
Published as a conference paper at ICLR 2026

GROUPING NODES WITH KNOWN VALUE DIFFER-
ENCES: A LOSSLESS UCT-BASED ABSTRACTION AL-
GORITHM

Robin Schmöcker
Institute for Information Processing
Leibniz University Hannover
Hannover, Germany
schmoecker@tnt.uni-hannover.de

Alexander Dockhorn
SDU Metaverse Lab
University of Southern Denmark
Odense, Denmark
adoc@mmmi.sdu.dk

Bodo Rosenhahn
Institute for Information Processing
Leibniz University Hannover
Hannover, Germany
rosenhahn@tnt.uni-hannover.de

ABSTRACT

A core challenge of Monte Carlo Tree Search (MCTS) is its sample efficiency,
which can be improved by grouping state-action pairs and using their aggregate
statistics instead of single-node statistics. On the Go Abstractions in Upper Con-
fidence bounds applied to Trees (OGA-UCT) is the state-of-the-art MCTS ab-
straction algorithm for deterministic environments that builds its abstraction using
the Abstractions of State-Action Pairs (ASAP) framework, which aims to detect
states and state-action pairs with the same value under optimal play by analysing
the search graph. ASAP, however, requires two state-action pairs to have the same
immediate reward, which is a rigid condition that limits the number of abstractions
that can be found and thereby the sample efficiency. In this paper, we break with
the paradigm of grouping value-equivalent states or state-action pairs and instead
group states and state-action pairs with possibly different values as long as the dif-
ference between their values can be inferred. We call this abstraction framework
Known Value Difference Abstractions (KVDA), which infers the value differences
by analysis of the immediate rewards and modifies OGA-UCT to use this frame-
work instead. The modification is called KVDA-UCT, which detects significantly
more abstractions than OGA-UCT, introduces no additional parameter, and out-
performs OGA-UCT on a variety of deterministic environments and parameter
settings.

1 INTRODUCTION

Research into non-learning-based decision-making algorithms such as Monte Carlo Tree Search
(MCTS) (Browne et al., 2012; Kocsis & Szepesvári, 2006) is an active field. On the one hand
MCTS can be used for applications where a general on-the-fly applicable decision-making algorithm
is needed such as Game Studios which rarely use Machine Learning (ML) based AI as they would
have to be retrained whenever the game rules are modified (e.g. during development or patches).
And on the other hand, though not the scope of this paper, foundational work in MCTS might
potentially translate to improvements of ML algorithms such as Alpha Zero (Silver et al., 2017) that
are built on MCTS.

One way to improve MCTS is to reduce the search space by grouping states and actions in the cur-
rent MCTS search tree to enable an intra-layer information flow (Jiang et al., 2014; Anand et al.,
2015; 2016) by averaging the visits and returns of all abstract action nodes in the same abstract node
used for the Upper Confidence Bounds (UCB) formula in the tree policy, which increases the sample

1

Published as a conference paper at ICLR 2026

efficiency. One key strength of one of the state-of-the-art abstraction algorithms On the Go Abstrac-
tions in Upper Confidence bounds applied to Trees (OGA-UCT) (Anand et al., 2016) is its exactness
in the sense that if OGA-UCT groups two state-action pairs in a search tree where all possible suc-
cessors of each state-action pair have been sampled, only state-action pairs are grouped that have the
same Q∗ value, i.e., they have the same value under subsequent optimal play. This exactness con-
dition, however, comes at the cost that state or state-action pairs that only differ slightly in their Q∗

value cannot be detected. This issue was slightly alleviated with the introduction of (εa, εt)-OGA
(Schmöcker et al., 2025d), which is equivalent to (εa, 0)-OGA in deterministic environments that
allows for small errors in the immediate reward or transition function when building an abstraction.
However, this also brings two downsides with it. Firstly, it introduces two parameters, which makes
tuning harder, and secondly, grouping non-value equivalent state-action pairs might even be harmful
to the performance, as they can make convergence to the optimal action impossible.

In this work we propose Known Value Differences Abstractions UCT (KVDA-UCT), that relaxes
the strict abstraction conditions of OGA-UCT to detect almost as many abstractions as (εa, 0)-OGA
in deterministic environments but without losing the exactness condition. The novel idea that makes
this possible is to deliberately group states or state-action pairs that do not have the same value if we
know the difference between their values which is inferred by analysis of the search tree’s immediate
rewards. When the abstractions are used, instead of averaging state-action pair values directly, their
difference-accounted values are averaged. The contributions of this paper can be summarized as
follows:

1. We introduce the Known-Value-Difference (KVDA) abstraction framework that extends the Ab-
stractions of State-Action Pairs (ASAP) framework used by OGA-UCT. Fig. 1 is an example of
a simple state-transition graph in which KVDA finds three non-trivial abstractions, while ASAP
would detect none.

2. We propose and empirically evaluate KVDA-UCT, a modification of OGA-UCT that introduces
no parameters and uses and builds KVDA abstractions. The introduction of KVDA-UCT aims to
address the abstraction literature gap for deterministic settings since existing modifications of OGA-
UCT have only focused on stochastic settings (Anand et al., 2016; Xu et al., 2023; Schmöcker
et al., 2025d;c). We show that KVDA-UCT outperforms OGA-UCT in most of the here-considered
deterministic environments. We also compare KVDA-UCT with (εa, 0)-OGA and show that it either
performs equally well or better than a parameter-optimized (εa, 0)-OGA agent.

3. Though not the main focus of this paper, we also consider the stochastic setting where we gener-
alize KVDA-UCT to εt-KVDA which allows for errors in the transition function when building the
abstraction. Furthermore, we compare it to (εt, εa)-OGA and show that, unlike in the deterministic
setting, KVDA rarely performs better than (εt, εa)-OGA in stochastic environments. Still, there are
some environments in which εt-KVDA achieves the best performances, which allows one to view it
as an additional tool to improve the parameter-optimized performance.

The paper is structured as follows. In Section 2, the theoretical groundwork for automatic state and
state-action pair abstractions is laid. In particular, we define OGA-UCT and (εa, εt)-OGA. Then,
in Section 3, our novel KVDA framework and both KVDA-UCT and εt-KVDA are introduced.
Afterwards, in Section 4, the experimental setup is defined, then in Section 5, the experimental
results using this setup are shown and discussed. The paper is concluded by a discussion of the
limitations of KVDA-UCT and avenues for future work in Section 6.

2 FOUNDATIONS OF AUTOMATIC ABSTRACTIONS

In this section, we will be laying the theoretical groundwork for this paper as well as introducing
related work. For a comprehensive overview of non-learning-based abstractions, we refer to the
survey paper by Schmöcker and Dockhorn (Schmöcker & Dockhorn, 2025).

Problem model and optimization objective: For our purposes, finite Markov Decision Processes
(Sutton & Barto, 2018) are used as the model for sequential, perfect-information decision-making
tasks. ∆(X) denotes the probability simplex of a finite, non-empty set X and the power set of X is
denoted by P(X).

Definition: An MDP is a 6-tuple (S, µ0, T,A,P, R) where the components are as follows:

2

Published as a conference paper at ICLR 2026

Figure 1: An example of an MDP state-transition graph where the state-of-the-art abstraction frame-
work ASAP (Anand et al., 2015) would detect no abstractions while our method Known-Value-
Difference-Abstractions (KVDA) detects three non-trivial abstractions. In this example, circles
represent states, arrows represent deterministic state-transitions and arrow annotations denote the
immediate transition reward. All actions or states that are intersected by a red ellipse will be ab-
stracted by KVDA.

• S ̸= ∅ is the finite set of states.
• µ0 ∈ ∆(S) is the probability distribution for the initial state.
• ∅ ≠ T ⫋ S is the (possibly empty) set of terminal states.
• A : (S \ T) 7→ A maps each state s to the available actions ∅ ̸= A(s) ⊆ A at state s where
|A| < ∞.

• P : (S \ T) × A 7→ ∆(S) is the stochastic transition function where P(s′| s, a) is used
to denote the probability of transitioning from s ∈ (S \ T) to s′ ∈ S after taking action
a ∈ A(s) in s.

• R : (S \ T)×A 7→ R is the reward function.

Let M = (S, µ0, T,A,P, R) be an MDP. We define P := {(s, a) | s ∈ (S \ T), a ∈ A(s)} as the
set of all legal state-action pairs. The objective is to find a mapping (i.e. an agent) π : S 7→ ∆(A)
such that π maximizes the expected episode’s return where the (discounted) return of an episode
s0, a0, r0, . . . , sn, an, rn, sn+1 with sn+1 ∈ T is given by γ0r0 + . . .+ γnrn.

Abstractions of State-Action Pairs (ASAP): For MCTS-based abstraction research, the goal has
been to detect state-action pairs with the same Q∗ value (the value under subsequent optimal play) in
the search graph to increase sample efficiency by an intra-layer information flow (Jiang et al., 2014;
Anand et al., 2015; 2016). In general, by abstractions of either the states of state-action-pairs we
refer to equivalence relations over the state set S or state-action pair set P . The equivalence classes
are abstract states or state-action pairs.

The current state of the art is the Abstraction of State-Action Pairs in UCT (ASAP) abstraction
framework (Anand et al., 2015) that proposes rules to detect value-equivalent states and state-action
pairs given an MDP transition graph and applies it to the current MCTS search graph (for details
on MCTS, see Section A.8). The core idea of ASAP is to alternatingly construct a state abstraction
given a state-action pair abstraction and a state-action pair abstraction given a state abstraction.

Assume one is given a state abstraction E ′ ⊆ S × S. The corresponding ASAP state-action pair
abstraction H ⊆ P × P is defined as grouping those state-action pairs with the same immediate
reward and equal abstract successor distribution. Concretely, any state-action-pair (s1, a1), (s2, a2)
is equivalent i.e. ((s1, a1), (s2, a2)) ∈ H if and only if

Fa := |R(s1, a1)−R(s2, a2)| = 0

Ft :=
∑
x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ = 0,

(1)

where X are the equivalence classes of E ′. And given a state-action pair abstraction H′ ⊆ P × P ,
the corresponding ASAP state abstraction E groups all states whose actions can be mapped to each

3

Published as a conference paper at ICLR 2026

other, concretely:

(s1, s2) ∈ E ⇐⇒
∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ Hi+1

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ Hi+1.

(2)

To obtain the ASAP abstraction for a given MDP, these two constructing steps are repeated alternat-
ingly until convergence. Note that the ASAP abstraction differs from MDP bisimulations as well as
MDP homomorphisms (Ravindran & Barto, 2004) because state-action pairs can abstracted even if
their parent states are not abstracted.

OGA-UCT: Anand et al. (2016) proposed OGA-UCT, which builds an ASAP-like abstraction in
parallel to running MCTS. When building the abstraction OGA starts with the initial state abstrac-
tion that groups all terminal states of the same layer and puts the remaining states in their own sin-
gleton equivalence class. Furthermore, when building the ASAP abstraction on the current search
graph, OGA ignores non-yet-sampled successors of state-action pairs that appear in Equation 2. To
make the frequent recomputation of the ASAP abstraction feasible, OGA keeps track of a recency
counter for each Q-node and once it surpasses a certain threshold, recomputes its abstraction. If the
abstraction changed, the parent states are recomputed too (and possibly their Q-node parents if their
abstraction changed). By only locally checking for errors in the abstraction, OGA is able to keep
track of an ASAP-like abstraction that is always close to the true ASAP abstraction of the current
search tree.

The only MCTS component that OGA-UCT affects is the tree policy which is enhanced by using
the aggregate returns and visits of a Q-node’s abstract node to enhance the UCB value.

(εa, εt)-OGA: The ASAP framework groups only value equivalent states and state-action
pairs. This condition can be relaxed like already done by a predecessor of OGA-UCT, called
AS-UCT (Jiang et al., 2014), by allowing the rewards in Equation 1 to differ by some threshold
εa > 0 and the transition error Ft of Equation 1 to lie in the interval [0, εt] where 0 ≤ εt ≤ 2 is
another parameter which does not have any effect in deterministic environments. Since in general,
positive threshold values do not induce an equivalence relation over state-action pairs, OGA-UCT
has to be slightly modified to accommodate these approximate abstractions. This has been done by
Schmöcker and Dockhorn (Schmöcker et al., 2025d) who introduced (εa, εt)-OGA.

Auther automatic abstraction algorithm: The ASAP framework is the direct successor of Ab-
straction of States (AS) by Jiang et al. (2014) that abstracts states if and only if their actions are pair-
wise similar in the sense that Equation 2 only has to be approximately satisfied as described in the
(εa, εt)-OGA section above. While this paper focuses on deterministic domains, (εa, εt)-OGA (and
related algorithms) have been further improved for stochastic settings by defining intra-abstraction
policies (Schmöcker et al., 2025c), or dynamically abandoning the abstraction (Xu et al., 2023;
Schmöcker et al., 2025d).

Yet another paradigm is demonstrated by Hostetler et al. (2015) and Schmöcker et al. (2025a) who
optimistically construct abstractions by starting with a very coarse abstraction (e.g. grouping every-
thing together) and then they refine this abstraction, for example by repeatedly splitting large node
groups in half (Hostetler et al., 2015).

Research effort has also been dedicated towards automatic abstractions of the transition function,
which on an abstract level can be described as pruning certain successors from the transition function
(Sokota et al., 2021; Yoon et al., 2008; 2007; Saisubramanian et al., 2017).

3 METHOD

This section introduces our novel KVDA-UCT algorithm which is designed to detect strictly more
abstractions than OGA-UCT which allows one to compute more accurate UCB values during both
the decision and tree policy which in turn leads to performance improvements. First, we will provide
an example of a concrete search graph in which ASAP misses abstractions that the Known Value
Differences Abstractions (KVDA) framework would find which will be introduced after the search
graph example. At the end of this section, we will be describing how KVDA is integrated into UCT
to yield KVDA-UCT.

4

Published as a conference paper at ICLR 2026

3.1 WHICH ABSTRACTIONS ASAP MISSES

Consider the state-transition graph that is illustrated in Fig. 1 that consists of four states and four
actions. The ASAP framework would not detect any equivalences. In fact, any framework that aims
at finding value-equivalent states or state-action pairs would at most be able to detect that the two
root actions are value-equivalent. However, by analysing the state graph, one could derive that the
Q∗ values of the action of node 2 differs only by 1 from the Q∗ value of the action of node 3. This
holds true even if the state-graph would extend past node 4. Consequently, the V ∗ values of nodes
2 and 3 differ only by 1. This in turn implies that the two actions of node 1 must have the same Q∗

value.

The analysis of this example can be further generalized which is the core idea of Known-Value-
Difference-Abstractions (KVDA) framework which is to abstract/group states and state-action
pairs if one can derive their value differences. Intuitively, KVDA abstractions are identical to ASAP
abstractions except that immediate reward errors are ignored and accounted for by tracking them as
value differences. Later, when using these abstractions to enhance MCTS, the differences only have
to be subtracted when aggregating values. When viewed from the lenses of the KVDA framework,
ASAP only groups states or state-action pairs with a value difference of 0, i.e. detects only true
equivalences.

While this was only a toy example of illustration purposes, the KVDA framework does also discover
more abstractions in practice as will later be shown experimentally. A concrete example of an MDP
in which KVDA detects strictly more abstractions than ASAP is Game of Life (see Section A.9).
In this environment, the immediate reward is also equal to the number of living cells. Therefore,
state-action pairs from states with different number of living cells cannot be ASAP-abstracted even
though they might have the successor(s). In contrast, KVDA is able discover such abstractions.

Next, we will formalize the KVDA framework which both in theory and in our empirical evaluations
(see Tab. 1, more details are given in the experimental section) detects strictly more abstractions.

3.2 THE KNOWN-VALUE-DIFFERENCE-ABSTRACTIONS FRAMEWORK

Our method, the Known-Value-Difference-Abstractions (KVDA) extends the ASAP definition by
additionally grouping states or state-action-pairs whose V ∗ or Q∗ difference is known. While
ASAP iteratively builds abstractions on abstractions, KVDA bootstraps of an abstraction, difference-
function pair. More concretely, given a state abstraction E ′ (or a state-action pair abstraction H′) and
a difference function d′s : S×S 7→ R (or d′a : P ×P 7→ R), both a state-action-pair abstraction H (or
a state abstraction E) is produced as well as a state-action pair difference function da : P × P 7→ R
(or a state difference function ds : S × S 7→ R). Both da and ds will be constructed such that

da(p1, p2) = d∗a (p1, p2) := Q∗(p2)−Q∗(p1)

ds(s1, s2) = d∗s (s1, s2) := V ∗(s2)− V ∗(s1)
(3)

for any pair of states or state-action pairs in the same equivalence class (i.e., in the same abstract
state). Even though in the experimental section, we will mostly consider deterministic environ-
ments, the now-to-be-described KVDA framework will be applicable to any MDP, including
stochastic ones. Next, starting with the base case, we will formalize how KVDA abstractions are
built.

The base case: Like ASAP, KVDA groups all terminal states into the same initial abstract
node, the remaining states are singleton abstract nodes. The difference function between all nodes
in the terminal abstract node is initialized with 0.

State-action-pair abstractions: Using the same notation as in Section 2, let E ′ ⊆ S × S
be a state abstraction and d′s : S × S 7→ R be a difference function. The corresponding KVDA state-
action pair abstraction H ⊆ P × P is defined as follows: Any state-action pair (s1, a1), (s2, a2) is
equivalent i.e. ((s1, a1), (s2, a2)) ∈ H if and only if∑

x∈X

∣∣∣∣∑
s′∈x

P(s′| s1, a1)− P(s′| s2, a2)
∣∣∣∣ = 0, (4)

5

Published as a conference paper at ICLR 2026

where X are the equivalence classes of E ′. Note that this is almost identical to the ASAP definition
except that the immediate rewards do not have to coincide. The difference function da : P ×P 7→ R
for two (p1, p2) ∈ H is given by

da(p1, p2) =R(p2)−R(p1)

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d′s(s′, sx) (5)

where for each x ∈ X , sx is an arbitrarily chosen but fixed representative of X . We will later see
that the value of da is independent of this choice.

State abstractions: Given a state-action pair abstraction H′ ⊆ P × P and a state-action
pair difference function da : P × P 7→ R the corresponding KVDA state abstraction E ⊆ S × S
groups all states whose actions can be mapped to each other, and whose mappings all have the same
value difference:

(s1, s2) ∈ E ⇐⇒ ∃d ∈ R :

∀a1 ∈ A(s1)∃a2 ∈ A(s2) : ((s1, a1), (s2, a2)) ∈ H′

∧ da((s1, a1), (s2, a2)) = d

∀a2 ∈ A(s2)∃a1 ∈ A(s1) : ((s1, a1), (s2, a2)) ∈ H′

∧ da((s2, a2), (s1, a1)) = −d.

(6)

The difference function ds(s1, s2) is defined as the value d in the equation above.

Theoretical guarantees:

Convergence: Given an MDP, the above-described construction steps can be repeated until conver-
gence, which is guaranteed as in our MDP definition, there are finitely many states and state-action
pairs and each construction step either leaves the abstraction unchanged or reduces the number of
equivalence classes. The abstraction that one obtains at convergence is called the KVDA abstraction
of an MDP.

Soundness of da and ds: Both da and ds at convergence are equal to the differences of their
arguments Q∗ or V ∗ values as formulated in Eq. 3. This is proven in the supplementary materials
in Section A.2.

3.3 KVDA-UCT AND εT-KVDA

In this section, we will describe how the KVDA abstraction framework is integrated into MCTS,
which is fully analogous to how (εa, εt)-OGA (which itself is equivalent to OGA-UCT for
εa = εt = 0) integrates the ASAP framework. The usage of the following to-be-described modi-
fications to (εa, εt)-OGA is called εt-KVDA. For the case εt = 0, the algorithm is simply called
KVDA-UCT. εt-KVDA does not depend on εa unlike (εa, εt)-OGA. The detailed pseudocode for
this method is provided in Pseudocode 1 in which the differences to (εa, εt)-OGA are shaded in blue.

1) Instead of (approximate) ASAP abstractions, (approximate) KVDA abstractions of the search tree
are built. Both (εa, εt)-OGA and εt-KVDA allow the transition error Ft of Equation 1 to be in the
interval [0, εt].

2) For efficient distance function calculations, each abstract node keeps track of a representative.
Value differences are only calculated with respect to the representative. An abstract node’s repre-
sentative is the first original node added to the abstract node, and if that one is removed, a random
new representative is chosen.

3) Each abstract Q node’s value is tracked as the value of its representative QR that encodes the
state-action-pair pR ∈ P . When another original node Q of the same abstract node representing
p ∈ P is backed up in the MCTS backup phase with value v ∈ R, the value v + da(p, pR) is added
to the abstract node’s statistics. In turn, Q extracts its aggregated returns from the abstract node by
subtracting da(p, pR) from the abstract node’s value. If an abstract node’s representative changes to
Q′

R encoding p′R ∈ P , then n ·da(pR, p
′
R) is added to the statistics where n is the abstract visit count.

6

Published as a conference paper at ICLR 2026

Note that in the deterministic setting where da is always computed correctly, this implies that KVDA-
UCT will never visit state-action pairs as long as they are abstracted with another state-action pair
with a positive da difference (i.e. when they are provably not the optimal action) since these state-
action pairs will have the same exploration term and Q values that differ by da. This is a strength
that OGA-UCT does not possess.

4) To reduce the computational load of finding a perfect match as the one required for the state
abstractions in Equation 6, we check for a stricter condition for states s1, s2. It is first checked that
within s1 (and analogously s2) all actions within the same abstract node have a value difference of
zero. Then, it is tested for all abstract Q nodes of s1 if the value difference between an arbitrarily
chosen ground action of s1 and one of s2 is constant for all abstract nodes.

5) Since the KVDA abstraction also depends on the difference functions, whenever a Q-node’s
recency counter reaches the threshold, the value difference to its representative is recalculated. A
change in this difference also results in a reevaluation (and subsequent recency counter reset) of the
parent nodes’ abstractions and difference functions.

4 EXPERIMENT SETUP

In this section, we describe the general experiment setup. Any deviations from this setup will be
explicitly mentioned.

Problem models: For this paper, we ran our experiments on a variety of MDPs, all of which are
either from the International Probabilistic Planning Conference (Grzes et al., 2014), are well-known
board games, or are commonly used in the abstraction algorithm literature. Since we will compare
KVDA-UCT to OGA-UCT we chose only environments with a non-constant and non-sparse re-
ward function, as constant reward environments would imply that KVDA-UCT and OGA-UCT are
semantically equivalent.

All MDPs originally feature stochasticity, however, for some experiments we considered their de-
terministic versions which are obtained by sampling a single successor of each state-action pair. For
each episode, new successors are sampled. All experiments were run on the finite horizon versions
of the considered MDPs with a default horizon of 50 steps and 200 for the board games with a
planning horizon of 50 and a discount factor γ = 1.

The board games are transformed into MDPs by inserting a deterministic One-Step-Lookahead agent
as the opponent. Furthermore, since they are all sparse-reward (i.e. either win or lose) they were
also transformed into dense-reward MDPs by using heuristics. For each board game we defined
a heuristic V h that assigns each state a heuristic value for its state value. The reward of the (de-
terministic) transition s, a, s′ is then given by V h(s′) − V h(s). The concrete heuristics used along
with a brief description of all MDPs is provided in the supplementary materials in Section A.9. The
deterministic MDPs are denoted by adding the prefix d- and the stochastic ones are denoted by the
prefix s-.

Parameters: Since the problem domains have vastly different reward scales, we use the dynamic
exploration factor Global Std (Schmöcker et al., 2025e) which has the form C · σ where σ is the
standard deviation of the Q values of all nodes in the search tree and C ∈ R+ is some fixed parame-
ter. Furthermore, we always use K = 3 as the recency counter which was proposed by Anand et al.
(2016).

Evaluation: Each experiment is repeated at least 2000 times and all confidence that we denote in
the following are 99% confidence intervals with range ≈ 2 · 2.33 times the standard error.

Normalized pairings score: We will later construct the normalized pairings score to test the gen-
eralization capabilities of KVDA-UCT. This is the same score as used in Schmöcker et al. (2025e).
The pairings score is constructed as follows. Let {π1, . . . , πn} be n agents (e.g. each KVDA-UCT
agent along with its parameter setting is an agent) where each agent was evaluated on m tasks (later,
a task will be a given MCTS iteration budget and an environment). This induces a matrix of size
n × n with the entry (i, j) being equal to the number of tasks where πi achieved a higher perfor-
mance than πj subtracted by the number of times it performed worse, divided by m. The normalized
pairings score si ≤ i ≤ n is then obtained by taking the average of i-th row when excluding the i-th
column.

7

Published as a conference paper at ICLR 2026

Reproducibility: For reproducibility, we released our implementation (Schmöcker, 2025). Our
code was compiled with g++ version 13.1.0 using the -O3 flag (i.e. aggressive optimization).

5 EXPERIMENTS

This section presents the experimental results of KVDA-UCT. We considered two settings. Firstly,
we measured the number of additional abstractions KVDA-UCT finds in comparison to OGA-UCT.
Then, we evaluated KVDA-UCT on deterministic settings in which the losslessness of the abstrac-
tion is guaranteed. Lastly, we present the results for stochastic environments.

Abstractions that KVDA-UCT finds but OGA-UCT does not: Firstly, we empirically measured
the number of non-trivial abstractions (i.e. those that are not of size one) that KVDA-UCT, OGA-
UCT, and (∞, 0)-UCT find. For all deterministic environments, Tab. 1 denotes the average ratio
of non-trivial abstract state-action pairs (synonymously abstract Q nodes) to the number of total
abstract Q nodes in their respective search trees. In most environments, KVDA-UCT detects more
abstractions than OGA-UCT, including environments where the abstraction rate more than doubles,
such as SysAdmin or Wildfire. Furthermore, KVDA-UCT detects roughly as many abstractions as
(∞, 0)-OGA in most environments, which fully ignores rewards when building abstractions. Of
course, finding more abstractions is not a difficult task in of itself, since could just group every
node by default. However, both ASAP and the KVDA abstractions are lossless in the deterministic
setting, i.e. they group only state-action pairs with identical or known-difference Q∗ values. We
empirically verified this for those environments which could be solved with value iteration, which
are Saving, Sailing Wind, and Skills Teaching. Hence, KVDA is able to detect strictly more true
equivalences than ASAP.

Table 1: The average ratio of abstract Q nodes in KVDA, OGA-UCT’s and (∞, 0)-OGA’s respective
search trees after 1000 iterations with λ = 2 that encompass more than one original node divided
by the total number of abstract Q nodes. The states in which these search trees are built are sampled
from an OGA-UCT agent with λ = 2 and 500 iterations. This measurement excludes all size-one
abstract Q nodes whose original Q node has not yet reached the recency counter (see Section 2)
required for the first abstraction update. Hence, a ratio of 1 means that no abstractions were found
while a ratio of 0 means that every state-action pair has been abstracted with another. Note that
KVDA-UCT (our method) finds more abstractions than OGA-UCT in nearly every environment and
in general as many as (∞, 0)-OGA. While there are some environments where there is no gain, such
as Constrictor, there are other environments such as Wildfire or SysAdmin, where the abstraction
rate more than doubles.

Domain
KVDA-UCT

(ours)
OGA-
UCT

(∞, 0)-
OGA

d-Academic Advising 0.69 0.73 0.68
d-Connect4 0.80 0.91 0.80
d-Constrictor 0.98 0.97 0.97
d-Cooperative Recon 0.44 0.56 0.48
d-Earth Observation 0.65 0.99 0.68
d-Elevators 0.28 0.32 0.29
d-Game of Life 0.54 0.56 0.55
d-Manufacturer 0.64 0.95 0.79
d-Othello 0.96 0.99 0.96
d-Pusher 0.96 0.99 0.96
d-Push Your Luck 0.23 0.48 0.16
d-Red Finned Blue Eye 0.72 0.84 0.70
d-Sailing Wind 0.70 0.92 0.74
d-Saving 0.96 0.96 0.96
d-Skills Teaching 0.59 0.65 0.59
d-SysAdmin 0.15 0.48 0.20
d-Tamarisk 0.35 0.56 0.39
d-Traffic 0.53 0.54 0.53
d-Wildfire 0.19 0.37 0.30
d-Wildlife Preserve 0.06 0.08 0.08

Parameter-optimized KVDA-UCT: Next, we compared KVDA-UCT, (0, 0)-OGA (i.e. standard
OGA-UCT), and (εa, 0)-OGA with εa > 0 in terms of their parameter-optimized performances on
deterministic environments. For all methods, we optimized over C ∈ {0.5, 1, 2, 4, 8, 16} and some
domain-specific values for εa that are listed in the supplementary materials in Tab. 4. Each parameter

8

Published as a conference paper at ICLR 2026

Table 2: Average returns (↑) using 100 (right) and 1000 (left) MCTS iterations for KVDA-UCT,
(∞, 0)-OGA, (0, 0)-OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when
varying εa > 0. In the supplementary materials in Tab.4 the domain-specific εa-values are listed.
All performances are the maximal performances obtained by varying the exploration constants
C ∈ {0.5, 1, 2, 4, 8, 16}. Note that KVDA-UCT (our method) outperforms OGA-UCT in most en-
vironments. Furthermore, KVDA-UCT is either equal or performs better than parameter-optimized
(εa, 0)-OGA even though KVDA introduces no extra parameter.

1000 Iterations 100 Iterations

Domain
(0, 0)-
OGA

(∞, 0)-
OGA

(εa, 0)-
OGA

KVDA
(ours)

(0, 0)-
OGA

(∞, 0)-
OGA

(εa, 0)-
OGA

KVDA
(ours)

d-Connect4 42.7± 0.6 46.8± 1.0 47.5± 0.9 47.9± 0.6 28.3± 0.3 28.8± 0.5 28.8± 0.5 28.4± 0.4
d-Constrictor 96.1± 0.3 95.0± 0.2 96.1± 0.3 96.0± 0.3 85.0± 0.6 84.1± 0.4 84.9± 0.9 85.1± 0.6
d-Othello 181.2± 1.2 160.2± 0.8 180.7± 1.5 179.6± 1.2 154.7± 1.3 146.8± 0.8 155.1± 1.8 154.8± 1.3
d-Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −39.9± 0.2 −40.0± 0.2 −40.0± 0.2 −40.1± 0.2 −56.6± 0.7 −56.2± 0.6 −56.2± 0.6 −56.1± 0.6
d-Cooperative Recon 16.1± 0.1 14.8± 0.1 16.2± 0.1 16.0± 0.1 10.8± 0.3 10.9± 0.3 11.0± 0.3 11.0± 0.3
d-Earth Observation −7.18± 0.11 −30.0± 0.4 −30.0± 0.4 −7.02± 0.10 −10.2± 0.2 −28.4± 0.2 −28.4± 0.2 −7.45± 0.12
d-Elevators −14.9± 0.4 −14.2± 0.3 −14.0± 0.3 −13.9± 0.4 −18.0± 0.3 −18.1± 0.3 −17.9± 0.3 −18.0± 0.3
d-Game of Life 666.7± 2.5 664.6± 2.5 665.8± 2.5 664.8± 2.6 641.8± 2.1 642.1± 2.2 642.1± 2.2 641.9± 2.1
d-Manufacturer −1255.6± 15.0 −1658.4± 22.1 −1246.0± 16.2 −1158.2± 19.4 −1423.1± 15.9 −1680.3± 22.4 −1392.6± 20.2 −1233.5± 23.2
d-Push Your Luck 125.1± 1.9 66.7± 1.1 132.4± 2.5 137.9± 2.2 103.5± 1.5 66.3± 0.9 107.0± 1.6 107.6± 1.5
d-RedFinnedBlueEye 8191.3± 44.7 7930.0± 44.7 7950.6± 33.5 8229.8± 46.5 7683.4± 33.8 7464.4± 34.7 7495.1± 35.1 7698.2± 34.0
d-Sailing Wind −40.0± 0.6 −39.1± 0.6 −38.9± 0.6 −37.7± 0.6 −64.7± 0.8 −64.9± 0.9 −64.9± 0.9 −63.6± 0.8
d-Saving 66.0± 0.2 63.0± 0.3 65.4± 0.2 65.4± 0.2 57.1± 0.2 55.2± 0.3 56.8± 0.2 57.2± 0.2
d-Skills Teaching 207.9± 4.6 211.3± 5.1 211.3± 5.1 216.2± 4.5 159.0± 3.9 158.3± 3.9 160.7± 3.8 162.3± 3.8
d-SysAdmin 477.1± 1.5 448.4± 1.3 450.7± 1.1 477.2± 1.5 475.5± 1.7 449.5± 1.2 450.1± 1.2 479.1± 1.4
d-Tamarisk −214.5± 3.9 −208.2± 2.3 −206.4± 2.7 −185.6± 2.0 −315.8± 6.5 −285.4± 4.8 −284.9± 4.7 −263.0± 4.8
d-Traffic −1.54± 0.07 −1.61± 0.07 −1.61± 0.07 −1.58± 0.07 −9.21± 0.22 −9.21± 0.22 −9.21± 0.22 −9.21± 0.22
d-Wildfire −195.6± 55.9 −503.5± 36.1 −415.0± 36.1 −179.9± 49.2 −194.1± 36.1 −498.7± 36.1 −408.9± 36.1 −173.2± 36.1
d-Wildlife Preserve 1388.0± 0.8 1387.9± 0.7 1387.9± 0.7 1388.5± 0.7 1388.9± 0.9 1388.9± 0.9 1388.9± 0.9 1388.9± 0.9

combination was evaluated on all here-considered deterministic environments with a budget of 100,
200, 500, and 1000 MCTS iterations. Tab. 2 list the performance for 100 and 1000 iterations, the ta-
bles for 200 and 500 iterations are found in the supplementary materials in Tab. 7 and 6. The results
clearly show that KVDA either outperforms all other competitor methods or is tightly within the
confidence bounds. There are a number of environments such as Manufacturer, Tamarisk, or Push
Your Luck where KVDA-UCT simultaneously outperforms all competitor methods at once. Figure
2 plots the performances in dependence of the iteration budget for these tasks. The performance
graphs for all other environments are found in the supplementary materials in Section A.7.

(a) d-Manufacturer (b) d-Tamarisk (c) d-Push Your Luck

Figure 2: The performance plots in dependence of the iteration budget of parameter-optimized
KVDA-UCT (our method), OGA-UCT (Anand et al., 2016), and (εa, 0)-OGA on selected environ-
ments. KVDA-UCT clearly outperforms its competitors. The plots for the remaining environments
can be found in the supplementary materials in Section A.7.

Single-parameter KVDA-UCT: Next, the generalization capabilities of KVDA-UCT in com-
parison to OGA-UCT and (εa, 0)-OGA on deterministic environments were tested. Like last
section, we ran all algorithms using 100, 200, 500, and 1000 MCTS iterations whilst varying
C ∈ {0.5, 1, 2, 4, 8, 16} and εa with domain-specific values (see supplementary materials Tab. 4).
Instead of considering the best-performances, we calculated the normalized pairings score for each
parameter combination (except for (εa, 0)-OGA where we considered the maximum performance
across all εa > 0 values a single parameter combination), constructed over the tasks which are the
pairs of all environments and iteration budgets. Bar chart 3 shows the 6 agents with the highest score
as well as the agent with the lowest score. Both the top spots are occupied by our KVDA-method,

9

Published as a conference paper at ICLR 2026

followed by OGA-UCT and (εa, 0)-OGA. The best performing algorithm overall is KVDA-UCT
with C = 4.

Figure 3: The normalized pairings score (↑) for the top 6 and the worst agent on deterministic
environments. The agents considered were KVDA-UCT (our method) which performs best overall,
OGA-UCT (Anand et al., 2016), and (εa, 0)-OGA (Schmöcker et al., 2025d), εa > 0 with the
exploration constants C ∈ {0.5, 1, 2, 4, 8, 16} and budgets of {100, 200, 500, 1000} iterations. The
top two spots are occupied by our method KVDA-UCT, with the best overall performing algorithm
being KVDA-UCT with C = 2.

εt-KVDA on stochastic environments: Lastly, the performance of εt-KVDA on stochastic envi-
ronments were tested by running both εt-KVDA and (εa, εt)-OGA on the stochastic versions of the
here-considered environments. We considered the iteration budgets of 100 and 1000 iterations and
varied C ∈ {0.5, 1, 2, 4, 8, 16}, εt ∈ {0, 0.4, 0.8, 1.2, 1.6} and the same domain-specific εa that were
used in the previous sections whose values are listed in the supplementary materials in Tab. 4. For
each environment, Tab. 5 of the supplementary materials lists the parameter-optimized performances
of both algorithms. In contrast to the deterministic setting, KVDA does not outperform OGA. For
most environments both perform equally well with some exceptions such as Manufacturer were εt-
KVDA clearly performs best and Tamarisk were (εa, εt)-OGA performs best. We believe mediocre
performance of εt-KVDA stems from the fact that since εt-KVDA essentially ignores immediate
rewards when it builds abstractions, the number of faulty abstractions that occur in this approximate
setting is increased. In the deterministic setting, no faulty abstractions are built.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

This paper introduced KVDA-UCT, an extension to OGA-UCT, that additionally groups states and
state-action pairs that do not have the same Q∗ or V ∗ value as long as the difference is known.
We evaluated and compared KVDA-UCT to OGA-UCT and (εa, 0)-OGA on a deterministic setting
where KVDA-UCT outperforms all its competitors both in terms of generalization as well as the
parameter-optimized performance. This does not hold true for the stochastic setting for which we
generalized KVDA-UCT to εt-KVDA which is only clearly better than (εa, εt)-OGA in few envi-
ronments.

A first avenue for future work will be to further investigate the reasons for the mediocre performance
of the experiments in this paper of the stochastic setting and develop an extension of εt-KVDA suited
for this setting. Another limitation of KVDA abstractions in its current form is its limitation to MDPs
(i.e. single-player games). Even though MCTS is in principle applicable to multi-player games,
KVDA is not because in any state, there is in general, no unique V ∗ value from which differences
can be built, as there are potentially many equilibria with different payoff vectors. Future work will
be to extend KVDA to this setting.

10

Published as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

In our experiment setup, we have a subsection called Reproducibility in which we provide a down-
load link to the full codebase used for this project as well as compilation details. The codebase
contains an elaborate README detailing the steps to reproduce the experiments.

REFERENCES

Ankit Anand, Aditya Grover, Mausam, and Parag Singla. ASAP-UCT: Abstraction of State-Action
Pairs in UCT. In Qiang Yang and Michael J. Wooldridge (eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pp. 1509–1515. AAAI Press, 2015. URL http://ijcai.org/
Abstract/15/216.

Ankit Anand, Ritesh Noothigattu, Mausam, and Parag Singla. OGA-UCT: on-the-go abstractions
in UCT. In Proceedings of the Twenty-Sixth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’16, pp. 29–37. AAAI Press, 2016. ISBN
1577357574.

Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon
Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput. Intell. AI Games, 4
(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810. URL https://doi.org/10.1109/
TCIAIG.2012.2186810.

Marek Grzes, Jesse Hoey, and Scott Sanner. International Probabilistic Planning Competition (IPPC)
2014. In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), 2014.

Jesse Hostetler, Alan Fern, and Thomas G. Dietterich. Progressive Abstraction Refinement for
Sparse Sampling. In Marina Meila and Tom Heskes (eds.), Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, UAI 2015, July 12-16, 2015, Amsterdam,
The Netherlands, pp. 365–374. AUAI Press, 2015. URL http://auai.org/uai2015/
proceedings/papers/81.pdf.

Nan Jiang, Satinder Singh, and Richard L. Lewis. Improving UCT planning via approximate ho-
momorphisms. In Ana L. C. Bazzan, Michael N. Huhns, Alessio Lomuscio, and Paul Scerri
(eds.), International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’14,
Paris, France, May 5-9, 2014, pp. 1289–1296. IFAAMAS/ACM, 2014. URL http://dl.
acm.org/citation.cfm?id=2617453.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, 17th Euro-
pean Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceed-
ings, volume 4212 of Lecture Notes in Computer Science, pp. 282–293. Springer, 2006. doi:
10.1007/11871842\ 29. URL https://doi.org/10.1007/11871842_29.

B. Ravindran and A. G. Barto. Approximate Homomorphisms: A Framework for Non-Exact Min-
imization in Markov Decision Processes. In Proc. Int. Conf. Knowl.-Based Comput. Syst., pp.
1–10, 2004.

S. Saisubramanian, S. Zilberstein, and P. Shenoy. Optimizing Electric Vehicle Charging Through
Determinization. In ICAPS Workshop on Scheduling and Planning Applications, 2017.

Robin Schmöcker. Grouping nodes with known value differences: A lossless UCT-based abstraction
algorithm, 2025. Repository available at: https://github.com/codebro634/KVDA_
UCT.git.

Robin Schmöcker and Alexander Dockhorn. A survey of non-learning-based abstractions for se-
quential decision-making. IEEE Access, 13:100808–100830, 2025. doi: 10.1109/ACCESS.2025.
3572830.

11

http://ijcai.org/Abstract/15/216
http://ijcai.org/Abstract/15/216
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
http://auai.org/uai2015/proceedings/papers/81.pdf
http://auai.org/uai2015/proceedings/papers/81.pdf
http://dl.acm.org/citation.cfm?id=2617453
http://dl.acm.org/citation.cfm?id=2617453
https://doi.org/10.1007/11871842_29
https://github.com/codebro634/KVDA_UCT.git
https://github.com/codebro634/KVDA_UCT.git

Published as a conference paper at ICLR 2026

Robin Schmöcker, Alexander Dockhorn, and Bodo Rosenhahn. Aupo - abstracted until proven
otherwise: A reward distribution based abstraction algorithm, 2025a. URL https://arxiv.
org/abs/2510.23214.

Robin Schmöcker, Alexander Dockhorn, and Bodo Rosenhahn. Accelerating probabilistic planning
research: High-speed implementations of stochastic markov decision processes and their catalo-
gization. IEEE Access, 13:193430–193461, 2025b. doi: 10.1109/ACCESS.2025.3631153.

Robin Schmöcker, Alexander Dockhorn, and Bodo Rosenhahn. Investigating intra-abstraction poli-
cies for non-exact abstraction algorithms, 2025c. URL https://arxiv.org/abs/2510.
24297.

Robin Schmöcker, Lennart Kampmann, and Alexander Dockhorn. Time-critical and confidence-
based abstraction dropping methods. In 2025 IEEE Conference on Games (CoG), 2025d. doi:
10.1109/CoG64752.2025.11114261.

Robin Schmöcker, Christoph Schnell, and Alexander Dockhorn. Investigating scale independent uct
exploration factor strategies, 2025e. URL https://arxiv.org/abs/2510.21275.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen
Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. CoRR, abs/1712.01815, 2017. URL http://arxiv.org/
abs/1712.01815.

Samuel Sokota, Caleb Ho, Zaheen Farraz Ahmad, and J. Zico Kolter. Monte Carlo Tree
Search With Iteratively Refining State Abstractions. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 18698–
18709, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
9b0ead00a217ea2c12e06a72eec4923f-Abstract.html.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2nd edition, 2018.

Linjie Xu, Alexander Dockhorn, and Diego Perez-Liebana. Elastic Monte Carlo Tree Search. IEEE
Transactions on Games, 15(4):527–537, 2023. doi: 10.1109/TG.2023.3282351.

Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A Baseline for Probabilistic Plan-
ning. In Mark S. Boddy, Maria Fox, and Sylvie Thiébaux (eds.), Proceedings of the Seven-
teenth International Conference on Automated Planning and Scheduling, ICAPS 2007, Prov-
idence, Rhode Island, USA, September 22-26, 2007, pp. 352. AAAI, 2007. URL http:
//www.aaai.org/Library/ICAPS/2007/icaps07-045.php.

Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Probabilistic Planning
via Determinization in Hindsight. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July
13-17, 2008, pp. 1010–1016. AAAI Press, 2008. URL http://www.aaai.org/Library/
AAAI/2008/aaai08-160.php.

12

https://arxiv.org/abs/2510.23214
https://arxiv.org/abs/2510.23214
https://arxiv.org/abs/2510.24297
https://arxiv.org/abs/2510.24297
https://arxiv.org/abs/2510.21275
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9b0ead00a217ea2c12e06a72eec4923f-Abstract.html
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php
http://www.aaai.org/Library/ICAPS/2007/icaps07-045.php
http://www.aaai.org/Library/AAAI/2008/aaai08-160.php
http://www.aaai.org/Library/AAAI/2008/aaai08-160.php

Published as a conference paper at ICLR 2026

A SUPPLEMENTARY MATERIALS

A.1 KVDA PSEUDOCODE

Algorithm 1: εt-KVDA
Parameters: oga args
Input: state

1 Globals: max id, abstractionsQ, abstractionsStates, RecencyCount, da(·, ·), ds(·, ·)
2 tree = init tree(state)
3 for i = 1 to oga args.iterations do
4 // For UCB the values abstractionsQ[Q].value + da(Q, abstractionsQ[Q].representative) are used

leaf , path to leaf , newQnodes = treePolicy(tree)
5 foreach newQnode ∈ newQnodes do
6 abstractionsQ[newQnode] = new singleton Q abstraction()
7 abstractionsQ[newQnode].representative = newQnode
8 newQnode.id = max id++

9 if leaf /∈ tree then
10 abstractionsStates[leaf] = new singleton state abstraction()

11 abstractionsStates[leaf].representative = leaf

12 backup (path to leaf ,rollout(leaf))
13 foreach (Q, s) ∈ path to leaf do
14 abstractionsQ[Q].value + = da(Q, abstractionsQ[Q].representative)

15
16 foreach (Q, s) ∈ path to leaf do
17 update Q abstraction (Q)

18 return argmax
a

Q(state, a)

19 function update Q abstraction (Q)
20 if RecencyCount[Q] + + < oga args.K then
21 return

22 RecencyCount[Q] = 0
23 new abs = compute Q abstraction(Q)

24 old dist = da(Q, abstractionsQ[Q].representative)

25 update da(Q, new abs.representative) using Equation 5

26 if abstractionsQ[Q] ̸= new abs or da(new abs.representative, Q) ̸= old dist then
27 abstractionsQ[Q].visits −= Q.visits; new abs.visits += Q.visits

28 abstractionsQ[Q].value −= Q.value +Q.visits · ds(Q, abstractionsQ[Q].representative)

29 new abs.value += Q.value +Q.visits · ds(Q, new abs.representative)

30 if Q == abstractionsQ[Q].representative and abstractionsQ[Q].size > 1 then
31 Qnew = choose new representative randomly(abstractionsQ[Q], excluding=Q)

32 recalculate affected da values

33 abstractionsQ[Q].value += abstractionsQ[Q].visits · da(Q, Qnew)

34 abstractionsQ[Q] = new abs
35 update state abstraction (s) // Q = (s, a)
36

13

Published as a conference paper at ICLR 2026

Algorithm 1: εt-KVDA (continued)
48 function update state abstraction(state)
49 new abs = compute state abstraction(state) // abstracts two states iff

get distance(s1, s2) ̸= ∞

50 old dist = ds(state, abstractionsStates[state].representative)

51 ds(state, new abs.representative) = get distance(state, new abs.representative)

52 if new abs ̸= abstractionsStates[state] or ds(state, new abs.representative) ̸= old dist then
53 if state == abstractionsStates[state].representative and abstractionsStates[state].size > 1 then
54 choose new representative randomly(abstractionsStates[state], excluding state)

55 recalculate affected ds values

56 abstractionsStates[state] = new abs
57 update Q abstraction(state.parents)

58 function get distance(s1, s2)
59 if s1.abstractActions ̸= s2.abstractActions then
60 return ∞
61 foreach absQ ∈ s1.abstractActions do
62 if

∣∣{ da(Q, absQ.representative) | Q ∈ absQ ∩ s1.actions }
∣∣ > 1 or∣∣{ da(Q, absQ.representative) | Q ∈ absQ ∩ s2.actions }
∣∣ > 1 then

63 return ∞

64 distances = ∅
65 foreach absQ ∈ s1.abstractActions do
66 distances.insert

(
ds(p1, p2)

)
// p1, p2 ∈ absQ, p1 ∈ s1.actions, p2 ∈ s2.actions

67 if distances.size > 1 then return ∞ else return d ∈ distances = {d}
68

14

Published as a conference paper at ICLR 2026

A.2 PROOF THAT d∗a = da AND d∗s = ds

In this section, it will be shown that the KVDA difference functions da and ds at any step (including
the step of convergence) coincide with d∗a and d∗s for state or state-action pairs within the same
abstract state. This will be proven inductively. First, note that this statement is true for the base
case as all terminal states have a value of V ∗ = 0; hence, their differences are also 0. For the
following induction steps, assume that da is bootstrapped by d′s and ds is bootstrapped by d′a. Next,
let (p1, p2) ∈ H. By definition, it holds that

d∗(p1, p2) = R(p2)−R(p1) +
∑
s∈S

(P(s| p2)− P(s| p1))V ∗(s)︸ ︷︷ ︸
L:=

. (7)

By rewriting V ∗(s) in terms of the difference to its abstract representative, one obtains

L =
∑
x∈X

∑
s′∈x

(P(s′| p2)− P(s′| p1)) (V ∗(sx)− d∗s (s
′, sx))︸ ︷︷ ︸

=d′
s by induction

=
∑
x∈X

∑
s′∈x

(P(s′| p2)− P(s′| p1))V ∗(sx)

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d∗s (s′, sx)

=
∑
x∈X

V ∗(sx)
∑
s′∈x

(P(s′| p2)− P(s′| p1))︸ ︷︷ ︸
=0

+
∑
x∈X

∑
s′∈x

(P(s′| p1)− P(s′| p2)) · d′s(s′, sx)

= da(p1, p2) +R(p1)−R(p2).

(8)

Hence d∗(p1, p2) = da(p1, p2). Note that this proof holds for any choice of the abstract
nodes’ representatives. Lastly, let (s1, s2) ∈ E and ds(s1, s2) = d. First note that if
a ∈ arg max

a′∈A(s1)
Q∗(s1, a

′) and ((s1, a), (s2, â)) ∈ H′ with d∗a ((s1, a), (s2, â)) = d for some

â ∈ A(s2) then â ∈ arg max
a′∈A(s2)

Q∗(s2, a
′) because for all b ∈ A(s2) it holds that

Q∗(s2, â) = Q∗(s1, a)− d∗a ((s2, â), (s1, a))

≥ Q∗(s1, b̂)− d∗a ((s2, â), (s1, a))

=Q∗(s2, b)− d∗a ((s2, b̂), (s1, b))− d∗a ((s2, â), (s1, a)).

=Q∗(s2, b)− (−d) + d = Q∗(s2, b),

(9)

where ((s1, b̂), (s2, b)) ∈ H′ with d∗a ((s1, b̂), (s2, b)) = d. And since V ∗(s) = max
a∈A(s)

Q∗(s, a) it

directly follows that d = ds(s1, s2) = d∗s (s1, s2) .

A.3 RUNTIME MEASUREMENTS

Tab. 3 lists the average decision-making times for each environment of KVDA-UCT compared to
OGA-UCT for 100 and 2000 iterations on states sampled from a distribution induced by random
walks. The numbers show a median runtime overhead of < 1% for 100 iterations and ≈ 1% for
2000 iterations.

15

Published as a conference paper at ICLR 2026

Table 3: Average decision-making times in milliseconds of KVDA-UCT compared to OGA-UCT
This data was obtained using an Intel(R) Core(TM) i5-9600K CPU @ 3.70GHz.

Domain KVDA-100 OGA-100 KVDA-2000 OGA-2000
Academic Advising 3.85 3.82 133.82 131.74
Cooperative Recon 5.26 5.23 221.98 220.19
Earth Observation 7.54 7.54 197.38 199.13
Elevators 6.85 6.79 231.93 227.69
Game of Life 4.99 4.96 139.38 134.06
Manufacturer 10.26 11.01 281.03 294.91
Red Finned Blue Eye 6.69 6.66 152.46 151.56
Sailing Wind 4.11 4.09 139.39 140.82
Saving 3.75 3.71 124.22 111.13
Skills Teaching 4.97 4.94 219.90 216.68
SysAdmin 6.27 6.20 150.19 152.72
Tamarisk 4.65 4.64 167.23 148.03
Traffic 5.44 5.42 161.33 159.35
Push Your Luck 5.84 5.78 170.25 175.19
Wildfire 7.46 7.43 368.66 476.95
Wildlife Preserve 7.06 7.05 2020.35 1685.53
Othello 18.63 18.67 434.88 428.34
Connect4 4.40 4.33 133.35 123.58
Constrictor 23.23 23.10 616.38 611.72

A.4 DOMAIN-SPECIFIC εa VALUES

One problem with (εa, εt)-OGA is that while εt is neatly bounded by 0 and 2, the εa value has to
be chosen on a per-environment basis since for example the value εa = 0.5 would be equivalent to
εa = 0 for any environment with rewards that are all greater than 0.5. Tab. 4 lists the hand picked
values for each environment that we chose for the experiment section. The values were chosen to be
at the boundary of rewards that actually occur in these environments.

Table 4: A list of the environment-specific εa values that were evaluated in the experiment section for
(εa, 0)-OGA. All domains that are not explicitly listed here, used the default values εa ∈ {1, 2,∞}.

Environment εa values
Academic Advising ∞
Wildlife Preserve 5, 10, 20, ∞
Red Finned Blue Eye 50, 100, 200, ∞
Wildfire 5, 10, 100, ∞
Push Your Luck 2, 5, 10, ∞
Skill Teaching 2, 3, ∞
Tamarisk 0.5, 1.0, ∞
Cooperative Recon 0.5, 1.0, ∞
Manufacturer 10, 20, ∞
Connect 4 1, 5, 10, ∞
Othello 5, 10, 20, ∞
Constrictor 10, 20, 30, ∞
Default 1, 2, ∞

16

Published as a conference paper at ICLR 2026

A.5 PERFORMANCES OF εt-KVDA

Table 5: The parameter-optimized performances of εt-KVDA (our method) and (εa, εt)-OGA on
the stochastic versions of the here-presented environments using 1000 MCTS iterations (left) and
100 MCTS iterations (right). The environments Push Your Luck and Wildlife Preserve from the
deterministic experiments were excluded as computing their transition probabilities which is a re-
quirement for both εt-KVDA and (εa, εt)-OGA is infeasible. Furthermore, Red Finned Blue Eye,
Wildfire and Elevators were also excluded as the performances’ variances were so high in these set-
tings such that obtaining low confidence bounds was infeasible. Contrary to the stochastic setting,
εt-KVDA does not consistently perform better than OGA. For example, while εt-KVDA can gain a
clear advantage in Manufacturer and Sailing Wind, (εa, εt)-OGA is significantly better in Tamarisk.

Average returns (↑) for 1000 MCTS itera-
tions

Domain (εa, εt)-OGA εt-KVDA (ours)

s-Academic Advising −63.9± 0.8 −63.9± 0.8
s-Cooperative Recon 14.3± 0.2 14.1± 0.2
s-Earth Observation −7.97± 0.22 −7.95± 0.23
s-Game of Life 572.9± 2.3 573.4± 2.2
s-Manufacturer −1141.0± 11.1 −863.3± 10.7
s-Sailing Wind −62.1± 1.3 −61.8± 1.3
s-Saving 50.7± 0.1 50.6± 0.1
s-Skills Teaching 71.1± 7.8 74.9± 6.9
s-SysAdmin 403.3± 2.0 403.1± 2.1
s-Tamarisk −532.9± 8.2 −563.6± 8.3
s-Traffic −13.4± 0.3 −13.6± 0.3

Average returns (↑) for 100 MCTS iterations

Domain (εa, εt)-OGA εt-KVDA (ours)

s-Academic Advising −88.0± 1.2 −87.8± 1.2
s-Cooperative Recon 7.08± 0.37 7.07± 0.35
s-Earth Observation −13.7± 0.3 −13.8± 0.3
s-Game of Life 498.7± 3.2 497.6± 3.0
s-Manufacturer −1457.6± 21.5 −1159.6± 24.8
s-Sailing Wind −78.3± 1.1 −73.2± 1.2
s-Saving 44.6± 0.2 44.5± 0.2
s-Skills Teaching −8.94± 8.37 −9.60± 8.23
s-SysAdmin 332.7± 2.8 331.1± 2.7
s-Tamarisk −767.9± 9.8 −836.1± 7.8
s-Traffic −22.0± 0.4 −22.0± 0.4

A.6 PERFORMANCES OF PARAMETER-OPTIMIZED KVDA-UCT FOR 200 AND 500
ITERATIONS

Table 6: Average returns (↑) using 500 MCTS iterations for KVDA-UCT, (∞, 0)-OGA, (0, 0)-
OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when varying εa > 0. In
the supplementary materials in Tab.4 the domain-specific εa-values are listed. All performances are
the maximal performances obtained by varying the exploration constants C ∈ {0.5, 1, 2, 4, 8, 16}.
Note that KVDA-UCT (our method) outperforms OGA-UCT in most environments. Furthermore,
KVDA-UCT is either equal or performs better than parameter-optimized (εa, 0)-OGA even though
KVDA-UCT introduces no extra parameter.

Domain (0, 0)-OGA (∞, 0)-OGA (εa, 0)-OGA KVDA-UCT (ours)

Connect4 36.7± 0.5 41.3± 1.0 41.3± 1.0 39.9± 0.6
Constrictor 94.2± 0.2 92.8± 0.2 94.2± 0.3 94.0± 0.2
Othello 175.3± 1.1 156.8± 0.8 175.2± 1.6 173.4± 1.1
Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −42.1± 0.3 −42.1± 0.3 −42.1± 0.3 −42.3± 0.3
d-Cooperative Recon 15.3± 0.1 14.4± 0.1 15.4± 0.2 15.3± 0.2
d-Earth Observation −7.28± 0.12 −29.6± 0.4 −29.6± 0.4 −6.98± 0.10
d-Elevators −15.6± 0.3 −14.6± 0.3 −14.6± 0.3 −14.9± 0.3
d-Game of Life 659.9± 2.6 659.9± 2.6 660.7± 2.5 661.6± 2.5
d-Manufacturer −1270.2± 11.7 −1646.1± 20.8 −1259.1± 16.5 −1178.3± 22.3
d-Push Your Luck 124.2± 1.9 67.4± 1.0 131.4± 2.0 136.5± 1.9
d-RedFinnedBlueEye 7978.4± 32.9 7738.1± 34.2 7777.4± 34.3 8041.7± 33.1
d-Sailing Wind −43.4± 0.7 −42.8± 0.7 −42.8± 0.7 −41.6± 0.7
d-Saving 64.5± 0.2 61.7± 0.2 64.2± 0.2 64.4± 0.2
d-Skills Teaching 202.8± 3.7 201.0± 3.9 202.6± 3.9 206.5± 3.7
d-SysAdmin 477.7± 1.5 448.8± 1.2 450.8± 1.2 478.1± 1.5
d-Tamarisk −228.9± 4.1 −217.9± 2.4 −217.9± 2.4 −197.2± 2.7
d-Traffic −2.60± 0.10 −2.53± 0.09 −2.53± 0.09 −2.53± 0.09
d-Wildfire −183.6± 36.1 −506.0± 36.2 −409.6± 36.1 −190.6± 36.3
d-Wildlife Preserve 1385.1± 0.8 1384.2± 0.8 1385.5± 0.8 1385.0± 0.8

17

Published as a conference paper at ICLR 2026

Table 7: Average returns using 200 (↑) MCTS iterations for KVDA-UCT, (∞, 0)-OGA, (0, 0)-
OGA (i.e. OGA-UCT), and the maximal performance of (εa, 0)-OGA when varying εa > 0. In
the supplementary materials in Tab.4 the domain-specific εa-values are listed. All performances are
the maximal performances obtained by varying the exploration constants C ∈ {0.5, 1, 2, 4, 8, 16}.
Note that KVDA-UCT (our method) outperforms OGA-UCT in most environments. Furthermore,
KVDA-UCT is either equal or performs better than parameter-optimized (εa, 0)-OGA even though
KVDA-UCT introduces no extra parameter.

Domain (0, 0)-OGA (∞, 0)-OGA (εa, 0)-OGA KVDA-UCT (ours)

Connect4 29.1± 0.4 29.9± 0.6 29.9± 0.6 29.5± 0.4
Constrictor 91.3± 0.3 90.2± 0.2 91.3± 0.4 91.2± 0.3
Othello 164.5± 1.2 152.1± 0.8 164.7± 1.7 164.5± 1.2
Pusher 104.5± 0.0 104.5± 0.0 104.5± 0.0 104.5± 0.0
d-Academic Advising −47.3± 0.4 −47.2± 0.4 −47.2± 0.4 −47.5± 0.4
d-Cooperative Recon 13.2± 0.3 12.7± 0.3 13.1± 0.3 13.1± 0.3
d-Earth Observation −7.82± 0.14 −29.3± 0.2 −29.3± 0.2 −7.11± 0.11
d-Elevators −16.2± 0.3 −16.1± 0.3 −16.1± 0.3 −16.0± 0.3
d-Game of Life 651.4± 2.5 652.3± 2.4 652.3± 2.4 651.1± 2.5
d-Manufacturer −1370.7± 15.3 −1641.4± 21.2 −1320.7± 18.6 −1180.8± 22.2
d-Push Your Luck 122.6± 1.9 67.1± 0.9 129.6± 1.9 125.9± 1.8
d-RedFinnedBlueEye 7713.6± 33.9 7511.8± 34.7 7513.4± 34.9 7716.9± 33.7
d-Sailing Wind −52.7± 0.8 −52.3± 0.8 −52.3± 0.8 −51.7± 0.8
d-Saving 60.9± 0.2 58.2± 0.2 60.5± 0.2 60.6± 0.2
d-Skills Teaching 183.9± 3.9 186.7± 3.8 186.7± 3.8 185.0± 3.8
d-SysAdmin 476.6± 1.6 450.2± 1.2 450.3± 1.2 478.9± 1.4
d-Tamarisk −265.1± 5.5 −242.9± 3.5 −242.9± 3.5 −221.7± 3.8
d-Traffic −5.34± 0.15 −5.34± 0.15 −5.34± 0.15 −5.34± 0.15
d-Wildfire −193.8± 36.1 −476.5± 36.1 −432.2± 36.2 −191.2± 36.1
d-Wildlife Preserve 1390.1± 0.9 1389.4± 0.9 1389.4± 0.9 1389.5± 1.0

18

Published as a conference paper at ICLR 2026

A.7 PERFORMANCE GRAPHS OF PARAMETER-OPTIMIZED KVDA-UCT

(a) Elevators (b) Earth Observation (c) Game of Life (d) Manufacturer

(e) Push Your Luck (f) Cooperative Recon
(g) Red Finned Blue
Eye (h) SysAdmin

(i) Skill Teaching (j) Sailing Wind (k) Tamarisk (l) Traffic

(m) Wildfire (n) Wildlife Preserve (o) Connect 4 (p) Constrictor

(q) Othello (r) Pusher (s) Saving
Legend

Figure 4: The performance plots in dependence of the iteration budget of parameter-optimized
KVDA-UCT (our method), OGA-UCT, and (εa, 0)-OGA, εa > 0 on all considered environments.
Our method KVDA-UCT is either always tightly within the confidence bounds of the top-competitor
method or outperforms all competitors simultaneously.

A.8 MONTE CARLO TREE SEARCH

This section specifies the MCTS that was used for the experiments of this paper.

1. Our MCTS version builds a directed acyclic graph instead of a tree, i.e. different state-
action pairs in the same layer can lead to the same node. This is a necessary condition
for ASAP and KVDA to detect any abstractions since they bootstrap of the search graph
converging.

19

Published as a conference paper at ICLR 2026

2. We use the Upper Confidence Bounds (UCB) tree policy which is defined as

UCB(a) =
Va

Na︸︷︷︸
Q term

+λ

√√√√√√ log

(∑
a′∈A(s)

Na′

)
Na︸ ︷︷ ︸

Exploration term

, (10)

where, s is the state at which the decision has to be made, Va is the sum of returns of the
action under consideration, and Na are its visits. The tree policy chooses the action that
maximizes the UCB value.

3. We use the greedy decision policy, which is choosing the root action, after the search statis-
tics have been gathered, with the maximum Q value.

A.9 PROBLEM DESCRIPTIONS

The descriptions for all the problem models considered here are described in detail by Schmöcker
et al. Schmöcker et al. (2025b). Most models are parametrized (e.g. choosing a concrete racetrack
for Racetrack), the concrete instance used for the experiments is found in the ExperimentConfigs
folder in our publicly available implementation (Schmöcker, 2025). Next, we describe the heuristic
functions used for the two-player games.

1. Connect 4: As the heuristic from the perspective of player one is given by

n2 + 5n3 + 25n4 (11)

where ni is the total number of i stones that are in one row/column/diagonal, divided by i,
but which are not part of a row/column/diagonal of size i+ 1.

2. Constrictor: The heuristics function used for player one is the number of grid cells that
player one could reach before its opponent. If player one wins, the value 100 is added to
the heuristic.

3. Othello: The heuristic function for any state for player one is given by a weighted sum of
all the occupied grid cells. The weight w of cell (x, y) is given by 10/(1 + d) where d is
the distance to the closest corner cell. The weight w is positive for any cells occupied by
stones of player one and negative for those occupied by player two. In the round player one
wins, 100 is added to the heuristics value and −100 if player two won.

4. Pusher: We used the heuristic for player one that is equal to the difference of alive units
of player one and player two in addition to the Manhatten distance between player one and
player two’s units’ center of mass. In the turn that player one wins, 100 is added to the
heuristic value.

20

	Introduction
	Foundations of automatic abstractions
	Method
	Which abstractions ASAP misses
	The Known-Value-Difference-Abstractions framework
	KVDA-UCT and t-KVDA

	Experiment setup
	Experiments
	Conclusion, Limitations and Future Work
	Reproducibility statement
	Supplementary Materials
	KVDA Pseudocode
	Proof that d*a = da and d*s = ds
	Runtime measurements
	Domain-specific a values
	Performances of t-KVDA
	Performances of parameter-optimized KVDA-UCT for 200 and 500 iterations
	Performance graphs of parameter-optimized KVDA-UCT
	Monte Carlo Tree Search
	Problem descriptions

