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ABSTRACT

Prevalent vectorized map construction pipelines predominantly follow an end-to-
end DETR-based paradigm. While these methods have achieved significant ad-
vancements, they are limited by their reliance on data from a single ego vehicle,
which restricts their effectiveness and can lead to perceptual uncertainty in han-
dling complex environmental scenarios. To address this limitation, we introduce
a novel framework: Uncertainty-aware Multi-Vehicle Vectorized Map Construc-
tion (UMVMap). This framework effectively mitigates uncertainties by lever-
aging relevant non-ego information. UMVMap comprises two essential compo-
nents: the Uncertainty-aware Multi-Vehicle Vectorized Map Construction Net-
work (UMVMap-Net), which optimally integrates data from multiple vehicles,
and the Uncertainty-aware Non-ego Vehicle Selection (UNVS) strategy, which
identifies and incorporates the most informative non-ego data to minimize un-
certainty. Comprehensive evaluations on the nuScenes dataset demonstrate that
UMVMap significantly outperforms the single-vehicle MapTRv2 baseline by a
margin of 9.1% and 9.9% respectively on the full and partial validation sets, with
each of its components proving to be both effective and robust.

1 INTRODUCTION

Vectorized maps are crucial for autonomous driving Antonello et al. (2017); Gao et al. (2020),
providing abundant road details and rich semantic information that support tasks such as self-
localization Levinson et al. (2007) and path planning Da & Zhang (2022). Traditionally, vectorized
maps are generated using simultaneous localization and mapping (SLAM)-based techniques Shan
& Englot (2018); Shan et al. (2020), which require subsequent refinement by human operators and
incur high maintenance costs. In recent years, numerous approaches Liao et al. (2022); Ding et al.
(2023); Zhang et al. (2024b) have adopted end-to-end learning-based methods for vectorized map
construction, often utilizing a DETR-based architecture Carion et al. (2020).

Despite their advancements, these methods are constrained by relying solely on the perspective of a
single ego vehicle, which limits their ability to handle complex environmental conditions. As illus-
trated in Fig. 1 (a), in scenarios involving occlusion, single-vehicle approaches, such as MapTRv2
Liao et al. (2023), tend to produce ambiguous perceptions in the occluded areas, as these regions are
beyond the visibility of the ego vehicle. Additionally, the map element perception of single-vehicle
models becomes increasingly uncertain as the distance from the ego vehicle grows, often leading
to the omission of distant map elements in the constructed map. To illustrate this, we conducted a
quantitative analysis by evaluating the performance of the single-vehicle method across a range of
perception distances. As shown in Fig. 2 (a), the single-vehicle method exhibits a noticeable decline
in performance as the perception range increases. In contrast, the multi-vehicle paradigm demon-
strates a much smoother performance curve, suggesting that integrating auxiliary information from
non-ego perspectives can effectively mitigate the uncertainties inherent in the ego vehicle’s perspec-
tive. Also, it is intuitive that by observing from varied non-ego perspectives, the uncertainty of the
occluded areas can be effectively reduced. Furthermore, Fig. 2 (b) presents histograms depicting the
number of ego vehicles with varied non-ego vehicle numbers at various distance ranges. It is evident
that across all distance intervals, the majority of ego vehicles are able to obtain support from more
than 10 non-ego vehicles, which underscores the feasibility of leveraging information from non-ego
vehicles as a supplementary aid.
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Figure 1: (a) Single-vehicle approaches, such as MapTRv2, tend to produce ambiguous perceptions
in the occluded or distant areas. (b) In contrast, our UMVMap is capable of addressing uncertain
details with the aid of proper non-ego information.
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Figure 2: (a) The performance variation with respect to the perception range of a single-vehicle
method and a multi-vehicle one. (b) Statistical analysis indicates that most ego vehicles can receive
assistance from over 10 non-ego vehicles at various distances, which validates the feasibility of
leveraging non-ego information as a supportive measure. Each histogram represents the statistical
outcomes for different perceptual range intervals. In these histograms, the horizontal axis denotes the
number of available non-ego vehicles, while the vertical axis represents the number of ego vehicles
corresponding to each count of available non-ego vehicles.

To this end, we propose a novel Uncertainty-aware Multi-Vehicle vectorized Map Construction
(UMVMap) framework, which is capable of addressing uncertain details with the aid of proper
non-ego information. The UMVMap consists of two key components: the Uncertainty-aware Multi-
Vehicle Vectorized Map Construction Network (UMVMap-Net), which optimally utilizes multi-
vehicle data, and the Uncertainty-aware Non-ego Vehicle Selection (UNVS) strategy, which identi-
fies the most beneficial non-ego data to reduce uncertainty. Specifically, UMVMap-Net is composed
of an Uncertainty-guided Multi-Vehicle Information Integrator (UMVII) and a Segmentation Prior
Guided Map Decoder (SPMDec). UMVII first integrates multi-vehicle data, while SPMDec de-
codes this integrated information to produce the vectorized map. Additionally, the UNVS strategy
is designed to select non-ego vehicles that provide complementary information, particularly in areas
where the ego vehicle’s perception is highly uncertain.

The proposed UMVMap is evaluated on the large-scale nuScenes Caesar et al. (2020) datasets.
Experimental results demonstrate that UMVMap significantly outperforms the single-vehicle Map-
TRv2 baseline by a margin of 9.1% and 9.9% respectively on the full and partial validation sets.
In addition, a comprehensive ablation analysis is carried out and the promising results prove the
effectiveness and robustness of our proposed key components within UMVMap.

The main contributions of this study can be summarized as follows:

• An Uncertainty-aware Multi-Vehicle vectorized Map Construction (UMVMap) framework
is proposed to address uncertain details by leveraging non-ego information. To the best
of our knowledge, UMVMap is the first framework to handle vectorized map construction
using multi-vehicle data.

• A Uncertainty-aware Non-ego Vehicle Selection (UNVS) strategy is introduced to select
non-ego vehicles that provide complementary information, especially in regions where the
ego vehicle’s perception is highly uncertain.

• Comprehensive evaluations on the nuScenes datasets demonstrate that UMVMap signifi-
cantly outperforms the single-vehicle MapTRv2 baseline by a margin of 9.1% and 9.9%
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Figure 3: Overview of UMVMap-Net. UMVMap-Net comprises an Uncertainty-guided Multi-
Vehicle Information Integrator (UMVII), which properly integrates information from multi-vehicle
data, and a Segmentation Prior Guided Map Decoder (SPMDec), which decodes the integrated in-
formation from UMVII to construct the vectorized map.

respectively on the full and partial validation sets, with each component proving to be both
effective and robust.

2 RELATED WORKS

Vectorized Map Construction. Vectorized maps are conventionally generated using simultane-
ous localization and mapping (SLAM)-based techniques Shan & Englot (2018); Shan et al. (2020),
and then refined through human intervention, which suffers from high maintenance expenses. In
recent years, there has been a surge of interest in utilizing onboard sensors for vectorized map con-
struction. HDMapNet Li et al. (2022) generates Bird’s-Eye-View (BEV) semantic segmentations
and then performs a heuristic, time-consuming post-processing step to produce vectorized map in-
stances. Beyond this, VectorMapNet Liu et al. (2023) introduces the first end-to-end vectorized map
construction framework, employing auto-regression to sequentially predict points. Subsequently, an
increasing number of recent approaches Liao et al. (2022); Ding et al. (2023); Liao et al. (2023);
Zhang et al. (2024b) have adopted end-to-end methods for vectorized map construction, with many
leveraging a DETR-based architecture Carion et al. (2020). However, these methods are constrained
by their reliance on a single input and struggle to manage challenging environmental conditions,
such as occlusions or adverse weather. StreamMapNet Yuan et al. (2024) takes a significant stride
forward by incorporating temporal information through a streaming strategy, aiming to enhance the
temporal consistency and quality of vectorized maps. Nevertheless, in some hard cases, construct-
ing a high-quality vectorized map from the perspective of a single vehicle remains a formidable
task. To this end, in this paper, we propose to mitigate uncertainties by leveraging relevant non-ego
information, and collaboratively constructing superior vectorized maps.

Collaborative Perception for Autonomous Driving. Collaborative perception Han et al. (2023)
in intelligent transportation systems, which integrates information from multiple vehicles to enhance
environmental understanding, has been researched for over a decade despite being limited by the
lack of effective techniques and large-scale datasets Rauch et al. (2012); Kim et al. (2014). Existing
collaborative perception methods, based on the message-sharing strategy, can be broadly classified
into early (data-level) Chen et al. (2019), intermediate (feature-level) Xu et al. (2022); Yang et al.
(2023) and late (object-level) Xu et al. (2023) ones. Among these, intermediate collaboration is
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preferred for its optimal balance between performance and transmission bandwidth. In this case, the
concept of collaborative perception has been adopted in various tasks related to autonomous driving.
CoCa3D Hu et al. (2023) enhances camera detection capabilities through multi-agent collaboration,
leading to more comprehensive 3D detection. CoHFF Song et al. (2024) enhances camera-based
semantic occupancy prediction through collaborative perception, achieving greater accuracy and
comprehensiveness. This improvement is driven by the hybrid fusion of semantic and occupancy
features, along with the shared compressed orthogonal attention features between vehicles. By con-
structing collaborative neural rendering field representations to recover failed perceptual messages
sent by multiple agents, RCDN Wang et al. (2024) achieves a robust camera-insensitivity collabora-
tive perception for 3D Neural modeling. Aside from prior studies, we are pioneering the exploration
of vehicle-to-vehicle collaborative perception in vectorized map construction.

3 METHODOLOGY

3.1 PROBLEM SETUP

Given surround-view images Ie = {Iie}Ki=1 captured from onboard cameras on an ego vehicle along
with surround-view images {Ij

n}
Nn
j=1 = {{Ij,in }Ki=1}

Nn
j=1 captured from Nn non-ego vehicles, the

goal of collaborative vectorized map construction is to detect local BEV map instances while locat-
ing their corresponding structures, where K is the number of views and Nn is the number of non-ego
vehicles. The final output of the model is a set of detected map elements. Each map element in the
output set consists of a class label c and an ordered sequence of points P = {(xi, yi)}

Npt

i=1 that
represents its structure, with Npt denoting the number of points for each map element.

3.2 FRAMEWORK OVERVIEW

The overall UMVMap framework includes an Uncertainty-aware Multi-Vehicle vectorized Map
Construction Network (UMVMap-Net) and an Uncertainty-aware Non-ego Vehicle Selection Strat-
egy. UMVMap-Net is depicted in Fig. 3, which is primarily composed of an Uncertainty-guided
Multi-Vehicle Information Integrator (UMVII) and a Segmentation Prior Guided Map Decoder (SP-
MDec). First, UMVII is employed to properly integrate information from multi-vehicle data. Subse-
quently, SPMDec decodes the integrated information from UMVII to construct the vectorized map.
Furthermore, aside from properly integrating multi-vehicle information, selecting non-ego vehicles
that provide complementary information in regions where the ego vehicle’s perception is highly un-
certain can also significantly enhance the quality of the vectorized map construction. To achieve this,
we further design the Uncertainty-aware Non-ego Vehicle Selection Strategy (illustrated in Fig. 4).

3.3 UNCERTAINTY-AWARE MULTI-VEHICLE VECTORIZED MAP CONSTRUCTION NETWORK

BEV Encoder. Initially, UMVMap-Net extracts BEV features from both ego and non-ego data. To
ensure a fair comparison, we adopt the BEV feature extraction paradigm as implemented in Map-
TRv2 Liao et al. (2023). Given the ego and non-ego multi-view images Ie and {Ij

n}
Nn
j=1, multi-view

image feature maps {Fi
e}Ki=1 and {{Fj,i

n }Ki=1}
Nn
j=1 are first extracted with a shared convolutional

backbone, referred to as the Image Encoder. Then, the image features are transformed to BEV fea-
tures Be ∈ RH×W×C and {Bj

n}
Nn
j=1 with a PV2BEV module, which is implemented as an LSS

operation Philion & Fidler (2020) following MapTRv2. Note that for each non-ego BEV feature
Bj

n, a coordinate transformation matrix derived from the camera parameters is applied to it to align
with the ego BEV feature Be.

Uncertainty-guided Multi-Vehicle Information Integrator. The Uncertainty-guided Multi-
Vehicle Information Integrator (UMVII) employs a progressive two-stage approach to process com-
plex multi-vehicle data. In the first stage, each non-ego feature Bj

n is fused individually with the
ego feature Be via a Cross Fusion module to generate pairwise fused intermediate features Bj

f . This
provides a preliminary yet comprehensive integration of multi-vehicle information. To be specific,
Be and Bj

n are flattened to form ego and non-ego queries Qe and Qj
n ∈ RHW×C , and then fused
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using deformable cross-attention, which can be briefly formulated as follows:

Qj
f = F(F(Qe,Q

j
n),Q

j
n), (1)

where Qj
f is the fused intermediate query feature. The fusion function F in Eq. 1 with two query

features (denoted as Q1 and Q2) as input and a query feature (denoted as Q3) as output is defined
as:

Q3 = Q1 +

Noff∑
i=1

W · DA(Q2,R+Oi,B2), (2)

O = Offset Embedding([Q1,Q2]),W = Weight Embedding([Q1,Q2]), (3)

where Offset Embedding(x) and Weight Embedding(x) denote the convolutional embedding layers
for sampling offsets and weights calculation, respectively. [x1, y1] denotes the feature concatenation
operation, while DA(Q, x,B) is a deformable attention operation that utilize Q as a query to collect
features at location x on a BEV feature B. O and W respectively represents the sampling offsets
and weights. Noff is the number of sampling offsets for each query. R denotes the reference
points. B2 ∈ RH×W×C is the BEV feature reshaped from Q1 ∈ RHW×C . At this stage, the
non-ego features separately provide complementary information to fill the gaps in the ego vehicle’s
perspective. However, additional information provided by these features may contain redundancies
and is not optimally fused. Therefore, in the second stage, the ego feature and all these fused
intermediate features are further fused under the guidance of the segmentation uncertainty to obtain
the final BEV feature Bf . Note that to better align with the fused intermediate features, the ego
feature is first self-enhanced via deformable self-attention:

Q̂j
e = F(F(Qe,Qe),Qe), (4)

where Q̂e ∈ RHW×C is the enhanced ego query feature, which is reshaped back to form the en-
hanced ego BEV feature B̂e ∈ RH×W×C . Then, for each BEV feature to fuse, a segmentation
uncertainty-based weight map is estimated, representing the importance of each BEV pixel regarding
the map structure to construct. Taking B̂e as an example, it is first processed by a convolution-based
instance segmentation block to predict a set of instance masks Me ∈ RH×W×Nins . Subsequently,
the corresponding uncertainty-based weight map Ue ∈ RH×W×1 can be obtained following:

Ue = Softmax(CScoree ·Me), (5)

CScoree = IS(
1

H ×W

H∑
i=0

W∑
j=0

(Me ⊙Be)i,j), (6)

where IS(x) denotes the Instance Scorer consists of several MLP layers. CScoree ∈ RNins×1

are the estimated instance confidence scores. Softmax(x) is the channel-wise softmax operation.
⊙ stands for the outer product operation. Following similar paradigms, the non-ego fusion weight
maps {Uj

f}
Nn
j=1 can be obtained. The final fused BEV feature Bf can be obtained following:

Bf = Ue · B̂e +

Nn∑
j=1

Uj
f ·Bj

f . (7)

Segmentation Prior Guided Map Decoder. Once the fused BEV feature Bf is obtained through
UMVII, it is processed by our proposed Segmentation Prior Guided Map Decoder (SPMDec) to
generate the vectorized map. SPMDec incorporates a key mechanism, namely, the Segmentation-
guided Query Initialization (SQI), which is designed to function as a flexible add-on to existing
map decoders. In our experiments, we adopt the map decoder architecture from MapTRv2 Liao
et al. (2023), consisting of map queries and multiple decoder layers. For the design of map queries,
a hierarchical query embedding scheme is utilized to explicitly encode each map element, which
defines a set of instance-level queries {qinsi }Nins

i=1 and a set of point-level queries {qptj }Npt

j=1 shared
by all instances. The hierarchical query of j-th point of i-th map element qhieij is formulated as:

qhieij = qinsi + qptj , (8)
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Algorithm 1: Uncertainty-aware Non-ego Vehicle Selection Strategy
Input: Pixel-wise map element prediction probability P; radius d; threshold τ .
Output: Non-ego Vehicle IDs.{Ij

n}
Nn
j=1.

1 Uncertain Area Selection step:
2 Form each Ωi,j for each BEV pixel based on d and τ ;
3 Compute U following Eq. 11;
4 Ugrid = AvgPooling(U);
5 Select grids with top-Nn grid-wise uncertainty as uncertain areas;
6 Uncertainty-aware Non-ego Vehicle step:
7 Take center coordinates of uncertain areas as sample points;
8 Select ids of the nearest non-ego vehicles to every sample point;

Differently, in the proposed SPMDec, a Segmentation-guided Query Initialization (SQI) mechanism
is designed to inject multi-vehicle prior information into the map queries. To be specific, the fused
BEV feature Bf ∈ RH×W×C is processed by a convolutional block to predict a set of instance
masks Mf ∈ RH×W×Nins . The set of multi-vehicle prior information injected instance queries
{qmv,ins

i }Nins
i=1 are then calculated as follows:

{qmv,ins
i }Nins

i=1 = AvgPooling(Mf ⊙Bf ), (9)

where AvgPooling(x) denotes the spatial average pooling operation. Thus the multi-vehicle prior
information injected hierarchical query of j-th point of i-th map element qhieij is formulated as:

qmv,hie
ij = qmv,ins

i + qptj , (10)

Then each decoder layer uses self-attention and cross-attention to update the map queries. Finally, a
simple prediction head consisting of a classification branch and a point regression branch is adopted
to output instance classification scores and normalized BEV coordinates for each map instance,
respectively.

3.4 UNCERTAINTY-AWARE NON-EGO VEHICLE SELECTION STRATEGY

Prediction map
with threshold > 0.3

Generate 
uncertainty map

1

2

Select topK areas
with largest average

uncertainty score

3

👑

Select the most
closest non-ego

vehicle to the area center

K is the number
of non-ego vehicles

3.9m 10.2m 20.5m
...

Figure 4: Uncertainty-aware Non-
ego Vehicle Selection Strategy.

In addition to UMVMap-Net which manages to give a superior
map construction by properly integrating multi-vehicle infor-
mation, we further proposed an Uncertainty-aware Non-ego
Vehicle Selection (UNVS) Strategy to improve performance
by selecting non-ego vehicles that provide complementary in-
formation in regions where the ego vehicle’s perception is
highly uncertain. The overall process of the UNVS Strategy
is illustrated in Fig. 4, which is mainly composed of two steps,
namely, an Uncertain Area Selection step and an Uncertainty-
aware Non-ego Vehicle step. During the Uncertain Area Se-
lection step, we split the BEV space into Nh × Nw grids
and estimate the uncertainty for each grid. To be specific,
a pre-trained MapTRv2 Liao et al. (2023) model is first em-
ployed to obtain the pixel-wise map element prediction prob-
ability P ∈ RH×W×1 for the ego BEV feature. To obtain the
grid-wise uncertainty, a pixel-wise uncertainty map is first esti-
mated. For each pixel in the i-th row and the j-th column, the
pixel-wise map element prediction probability values greater
than a threshold τ within a radius d of this pixel are gathered
into an adjacent set Ωi,j . The uncertainty Ui,j of this pixel is
calculated following:

Ui,j =
1

|Ωi,j |
∑

p∈Ωi,j

(1− p), (11)

where |Ωi,j | denotes the size of the set. Then, the uncertainty
values of pixels within corresponding grids are averaged to obtain the grid-wise uncertainty map
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Ugrid ∈ RNh×Nw . With the aim of picking Nn non-ego vehicles, the Nn areas with the highest
uncertainty values are selected as the uncertain areas. After that, in the Uncertainty-aware Non-
ego Vehicle step, the center coordinates of the selected uncertain areas are taken as the sample
points. For each of the Nn sample points, the nearest non-ego vehicle is selected. A brief algorithm
overview is given in Alg.1.

3.5 OPTIMIZATION

To optimize the proposed UMVMap, we follow the optimization setting of MapTRv2 Liao et al.
(2023), which utilizes a basic one-to-one set prediction loss and two auxiliary losses including a
one-to-many set prediction loss and a dense prediction loss. To be specific, the basic one-to-one set
prediction loss is composed of three parts, including a classification loss, a point-to-point loss and
an edge direction loss:

Lone2one = λcLcls + λpLp2p + λdLdir, (12)

where λc, λp and λd are the weights for balancing different loss terms. The classification loss is
implemented as a Focal Loss. The point-to-point loss is defined as the Manhattan distance computed
between each assigned point pair after hierarchical bipartite matching. The edge direction loss is
designed as the cosine similarity of each pair of predicted edge and ground-truth edge. The one-to-
many set prediction loss Lone2many is also adopted. Besides, dense prediction loss Ldense is utilized
to further leverage semantic and geometric information, which consists of a depth prediction loss, a
BEV segmentation loss and a PV segmentation loss. Note that Ldense is applied on B̂e, {Bj

f}
Nn
j=1

and Bf . In addition, a confidence score loss Lcscore calculated between the estimated CSore and
the corresponding ground truth value is proposed. Finally, the overall loss for optimizing UMVMap
can be defined as follows:

L = βoLone2one + βmLone2many + βdLdense + βcLcscore. (13)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our proposed method using the popular and large-scale nuScenes Caesar
et al. (2020) dataset. The nuScenes dataset includes 2D city-level global vectorized maps and 1,000
scenes, each approximately 20 seconds long. Key samples are annotated at 2Hz, with each sample
providing RGB images from six cameras, covering a 360° horizontal field of view around the ego-
vehicle. The dataset is split into 28K frames for training and 6K frames for validation. For all of
the experiments on nuScenes, we utilize the whole validation set as Full Validation Set (with 6019
samples), while utilizing the validation samples with available non-ego vehicles as Partial Validation
Sets (with 2667 samples).

Metrics. We conduct evaluation with Chamfer distance based Average Precision (AP) following
previous mainstream works Li et al. (2022); Liao et al. (2023) for fair comparisons. The AP is
calculated under the average of three Chamfer distance thresholds of 0.5, 1.0, and 1.5 meters. The
perception ranges are [-15.0m, 15.0m] for the X-axis and [-30.0m, 30.0m] for the Y-axis. Three
types of map instances are selected for HD map construction, including pedestrian crossing, lane
divider, and road boundary. Besides, the mean Average Recall (mAR) is employed to evaluate the
performance of non-ego vehicle selection methods.

Implementation Details. We employ ResNet50 He et al. (2016) as the backbone network for
image processing. For the nuScenes dataset, images with dimensions of 1600 × 900 are resized by
a factor of 0.5. The default settings for instance queries, point queries, and decoder layers are 50,
20, and 6, respectively. We use the AdamW optimizer with a learning rate of 6× 10−4 and a weight
decay of 0.01. All models are trained using 8 80GB NVIDIA Tesla A100 GPUs, with a batch size of
4 per node, leading to a total batch size of 32. Following Liao et al. (2023), we set λc = 2, λp = 5,
λd = 0.05. For the overall loss, we set βo = 1, βm = 1, βd = 1, βc = 1.
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Table 1: Comparison with SOTA on nuScenes. The Full Validation Sets with 6019 samples denotes
the whole validation set of nuScenes, while the Partial Validation Sets with 2667 samples is the
validation samples with available non-ego vehicles.

- - Full Validation Set Partial Validation Set

Methods Backbone APdiv(↑) APped(↑) APbnd(↑) mAP(↑) APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

HDMapNet Li et al. (2022) EB0 14.4 21.7 33.0 23.0 - - - -

MapTR Liao et al. (2022) R50 46.3 51.5 53.1 50.3 - - - -

MapVR Zhang et al. (2024a) R50 56.2 56.5 60.1 57.6 - - - -

PivotNet Ding et al. (2023) R50 47.7 54.4 51.4 51.2 - - - -

BeMapNet Qiao et al. (2023) R50 62.3 57.7 59.4 59.8 - - - -

MGMap Liu et al. (2024) R50 61.8 65.0 67.5 64.8 - - - -

MapTRv2 Liao et al. (2023) R50 59.8 62.4 62.4 61.5 58.5 63.1 62.1 61.2

UMVMap (ours) R50 70.5 69.4 71.8 70.6 69.6 73.8 72.9 72.1

Maptrv2 Ours GT. Unc. Map Maptrv2 Ours GT. Unc. Map

Maptrv2 Ours GT. Unc. Map Maptrv2 Ours GT. Unc. Map

(a) (b)

(c) (d)

🚘

🚘

🚘

🚘

🚘

🚘

🚘

🚘

Figure 5: Comparison of qualitative results on the nuScenes dataset. “Unc. Map” means uncertainty
map. The blue car logos in GT. figure show the locations of non-ego vehicles.

4.2 MAIN RESULTS

As reported in Table 1, we compare the proposed UMVMap with state-of-the-art (SOTA) methods
on the nuScenes validation set. The results demonstrate that UMVMap outperforms previous meth-
ods and achieves the best overall performance. Specifically, compared to the baseline MapTRv2
Liao et al. (2023), UMVMap shows an improvement of 9.1% and 9.9% mAP respectively on the
full and partial validation sets by integrating complementary information from multiple vehicles.
Additionally, UMVMap surpasses the current leading approach, MGMap Choi et al. (2024), with a
further gain of 5.8% mAP.

4.3 ABLATION STUDIES AND HYPER-PARAMETER ANALYSIS

We conducted ablation studies to evaluate the contributions of the core components of UMVMap.
The training was conducted on the full nuScenes training set for 24 epochs. Evaluation was per-
formed on both the Full Validation Set and Partial Validation Set.

Contribution of Main Components. Table 2 shows the impact of key components in UMVMap-
Net, including the two-stage Uncertainty-guided Multi-Vehicle Information Integrator (UMVII) and
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Table 2: Ablation analysis of key components on nuScenes.

Methods Full Validation Set

UMVII(1) UMVII(2) SQI APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

× × × 41.1 40.2 44.8 42.0

✓ × × 45.0 44.0 48.8 45.9

✓ × ✓ 45.1 47.1 54.2 48.8

✓ ✓ ✓ 50.6 48.7 56.9 52.1

Table 3: Comparison of non-ego vehicle selection method.

- Full Validation Set Partial Validation Set

Methods APdiv(↑) APped(↑) APbnd(↑) mAP(↑) mAR(↑) APdiv(↑) APped(↑) APbnd(↑) mAP(↑) mAR(↑)

Random 65.8 63.3 66.1 65.1 75.2 66.2 70.1 69.2 68.5 79.6

Closest 68.3 65.6 68.5 67.6 77.2 68.7 70.8 71.2 70.2 80.2

UNVS 70.5 69.4 71.8 70.6 78.2 69.6 73.8 72.9 72.1 80.9

the Segmentation-guided Query Initialization (SQI) mechanism. The evaluation process involves
progressively adding each component to a baseline model. The first row serves as a baseline, which
employs a naive approach that directly concatenates and fuses the ego and non-ego features with
several MLPs. Incorporating the first stage of UMVII into the baseline yields performance gains
of 3.9% mAP. This demonstrates that the interaction between ego and non-ego features enhances
the accuracy of vectorized map construction. The inclusion of SQI brings further improvements
of 2.9% mAP, showcasing the benefits of introducing segmentation prior knowledge into the in-
stance queries during the map decoding process. Additionally, including the second stage of UMVII
which leverages semantic uncertainty to guide multi-vehicle information integration brings further
improvements of 3.3% mAP.

Effect of Non-ego Vehicle Selection Method. As shown in Table 3, we investigate the effective-
ness of the non-ego vehicle selection methods by comparing the proposed Uncertainty-aware Non-
ego Vehicle Selection (UNVS) strategy with several of its variants, which involves: (i) Random:
selecting Nn non-ego vehicles with random distances from the ego vehicle. (ii) Closest: selecting
the Nn non-ego vehicles closest to the ego vehicle. For each pivot point, the nearest non-ego vehicle
is selected. It can be observed that by selecting non-ego vehicles with a clearer information com-
plementing purpose under the guidance of uncertainty, our proposed UNVS strategy yields a more
significant performance improvement.

Hyper-parameter Analysis on Non-ego Vehicle Number. A hyper-parameter analysis is con-
ducted on the non-ego vehicle number Nn. As can be seen from Table 4, increasing Nn from 1
to 2 results in a notable performance improvement of 4.7% and 5.6% mAP on the full and partial
validation sets, respectively. Further increasing Nn from 2 to 3 does not yield any performance gain.
This suggests that while incorporating additional non-ego vehicles provides valuable information,
the information gain approaches an upper limit especially when we adopt a proper vehicle selection
strategy. Information from two non-ego vehicles selected by our UNVS strategy can be sufficient.

Hyper-parameter Analysis on Non-ego Vehicle Selection Time Window. We further investigate
the impact of the choice of the non-ego vehicle selection time window in Table 5. We aim to
introduce more variety to the street scenes involving non-ego vehicles, such as different times of
day with reduced traffic noise. To achieve this, we excluded non-ego vehicles from scenes recorded
within the same 30-minute window. The results show that this yields the best performance (30∼∞
time window), as seen by the improvement in all metrics. On the other hand, limiting the model to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Hyper-parameter analysis on non-ego vehicle number Nn.

- Full Validation Set Partial Validation Set

Nn APdiv(↑) APped(↑) APbnd(↑) mAP(↑) APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

1 66.7 64.0 67.1 65.9 64.6 66.8 68.0 66.5

2 70.5 69.4 71.8 70.6 69.6 73.8 72.9 72.1

3 69.7 70.4 71.7 70.6 68.1 74.3 72.8 71.7

Table 5: Hyper-parameter analysis on time window (minute) for non-ego vehicle selection.

Time Window APdiv(↑) APped(↑) APbnd(↑) mAP(↑)

0∼∞ 69.8 67.7 70.5 69.3

30∼∞ 70.5 69.4 71.8 70.6

0∼30 68.5 66.7 68.7 68.0

the first 30 minutes (0∼30) leads to a significant performance drop across all metrics. This infers
that most of the valuable non-ego vehicles are outside the 0∼30 time window.

4.4 QUALITATIVE ANALYSIS

Fig. 5 illustrates the comparison of the qualitative results generated by the MapTRv2 baseline and
our proposed UMVMap. The uncertainty map for selecting non-ego vehicles is also illustrated
in each example. It can be observed that by properly selecting and then integrating multi-vehicle
information, UMVMap captures finer and more accurate details, which proves the effectiveness of
our proposed method.

5 CONCLUSION

In this study, we present UMVMap, an Uncertainty-aware Multi-Vehicle Vectorized Map Con-
struction framework designed to effectively mitigate uncertainties in vectorized map construction
by leveraging relevant non-ego vehicle information. UMVMap is composed of two key compo-
nents: the Uncertainty-aware Multi-Vehicle Vectorized Map Construction Network (UMVMap-
Net), which optimally integrates data from multiple vehicles, and the Uncertainty-aware Non-ego
Vehicle Selection (UNVS) strategy, which identifies and incorporates the most informative non-
ego data to minimize uncertainty. Comprehensive evaluations conducted on the nuScenes dataset
demonstrate that UMVMap significantly outperforms the single-vehicle MapTRv2 baseline by a
margin of 9.1% and 9.9% respectively on the full and partial validation sets, with its components
showing notable effectiveness and robustness. Looking ahead, vehicle-to-vehicle collaborative per-
ception for vectorized map construction remains a promising direction for future exploration, with
substantial potential for further advancements in autonomous driving.
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