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ABSTRACT

A core challenge of Monte Carlo Tree Search (MCTS) is its sample efficiency,
which can be addressed by building and using state and/or state-action pair ab-
stractions in parallel to the tree search, such that information can be shared among
nodes of the same layer. On the Go Abstractions in Upper Confidence bounds
applied to Trees (OGA-UCT) is the state-of-the-art MCTS abstraction algorithm
for deterministic environments that builds its abstraction using the Abstractions
of State-Action Pairs (ASAP) framework, which aims to detect states and state-
action pairs with the same value under optimal play by analysing the search graph.
ASAP, however, requires two state-action pairs to have the same immediate re-
ward, which is a rigid condition that limits the number of abstractions that can be
found and thereby the sample efficiency. In this paper, we break with the paradigm
of grouping value-equivalent states or state-action pairs and instead group states
and state-action pairs with possibly different values as long as the difference be-
tween their values can be inferred. We call this abstraction framework Known
Value Difference Abstractions (KVDA), which infers the value differences by
analysis of the immediate rewards and modifies OGA-UCT to use this framework
instead. The modification is called KVDA-UCT, which detects significantly more
abstractions than OGA-UCT, introduces no additional parameter, and outperforms
OGA-UCT on a variety of deterministic environments and parameter settings.

1 INTRODUCTION

Research into non-learning-based decision-making algorithms such as Monte Carlo Tree Search
(MCTS) (Browne et al., 2012; Kocsis & Szepesvári, 2006) is an active field which is still worth
dedicating research effort too. On the one hand MCTS can be used for applications where a general
on-the-fly applicable decision-making algorithm is needed such as Game Studios which rarely use
Machine Learning (ML) based AI as they would have to be retrained whenever the game and its
rules are updated (e.g. during development or patches). And on the other hand, though not the
scope of this paper, foundational work in MCTS might potentially translate to improvements of ML
algorithms such as Alpha Zero (Silver et al., 2017) that are built on MCTS.

One way to improve MCTS is to reduce the search space by grouping states and actions in the cur-
rent MCTS search tree to enable an intra-layer information flow (Jiang et al., 2014; Anand et al.,
2015; 2016) by averaging the visits and returns of all abstract action nodes in the same abstract node
used for the Upper Confidence Bounds (UCB) formula in the tree policy, which increases the sample
efficiency. One key strength of one of the state-of-the-art abstraction algorithms On the Go Abstrac-
tions in Upper Confidence bounds applied to Trees (OGA-UCT) (Anand et al., 2016) is its exactness
in the sense that if OGA-UCT groups two state-action pairs in a search tree where all possible suc-
cessors of each state-action pair have been sampled, only state-action pairs are grouped that have
the same Q∗ value, i.e., they have the same value under subsequent optimal play. This exactness
condition, however, comes at the cost that state or state-action pairs that only differ slightly in their
Q∗ value cannot be detected. This issue was slightly alleviated with the introduction of (εa, εt)-OGA
(Schmöcker et al., 2025), which is equivalent to (εa, 0)-OGA in deterministic environments that al-
lows for small errors in the immediate reward or transition function when building an abstraction.
However, this also brings two downsides with it. Firstly, it introduces two parameters, which makes
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tuning harder, and secondly, grouping non-value equivalent state-action pairs might even be harmful
to the performance, as they can make convergence to the optimal action impossible.

In this work we propose Known Value Differences Abstractions UCT (KVDA-UCT), that relaxes
the strict abstraction conditions of OGA-UCT to detect almost as many abstractions as (εa, 0)-OGA
in deterministic environments but without losing the exactness condition. The novel idea that makes
this possible is to deliberately group states or state-action pairs that do not have the same value if we
know the difference between their values which is inferred by analysis of the search tree’s immediate
rewards. When the abstractions are used, instead of averaging state-action pair values directly, their
difference-accounted values are averaged. The contributions of this paper can be summarized as
follows:

1. We introduce the Known-Value-Difference (KVDA) abstraction framework that extends the Ab-
stractions of State-Action Pairs (ASAP) framework used by OGA-UCT. Fig. 1 is an example of
a simple state-transition graph in which KVDA finds three non-trivial abstractions, while ASAP
would detect none.

2. We propose and empirically evaluate KVDA-UCT, a modification of OGA-UCT that introduces
no parameters and uses and builds KVDA abstractions. We show that KVDA-UCT outperforms
OGA-UCT in most of the here-considered deterministic environments. We also compare KVDA-
UCT with (εa, 0)-OGA and show that it either performs equally well or better than a parameter-
optimized (εa, 0)-OGA agent.

3. We also consider the stochastic setting where we generalize KVDA-UCT to εt-KVDA which
allows for errors in the transition function when building the abstraction. Furthermore, we compare
it to (εt, εa)-OGA and show that, unlike in the deterministic setting, KVDA rarely performs better
than (εt, εa)-OGA in stochastic environments.

The paper is structured as follows. In Section 2, the theoretical groundwork for automatic
state and state-action pair abstractions is laid. In particular, we define OGA-UCT and (εa, εt)-
OGA. Then, in Section 3, our novel KVDA framework and both KVDA-UCT and εt-KVDA
are introduced. Afterwards, in Section 4, the experimental setup is defined, then in Section 5,
the experimental results using this setup are shown and discussed. The paper is concluded by a
discussion of the limitations of KVDA-UCT and avenues for future work in Section 6.

Figure 1: An example of an MDP state-transition graph where the state-of-the-art abstraction frame-
work ASAP (Anand et al., 2015) would detect no abstractions while our method Known-Value-
Difference-Abstractions (KVDA) detects three non-trivial abstractions. In this example, circles
represent states, arrows represent deterministic state-transitions and arrow annotations denote the
immediate transition reward. All actions or states that are intersected by a red ellipse will be ab-
stracted by KVDA.
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2 FOUNDATIONS OF AUTOMATIC ABSTRACTIONS

In this section, we will be laying the theoretical groundwork for this paper as well as introducing
related work. For a comprehensive overview of non-learning-based abstractions, we refer to the
survey paper by Schmöcker and Dockhorn (Schmöcker & Dockhorn, 2025).

2.1 PROBLEM MODEL AND OPTIMIZATION OBJECTIVE

For our purposes, finite Markov Decision Processes (Sutton & Barto, 2018) are used as the model
for sequential, perfect-information decision-making tasks. ∆(X) denotes the probability simplex of
a finite, non-empty set X and the power set of X is denoted by P(X).

Definition: An MDP is a 6-tuple (S, µ0, T,A,P, R) where the components are as follows:

• S ̸= ∅ is the finite set of states.
• µ0 ∈ ∆(S) is the probability distribution for the initial state.
• ∅ ≠ T ⫋ S is the (possibly empty) set of terminal states.
• A : (S \ T ) 7→ A maps each state s to the available actions ∅ ̸= A(s) ⊆ A at state s where
|A| < ∞.

• P : (S \ T ) × A 7→ ∆(S) is the stochastic transition function where P(s′| s, a) is used
to denote the probability of transitioning from s ∈ (S \ T ) to s′ ∈ S after taking action
a ∈ A(s) in s.

• R : (S \ T )×A 7→ R is the reward function.

From hereon, let M = (S, µ0, T,A,P, R) be an MDP. We define
P := {(s, a) | s ∈ (S \ T ), a ∈ A(s)} as the set of all legal state-action pairs. The goal is to
find an agent π that is modelled as a mapping from states to action distributions π : S 7→ ∆(A) ,
such that π maximizes the expected episode’s return where the (discounted) return of an episode
s0, a0, r0, . . . , sn, an, rn, sn+1 with sn+1 ∈ T is given by γ0r0 + . . .+ γnrn.

2.2 ABSTRACTIONS OF STATE-ACTION PAIRS (ASAP)

For MCTS-based abstraction research, the goal has been to detect state-action pairs with the same Q∗

value (the value under subsequent optimal play) in the search graph to increase sample efficiency
by an intra-layer information flow (Jiang et al., 2014; Anand et al., 2015; 2016). In general, by
abstractions of either the states of state-action-pairs we refer to equivalence relations over the state
set S or state-action pair set P . The equivalence classes are abstract states or state-action pairs.

The current state of the art is the Abstraction of State-Action Pairs in UCT (ASAP) abstraction
framework (Anand et al., 2015) that proposes rules to detect value-equivalent states and state-action
pairs given an MDP transition graph and applies it to the current MCTS search graph (for details on
MCTS, see Section A.7)). The core idea of ASAP is to alternatingly construct a state abstraction
given a state-action pair abstraction and a state-action pair abstraction given a state abstraction.

Assume one is given a state abstraction E ′ ⊆ S × S. The corresponding ASAP state-action pair
abstraction H ⊆ P × P is defined as grouping those state-action pairs with the same immediate
reward and equal abstract successor distribution. Concretely, any state-action-pair (s1, a1), (s2, a2)
is equivalent i.e. ((s1, a1), (s2, a2)) ∈ H if and only if

Fa := |R(s1, a1)−R(s2, a2)| = 0

Ft :=
∑
x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ = 0,

(1)

where X are the equivalence classes of E ′. And given a state-action pair abstraction H′ ⊆ P × P ,
the corresponding ASAP state abstraction E groups all states whose actions can be mapped to each
other, concretely:

(s1, s2) ∈ E ⇐⇒
∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ Hi+1

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ Hi+1.

(2)
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OGA-UCT: Anand et al. (2016) proposed OGA-UCT, which builds an ASAP-like abstraction in
parallel to running MCTS. When building the abstraction OGA starts with the initial state abstrac-
tion that groups all terminal states of the same layer and puts the remaining states in their own sin-
gleton equivalence class. Furthermore, when building the ASAP abstraction on the current search
graph, OGA ignores non-yet-sampled successors of state-action pairs that appear in Equation 2. To
make the frequent recomputation of the ASAP abstraction feasible, OGA keeps track of a recency
counter for each Q-node and once it surpasses a certain threshold, recomputes its abstraction. If the
abstraction changed, the parent states are recomputed too (and possibly their Q-node parents if their
abstraction changed). By only locally checking for errors in the abstraction, OGA is able to keep
track of an ASAP-like abstraction that is always close to the true ASAP abstraction of the current
search tree.

The only MCTS component that OGA-UCT affects is the tree policy which is enhanced by using
the aggregate returns and visits of a Q-node’s abstract node to enhance the UCB value.

(εa, εt)-OGA: The ASAP framework groups only value equivalent states and state-action
pairs. This condition can be relaxed like already done by a predecessor of OGA-UCT, called
AS-UCT (Jiang et al., 2014), by allowing the rewards in Equation 1 to differ by some threshold
εa > 0 and the transition error Ft of Equation 1 to lie in the interval [0, εt] where 0 ≤ εt ≤ 2 is
another parameter which does not have any effect in deterministic environments. Since in general,
positive threshold values do not induce an equivalence relation over state-action pairs, OGA-UCT
has to be slightly modified to accommodate these approximate abstractions. This has been done by
Schmöcker and Dockhorn (Schmöcker et al., 2025) who introduced (εa, εt)-OGA.

2.3 STATE-ONLY ABSTRACTIONS

The ASAP framework is the direct successor of Abstraction of States (AS) by Jiang et al. (2014)
that abstracts states if their actions are pairwise similar in the sense that Equation 2 only has to be
approximately satisfied as described in the (εa, εt)-OGA section above.

A different abstraction approach that is not based on approximate homomorphisms (Ravindran &
Barto, 2004) like AS, is given by Sokota et al. (2021) who discard newly sampled successor states
of state-action pairs when their distance, given some domain-specific distance function, exceeds a
threshold that decays over time.

Hostetler et al. (2015) proposed Progressive Abstraction Refinement for Sparse Sampling (PARSS)
that is based on Sparse Sampling. Contrary to ASAP and AS, PARSS does not group states by
analysing the search tree, but rather by initially optimistically grouping all successor states of a
state-action pair and then iteratively refining the abstraction.

Yet another approach is presented by Dockhorn et al. (2021) who introduced S-MCTS that assumes
the existence of a factored representation of states. States are grouped when their representation is
equal when discarding a hand picked set of components.

2.4 ABSTRACTIONS OF THE TRANSITION FUNCTION

Research effort has also been dedicated towards automatic abstractions of the transition function,
which on an abstract level can be described as pruning certain successors from the transition function
(Sokota et al., 2021; Yoon et al., 2008; 2007; Saisubramanian et al., 2017).

3 METHOD

This section introduces our novel KVDA-UCT algorithm. First, we will provide an example of a
concrete search graph in which ASAP misses abstractions that the Known Value Differences Ab-
stractions (KVDA) framework would find which will be introduced after the search graph example.
At the end of this section, we will be describing how KVDA is integrated into UCT to yield KVDA-
UCT.
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3.1 WHICH ABSTRACTIONS ASAP MISSES

Consider the state-transition graph that is illustrated in Fig. 1 that consists of four states and four
actions. The ASAP framework would not detect any equivalences. In fact, any framework that
aims at finding value-equivalent states or state-action pairs would at most be able to detect that the
two root actions are value-equivalent. However, by analysing the state graph, one could derive that
the Q∗ values of the action of node 2 differs only by 1 from the Q∗ value of the action of node 3.
This holds true even if the state-graph would extend past node 4. Consequently, the V ∗ values of
nodes 2 and 3 differ only by 1. This in turn implies that the two actions of node 1 must have the
same Q∗ value. This is the core idea behind our Known-Value-Difference-Abstractions (KVDA)
framework which is to abstract states and state-action pairs if one can derive their value differences.
Later, when using these abstractions to enhance MCTS, the differences only have to be subtracted
when aggregating values. When viewed from the lenses of the KVDA framework, ASAP only
groups states or state-action pairs with a value difference of 0, i.e. detects only true equivalences.
Next, we will formalize the KVDA framework which both in theory and in our empirical evaluations
(see Tab. 1, more details are given in the experimental section) detects strictly more abstractions.

3.2 THE KNOWN-VALUE-DIFFERENCE-ABSTRACTIONS FRAMEWORK

Our method, the Known-Value-Difference-Abstractions (KVDA) extends the ASAP definition by
additionally grouping states or state-action-pairs whose V ∗ or Q∗ difference is known. While
ASAP iteratively builds abstractions on abstractions, KVDA bootstraps of an abstraction, difference-
function pair. More concretely, given a state abstraction E ′ (or a state-action pair abstraction H′) and
a difference function d′s : S×S 7→ R (or d′a : P ×P 7→ R), both a state-action-pair abstraction H (or
a state abstraction E) is produced as well as a state-action pair difference function da : P × P 7→ R
(or a state difference function ds : S × S 7→ R). Both da and ds will be constructed such that

da(p1, p2) = d∗a (p1, p2) := Q∗(p2)−Q∗(p1)

ds(s1, s2) = d∗s (s1, s2) := V ∗(s2)− V ∗(s1)
(3)

for any pair of states or state-action pairs in the same equivalence class (i.e., in the same abstract
state). Even though in the experimental section, we will mostly consider deterministic environ-
ments, the now-to-be-described KVDA framework will be applicable to any MDP, including
stochastic ones. Next, starting with the base case, we will formalize how KVDA abstractions are
built.

The base case: Like ASAP, KVDA groups all terminal states into the same initial abstract
node, the remaining states are singleton abstract nodes. The difference function between all nodes
in the terminal abstract node is initialized with 0.

State-action-pair abstractions: Using the same notation as in Section 2, let E ′ ⊆ S × S
be a state abstraction and d′s : S × S 7→ R be a difference function. The corresponding KVDA state-
action pair abstraction H ⊆ P × P is defined as follows: Any state-action pair (s1, a1), (s2, a2) is
equivalent i.e. ((s1, a1), (s2, a2)) ∈ H if and only if∑

x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ = 0, (4)

where X are the equivalence classes of E ′. Note that this is almost identical to the ASAP definition
except that the immediate rewards do not have to coincide. The difference function da : P ×P 7→ R
for two (p1, p2) ∈ H is given by

da(p1, p2) =R(p2)−R(p1)

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d′s(s′, sx) (5)

where for each x ∈ X , sx is an arbitrarily chosen but fixed representative of X . We will later see
that the value of da is independent of this choice.

State abstractions: Given a state-action pair abstraction H′ ⊆ P × P and a state-action
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pair difference function da : P × P 7→ R the corresponding KVDA state abstraction E ⊆ S × S
groups all states whose actions can be mapped to each other, and whose mappings all have the same
value difference:

(s1, s2) ∈ E ⇐⇒ ∃d ∈ R :

∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ H′

∧ da((s1, a1), (s2, a2)) = d

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ H′

∧ da((s2, a2), (s1, a1)) = d.

(6)

The difference function ds(s1, s2) is defined as the value d in the equation above.

Theoretical guarantees:

Convergence: Given an MDP, the above-described construction steps can be repeated until conver-
gence, which is guaranteed as in our MDP definition, there are finitely many states and state-action
pairs and each construction step either leaves the abstraction unchanged or reduces the number of
equivalence classes. The abstraction that one obtains at convergence is called the KVDA abstraction
of an MDP.

Soundness of da and ds: Both da and ds at convergence are equal to the differences of their
arguments Q∗ or V ∗ values as formulated in Eq. 3. This is proven in the supplementary materials
in Section A.1.

3.3 KVDA-UCT AND εT-KVDA

In this section, we will describe how the KVDA abstraction framework is integrated into MCTS,
which is fully analogous to how (εa, εt)-OGA (which itself is equivalent to OGA-UCT for
εa = εt = 0) integrates the ASAP framework. The usage of the following to-be-described modi-
fications to (εa, εt)-OGA is called εt-KVDA. For the case εt = 0, the algorithm is simply called
KVDA-UCT. εt-KVDA does not depend on εa unlike (εa, εt)-OGA.

1) Instead of (approximate) ASAP abstractions, (approximate) KVDA abstractions of the search tree
are built. Both (εa, εt)-OGA and εt-KVDA allow the transition error Ft of Equation 1 to be in the
interval [0, εt].

2) In addition to abstract Q nodes, abstract state nodes now also keep track of a representative. In our
case, this is the first original node added to the abstract node, and if that one is removed, a random
new representative is chosen.

3) Each abstract Q node’s value is tracked as the value of its representative QR that encodes the
state-action-pair pR ∈ P . When another original node Q of the same abstract node representing
p ∈ P is backed up in the MCTS backup phase with value v ∈ R, the value v + da(p, pR) is added
to the abstract node’s statistics. In turn, Q extracts its aggregated returns from the abstract node by
subtracting da(p, pR) from the abstract node’s value. If an abstract node’s representative changes to
Q′

R encoding p′R ∈ P , then n ·da(pR, p
′
R) is added to the statistics where n is the abstract visit count.

4) To reduce the computational load of finding a perfect match as the one required for the state
abstractions in Equation 6, we check for a stricter condition for states s1, s2. It is first checked that
within s1 (and analogously s2) all actions within the same abstract node have a value difference of
zero. Then, it is tested for all abstract Q nodes of s1 if the value difference between an arbitrarily
chosen ground action of s1 and one of s2 is constant for all abstract nodes.

5) Finally, whenever a Q-node’s recency counter reaches the threshold, the value difference to its
representative is recalculated. A change in this difference also results in a reevaluation (and subse-
quent recency counter reset) of the parent nodes’ abstractions and difference functions.
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4 EXPERIMENT SETUP

In this section, we describe the general experiment setup. Any deviations from this setup will be
explicitly mentioned.

Parameters: Originally, OGA-UCT (Anand et al., 2016) used the absolute value of the abstract
Q value under consideration as the exploration constant for the UCB formula. However, this tech-
nique has been improved by the dynamic, scale-independent exploration factor global-std (Citation
excluded for double anonymous review process). The global-std exploration constant has the form
C · σ where σ is the standard deviation of the Q values of all nodes in the search tree and C ∈ R+

is some fixed parameter. Furthermore, we always use K = 3 as the recency counter which was
proposed by Anand et al. (2016).

Problem models: For this paper, we ran our experiments on a variety of MDPs, all of which are
either from the International Probabilistic Planning Conference (Grzes et al., 2014), are well-known
board games, or are commonly used in the abstraction algorithm literature. Since we will compare
KVDA-UCT to OGA-UCT we chose only environments with a non-constant and non-sparse re-
ward function, as constant reward environments would imply that KVDA-UCT and OGA-UCT are
semantically equivalent.

All MDPs originally feature stochasticity, however, for some experiments we considered their de-
terministic versions which are obtained by sampling a single successor of each state-action pair. For
each episode, new successors are sampled. All experiments were run on the finite horizon versions
of the considered MDPs with a default horizon of 50 steps and 200 for the board games with a
planning horizon of 50 and a discount factor γ = 1.

The board games are transformed into MDPs by inserting deterministic MCTS with 500 iterations
as the opponent. Furthermore, since they are all sparse-reward (i.e. either win or lose) they were
also transformed into dense-reward MDPs by using heuristics. For each board game we defined
a heuristic V h that assigns each state a heuristic value for its state value. The reward of the (de-
terministic) transition s, a, s′ is then given by V h(s′) − V h(s). The concrete heuristics used along
with a brief description of all MDPs is provided in the supplementary materials in Section A.8. The
deterministic MDPs are denoted by adding the prefix d- and the stochastic ones are denoted by the
prefix s-.

Evaluation: Each data point that we denote in the remaining sections of this paper (e.g. agent
returns) is the average of at least 2000 runs. Whenever we denote a confidence interval for a data
point, then this is always a confidence interval with a confidence level of 99% provided by ≈ 2.33
times the standard error.

Normalized pairings score: We will later construct the normalized pairings score to be able to
compare numerous parameter combinations across a variety of tasks. The score is constructed as
follows. Let {π1, . . . , πn} be n agents (e.g. each KVDA-UCT agent along with its parameter setting
is an agent) where each agent was evaluated on m tasks (later, a task will be a given MCTS iteration
budget and an environment). The corresponding normalized pairings score matrix is of size n×n and
the entry (i, j) is equal to the number of tasks where πi performed better than agent πj subtracted by
the number of times it performed worse, divided by m. The normalized pairings score si ≤ i ≤ n
is given by averaging over the i-th row when excluding the i-th column.

Reproducibility: For reproducibility, we released our implementation which is available at
https://anonymous.4open.science/r/KVDA_UCT-6E51/README.md. Our code
was compiled with g++ version 13.1.0 using the -O3 flag (i.e. aggressive optimization).

5 EXPERIMENTS

This section presents the experimental results of KVDA-UCT. We considered two settings. Firstly,
in Section 5 we measured the number of additional abstractions KVDA-UCT finds in comparison to
OGA-UCT. Then, we evaluated KVDA-UCT on deterministic settings in which the losslessness of
the abstraction is guaranteed in Section 5 and Section 5. Lastly, we present the results for stochastic
environments in Section 5.
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Abstractions that KVDA-UCT finds but OGA-UCT does not: Firstly, we empirically measured
the number of non-trivial abstractions (i.e. those that aren’t of size one) that KVDA-UCT, OGA-
UCT, and (∞, 0)-UCT find. For all deterministic environments, Tab. 1 denotes the average ratio
of non-trivial abstract state-action pairs (synonymously abstract Q nodes) to the number of total
abstract Q nodes in their respective search trees. In most environments, KVDA-UCT detects more
abstractions than OGA-UCT, including environments where the abstraction rate more than doubles,
such as SysAdmin or Wildfire. Furthermore, KVDA-UCT detects roughly as many abstractions as
(∞, 0)-OGA in most environments, which fully ignores rewards when building abstractions.

Table 1: The average ratio of abstract Q nodes in KVDA, OGA-UCT’s and (∞, 0)-OGA’s respective
search trees after 1000 iterations with λ = 2 that encompass more than one original node divided
by the total number of abstract Q nodes. The states in which these search trees are built are sampled
from an OGA-UCT agent with λ = 2 and 500 iterations. This measurement excludes all size-one
abstract Q nodes whose original Q node has not yet reached the recency counter (see Section 2.2)
required for the first abstraction update. Hence, a ratio of 1 means that no abstractions were found
while a ratio of 0 means that every state-action pair has been abstracted with another. Note that
KVDA-UCT (our method) finds more abstractions than OGA-UCT in nearly every environment and
in general as many as (∞, 0)-OGA. While there are some environments where there is no gain, such
as Constrictor, there are other environments such as Wildfire or SysAdmin, where the abstraction
rate more than doubles.

Domain
KVDA-UCT

(ours)
OGA-
UCT

(∞, 0)-
OGA

d-Academic Advising 0.69 0.73 0.68
d-Connect4 0.80 0.91 0.80
d-Constrictor 0.98 0.97 0.97
d-Cooperative Recon 0.44 0.56 0.48
d-Earth Observation 0.65 0.99 0.68
d-Elevators 0.28 0.32 0.29
d-Game of Life 0.54 0.56 0.55
d-Manufacturer 0.64 0.95 0.79
d-Othello 0.96 0.99 0.96
d-Pusher 0.96 0.99 0.96
d-Push Your Luck 0.23 0.48 0.16
d-Red Finned Blue Eye 0.72 0.84 0.70
d-Sailing Wind 0.70 0.92 0.74
d-Saving 0.96 0.96 0.96
d-Skills Teaching 0.59 0.65 0.59
d-SysAdmin 0.15 0.48 0.20
d-Tamarisk 0.35 0.56 0.39
d-Traffic 0.53 0.54 0.53
d-Wildfire 0.19 0.37 0.30
d-Wildlife Preserve 0.06 0.08 0.08

Parameter-optimized KVDA-UCT: Firstly, we compared KVDA-UCT, (0, 0)-OGA (i.e. standard
OGA-UCT), and (εa, 0)-OGA with εa > 0 in terms of their parameter-optimized performances on
deterministic environments. For all methods, we optimized over C ∈ {0.5, 1, 2, 4, 8, 16} and some
domain-specific values for εa that are listed in the supplementary materials in Tab. 4. Each parameter
combination was evaluated on all here-considered deterministic environments with a budget of 100,
200, 500, and 1000 MCTS iterations. Tab. 2 list the performance for 100 and 1000 iterations, the
tables for 200 and 500 iterations are found in the supplementary materials in Tab. 7 and 6. The
results clearly show that KVDA either outperforms all other competitor methods or is tightly within
the confidence bounds. There are a number of environments such as Manufacturer, Tamarisk, or
Push Your Luck where KVDA-UCT simultaneously outperforms all competitor methods at once.
Figure 2 plots the performances in dependence of the iteration budget for these tasks. The figures
for the all other environments are found in the supplementary materials in Section A.6.

Single-parameter KVDA-UCT: Next, the generalization capabilities of KVDA-UCT in com-
parison to OGA-UCT and (εa, 0)-OGA on deterministic environments were tested. Like last
section, we ran all algorithms using 100, 200, 500, and 1000 MCTS iterations whilst varying
C ∈ {0.5, 1, 2, 4, 8, 16} and εa with domain-specific values (see supplementary materials Tab. 4).
Instead of considering the best-performances, we calculated the normalized pairings score for each
parameter combination (except for (εa, 0)-OGA where we considered the maximum performance
across all εa > 0 values a single parameter combination), constructed over the tasks which are the
pairs of all environments and iteration budgets. Bar chart 3 shows the 6 agents with the highest score
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Table 2: Average returns (↑) using 100 (right) and 1000 (left) MCTS iterations for KVDA-UCT,
(∞, 0)-OGA, (0, 0)-OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when
varying εa > 0. In the supplementary materials in Tab.4 the domain-specific εa-values are listed.
All performances are the maximal performances obtained by varying the exploration constants
C ∈ {0.5, 1, 2, 4, 8, 16}. Note that KVDA-UCT (our method) outperforms OGA-UCT in most en-
vironments. Furthermore, KVDA-UCT is either equal or performs better than parameter-optimized
(εa, 0)-OGA even though KVDA introduces no extra parameter.

1000 Iterations 100 Iterations

Domain
(0, 0)-
OGA

(∞, 0)-
OGA

(εa, 0)-
OGA

KVDA
(ours)

(0, 0)-
OGA

(∞, 0)-
OGA

(εa, 0)-
OGA

KVDA
(ours)

d-Connect4 42.7± 0.6 46.8± 1.0 47.9± 0.6 47.5± 0.9 28.3± 0.3 28.8± 0.5 28.8± 0.5 28.4± 0.4
d-Constrictor 96.1± 0.3 95.0± 0.2 96.0± 0.3 96.1± 0.3 85.0± 0.6 84.1± 0.4 84.9± 0.9 85.1± 0.6
d-Othello 181.2± 1.2 160.2± 0.8 179.6± 1.2 180.7± 1.5 154.7± 1.3 146.8± 0.8 155.1± 1.8 154.8± 1.3
d-Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −39.9± 0.2 −40.0± 0.2 −40.1± 0.2 −40.0± 0.2 −56.6± 0.7 −56.2± 0.6 −56.2± 0.6 −56.1± 0.6
d-Cooperative Recon 16.1± 0.1 14.8± 0.1 16.0± 0.1 16.2± 0.1 10.8± 0.3 10.9± 0.3 11.0± 0.3 11.0± 0.3
d-Earth Observation −7.18± 0.11 −30.0± 0.4 −7.02± 0.10 −30.0± 0.4 −10.2± 0.2 −28.4± 0.2 −28.4± 0.2 −7.45± 0.12
d-Elevators −14.9± 0.4 −14.2± 0.3 −13.9± 0.4 −14.0± 0.3 −18.0± 0.3 −18.1± 0.3 −17.9± 0.3 −18.0± 0.3
d-Game of Life 666.7± 2.5 664.6± 2.5 664.8± 2.6 665.8± 2.5 641.8± 2.1 642.1± 2.2 642.1± 2.2 641.9± 2.1
d-Manufacturer −1255.6± 15.0 −1658.4± 22.1 −1158.2± 19.4 −1246.0± 16.2 −1423.1± 15.9 −1680.3± 22.4 −1392.6± 20.2 −1233.5± 23.2
d-Push Your Luck 125.1± 1.9 66.7± 1.1 137.9± 2.2 132.4± 2.5 103.5± 1.5 66.3± 0.9 107.0± 1.6 107.6± 1.5
d-RedFinnedBlueEye 8191.3± 44.7 7930.0± 44.7 8229.8± 46.5 7950.6± 33.5 7683.4± 33.8 7464.4± 34.7 7495.1± 35.1 7698.2± 34.0
d-Sailing Wind −40.0± 0.6 −39.1± 0.6 −37.7± 0.6 −38.9± 0.6 −64.7± 0.8 −64.9± 0.9 −64.9± 0.9 −63.6± 0.8
d-Saving 66.0± 0.2 63.0± 0.3 65.4± 0.2 65.4± 0.2 57.1± 0.2 55.2± 0.3 56.8± 0.2 57.2± 0.2
d-Skills Teaching 207.9± 4.6 211.3± 5.1 216.2± 4.5 211.3± 5.1 159.0± 3.9 158.3± 3.9 160.7± 3.8 162.3± 3.8
d-SysAdmin 477.1± 1.5 448.4± 1.3 477.2± 1.5 450.7± 1.1 475.5± 1.7 449.5± 1.2 450.1± 1.2 479.1± 1.4
d-Tamarisk −214.5± 3.9 −208.2± 2.3 −185.6± 2.0 −206.4± 2.7 −315.8± 6.5 −285.4± 4.8 −284.9± 4.7 −263.0± 4.8
d-Traffic −1.54± 0.07 −1.61± 0.07 −1.58± 0.07 −1.61± 0.07 −9.21± 0.22 −9.21± 0.22 −9.21± 0.22 −9.21± 0.22
d-Wildfire −195.6± 55.9 −503.5± 36.1 −179.9± 49.2 −415.0± 36.1 −194.1± 36.1 −498.7± 36.1 −408.9± 36.1 −173.2± 36.1
d-Wildlife Preserve 1388.0± 0.8 1387.9± 0.7 1388.5± 0.7 1387.9± 0.7 1388.9± 0.9 1388.9± 0.9 1388.9± 0.9 1388.9± 0.9

as well as the agent with the lowest score. Both the top spots are occupied by our KVDA-method,
followed by OGA-UCT and (εa, 0)-OGA. The best performing algorithm overall is KVDA-UCT
with C = 4.

εt-KVDA on stochastic environments: Lastly, the performance of εt-KVDA on stochastic envi-
ronments were tested by running both εt-KVDA and (εa, εt)-OGA on the stochastic versions of the
here-considered environments. We considered the iteration budgets of 100 and 1000 iterations and
varied C ∈ {0.5, 1, 2, 4, 8, 16}, εt ∈ {0, 0.4, 0.8, 1.2, 1.6} and the same domain-specific εa that were
used in the previous sections whose values are listed in the supplementary materials in Tab. 4. For
each environment, Tab. 5 of the supplementary materials lists the parameter-optimized performances
of both algorithms. In contrast to the deterministic setting, KVDA does not outperform OGA. For
most environments both perform equally well with some exceptions such as Manufacturer were εt-
KVDA clearly performs best and Tamarisk were (εa, εt)-OGA performs best. We believe mediocre
performance of εt-KVDA stems from the fact that since εt-KVDA essentially ignores immediate
rewards when it builds abstractions, the number of faulty abstractions that occur in this approximate
setting is increased. In the deterministic setting, no faulty abstractions are built.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

This paper introduced KVDA-UCT, an extension to OGA-UCT, that additionally groups states and
state-action pairs that do not have the same Q∗ or V ∗ value as long as the difference is known.
We evaluated and compared KVDA-UCT to OGA-UCT and (εa, 0)-OGA on a deterministic setting
where KVDA-UCT outperforms all its competitors both in terms of generalization as well as the
parameter-optimized performance. This does not hold true for the stochastic setting for which we
generalized KVDA-UCT to εt-KVDA which is only clearly better than (εa, εt)-OGA in few envi-
ronments.

A first avenue for future work will be to further investigate the reasons for the mediocre performance
of the experiments in this paper of the stochastic setting and develop an extension of εt-KVDA suited
for this setting. Another limitation of KVDA abstractions in its current form is its limitation to MDPs
(i.e. single-player games). Even though MCTS is in principle applicable to multi-player games,
KVDA is not because in any state, there is in general, no unique V ∗ value from which differences
can be built, as there are potentially many equilibria with different payoff vectors. Future work will
be to extend KVDA to this setting.
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7 REPRODUCIBILITY STATEMENT

In our experiment setup, we have a subsection called Reproducibility in which we provide a down-
load link to the full codebase used for this project as well as compilation details. The codebase
contains an elaborate README detailing the steps to reproduce the experiments.
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teenth International Conference on Automated Planning and Scheduling, ICAPS 2007, Prov-
idence, Rhode Island, USA, September 22-26, 2007, pp. 352. AAAI, 2007. URL http:
//www.aaai.org/Library/ICAPS/2007/icaps07-045.php.

11

http://auai.org/uai2015/proceedings/papers/81.pdf
http://auai.org/uai2015/proceedings/papers/81.pdf
http://dl.acm.org/citation.cfm?id=2617453
http://dl.acm.org/citation.cfm?id=2617453
https://doi.org/10.1007/11871842_29
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Probabilistic Planning
via Determinization in Hindsight. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pp. 1010–1016. AAAI Press, 2008. URL http://www.aaai.org/Library/
AAAI/2008/aaai08-160.php.

A SUPPLEMENTARY MATERIALS

A.1 PROOF THAT d∗a = da AND d∗s = ds

In this section, it will be shown that the KVDA difference functions da and ds at any step (including
the step of convergence) coincide with d∗a and d∗s for state or state-action pairs within the same
abstract state. This will be proven inductively. First, note that this statement is true for the base
case as all terminal states have a value of V ∗ = 0; hence, their differences are also 0. For the
following induction steps, assume that da is bootstrapped by d′s and ds is bootstrapped by d′a. Next,
let (p1, p2) ∈ H. By definition, it holds that

d∗(p1, p2) = R(p2)−R(p1) +
∑
s∈S

(P(s| p2)− P(s| p1))V ∗(s)︸ ︷︷ ︸
L:=

. (7)

By rewriting V ∗(s) in terms of the difference to its abstract representative, one obtains

L =
∑
x∈X

∑
s′∈x

(P(s′| p2)− P(s′| p1)) (V ∗(sx)− d∗s (s
′, sx))︸ ︷︷ ︸

=d′
s by induction

=
∑
x∈X

∑
s′∈x

(P(s′| p2)− P(s′| p1))V ∗(sx)

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d∗s (s′, sx)

=
∑
x∈X

V ∗(sx)
∑
s′∈x

(P(s′| p2)− P(s′| p1))︸ ︷︷ ︸
=0

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d′s(s′, sx)

= da(p1, p2) +R(p1)−R(p2).

(8)

Hence d∗(p1, p2) = da(p1, p2). Note that this proof holds for any choice of the abstract
nodes’ representatives. Lastly, let (s1, s2) ∈ E and ds(s1, s2) = d. First note that if
a ∈ arg max

a′∈A(s1)
Q∗(s1, a

′) and ((s1, a), (s2, â)) ∈ H′ with d∗a ((s1, a), (s2, â)) = d for some

â ∈ A(s2) then â ∈ arg max
a′∈A(s2)

Q∗(s2, a
′) because for all b ∈ A(s2) it holds that

Q∗(s2, â) = Q∗(s1, a)− d∗a ((s2, â), (s1, a))

≥ Q∗(s1, b̂)− d∗a ((s2, â), (s1, a))

=Q∗(s2, b)− d∗a ((s2, b̂), (s1, b))− d∗a ((s2, â), (s1, a)).

=Q∗(s2, b)− (−d) + d = Q∗(s2, b),

(9)

where ((s1, b̂), (s2, b)) ∈ H′ with d∗a ((s1, b̂), (s2, b)) = d. And since V ∗(s) = max
a∈A(s)

Q∗(s, a) it

directly follows that d = ds(s1, s2) = d∗s (s1, s2) .

A.2 RUNTIME MEASUREMENTS

Tab. 3 lists the average decision-making times for each environment of KVDA-UCT compared to
OGA-UCT for 100 and 2000 iterations on states sampled from a distribution induced by random
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walks. The numbers show a median runtime overhead of < 1% for 100 iterations and ≈ 1% for
2000 iterations.

Table 3: Average decision-making times in milliseconds of KVDA-UCT compared to OGA-UCT
This data was obtained using an Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz.

Domain KVDA-100 OGA-100 KVDA-2000 OGA-2000
Academic Advising 3.85 3.82 133.82 131.74
Cooperative Recon 5.26 5.23 221.98 220.19
Earth Observation 7.54 7.54 197.38 199.13
Elevators 6.85 6.79 231.93 227.69
Game of Life 4.99 4.96 139.38 134.06
Manufacturer 10.26 11.01 281.03 294.91
Red Finned Blue Eye 6.69 6.66 152.46 151.56
Sailing Wind 4.11 4.09 139.39 140.82
Saving 3.75 3.71 124.22 111.13
Skills Teaching 4.97 4.94 219.90 216.68
SysAdmin 6.27 6.20 150.19 152.72
Tamarisk 4.65 4.64 167.23 148.03
Traffic 5.44 5.42 161.33 159.35
Push Your Luck 5.84 5.78 170.25 175.19
Wildfire 7.46 7.43 368.66 476.95
Wildlife Preserve 7.06 7.05 2020.35 1685.53
Othello 18.63 18.67 434.88 428.34
Connect4 4.40 4.33 133.35 123.58
Constrictor 23.23 23.10 616.38 611.72

A.3 DOMAIN-SPECIFIC εa VALUES

One problem with (εa, εt)-OGA is that while εt is neatly bounded by 0 and 2, the εa value has to
be chosen on a per-environment basis since for example the value εa = 0.5 would be equivalent to
εa = 0 for any environment with rewards that are all greater than 0.5. Tab. 4 lists the hand picked
values for each environment that we chose for the experiment section. The values were chosen to be
at the boundary of rewards that actually occur in these environments.

Table 4: A list of the environment-specific εa values that were evaluated in the experiment section for
(εa, 0)-OGA. All domains that are not explicitly listed here, used the default values εa ∈ {1, 2,∞}.

Environment εa values
Academic Advising ∞
Wildlife Preserve 5, 10, 20, ∞
Red Finned Blue Eye 50, 100, 200, ∞
Wildfire 5, 10, 100, ∞
Push Your Luck 2, 5, 10, ∞
Skill Teaching 2, 3, ∞
Tamarisk 0.5, 1.0, ∞
Cooperative Recon 0.5, 1.0, ∞
Manufacturer 10, 20, ∞
Connect 4 1, 5, 10, ∞
Othello 5, 10, 20, ∞
Constrictor 10, 20, 30, ∞
Default 1, 2, ∞
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A.4 PERFORMANCES OF εt-KVDA

Table 5: The parameter-optimized performances of εt-KVDA (our method) and (εa, εt)-OGA on
the stochastic versions of the here-presented environments using 1000 MCTS iterations (left) and
100 MCTS iterations (right). The environments Push Your Luck and Wildlife Preserve from the
deterministic experiments were excluded as computing their transition probabilities which is a re-
quirement for both εt-KVDA and (εa, εt)-OGA is infeasible. Furthermore, Red Finned Blue Eye,
Wildfire and Elevators were also excluded as the performances’ variances were so high in these set-
tings such that obtaining low confidence bounds was infeasible. Contrary to the stochastic setting,
εt-KVDA does not consistently perform better than OGA. For example, while εt-KVDA can gain a
clear advantage in Manufacturer and Sailing Wind, (εa, εt)-OGA is significantly better in Tamarisk.

Average returns (↑) for 1000 MCTS iterations

Domain (εa, εt)-OGA εt-KVDA (ours)

s-Academic Advising −63.9± 0.8 −63.9± 0.8
s-Cooperative Recon 14.3± 0.2 14.1± 0.2
s-Earth Observation −7.97± 0.22 −7.95± 0.23
s-Game of Life 572.9± 2.3 573.4± 2.2
s-Manufacturer −1141.0± 11.1 −863.3± 10.7
s-Sailing Wind −62.1± 1.3 −61.8± 1.3
s-Saving 50.7± 0.1 50.6± 0.1
s-Skills Teaching 71.1± 7.8 74.9± 6.9
s-SysAdmin 403.3± 2.0 403.1± 2.1
s-Tamarisk −532.9± 8.2 −563.6± 8.3
s-Traffic −13.4± 0.3 −13.6± 0.3

Average returns (↑) for 100 MCTS iterations

Domain (εa, εt)-OGA εt-KVDA (ours)

s-Academic Advising −88.0± 1.2 −87.8± 1.2
s-Cooperative Recon 7.08± 0.37 7.07± 0.35
s-Earth Observation −13.7± 0.3 −13.8± 0.3
s-Game of Life 498.7± 3.2 497.6± 3.0
s-Manufacturer −1457.6± 21.5 −1159.6± 24.8
s-Sailing Wind −78.3± 1.1 −73.2± 1.2
s-Saving 44.6± 0.2 44.5± 0.2
s-Skills Teaching −8.94± 8.37 −9.60± 8.23
s-SysAdmin 332.7± 2.8 331.1± 2.7
s-Tamarisk −767.9± 9.8 −836.1± 7.8
s-Traffic −22.0± 0.4 −22.0± 0.4

A.5 PERFORMANCES OF PARAMETER-OPTIMIZED KVDA-UCT FOR 200 AND 500
ITERATIONS

Table 6: Average returns (↑) using 500 MCTS iterations for KVDA-UCT, (∞, 0)-OGA, (0, 0)-
OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when varying εa > 0. In
the supplementary materials in Tab.4 the domain-specific εa-values are listed. All performances are
the maximal performances obtained by varying the exploration constants C ∈ {0.5, 1, 2, 4, 8, 16}.
Note that KVDA-UCT (our method) outperforms OGA-UCT in most environments. Furthermore,
KVDA-UCT is either equal or performs better than parameter-optimized (εa, 0)-OGA even though
KVDA-UCT introduces no extra parameter.

Domain (0, 0)-OGA (∞, 0)-OGA (εa, 0)-OGA KVDA-UCT (ours)

Connect4 36.7± 0.5 41.3± 1.0 41.3± 1.0 39.9± 0.6
Constrictor 94.2± 0.2 92.8± 0.2 94.2± 0.3 94.0± 0.2
Othello 175.3± 1.1 156.8± 0.8 175.2± 1.6 173.4± 1.1
Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −42.1± 0.3 −42.1± 0.3 −42.1± 0.3 −42.3± 0.3
d-Cooperative Recon 15.3± 0.1 14.4± 0.1 15.4± 0.2 15.3± 0.2
d-Earth Observation −7.28± 0.12 −29.6± 0.4 −29.6± 0.4 −6.98± 0.10
d-Elevators −15.6± 0.3 −14.6± 0.3 −14.6± 0.3 −14.9± 0.3
d-Game of Life 659.9± 2.6 659.9± 2.6 660.7± 2.5 661.6± 2.5
d-Manufacturer −1270.2± 11.7 −1646.1± 20.8 −1259.1± 16.5 −1178.3± 22.3
d-Push Your Luck 124.2± 1.9 67.4± 1.0 131.4± 2.0 136.5± 1.9
d-RedFinnedBlueEye 7978.4± 32.9 7738.1± 34.2 7777.4± 34.3 8041.7± 33.1
d-Sailing Wind −43.4± 0.7 −42.8± 0.7 −42.8± 0.7 −41.6± 0.7
d-Saving 64.5± 0.2 61.7± 0.2 64.2± 0.2 64.4± 0.2
d-Skills Teaching 202.8± 3.7 201.0± 3.9 202.6± 3.9 206.5± 3.7
d-SysAdmin 477.7± 1.5 448.8± 1.2 450.8± 1.2 478.1± 1.5
d-Tamarisk −228.9± 4.1 −217.9± 2.4 −217.9± 2.4 −197.2± 2.7
d-Traffic −2.60± 0.10 −2.53± 0.09 −2.53± 0.09 −2.53± 0.09
d-Wildfire −183.6± 36.1 −506.0± 36.2 −409.6± 36.1 −190.6± 36.3
d-Wildlife Preserve 1385.1± 0.8 1384.2± 0.8 1385.5± 0.8 1385.0± 0.8
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Table 7: Average returns using 200 (↑) MCTS iterations for KVDA-UCT, (∞, 0)-OGA, (0, 0)-
OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when varying εa > 0. In
the supplementary materials in Tab.4 the domain-specific εa-values are listed. All performances are
the maximal performances obtained by varying the exploration constants C ∈ {0.5, 1, 2, 4, 8, 16}.
Note that KVDA-UCT (our method) outperforms OGA-UCT in most environments. Furthermore,
KVDA-UCT is either equal or performs better than parameter-optimized (εa, 0)-OGA even though
KVDA-UCT introduces no extra parameter.

Domain (0, 0)-OGA (∞, 0)-OGA (εa, 0)-OGA KVDA-UCT (ours)

Connect4 29.1± 0.4 29.9± 0.6 29.9± 0.6 29.5± 0.4
Constrictor 91.3± 0.3 90.2± 0.2 91.3± 0.4 91.2± 0.3
Othello 164.5± 1.2 152.1± 0.8 164.7± 1.7 164.5± 1.2
Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −47.3± 0.4 −47.2± 0.4 −47.2± 0.4 −47.5± 0.4
d-Cooperative Recon 13.2± 0.3 12.7± 0.3 13.1± 0.3 13.1± 0.3
d-Earth Observation −7.82± 0.14 −29.3± 0.2 −29.3± 0.2 −7.11± 0.11
d-Elevators −16.2± 0.3 −16.1± 0.3 −16.1± 0.3 −16.0± 0.3
d-Game of Life 651.4± 2.5 652.3± 2.4 652.3± 2.4 651.1± 2.5
d-Manufacturer −1370.7± 15.3 −1641.4± 21.2 −1320.7± 18.6 −1180.8± 22.2
d-Push Your Luck 122.6± 1.9 67.1± 0.9 129.6± 1.9 125.9± 1.8
d-RedFinnedBlueEye 7713.6± 33.9 7511.8± 34.7 7513.4± 34.9 7716.9± 33.7
d-Sailing Wind −52.7± 0.8 −52.3± 0.8 −52.3± 0.8 −51.7± 0.8
d-Saving 60.9± 0.2 58.2± 0.2 60.5± 0.2 60.6± 0.2
d-Skills Teaching 183.9± 3.9 186.7± 3.8 186.7± 3.8 185.0± 3.8
d-SysAdmin 476.6± 1.6 450.2± 1.2 450.3± 1.2 478.9± 1.4
d-Tamarisk −265.1± 5.5 −242.9± 3.5 −242.9± 3.5 −221.7± 3.8
d-Traffic −5.34± 0.15 −5.34± 0.15 −5.34± 0.15 −5.34± 0.15
d-Wildfire −193.8± 36.1 −476.5± 36.1 −432.2± 36.2 −191.2± 36.1
d-Wildlife Preserve 1390.1± 0.9 1389.4± 0.9 1389.4± 0.9 1389.5± 1.0
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A.6 PERFORMANCE GRAPHS OF PARAMETER-OPTIMIZED KVDA-UCT

(a) Elevators (b) Earth Observation (c) Game of Life (d) Manufacturer

(e) Push Your Luck (f) Cooperative Recon
(g) Red Finned Blue
Eye (h) SysAdmin

(i) Skill Teaching (j) Sailing Wind (k) Tamarisk (l) Traffic

(m) Wildfire (n) Wildlife Preserve (o) Connect 4 (p) Constrictor

(q) Othello (r) Pusher (s) Saving

Figure 4: The performance plots in dependence of the iteration budget of parameter-optimized
KVDA-UCT (our method), OGA-UCT, and (εa, 0)-OGA, εa > 0 on all considered environments.
Our method KVDA-UCT is either always tightly within the confidence bounds of the top-competitor
method or outperforms all competitors simultaneously.

A.7 MONTE CARLO TREE SEARCH

All here-presented abstraction algorithms rely on Monte Carlo Tree Search (MCTS) which we are
going to describe now. Let M be a finite-horizon MDP. On a high level, MCTS repeatedly samples
trajectories starting at some state s0 ∈ S where a decision has to be made until a stopping criterion is
met. The final decision is then chosen as the action at s0 with the highest average return. In contrast
to a pure Monte Carlo search, MCTS improves subsequent trajectories by building a tree (or, in our

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

case, a directed acyclic graph) from a subset of the states encountered in the last iterations, which
is then exploited. In contrast to pure Monte Carlo search, MCTS is guaranteed to converge to the
optimal action.

An MCTS directed acyclic graph is made of two components. Firstly, the state nodes, that represent
states and Q nodes that represent state action pairs. Each state node, saves only its children which
are a set of Q nodes. Q nodes save both its children which are state nodes and the number of and the
sum of the returns of all trajectories that were sampled starting at the Q node.

Initially, the MCTS search graph consists only of a single state node representing s0. Until the
iteration budget is exhausted, the following steps are repeated.

1. Selection phase: Starting at the root node, MCTS first selects a Q node according to the
so-called tree policy, which may use the nodes’ statistics, and then samples one of the Q
node’s successor states. If either a terminal state node, a state node with at least one non-
visited action (partially expanded), or a new Q node successor state is sampled that is not
represented by another node of the same layer, the selection phase ends.
A commonly used tree policy (and the one we used) that is synonymously used with
MCTS is Upper Confidence Trees (UCT) (Kocsis & Szepesvári, 2006), which selects an
action that maximizes the Upper Confidence Bound (UCB) value. Let s ∈ S and Va, Na

with a ∈ N be the return sum and visits and of the Q nodes of the node representing s. The
UCB value of any action a is then given by

UCB(a) =
Va

Na︸︷︷︸
Q term

+λ

√√√√√√ log

( ∑
a′∈A(s)

Na′

)
Na︸ ︷︷ ︸

Exploration term

. (10)

The exploration term quantifies how much the Q term could be improved if this Q node was
fully exploited and is controlled by the exploration constant λ ∈ R ∪ {∞}. If one chose
λ = 0, the UCT selection policy becomes the greedy policy and for λ = ∞, the selection
policy becomes a uniform policy over the visits. In case of equality, some tiebreak rule has
to be selected, which is typically a random tiebreak. From here, will use MCTS and UCT
(MCTS with UCB selection formula) synonymously.

2. Expansion: Unless the selection phases ended in a terminal state node, the search directed
acyclic graph is expanded by a single node. In case the selection phase ended in a partially
expanded state node, then one unexpanded action is selected (e.g. randomly, or according
to some rule), the corresponding Q node is created and added as a child and one successor
state of that Q node is sampled and added as a child to the new Q node. If the selection phase
ended because a new successor of a Q node was sampled, then a state node representing
this new state is added as a child to that Q node.

3. Rollout/Simulation phase: Starting at the state srollout of the newly added state node
of the expansion phase (or at a terminal state node reached by the selection phase), actions
according to the rollout policy are repeatedly selected and applied to srollout until a terminal
state is reached. All states encountered during this phase are not added to the search graph.

4. Backpropagation: In this phase, the statistics of all Q nodes that were part of the last sam-
pled trajectory that corresponds to a path in the search graph are updated by incrementing
their visit count and adding the trajectory’s return (of the trajectory starting at the respective
Q node) to their return sum statistic.

A.8 PROBLEM DESCRIPTIONS

In the following, we provide a brief description of each domain/environment that was used in
this paper. Some of these environments can be parametrized (e.g., choosing a concrete map for
Pusher). The concrete parameter settings can be found in the ExperimentConfigs folder in our
publicly available GitHub repository (Authors, 2025). In the following, for the reader’s conve-
nience, we re-introduced the relevant environment descriptions from the survey paper (Schmöcker
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& Dockhorn, 2025) as well as added new ones for those not contained in the survey. For a de-
tailed description of these environments, we refer to our implementation available at https:
//anonymous.4open.science/r/KVDA_UCT-6E51/README.md.

• Academic Advising: The Academic Advising domain, introduced by Guerin et al. (2012)
and a modified version featured in the IPPC 2014 competition (Grzes et al., 2014), models
a student navigating their academic progress. The agent represents a student aiming to
successfully complete a subset of academic courses. Formally, the state space is defined
as {P,NP,NT}n where n is the total number of courses, P means the course is passed,
NP means the course was taken at least once but not yet passed, and NT means not taken.
At each decision step, the agent selects a course to attempt. The outcome of the course
depends probabilistically on the completion status and grades of its prerequisites. Rewards
are assigned based on whether the student takes the target courses and the level of success
(grade) achieved in them.

Figure 5: The requirements graph of the Academic Advising instance used for the experiments. The
courses marked in red are the target classes.

• Constrictor: Constrictor is played on an n times n grid. Players take turns moving to
any of the neighbouring (4-neighbourhood) grid cells that neither moves the player out of
bounds nor hits any cell that has already been visited by any of the two players. The game
ends when one player has nowhere left to move. The heuristics function used for player i
is the number of grid cells that i could reach before player i− 1. If player i wins, the value
100 is added to the heuristic.

Figure 6: A visualization of a game state that could have occurred after 6 steps of Constrictor. The
circles indicate the players’ heads and the squares their bodies.
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• Connect4: Connect 4 is played on grid with 7 columns and 6 rows. Each turn, one player
places a stone of its colour in one of the columns that is not yet filled with stones. The
stone occupies the first cell in the chosen column that is not yet occupied. As the heuristic
V h from the perspective of player one is given by

n2 + 5n3 + 25n4 (11)

where ni is the total number of i stones that are in one row/column/diagonal divided by i
but which are not part of a row/column/diagonal of size i+ 1. Fig. 7 visualizes a concrete
Connect 4 game state.

Figure 7: A visualization of a Connect 4 board state that could have occurred after 17 moves of
playing.

• Cooperative Recon: This domain models a robot tasked with discovering signs of life on
a foreign planet. The robot operates on a two-dimensional grid populated with various
objects of interest and a central base. When the robot reaches an object of interest, it can
perform surveys to detect the presence of water and, subsequently, life. The probability of
detecting life increases if water is first identified. If life is successfully detected, the robot
can then photograph the object - this is the only action that yields a reward. Each use of
a detector carries a risk of failure, which may render the detector unusable or reduce its
reliability. Detectors can be repaired, but only at the base location.

Figure 8: A visualization of the Cooperative Recon instance used for the experiments. Question
mark cells indicate objects of interest, the lightning represents a hazard, the green heart the base for
repairs and the stick figure is the initial position of the agent.

• Crossing Traffic: This domain, also featured in IPPC 2014 (Grzes et al., 2014), presents
a grid-based navigation challenge where the agent must traverse multiple lanes of moving
traffic. Obstacles travel along the x-axis from right to left and are randomly generated at
the right edge of the grid. A collision with an obstacle immobilizes the agent, making the
episode unsolvable. The objective is to cross all traffic lanes while avoiding collisions,
ideally following the shortest possible path.
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Figure 9: A visualization of a sample state transition for the Crossing Traffic instance used in the
experiments assuming that the player (black dot) chose to idle. Red triangles indicate obstacles and
the blue square is the goal position.

• Earth Observation: This problem, proposed by Hertle et al. (2014), models a satellite or-
biting Earth while performing photographic observations. Each state corresponds to a po-
sition on a two-dimensional grid, where the satellite’s longitudinal location and the latitude
at which its camera is aimed are represented. Additionally, certain designated cells have
associated weather levels that influence observation quality. Weather conditions change
stochastically at each time step, independent of the agent’s actions. The agent can choose
to idle, take a photograph of the current target cell, or adjust the camera’s focus by incre-
menting or decrementing the y-position (latitude). A reward is granted when a designated
cell is photographed, with the reward magnitude depending on the prevailing weather in
that cell.

• Elevators: This domain, featured in IPPC 2014 (Grzes et al., 2014), involves managing a
set of elevators tasked with transporting passengers to their requested destinations—either
the top or bottom floor. Passengers arrive randomly on different floors, each specifying
their desired direction of travel. At each time step, the agent controls the elevators by
issuing commands to open doors and set travel direction, close doors, or move the elevator
in the indicated direction.

• Game of Life: John Conway’s original Game of Life (Gardner, 1970), a deterministic
cellular automaton, was adapted into a stochastic Markov Decision Process (MDP) as
a benchmark domain for the International Probabilistic Planning Competition (Sanner &
Yoon, 2011). This adaptation introduces stochasticity into the state transitions, defines the
reward as the number of alive cells at each step, and grants the agent control over one cell
per round, ensuring its survival into the next generation. States are represented as elements
of {0, 1}n×n, where each grid cell indicates whether it is alive (1) or dead (0). Like other
authors (Schmöcker et al., 2025), we reduced the action space complexity by allowing only
to select living cells in the current step that will be protected from dying.

(a) A visualization of the initial state used for the
5x5 Game of Life instance used for the experi-
ments. Green cells indicate living cells.

• Manufacturer: In this domain, the agent is responsible for managing a manufacturing
company with the objective of selling goods to customers. To do so, the agent must first
produce the goods, which may involve constructing factories and procuring the necessary
input materials. A key challenge lies in the stochastic fluctuations of goods’ market prices.
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Figure 11: Good production dependency graph of the Manufacturer instance considered for the ex-
periments. An arrow from node i to node j indicates that product j requires product i for production.

• Numbers Race: In Numbers Race, players take turns choosing an integer between 1 and
n ∈ N. The goal is to choose a number m ≤ n such that the sum of all previous numbers
is equal to some goal number g ∈ N. If this sum exceeds g, then the player that overshot,
loses.

• Othello: Othello is played on an 8x8 board (in our case a 6x6 board) where players take
turns placing a stone of their colour on an empty cell. Once placed, all opponent’s stones
are flipped that are contained in a vertical, horizontal or diagonal line that starts at the
placed stone and that ends at the first stone of the same colour as the placed stone going in
the line’s direction. When neither player has an available move, the player with the most
stones wins. The heuristic function for any state for player i is given by a weighted sum of
all the occupied grid cells. The weight w of cell (x, y) is given by 10/(1 + d) where d is
the distance to the closest corner cell. The weight w is positive for any cells occupied by
stones of i and negative for one occupied by 1− i. In the round player i wins, 100 is added
to the heuristics value and −100 if 1− i won.

Figure 12: A of a state transition for the 6x6 version of Othello. In this example, black placed a
stone, which caused five white stones to switch their color to black.

• Push Your Luck: In Push Your Luck the agent has to decide which of n, m-sided, not-
necessarily fair dice or cash-out. If cashed-out, the agent receives a reward dependent on all
dice faces that are marked. Faces are marked if they have been rolled (each face is shared
by all n dice). However, if the agent rolls an already marked face, or rolls two unmarked
faces at the same time, all markings are removed.

• Pusher: Pusher is a game mode from the Stratega framework (Dockhorn et al., 2020).
Pusher is played on a 2-dimensional grid. Each player controls an initially equal number of
units. The goal is to eliminate all enemy units, which can be achieved by pushing them into
holes which are spread around the map. Per step, a player may move one unit to an empty
neighbouring tile (4-neighbourhood) and optionally push an enemy unit in the movement
direction by 1 tile if the enemy unit is located at a neighbouring tile. We used the heuristic
for player i that is equal to the difference of alive units of i and i − 1 in addition to the
Manhatten distance between player i and i − 1’s units’ center of mass. In the turn that
player i wins, 100 is added to the heuristic value.
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Figure 13: A visualization of the initial state of the Pusher instance used for the experiments. The
red circles are units of player 1 and the blue triangles are those of player 2.

• Red Finned Blue Eye: In this environment, the agent is tasked with preserving and restor-
ing the Red Finned Blue Eye (RFBE) fish population which is being threatened by an
invasive species of Gambusian fish. The ecosystem is being modelled as springs that are
connected in a directed graph, however, the connections’ accessibility is dependent on the
current global water level, which changes stochastically. Gambusian spreads aggressively
between connected springs.

(a) The spring
connections at

the highest
water level 7.

(b) Spring
connections at
water levels 5

and 6.

(c) Spring
connections at
water level 4.

(d) Spring
connections at
water level 3.

(e) Spring
connections at
water levels 1

and 2.

Figure 14: A visualization of the Red Finned Blue instance used for the experiments, showing how
the springs are connected as water level varies from 1 (least) to 7 (most). Furthermore, the leftmost
subfigure (a) also shows the initial populations of the Gambusian (red) and the Red Finned Blue Eye
(blue).

• Sailing Wind: Originally proposed by Robert Vanderbei (Vanderbei, 1996), the Sailing
Wind domain challenges the agent to navigate a ship from the starting position (1, 1) to the
goal at (n, n) on an n × n grid while minimizing total cost. The formulation of transition
and reward functions varies across the literature. Some versions restrict the agent to only
two actions - down and right (Jiang et al., 2014)—while others allow up to seven possible
moves, excluding the cell directly against the current wind direction (Anand et al., 2015).
Action costs depend on the wind direction, which changes stochastically at each time step,
independent of the agent’s actions.
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Wind direction

Figure 15: A visualization of the Sailing Wind instance used for the experiments. The red flag
indicates the goal position, the blue triangle is the agent’s position, and the grey arrows indicate the
direction it can move in in the current step.

• Skill Teaching In Skill Teaching, the agent takes the role of a tutor that is tasked with
increasing the proficiency level of a student at various skills. The student can have one
of three proficiency levels at each skill: Low, medium, and high. The skills from a pre-
requisite graph, giving the student higher chances of learning a new skill the higher the
prerequisites’ levels of proficiency. Difficulty arises from the proficiency levels decaying if
the corresponding skill wasn’t practised. This decay is deterministic for skills at medium
proficiency and stochastic for those at high proficiency.

Figure 16: The prerequisites graph for the Skill Teaching instance used for the experiments.

• Saving: Saving is introduced by Hostetler et al. (2015), where the agent aims to maximize
accumulated wealth over time. At each step, the agent can choose one of three actions:
Invest, Borrow, or Save. Borrow provides an immediate reward of 2 but imposes a penalty
of -3 after n time steps. Once this action is taken, it cannot be repeated until the delayed
penalty is applied. Save yields an immediate reward of 1 with no further consequences.
Invest offers no immediate reward but enables the agent to take the Sell action within the
next m time steps. The agent cannot invest again until either the Sell action is executed
or m steps have elapsed. If Sell is chosen, then the agent receives a reward equal to the
current price level that changes stochastically and independently of the agent’s actions.

• SysAdmin: Proposed by Guestrin et al. (2003), the SysAdmin domain models the manage-
ment of a computer network, represented as a graph with n ∈ N nodes, where each node
corresponds to a machine. The state space is {0, 1}n, indicating the operational status of
each machine (1 for working, 0 for failed). The action space is {1, . . . , n, IDLE}, where
each action corresponds to rebooting a specific machine or idling. At each time step, the
reward depends on the number of machines that are currently operational. Rebooting a ma-
chine increases the likelihood that it will be functioning in the next step. However, machine
failures occur stochastically, with an elevated probability when neighboring machines are
also down.
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Figure 17: Visualization of the SysAdmin topology used for the experiments.

• Tamarisk: Tamarisk, another domain from IPPC 2014 (Grzes et al., 2014), models the
spread of an invasive plant species within a river system. The environment is represented
as a linear chain of river segments, or reaches, each containing several slots. Each slot
can be unoccupied, occupied by a native plant, or occupied by the invasive Tamarisk plant.
Both native and Tamarisk plants spread stochastically to adjacent reaches, with a higher
probability of spreading downstream. At each time step, the agent selects one action for
one reach: do nothing, eradicate Tamarisk, or restore native vegetation. The chosen action
is applied uniformly to all slots within that reach. All actions - except doing nothing - have
a chance of failure, occurring randomly.

• Tic Tac Toe: Tic Tac Toe is played on a grid of width and height 3. Each player is assigned
a colour and places one stone of its colour in one of the empty grid cells. The first player
to create a vertical, horizontal, or diagonal row of three same-coloured stones wins.

Figure 18: Visualization of a Tic Tac Toe gamestate in which the player with the red circles won
because a vertical row was completed.

• Traffic: In this environment, the agent is tasked with simultaneously controlling a number
of traffic lights with the goal of minimizing traffic jams. This traffic is modelled as a
directed graph, however, some edges are only available depending on the state of a traffic
light. Each vertex may either contain a car or not.

Figure 19: The traffic graph used in the experiments. Blue cells are cells that receive a random car
inflow, redly marked cells are cells where the traffic flow exits and the bold edges are intersection
edges. Only one of crossing bold edges can ever be active at the same time.
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• Wildfire: Wildfire models the spread of a fire on a grid. Each grid cell is either untouched,
burning, or out-of-fuel meaning that no new fire can ignite at this cell. If a cell is untouched
it can at each time step randomly ignite with the probability increasing exponentially in
the number of neighbouring burning cells. The neighbourhood is defined on an instance
level with most instances choosing the 8-neighbourhood and manually cutting a handful of
neighbourhood connections between individual cells. The agent is tasked with controlling
the spread of the fire.

Figure 20: A visualization of the initial state of the Wildfire instance used for the experiments. The
red triangle indicates fire and the blue squares indicate so-called targets which have to be protected.

• Wildlife Preserve: In Wildlife preserve the agent manages rangers to defend areas from
poachers. If a ranger was sent to defend an area a poacher decided to attack, the poacher
is caught and can not attack an area in the next step. Each poacher has different area
preferences and remembers whether how often which area was defended in the last couple
of steps.
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(a) d-Manufacturer

(b) d-Tamarisk

(c) d-Push Your Luck

Figure 2: The performance plots in dependence of the iteration budget of parameter-optimized
KVDA-UCT (our method), OGA-UCT (Anand et al., 2016), and (εa, 0)-OGA on selected environ-
ments. KVDA-UCT clearly outperforms its competitors. The plots for the remaining environments
can be found in the supplementary materials in Section A.6.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 3: The normalized pairings score (↑) for the top 6 and the worst agent on deterministic en-
vironments. The agents considered were KVDA-UCT (our method) which performs best overall,
OGA-UCT (Anand et al., 2016), and (εa, 0)-OGA (Schmöcker et al., 2025), εa > 0 with the ex-
ploration constants C ∈ {0.5, 1, 2, 4, 8, 16} and budgets of {100, 200, 500, 1000} iterations. The
top two spots are occupied by our method KVDA-UCT, with the best overall performing algorithm
being KVDA-UCT with C = 4.
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