is significantly lower than the other two datasets.

Figure 5: Treatment Inclusion
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E.3 LOW RESOURCE ANALYSIS

Table 7 describes the performance of the CTP and baselines with different sizes of training data.
Our CTP model obtained similar performance compared to baselines, though its performance is not
the best. We did not observe significant performance deterioration, which indicates all models can
successfully converge by feeding limited training data.

Model Sample Dataset Reconstruct Predict Dataset Reconstruct Predict
LODE 128 Hao 0.11±0.03 0.13±0.04 MM-25 0.05±0.01 0.21±0.01
NODE 128 Hao 0.01±0.00 0.02±0.01 MM-25 0.04±0.00 0.25±0.00
NGM 128 Hao 0.02±0.00 0.03±0.01 MM-25 0.04±0.00 0.23±0.00
TE-CDE 128 Hao 0.03±0.01 0.02±0.00 MM-25 0.04±0.01 0.24±0.00
CF-ODE 128 Hao 0.02±0.00 0.03±0.01 MM-25 0.06±0.00 0.23±0.01
CTP 128 Hao 0.02±0.00 0.03±0.01 MM-25 0.04±0.01 0.24±0.00
LODE 128 Zheng 0.15±0.03 0.23±0.04 MM-50 0.04±0.00 0.24±0.01
NODE 128 Zheng 0.04±0.01 0.05±0.01 MM-50 0.03±0.01 0.25±0.01
NGM 128 Zheng 0.07±0.02 0.08±0.02 MM-50 0.03±0.01 0.24±0.00
TE-CDE 128 Zheng 0.10±0.01 0.11±0.01 MM-50 0.04±0.00 0.23±0.01
CF-ODE 128 Zheng 0.08±0.02 0.12±0.03 MM-50 0.04±0.00 0.26±0.00
CTP 128 Zheng 0.09±0.01 0.11±0.02 MM-50 0.08±0.00 0.30±0.00
LODE 256 Hao 0.09±0.01 0.08±0.02 MM-25 0.05±0.00 0.22±0.01
NODE 256 Hao 0.01±0.00 0.03±0.01 MM-25 0.03±0.01 0.23±0.00
NGM 256 Hao 0.02±0.01 0.04±0.00 MM-25 0.03±0.00 0.23±0.00
TE-CDE 256 Hao 0.01±0.00 0.02±0.00 MM-25 0.05±0.00 0.24±0.00
CF-ODE 256 Hao 0.01±0.00 0.03±0.01 MM-25 0.04±0.00 0.22±0.02
CTP 256 Hao 0.02±0.00 0.03±0.01 MM-25 0.04±0.01 0.23±0.00
LODE 256 Zheng 0.12±0.03 0.17±0.03 MM-50 0.04±0.00 0.24±0.00
NODE 256 Zheng 0.05±0.01 0.06±0.01 MM-50 0.02±0.00 0.24±0.00
NGM 256 Zheng 0.07±0.01 0.08±0.01 MM-50 0.04±0.01 0.24±0.01
TE-CDE 256 Zheng 0.08±0.02 0.11±0.02 MM-50 0.06±0.01 0.25±0.00
CF-ODE 256 Zheng 0.09±0.02 0.10±0.01 MM-50 0.05±0.00 0.24±0.00
CTP 256 Zheng 0.09±0.03 0.10±0.01 MM-50 0.07±0.00 0.26±0.00
LODE 512 Hao 0.10±0.01 0.09±0.01 MM-25 0.05±0.00 0.23±0.00
NODE 512 Hao 0.01±0.00 0.02±0.01 MM-25 0.03±0.00 0.22±0.00
NGM 512 Hao 0.02±0.00 0.04±0.01 MM-25 0.04±0.00 0.22±0.02
TE-CDE 512 Hao 0.02±0.00 0.03±0.00 MM-25 0.03±0.00 0.23±0.00
CF-ODE 512 Hao 0.03±0.01 0.03±0.01 MM-25 0.04±0.00 0.23±0.01
CTP 512 Hao 0.02±0.00 0.03±0.01 MM-25 0.03±0.00 0.21±0.00
LODE 512 Zheng 0.10±0.01 0.16±0.02 MM-50 0.04±0.01 0.24±0.01
NODE 512 Zheng 0.05±0.01 0.05±0.01 MM-50 0.03±0.01 0.25±0.00
NGM 512 Zheng 0.08±0.02 0.10±0.02 MM-50 0.03±0.01 0.26±0.00
TE-CDE 512 Zheng 0.08±0.01 0.11±0.02 MM-50 0.03±0.00 0.26±0.01
CF-ODE 512 Zheng 0.09±0.02 0.10±0.01 MM-50 0.03±0.00 0.28±0.00
CTP 512 Zheng 0.08±0.01 0.11±0.01 MM-50 0.06±0.00 0.29±0.01

Table 7: Low Resource Prediction Performance
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Table 8 describes the causal discovery performance of the CTP and baselines with different sizes of
training data, where we only recorded AUC for clarity. We also observe that the size of the training
data did not influence the causal discovery performance significantly. The NGM and LODE obtained
significantly better performance because they utilized ridge loss to remove unnecessary relations
between features. Our CTP model obtained better performance compared to the NGM, which may be
attributed to the incorporation of score-based DAG constraints.

Model Sample Hao Zheng MM-25 MM-50
LODE 128 0.64±0.01 0.60±0.00 0.82±0.02 0.90±0.00
NODE 128 0.55±0.00 0.52±0.00 0.57±0.00 0.55±0.01
NGM 128 0.69±0.01 0.56±0.00 0.67±0.01 0.63±0.00
TE-CDE 128 0.54±0.01 0.52±0.01 0.55±0.00 0.53±0.01
CF-ODE 128 0.53±0.01 0.53±0.01 0.53±0.01 0.56±0.00
CTP 128 0.78±0.02 0.66±0.00 0.86±0.01 0.90±0.01
LODE 256 0.68±0.01 0.56±0.00 0.83±0.00 0.90±0.00
NODE 256 0.57±0.02 0.51±0.01 0.54±0.01 0.54±0.00
NGM 256 0.70±0.01 0.61±0.00 0.62±0.01 0.67±0.01
TE-CDE 256 0.56±0.01 0.53±0.01 0.54±0.01 0.54±0.01
CF-ODE 256 0.54±0.02 0.54±0.00 0.53±0.01 0.53±0.01
CTP 256 0.79±0.01 0.64±0.01 0.87±0.02 0.90±0.01
LODE 512 0.65±0.02 0.53±0.02 0.82±0.04 0.89±0.01
NODE 512 0.55±0.01 0.52±0.00 0.58±0.01 0.53±0.02
NGM 512 0.67±0.00 0.60±0.01 0.62±0.01 0.63±0.01
TE-CDE 512 0.58±0.00 0.51±0.00 0.53±0.01 0.52±0.01
CF-ODE 512 0.54±0.01 0.53±0.01 0.55±0.00 0.57±0.01
CTP 512 0.81±0.00 0.63±0.01 0.86±0.00 0.91±0.01

Table 8: Low Resource Causal Discovery Performance

Table 9 describes the treatment effect prediction performance of the CTP and baselines with different
sizes of training data, where we only recorded full performance for clarity. Our CTP model obtained
better performance compared to baselines, and we also found that the data size does not influence
model performance significantly.

Model Sample Hao Zheng MM-25 MM-50
LODE 128 0.84±0.15 0.87±0.07 1.33±0.04 1.49±0.03
NODE 128 1.45±0.23 2.16±0.02 1.28±0.04 1.52±0.02
NGM 128 0.26±0.02 0.83±0.02 0.86±0.02 2.40±0.01
TE-CDE 128 0.40±0.02 3.65±0.02 1.24±0.07 1.52±0.02
CF-ODE 128 0.54±0.01 0.38±0.03 1.39±0.07 1.58±0.06
CTP 128 0.24±0.02 0.34±0.01 0.83±0.04 1.19±0.06
LODE 256 0.78±0.13 0.84±0.05 1.27±0.04 1.53±0.04
NODE 256 1.40±0.17 2.37±0.02 1.20±0.06 1.50±0.02
NGM 256 0.24±0.02 0.75±0.04 0.88±0.04 2.41±0.01
TE-CDE 256 0.40±0.02 3.53±0.02 1.32±0.04 1.49±0.02
CF-ODE 256 0.65±0.03 0.42±0.03 1.28±0.05 1.55±0.05
CTP 256 0.22±0.01 0.39±0.04 0.80±0.03 1.17±0.05
LODE 512 0.81±0.08 0.80±0.05 1.21±0.05 1.52±0.03
NODE 512 1.37±0.12 2.09±0.01 1.23±0.03 1.51±0.01
NGM 512 0.23±0.01 0.80±0.01 0.89±0.03 2.42±0.02
TE-CDE 512 0.36±0.02 3.67±0.03 1.25±0.04 1.51±0.02
CF-ODE 512 0.57±0.02 0.40±0.03 1.28±0.05 1.54±0.04
CTP 512 0.19±0.01 0.35±0.04 0.78±0.04 1.16±0.08

Table 9: Low Resource Treatment Effect Prediction

23



Under review as a conference paper at ICLR 2024

E.4 ROBUSTNESS ANALYSIS

Table 10 describes the performance of the CTP and baselines in different configurations. The NODE
model obtains the best performance, which is not surprising and consists of other experiment results.
Our CTP models, as well as other baselines, obtained slightly worse performance. However, the
performance of our CTP model and other baselines are also acceptable.

Model Setting Dataset Predict Reconstruct Dataset Predict Reconstruct
LODE 1 Hao 0.06±0.01 0.04±0.00 MM-25 0.06±0.01 0.22±0.00
NODE 1 Hao 0.02±0.00 0.03±0.01 MM-25 0.02±0.00 0.21±0.01
NGM 1 Hao 0.04±0.01 0.04±0.00 MM-25 0.03±0.01 0.21±0.00
TE-CDE 1 Hao 0.04±0.01 0.04±0.01 MM-25 0.04±0.01 0.23±0.02
CF-ODE 1 Hao 0.04±0.01 0.03±0.00 MM-25 0.05±0.01 0.22±0.01
CTP 1 Hao 0.03±0.00 0.03±0.01 MM-25 0.06±0.01 0.34±0.02
LODE 1 Zheng 0.15±0.03 0.14±0.03 MM-50 0.05±0.01 0.28±0.02
NODE 1 Zheng 0.07±0.01 0.07±0.01 MM-50 0.02±0.00 0.23±0.00
NGM 1 Zheng 0.11±0.02 0.10±0.02 MM-50 0.03±0.00 0.24±0.01
TE-CDE 1 Zheng 0.10±0.01 0.11±0.03 MM-50 0.03±0.01 0.24±0.00
CF-ODE 1 Zheng 0.12±0.03 0.11±0.02 MM-50 0.05±0.00 0.26±0.00
CTP 1 Zheng 0.11±0.01 0.11±0.02 MM-50 0.07±0.01 0.22±0.01
LODE 2 Hao 0.06±0.01 0.08±0.01 MM-25 0.05±0.01 0.23±0.01
NODE 2 Hao 0.01±0.00 0.03±0.01 MM-25 0.02±0.00 0.22±0.01
NGM 2 Hao 0.03±0.01 0.04±0.00 MM-25 0.04±0.00 0.22±0.01
TE-CDE 2 Hao 0.03±0.00 0.03±0.01 MM-25 0.04±0.01 0.21±0.02
CF-ODE 2 Hao 0.04±0.02 0.03±0.01 MM-25 0.04±0.00 0.23±0.01
CTP 2 Hao 0.03±0.01 0.03±0.01 MM-25 0.07±0.02 0.25±0.01
LODE 2 Zheng 0.23±0.06 0.18±0.02 MM-50 0.04±0.01 0.27±0.02
NODE 2 Zheng 0.08±0.02 0.06±0.00 MM-50 0.03±0.01 0.24±0.01
NGM 2 Zheng 0.09±0.03 0.09±0.01 MM-50 0.03±0.00 0.24±0.00
TE-CDE 2 Zheng 0.10±0.01 0.10±0.01 MM-50 0.04±0.01 0.24±0.02
CF-ODE 2 Zheng 0.09±0.01 0.09±0.02 MM-50 0.03±0.00 0.25±0.01
CTP 2 Zheng 0.11±0.02 0.11±0.03 MM-50 0.08±0.01 0.28±0.01

Table 10: Robustness Prediction Performance
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Table 11 describes the causal discovery performance of the CTP and baselines in different configu-
rations. Our CTP model obtained better performance compared to all other baselines, and we did
not find significant performance degradation in the two data generation configurations. The result
indicates our model is robust and can discover causal relations from noisy data.

Model Setting Hao Zheng MM-25 MM-50
LODE 1 0.67±0.01 0.61±0.02 0.82±0.02 0.90±0.01
NODE 1 0.57±0.01 0.51±0.01 0.51±0.00 0.50±0.01
NGM 1 0.71±0.01 0.60±0.01 0.63±0.01 0.64±0.00
TE-CDE 1 0.55±0.00 0.57±0.01 0.64±0.01 0.58±0.01
CF-ODE 1 0.62±0.00 0.55±0.01 0.56±0.02 0.60±0.02
CTP 1 0.81±0.01 0.63±0.01 0.86±0.01 0.90±0.01
LODE 2 0.69±0.01 0.60±0.01 0.83±0.02 0.90±0.01
NODE 2 0.62±0.00 0.51±0.01 0.50±0.01 0.51±0.01
NGM 2 0.67±0.00 0.60±0.01 0.62±0.02 0.63±0.01
TE-CDE 2 0.58±0.01 0.56±0.01 0.57±0.03 0.53±0.00
CF-ODE 2 0.63±0.01 0.55±0.01 0.60±0.01 0.55±0.01
CTP 2 0.82±0.00 0.64±0.01 0.87±0.01 0.90±0.00

Table 11: Robustness Causal Discovery Performance

Table 12 describes the treatment effect prediction performance of the CTP and baselines in different
configurations. Our CTP model obtained better performance compared to all other baselines, and we
did not find significant performance degradation in the two data generation configurations.

Model Setting Hao Zheng MM-25 MM-50
LODE 1 0.82±0.10 0.84±0.04 1.26±0.03 1.57±0.01
NODE 1 1.33±0.17 1.98±0.02 1.25±0.04 1.43±0.02
NGM 1 0.22±0.02 0.73±0.03 0.83±0.03 2.09±0.03
TE-CDE 1 0.35±0.03 3.21±0.03 1.34±0.05 1.65±0.02
CF-ODE 1 0.58±0.02 0.38±0.03 1.04±0.04 1.66±0.04
CTP 1 0.18±0.01 0.23±0.04 0.81±0.02 1.11±0.04
LODE 2 0.97±0.21 0.77±0.03 1.30±0.02 1.49±0.02
NODE 2 1.04±0.09 1.79±0.03 1.21±0.05 1.47±0.01
NGM 2 0.24±0.01 0.69±0.04 0.87±0.02 1.99±0.04
TE-CDE 2 0.36±0.03 3.03±0.04 1.23±0.04 1.59±0.03
CF-ODE 2 0.59±0.04 0.35±0.02 0.94±0.01 1.69±0.07
CTP 2 0.15±0.01 0.24±0.02 0.87±0.06 1.02±0.06

Table 12: Robustness Treatment Effect Prediction
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