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ABSTRACT

Prompting techniques such as chain-of-thought have established themselves as a
popular vehicle for improving the outputs of large language models (LLMs). For
code generation, however, their exact mechanics and efficacy are under-explored.
We thus investigate the effects of a wide range of prompting strategies with a focus
on automatic re-prompting over multiple turns and computational requirements.
After systematically decomposing reasoning, instruction, and execution feedback
prompts, we conduct an extensive grid search on the competitive programming
benchmarks CodeContests and TACO for multiple LLM families and sizes (Llama
3.0 and 3.1, 8B, 70B, 405B, and GPT-4o). Our study reveals strategies that
consistently improve performance across all models with small and large sampling
budgets. We then show how finetuning with such an optimal configuration allows
models to internalize the induced reasoning process and obtain improvements in
performance and scalability for multi-turn code generation.

1 INTRODUCTION

The field of automatic code generation has made significant progress, particularly with the devel-
opment of specialized Large Language Models (LLMs) (Chen et al., 2021; Li et al., 2022; Rozière
et al., 2024; OpenAI, 2023; AI @ Meta, 2024). While these models have demonstrated proficiency
in generating simple functions across various programming languages, there is still considerable
room for improvement in their ability to tackle more complex algorithmic reasoning tasks, such as
those found in competitive programming benchmarks like CodeContests (Li et al., 2022). Current
state-of-the-art approaches either rely on model ensembling and massive single-turn sampling (Alpha-
Code Team, 2023) or employ complex structured prompt chains for planning, editing and debugging
(Ridnik et al., 2024; Islam et al., 2024). In contrast, multi-turn code generation strikes a balance
between single-turn approaches and prompt chains, where code is built upon previous outputs in a
dialog-like structure. This approach is motivated by applications such as LLM-based agents (Yao
et al., 2023b), where models are tasked with decision-making and interacting with environments. In
code generation, multi-turn approaches have primarily been explored on simple benchmarks or in
small sample regimes due to their association with self-repair techniques (Olausson et al., 2024; Chen
et al., 2024; Shinn et al., 2023; Zhong et al., 2024).

In this paper, we systematically deconstruct the components of previous research on prompting
techniques and propose a unified framework for multi-turn code generation. Our objective is to
establish a comprehensive and strong baseline, and to explore behavior and limitations across various
sample regimes. Our focus on competition-level coding benchmarks and sample budgets is motivated
as follows: (1) Popular methods such as chain of thought (Wei et al., 2022, CoT) yield improvements
on reasoning-heavy tasks. However, they are designed to elicit reasoning traces for maximizing
single-turn performance and are not inherently multi-turn. Competition-level benchmarks require
algorithmic reasoning and thus provide an ideal testbed to evaluate whether CoT techniques can be
extended beyond single-turn reasoning. (2) Recent studies suggest that the performance gains from
self-repair are often modest when considering their generation cost (Olausson et al., 2024) and that
repeated single-turn sampling serves as a strong baseline (Brown et al., 2024). As such, the trade-off
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Your code failed the following tests: - input
`5 2\nAA\nAB\nBB\nBA\nAZ`
Traceback:
…

Your code is wrong.

Execution Feedback

1. strings: The problem involves comparing and sorting 
strings 
2. sortings: The problem requires sorting a list of strings 
based on the custom ordering, which is the main 
computational task.
def custom_sort(s):

  ...

def main():

  n, m = map(int, input().strip().split())

  strings = [input().strip() for _ in range(n)]

  sorted_indices = [i + 1 for _, i in 

sorted(enumerate(strings), key=lambda x: 

custom_sort(x[1]))]

Feedback Response

def custom_sort(s):

 ...

def main():

 # Read the number of book titles (n) and the  

 # length of each title (m)

 n, m = map(int, input().strip().split())

 # Read each book title and store it

 strings = [input().strip() for _ in range(n)]

 # Sort the book titles based on the  

 # "asc-desc-endingly" criteria

 ...

n, m = map(int, input().split())

words = [input().strip() for _ in range(n)]

words.sort(key=lambda x: [(-ord(s[i-1]), ord(s[i])) if i % 2 else (ord(s[i-1]), 

-ord(s[i])) for i in range(1, m+1)])

...

Write comment before each line.

Inst. Response

Inst. Prompt

Write helper functions docstring and explain.

Problem

Andi and Budi were given an assignment to tidy up their 
bookshelf of n books. Each book is represented by the book 
title — a string s_i numbered from 1 to n, each with length 
m. Andi really wants to sort the book lexicographically 
ascending, while Budi wants to sort it lexicographically 
descending. Settling their fight, they decided to combine 
their idea and sort it asc-desc-endingly.
…
Example
Input
5 2\nAA\nAB\nBB\nBA\nAZ
Output
5 2 1 3 4
…

def custom_sort(s):

  # Custom sorting key for asc-desc-ending order.

This function returns a tuple where the first element is a 
tuple of characters at odd indices in ascending order and 
the second element is a tuple of characters at even 
indices in descending order.

Reason. Response

Reason. Prompt

Traceback
if fails

<Code>

Problem Statement

Code

    Feedback

Inst. Response
<Code>

     
Instruct.
Prompt

Problem
      +
Reason. 
Prompt if fails

Reason. Response

<Code>

<Code>

Figure 1: Our framework for evaluating LLM multi-turn code generation techniques. Top: In
the default multi-turn setting, given a programming problem, the model generates a code solution,
interacts with the runtime environment to gather execution feedback and retries in case of failure.
Bottom: On top of the default setting, we gather reasoning (Reason.) prompts, instruction (Inst.)
prompts, and execution feedback prompts. The problem statement is augmented with a reasoning
prompt. After generating an answer to the reasoning prompt, an instruction prompt determines how
program code should be generated. The execution feedback prompts vary in granularity, ranging from
a binary pass or fail indicator to detailed tracing information.

between single-turn and multi-turn approaches, and the optimal allocation of resources between them,
remains under-explored.

Our framework (Figure 1) enables mix-and-match combinations of single- and multi-turn code
generation and chain-of-thought (CoT) techniques1: prompts that induce reasoning, such as a
predicting problem attributes or writing natural language solutions first, and instructions that prompt
different programming styles such as including comments or helper functions. Finally, we integrate
execution feedback from intermediate solutions to allow for code repair. We conduct a comprehensive
experimental survey across different benchmarks, LLM families and sizes, as well as sample regimes.
Our analysis yields several key insights:

1. In the single-turn setting, combining reasoning prompts and instruction prompts achieves
the best performance, and is more beneficial on larger models or harder problems. We also
identify CoTs that degrade performance (Section 5.1).

2. The multi-turn setting alone brings modest gains and is sometimes worse than its single-turn
counterpart under equal sampling budgets. The combination with CoT provides a significant
performance boost on all models we study. Interestingly, detailed execution feedback
prompts do not always translate to improved performance (Section 5.2). We show that this
can be attributed to reduced diversity of generated programs which results in performance
drops for large sample budgets.

3. LLMs can be instilled with reasoning behavior by finetuning on multi-turn CoT data (Section
5.3). The resulting model surpasses our best prompting configurations even without explicitly
asking for CoTs during inference.

1We use the term "chain of thought" to refer to a broad family of prompting methods eliciting intermediate
steps before or during code generation.
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2 BACKGROUND

2.1 SINGLE-TURN VS. MULTI-TURN GENERATION: PROBLEM SETTING

We assume a coding problem D = {s, u, t}, where s is the problem statement in natural language
(e.g. see Figure 1), u is a set of public tests, and t is a set of private tests. A given code sample c is
considered correct if it passes all tests, or incorrect otherwise. Let π denote an LLM that is able to
produce a code sample c for D from a user prompt p which includes the problem statement s. In the
single-turn setting we thus obtain a code sample c ∼ π(· | p).

In multi-turn code generation, we can distinguish between a Natural-Language-to-Code (NL →
Code) task in the first turn and Code-to-Code (Code→ Code) generation in subsequent turns. For
a given problem, we generate a sequence of intermediary code samples c1, . . . , cT rather than just
one. After each turn i, the code sample ci is fed back into the model π together with an execution
feedback prompt to obtain the next sample ci+1. This process is repeated T times until we either pass
all public tests or until a maximum number of turns N is reached. More formally, we can obtain
every intermediary sample ci, including the final code solution cT , as follows:

ci ∼ π(· | p1, c1, p2, . . . , ci−1, pi).

In this setting, the first prompt p1 is the initial user prompt including the problem statement, and each
pi for i > 1 is an execution feedback prompt containing the runtime result with error information or
traceback optionally attached.

In the remainder of this study, the sequence (p1, c1, ..., pT , cT ) is denoted a trajectory, and the final
code sample cT is called the submission. Only the code sample cT is tested against the private tests t
for correctness (i.e. intermediary code samples ci will only be tested against public tests u). Note that
we sample not just one but several trajectories in parallel, starting with the same initial prompt p1.

2.2 EVALUATION METRICS
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Figure 2: Scaling number of turns
is not compute optimal. Pass@10
(Top) and pass 10@100 (Bottom)
on CodeContests test set when in-
creasing the number of turns with
Llama 3.1 70B.

We are interested in finding a correct solution to a given pro-
gramming problem with a fixed budget, i.e., with a fixed number
of code samples. For estimating the success rate of generated
code samples, pass@k is a widely used metric (Chen et al.,
2021). For a problem P and given a budget of k samples,
pass@k is the expectation that at least one sample is correct,
i.e., that it passes all tests.

Limitations of pass@k Pass@k ignores computational re-
quirements and thus puts single-turn evaluations at a disadvan-
tage. In multi-turn settings, solutions are obtained via several
generations (i.e., LLM calls) and hence at a higher cost, ren-
dering these two setups not directly comparable (Kapoor et al.,
2024).

In this study, we opt to measure performance via pass n@k (Li
et al., 2022) rather than pass@k for a fair comparison of tech-
niques. Pass n@k estimates the success rate of a model π on
a problem P using k generations but at most n submissions;
it is the expectation that out of n submissions one of them is
correct (Appendix A). Following Li et al. (2022), we select n
submissions based on public test performance. Note that for
n = k, both metrics are equivalent. For each benchmark, we
report the average pass n@k or pass@k over all problems.

Figure 2 compares pass@k and pass n@k when measuring
performance in a multi-turn setting. Pass@10 (Top) keeps
increasing if we increase the maximum number of turns. How-
ever, pass 10@100 (Bottom) shows that compute optimality is lost after 3 turns. Given a budget of
100 samples with 10 programs selected as submissions, the optimal allocation of compute is obtained
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Explain input output pairs

Rate the problem  difficulty

Write a solution in natural 
language.

…

Natural Language Code
Your code is wrong.

You failed tests. Expected: 5, got: 2

You failed the tests: for input 1 expected: 5 got: 2
You passed some tests: for input 0 expected: 8 and got: 8

…

Execution Feedback

CoA [1], Self-discover [2], 
Decomposed prompting [3]

Parsel [4], LLM assisted code 
cleaning [5]

Learn to Debug (LDB) [6], NeXT [7], Self-Debugging [8], 
CodeChain [9], Self-refine [10], REFINER [11], CodeRepair [12], 
General to Specific Prompting [13]

Reasoning Prompts
(NL → NL)

Instruction Prompts
(NL → Code)

Feedback Prompts

SINGLE-TURN MULTI-TURN

Reflect on the problem, and 
describe it in your own words

Generate a naive solution.

Propose a clever algorithm.

Describe the necessary 
intermediate variables.

…

Write the docstring and 
signatures of helper functions Here are intermediate values, analyze and fix your code.

Figure 3: Prompting space explored in our survey. We explore chain of thought prompts at
three different levels: before the first code generation (reasoning prompts), with code generation
(instruction prompts), and after the first code generation (execution feedback). The corresponding
works from the single-turn and multi-turn reasoning and code generation literature are: [1] Gao et al.
(2024), [2] Zhou et al. (2024), [3] Khot et al. (2023), [4] Zelikman et al. (2023), [5] Jain et al. (2024b),
[6] Zhong et al. (2024), [7] Ni et al. (2024), [8] Chen et al. (2024), [9] Le et al. (2024), [10] Madaan
et al. (2024), [11] Paul et al. (2024), [12] Tang et al. (2024), [13] Li et al. (2023a).

by generating trajectories with 3 turns at most. As such, throughout this paper, we favor pass n@k
and report pass@k only when comparing single-turn results exclusively.

3 PROMPTING AND FEEDBACK SPACE

We map the space of prompting techniques studied in our experimental survey in Figure 3. As CoT
can intervene at different times in code generation, we categorize reasoning prompts (NL→ NL) that
elicit understanding of the problem before code generation, and instruction prompts (NL→ Code)
that guide the code output to enhance readability and modularity. These prompts can be applied in
single-turn and multi-turn approaches.

In the multi-turn setting, we also introduce execution feedback prompts directly harvested from the
runtime environment, serving as additional information for the model to self-repair within turns. We
aim to determine the type of feedback which most effective on competitive programming benchmarks
in the large sample regime. We thus evaluate several types of feedback, ranging in granularity:

• Binary feedback: A simple pass/fail indicator.

• Failed tests feedback: Provides expected and actual values for failed unit tests, along with
tracebacks if any runtime errors are encountered.

• Failed & passed tests feedback: Expands on failed tests feedback by also including input/output
information for passing tests.

• LDB feedback (Zhong et al., 2024): Offers debugger information, printing intermediate variable
values and separating the code into blocks. The model must identify at which block the code failed
and attempt to fix it.

CoT and execution feedback are incorporated into the generation through specific prompts as illus-
trated in Figure 1 (Bottom). As we will show in Section 5.2, different types of execution feedback
induce different multi-turn behavior that can be classified as either exploratory or exploitative.
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4 EXPERIMENTAL SETTING

Models We perform experiments with the Llama Instruct series of LLMs, including Llama 3.0 and
3.1, 8B and 70B models (AI @ Meta, 2024). We use Llama 3.1 405B and GPT-4o in small sampling
regimes only due to compute constraints.

Single-turn Our grid search comprises 8 reasoning prompts and 6 instruction prompts, detailed in
Appendix G. The reasoning prompts elicit intermediate steps either in natural language or with partial
code. The instruction prompts either increase code readability ("describe"), break down the solution
into modular code ("modularity"), or bias the type of solution ("solution"). Although we perform
one more step of LLM inference for the reasoning prompts, we do not consider it an additional turn
as our study compares the number of code attempts per problem and the effect of adding different
types of extra tokens. We argue that this is equivalent to a single LLM call which groups all the
reasoning prompts together, modulo the number of LLM forward passes. We generate with nucleus
sampling (Holtzman et al., 2020, top-p=0.95) and a temperature of 1.0 to encourage output diversity.

Multi-turn When performing multiple consecutive attempts at solving a coding problem, we set
the code attempt limit to 3; this is motivated by the multi-turn results in Section 2.2, which reveal
three turns as compute-optimal. We take the best reasoning prompts from the single-turn setting and
combine them for up to 3 reasoning steps before code generation. We also introduce the CoT-retry
setup, which allows for adaptive inference budget based on problem difficulty. In the first turn, we
omit CoT prompts. If the first solution fails on more challenging problems, we prompt the LLM with
a combination of execution feedback and a reasoning prompt. We employ a different prompt for each
turn (see Appendix G.3). We also ablate different granularities of execution feedback. We do not
include CoT prompts in this feedback comparison to isolate the effect of different feedback types.

Rejection Sampling Finetuning With the Llama 3.1 70B model, we use the CoT-retry strategy to
generate 3-turn trajectories on the CodeContests training set. We filter out trajectories with incorrect
final code and perform supervised finetuning on the resulting data (details in Appendix B.2).

Benchmarks We conduct our experiments on two competitive coding benchmarks in the zero-shot
setting: (1) CodeContests (Li et al., 2022) contains 13k programming problems in the training set and
117/165 problems in the valid/test set. Each problem contains public tests, private tests, and generated
tests. We use public tests to provide execution feedback in the multi-turn setting and use all available
tests to evaluate the final submission. (2) TACO (Li et al., 2023b) is a collection of problems sourced
from CodeContests, APPS (Hendrycks et al., 2021), and various programming contest platforms.
The test set is split into 5 distinct difficulty levels: easy, medium, medium-hard, hard, and very-hard,
with each level comprising 200 problems. This stratification allows us to examine the performance of
different prompting strategies across difficulty levels. We use the first test case as the public test.

5 RESULTS

In this section, Table 1 and 2 first present maximum model performance for specific CoT variants.
We then conduct a series of detailed experiments to better understand the performance impact of
individual prompting methods. We structure our presentation by key findings outlined in Introduction.

5.1 SINGLE-TURN SETTING: COT WORKS BEST FOR HARD PROBLEMS, LARGE MODELS, HIGH
SAMPLING

We first investigate the impact of various CoT prompting strategies on models in the single-turn
setting. There will be no execution feedback prompts. Therefore, our grid search involves searching
in the space of reasoning prompts (NL→ NL) and instruction prompts (NL→ Code).

Reasoning and instruction prompts can work together. We first compare the effect of various
reasoning prompts, instruction prompts as well as combinations of both. Synthesized results are
presented in Table 3, and we refer to Appendix C.1 for the complete set of experiments that led to
Table 3. An interesting observation is that even the best performing reasoning and instruction prompts
for pass@100 can decrease model performance in small sampling regimes (pass@1). Although
reasoning prompts provide larger gains than instruction prompts (with the exception of Llama 3.1
70B), combining both results in the best performance.
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Table 1: Up to +10% pass n@k with multi-turn CoT on CodeContests test set with high temperature
(1.0) and large sampling budget. In the multi-turn setting, we use a maximum of 3 code attempts (i.e.,
3 turns) with the "failed tests" feedback. The pass n@k is calculated from 200 trajectories for both
single-turn and multi-turn settings. We also report the pass rates for Llama 3.1 70B after Rejection
Sampling Fine-tuning (RFT) (Section 5.3). Prompts are the same across sample sizes per model.

Model Variants CodeContests / Test

1@3 10@30 33@100 100@300

Llama 3.0 8B 2.9 8.0 12.6 -
+ CoT 3.4+0.5 11.7+3.7 17.3+4.7 -
+ Multi-turn 2.4−0.5 8.0+0.0 12.8+0.2 16.7
+ Multi-turn CoT 2.8−0.1 9.8+1.8 14.9+2.3 19.4

Llama 3.0 70B 9.6 18.9 23.1 -
+ CoT 10.4+0.8 26.0+7.1 33.0+9.9 -
+ Multi-turn 10.1+0.5 21.0+2.1 26.7+3.6 32.7
+ Multi-turn CoT 11.1+1.5 26.5+7.6 34.3+11.2 40.4

Llama 3.1 8B 7.7 18.2 23.8 -
+ CoT 8.0+0.3 19.5+1.3 26.1+2.3 -
+ Multi-turn 7.0−0.7 18.8+0.6 24.5+0.7 30.4
+ Multi-turn CoT 6.9−0.8 19.4+1.2 26.0+2.2 31.5

Llama 3.1 70B 24.1 42.3 49.8 -
+ CoT 26.4+2.3 47.8+5.5 54.8+5.0 -
+ Multi-turn 24.1+0.0 43.8+1.5 51.6+1.8 56.2
+ Multi-turn CoT 27.7+3.6 48.4+6.1 55.3+5.5 59.6

Llama 3.1 70BRFT 26.2 45.1 50.9 -
+ Multi-turn 29.7+3.5 50.5+5.4 57.2+6.3 61.1

Table 2: Benchmarking of CoT across models: GPT-4o and Llama. Pass 1@1 (%) and pass 1@3
(%) with low temperature (0.2). As models become more capable, repeated sampling surpasses a
straightforward extension to multi turn (e.g. GPT-4o) or single-turn CoT (e.g. Llama 3.1 405B). A
tailored multi-turn CoT, however, improves pass 1@3 performance across all models.

Variants GPT-4o Llama 3.1 70B Llama 3.1 405B

1@1 1@3 1@1 1@3 1@1 1@3

Single-turn 17.0 27.6 23.2 27.3 27.8 32.9
+ CoT 25.5+8.5 29.0+1.4 25.5+2.3 28.9+1.6 25.1−2.7 31.8−1.1

+ Multi-turn - 23.1−4.5 - 29.5+2.2 - 35.4+2.5

+ Multi-turn CoT - 31.5+3.9 - 31.5+4.2 - 40.1+7.2

Table 3: Combining reasoning and instruction works best as compared to each individually for
single-turn CodeContests test set (chosen based on pass@100 performance per model). In the best
categories, results worse than the baseline are underlined.

Llama 3.0 8B Llama 3.0 70B Llama 3.1 8B Llama 3.1 70B

pass@1 pass@100 pass@1 pass@100 pass@1 pass@100 pass@1 pass@100

Baseline 1.6 12.3 3.8 23.8 3.8 22.8 16.7 48.9

Worst reasoning 1.4 12.9 5.7 21.8 4.0 23.4 15.6 47.4
Worst instruction 1.4 11.3 3.4 25.1 3.7 20.9 14.9 48.4
Worst Combination 1.4 11.8 5.6 21.0 2.9 21.1 13.2 43.5

Best reasoning 1.8 15.7 7.0 30.4 4.1 25.7 15.7 52.2
Best instruction 1.3 13.5 5.5 29.6 3.6 24.6 16.8 53.8
Best Combination 1.5 17.3 5.3 33.1 4.0 26.1 16.1 54.1

CoT is most helpful for large models. With the smaller Llama 3.0 8B and Llama 3.1 8B, we
observe from Table 3 that the best combination of reasoning and instruction prompts provides
relatively small gains of 5.0% and 3.3% pass@100 on the CodeContests test set compared to the
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Figure 4: CoT helps most on hard examples. From a set of 8 reasoning and 6 instruction prompts
commonly used on competitive coding benchmarks, we extract the pass rate of the best and worst
prompts amongst all 63 = (8+ 1)× (6 + 1) combinations (including no reasoning or no instruction)
for Llama 3.0 8B. We compare on different difficulty split of the TACO dataset. The relative gain
from a tailored CoT increases with problem difficulty and sampling size.

improvements of 9.3% and 5.2% from the corresponding 70B models. Interestingly, we found that
not all sets of prompts are beneficial. the worst combination degrades the pass@100 of Llama 3.1
70B by up to 5.4%. CoT makes performance worse if the model fails to follow the instructions or
makes the LLM propose a sub-optimal plan. Sub-optimal plans are usually brute force approaches to
solve the problem which do not fit the time limits constraint (see Appendix H for an example).

CoT is most helpful for harder problems. With the TACO dataset, which provides a difficulty
split, we can observe that CoT does help smaller models on harder problems. Figure 4 demonstrates
that the relative gain from the best reasoning and instruction prompt combination, compared with
the baseline performance (No CoT), increases with problem difficulty. For example, the pass@100
of Llama 3.0 8B nearly doubles with CoT on the very-hard test split (2.1%→ 3.9%). We show in
Appendix C.3 that this observation generalizes to Llama 3.1 8B and 70B model.

Prompt efficacy is model and sample size dependent. No singular reasoning and instruction
combinations work best across sampling sizes and models (see Appendix C.2 for detailed analysis).
Reasoning prompts that simplify the problem (e.g., self-reflection, explain input-output pairs) benefit
smaller models (8B models) whereas larger models (70B, 405B, GPT-4o) gain most from generating
parts of the solution (e.g., write function docstrings). "Solution"-based instruction prompts are the
most efficient across models, specifically for the Llama 3.1 series, as shown in Figure 5.
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Figure 5: Solution-based instruction prompts work best across Llama 3.1 models. We separate
instruction prompts into "describe" (e.g., add comments, imports), "modularity" (e.g., add helper
functions) and "solution"(e.g., write a naive solution, propose a clever algorithm). The performance
difference (∆) is normalized with respect to the baseline and standard deviation per pass rate.

5.2 MULTI-TURN SETTING: SELF-REPAIR LIMITED WITHOUT COT AND PROPER FEEDBACK

We summarize our multi-turn results in Table 1. With a fixed number of samples, i.e., k in pass n@k,
multi-turn alone provides modest gains only (usually less than +2%) and sometimes even reduces
pass 1@3 performance compared to drawing independent samples in single-turn mode. Notably,
this is the case for smaller models (Llama 3.0 and 3.1 8B). In this section, we take a closer look at
performance drops in the multi-turn setting and explore methods that can take advantage of accessing
previous wrong solutions.
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Reasoning prompts are not additive. It is tempting
to consider that stacking more reasoning prompts before
code generation will further guide the model towards cor-
rect solutions. For example, prompts might increase the
granularity of reasoning: self-reflect on the problem, ex-
plain the input/output pairs, write helper functions, and fi-
nally output a full code solution. However, we empirically
find that across models, one step of reasoning provides the
most significant boost. The performance plateaus or even
decreases with two or three steps. Increasing the number
of reasoning steps hurts both Llama 3.0 and 3.1 models
(see Table 7 in Appendix D.1). For the best models, a
single step with a reasoning prompt is most beneficial.

CoT-retry works best. For Llama 3.0 models, simply ex-
tending the single turn reasoning and instruction prompts
to the multi-turn setting yields superior performance (reported as "Multi-turn CoT" in Table 1).
However, as models become more capable, an increasing number of problems in CodeContests are
solved in the first attempt without specific prompts. CoT-retry only reasons when the first attempt fails
and therefore works best across Llama 3.1 models for all sampling sizes and benchmarks ("Multi-turn
CoT" in Table 1). Figure 7 decomposes its per-turn performance. When extending the number of
turns from 2 to 3, Llama 3.1 70B alone shows diminishing gain while combination with CoT-retry
still increases the performance by a large margin.

Execution feedback granularity determines exploration-exploitation behavior. Given previous
incorrect code and execution feedback, subsequent attempts can consist of a fresh attempt (exploration)
or of updates to prior solutions based on feedback (exploitation). We quantify this behavior by
computing similarity scores between two consecutive solutions (details in Appendix B.1). Figure 6
shows that with more fine-grained information provided via execution feedback, models exhibit
exploitative behavior (high similarity scores). Exploitation can be a desired property on relatively
easy problems where errors are due to simple bugs. However, we posit that diversity is key to
improving performance on difficult problems, i.e., exploratory behavior within a trajectory based on
the execution feedback prompts. This matches our experimental results: simple execution feedback
(e.g., binary, failed tests) provides optimal performance for most models (Appendix D.2).

5.3 COT REJECTION SAMPLING FINE-TUNING: MODELS CAN INTERNALIZE REASONING

We investigate whether LLMs can benefit from finetuning on reasoning traces obtained via CoT
prompting. We thus perform Rejection Sampling Finetuning (RFT) on Llama 3.1 70B, where the
reasoning, instruction and execution feedback prompting strategies we consider act as policy improve-
ment operators: they elicit the model’s reasoning ability and produce a higher number of trajectories
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Table 4: Multi-turn CoT and RFT generalize to TACO test set. Pass n@k (%) of Llama 3.1
70B on multi-turn TACO test set with temperature 1.0. We use the best multi-turn CoT found on
CodeContests. We use the model RFTed on CodeContests training set (after decontamination, details
in Appendix I) and report its performance directly on TACO without CoT.

Model easy medium medium_hard hard very_hard

1@3 100@300 1@3 100@300 1@3 100@300 1@3 100@300 1@3 100@300

Llama 3.1 70B 31.6 60.2 14.2 44.6 9.5 36.2 4.4 20.6 1.8 9.0
+ Multi-turn CoT 32.3 59.8 15.0 46.2 10.8 38.5 5.8 22.8 2.6 11.8
Llama 3.1 70BRFT 34.1 58.9 18.0 45.3 13.0 39.4 8.1 23.3 3.5 12.0
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Figure 8: RFT makes the model produce more diverse code within trajectories as shown by
the consecutive codes’ similarity scores before/after RFT on CodeContests test set evaluated with
multi-turn no CoT. This shift towards more exploratory behavior contributes majorly to the gain of
correct trajectories.
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Figure 9: Llama 3.1 70B’s pass
k@3k on CodeContests. CoT-retry
increases the performance in large
sampling regimes. RFT transfers
this reasoning ability to no CoT set-
ting and lifts the pass rate curve
across sampling budgets.

with correct submissions. Given the low variance across dif-
ferent feedback types (Table 8 in Appendix D.2), we opt for
simplicity and use the "failed tests" execution feedback com-
bined with CoT-retry for data generation.

More specifically, we improve a model π by 1) collecting a
dataset of correct trajectories sampled from π with CoT enabled
at inference time, 2) removing the CoT prompt in the collected
trajectories, and 3) finetuning π with the standard next-token
prediction objective. With this strategy, we can now obtain CoT-
level trajectories without adding specific prompts at inference
time.

Figure 9, Table 1, and Table 4 show that the RFT model pro-
vides additional gains over inference methods across sampling
sizes and datasets. Beyond performance, RFT on multi-turn
CoT improves sampling diversity (Figure 8) and self-repair
capacities, especially for long trajectories (Figure 7). Behavior-
wise, we show in Table 11 (Appendix F.1) that RFT results in
model responses with increased textual content.

6 RELATED WORK

Chain of Thought with Code Chain of Thought (CoT) enables step-by-step thinking for LLMs
to solve mathematical word problems in either few-shot (Wei et al., 2022) or zero-shot (Kojima
et al., 2022) settings. Many variants, e.g., Tree of Thought (Yao et al., 2023a), have emerged in code
generation since. Chen et al. (2023b) and Gao et al. (2023) translate natural language mathematical
problems in executable code for the model to separate reasoning and computation. These methods
rely on the LLM outputting correct code to represent a problem. We see this work as tangential to
ours as boosting LLM coding performance will also help on overall reasoning tasks. Higher levels of
abstractions (Khot et al., 2023; Zhou et al., 2024; 2023; Zelikman et al., 2023; Jain et al., 2024b) and
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self-repair techniques (Paul et al., 2024; Li et al., 2023a; Ridnik et al., 2024) have been proposed.
Beyond inference methods,Wadhwa et al. (2024); Yu et al. (2024); Zelikman et al. (2022); Hosseini
et al. (2024); Pang et al. (2024) explore new training algorithms and loss functions to learn from CoT.
In comparison, we bring novelty to the type of CoT used in training (multi-turn) and rely on simple
Rejection Sampling Fine-tuning (RFT) (Touvron et al., 2023; Yuan et al., 2023; AI @ Meta, 2024). It
has been shown to achieve good performance, with less data compared to SFT (Setlur et al., 2024).

Execution feedback Currently LLMs struggle to understand code execution feedback (Gu et al.,
2024) as this type of data is rarely present in their training set. Zhong et al. (2024) and Ni et al. (2024)
try to mimic "print debugging" to convey intermediate code steps to the LLM. Olausson et al. (2024)
found that the effect of self-repair largely depends on the text quality of the subsequent reasoning and
therefore use only textual feedback. In our setting, we are interested in the feedback which could be
directly harvested from the execution environment. Shi et al. (2022); Li et al. (2022); Chen et al.
(2023a) likewise proposed unit test generation as a way to increase coverage with execution feedback.
Adding test generation to our pipeline would be an interesting avenue for further work.

Inference Optimization With the rise of LLM agents (Kapoor et al., 2024) and the scaling effect
of test time techniques (Li et al., 2022; Snell et al., 2024; Brown et al., 2024), inference optimization
against compute resources becomes increasingly relevant. Similar to our pass n@k argument in
Section 2.2, Kapoor et al. (2024) discuss the importance of controlling for generation cost in AI
agent evaluations.

7 LIMITATIONS

In our multi-turn setting, we do not explore further branching at the second or third turn, i.e., more
complex tree structures (Tang et al., 2024) or in general inference-based search approaches (Snell
et al., 2024), e.g., with look-ahead or backtracking, as we focus on the effect of additional CoT tokens
generation. Although a maximally fair comparison (at the cost of complexity) should account for total
input and output tokens (Olausson et al., 2024) as well as model size (Hassid et al., 2024), we believe
pass n@k, which stresses the number of code attempts, constitutes a simple yet superior alternative
to pass@k. Our RFT is similar to Expert Iteration (Anthony et al., 2017) and ReST (Gulcehre et al.,
2023) when considering a single iteration only. We also assume trajectories with correct final code
contain correct reasoning. Adding a Process-Reward Model (PRM) or a “critic” LLM (Zheng et al.,
2024) to rate and filter the correctness of the reasoning tokens could enhance training data quality
and diversity. Future work could benefit from exploring more advanced inference techniques such as
prompt tuning (Lester et al., 2021) or training strategies such as including "near-correct" trajectories
(Pang et al., 2024; Setlur et al., 2024) with multi-turn CoT. Finally, we speculate that the effectiveness
of different prompts for different LLM families (particularly the Llama 3.0 vs. 3.1 series vs. GPT-4o)
could be attributed to the mixture of finetuning data (Chung et al., 2022). Exploration of this topic is
beyond the scope of this paper.

8 CONCLUSION

In this work, we present a comprehensive experimental survey on various reasoning, instruction
and execution feedback prompts in the single-turn and multi-turn code generation task at scale.
Our results on two competitive programming benchmarks, CodeContests and TACO, suggest that
incorporating CoT techniques, originally designed for single turns, and execution feedback prompts
into the multi-turn setting is non-trivial. Due to the difficulty of the benchmarks, a major contributor
to performance is problem understanding rather than the ability to perform code repair with detailed
feedback. With a set compute budget, using multiple turns alone can hamper performance compared
to repeated sampling with high temperatures. Biasing the model with adapted CoT based on problem
difficulty at each turn boosts its self-repair abilities and leads to consistent gains across all model
series and sizes. Beyond inference methods, our RFT experiment shows that multi-turn reasoning
traces triggered by prompts can be internalized, which leads to advanced reasoning abilities. We hope
that our findings motivate further research in more advanced multi-turn settings. One example is
repository-level code agents, where models interact with complex environments to gather feedback
and extensive planning and reasoning capabilities are demanded.
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REPRODUCIBILITY STATEMENT

As our paper focuses on inference methods with existing models, the key components for reproducibil-
ity are access to models, datasets, and prompt descriptions. All the models (except our fine-tuned
RFT model) used in this paper are publicly available at the time of writing: Meta Llama 3.0 and 3.1
series are open-weight, and gpt-4o-2024-05-13 (GPT-4o in the paper) are available through OpenAI
API. The two benchmarks we use: CodeContests (https://github.com/google-deepmind/code_
contests) and TACO (https://github.com/FlagOpen/TACO) are publicly available. We provide
a complete list of all our prompts in Appendix G to reproduce single-turn and multi-turn experi-
ments. We present the details of computing similarity score with normalization in Appendix B.1.
Regarding finetuning, our main contribution relies on the data augmentation technique on Code-
Contests for which we present the details in data collection, deduplication, and decontamination
approach, as well as statistics such as the number of trajectories and the number of total tokens in
Appendix B.2, B.3 and I. We detail our finetuning hyperparameters in Appendix B.2 to reproduce
our RFT model training. We will release the code for our multi-turn and CoT methods to facilitate
reproduction.
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A FORMULA AND ALGORITHM FOR PASS n@k METRICS

Formally, let N be the total number of code samples. Let F be the number of codes filtered by public
tests, among which there could be false positives. Let C be the number of correct codes that pass all
the unit tests. The pass n@k for a benchmark of problems is defined as follows:

pass n@k = EProblems

[
1−

k∑
i=0

((
F
i

)(
N−F
k−i

)(
N
k

) )((F−C
np

)(
F
np

) )] , (1)

where np = min(i, n).

Explanation The first term (Fi )(
N−F
k−i )

(Nk)
is the probability of having i filtered solutions among k

solutions, which obeys a hyper-geometric distribution, HYPERGEOMETRIC(F, N − F, k). Given

the number of submissions np = min(i, n), the second term
(F−C

np
)

( F
np
)

is the probability of having none

of the correct solutions.

In evaluation, instead of computing the combinatorial number, we use Monte Carlo estimation by
re-sampling k solutions nboot times for bootstrapping (in our case, we use 10000). The algorithm for
such is described in detail in Appendix A.3 of the Alphacode paper (Li et al., 2022).

B REJECTION FINE-TUNING EXPERIMENT DETAILS

B.1 COMPUTING SIMILARITY SCORE

We compute the similarity score of two Python code snippets as follows.

First, we pre-process the code snippet to remove formatting and variable naming effects. We normalize
variable names by running an in-order indexing scheme on the Abstract-Syntax-Tree (AST), as shown
in Figure 10, followed by simple formatting by lambda x: ast.unparse(ast.parse(x)). We note
that there are 1%-2% of codes failing the parsing because of syntax error, in which case we skip this
normalization step.

total_n = int(input())

for _ in range(total_n):

   S_num, P_num = list(map(int, input().split()))

v_0 = int(input())

for v_1 in range(v_0):

   (v_2, v_3) = list(map(int, input().split()))

Figure 10: Example of variable renaming AST pass.

Second, we use difflib.SequenceMatcher to compute the similarity score for the normalized
snippets.

B.2 RFT DATA COLLECTION

Our data collection pipeline consists of 3 major steps: generation, filtering and post-processing,
deduplication and decontamination. We present the details of each step, including the parameters we
use and the dataset statistics.

B.2.1 GENERATION

Using CoT-retry, we generate 200 multi-turn trajectories with a maximum of 3 code attempts using
Llama 3.1 70B for each problem instance in CodeContests training set. The generation is in the
standard chat format for Llama 3.1 series2. We do not include the system prompt in the dialog. We
use nucleus sampling (Holtzman et al., 2020) with top-P=0.95 and temeprature 1.0.

2https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/
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We follow the same format as the evaluation: Final code solutions are tested against all the tests, and
the code solutions in the middle of the dialogs are tested against public tests. If the model solves
the problem in the first turn, the trajectory will still be collected while there will not be execution
feedback.

B.2.2 FILTERING AND POST-PROCESSING

After filtering the incorrect trajectories, we keep only 60% of all the generated trajectories where the
code in the last turn passes all the tests. We assume that correct final code correlates with correct
reasoning in the CoT and self-repair techniques. The set of successful trajectories contains solutions
to 7238 problems in the CodeContests training set (in total 13213 problems), among which 1105
problems are only solved under the multi-turn setting. Interestingly, we found 485 problems which
could be solely solved under the single-turn setting of all the generated 200 code trajectories.

We apply additional post-processing to the trajectories by removing the CoT prompt introduced but
keep the model response untouched. This enables the model to develop inherent CoT-like reasoning
capabilities through fine-tuning.

We separate the successful trajectories into 2 sets: single-turn trajectories and multi-turn trajectories.
The single-turn trajectories contain 426952 trajectories, solutions to 6133 problems. The multi-turn
trajectories contain 226382 trajectories, solutions to 6753 problems.

B.2.3 DEDUPLICATION AND DECONTAMINATION

We conduct LSH-based deduplication on each set to the code solutions per problem instance to
a maximum of 50 solutions, by following the practice of Jain et al. (2024b). We use hash size
64, jaccard threshold 0.5, number of bands 60 and band size 5 for the LSH-based deduplication
configuration.

We further conduct a decontamination between the collected solutions and TACO test set (details in
Appendix I). This enables a direct evaluation of the finetuned model on TACO test set to measure the
generalization to TACO.

After deduplication and decontamination, we harvest 177475 single-turn trajectories (in total 143M
tokens) and 160600 multi-turn trajectories (in total 285M tokens).

B.3 FINETUNING SETTING

We perform self-supervised fine-tuning on the above-mentioned multi-turn trajectories using Llama
3.1 70B. We use standard cross-entropy loss on the last full body of the model response in the last
turn and treat all the previous user and model messages as the prompt part.

The finetuning uses learning rate 2e−6, 545 steps of gradient updates, sequence length 8192, global
batch size 524288 tokens. We use AdamW as the optimizer with weight decay 0.1, β1 = 0.9 and
β2 = 0.95. The learning rate schedule is cosine scheduling with 10 warmup steps annealing to
10% of peak learning rate at the end of the training. We do not do early stopping to evaluate the
model checkpoint in the middle of the finetuning. Instead, our evaluation always compares model
checkpoints under different configurations at the end of the funetuning.

The end-to-end finetuning takes 170 H100 · hours with Tensor Parallelism of size 8 and Fully Sharded
Data Parallelism (FSDP).

B.4 GENERALIZATION OF RFT MODEL

Beyond competitive programming tasks such as CodeContests and TACO, we studied whether our
RFT model, Llama 3.1 70BRFT, fine-tuned on CoT and multi-turn data generalizes to other code
generation tasks. Table 5 and Table 6 show results for the single-turn and multi-turn experiments,
respectively. For single turn, we report performance on the following code generation benchmarks:
HumanEval+ (Chen et al., 2021; Liu et al., 2024), MBPP+ (Austin et al., 2021; Liu et al., 2024) and
LiveCodeBench-v4 (Jain et al., 2024a). We also report multi-turn performance on LiveCodeBench-v4.
Our RFT model performs similarly, sometimes with slight performance degradation, and often better
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than Llama 3.1 70B, which shows that the model does not overfit to CodeContests and generalizes to
unseen code generation benchmarks.

Table 5: RFT model fine-tuned on CodeContests generalizes to other code generation datasets.
Each line corresponds to single-turn performance evaluated without CoT prompts for both models.
Results are reported under the format pass@1 / pass@10. We use temperature 0.2 for sampling.

Model HumanEval+ MBPP+ LiveCodeBench - v4

Easy Medium Hard All

Llama 3.1 70B 71.8 / 77.0 65.2 / 70.9 73.8 / 85.0 22.0 / 37.4 3.3 / 7.2 34.2 / 45.3
Llama 3.1 70BRFT 72.1 / 76.9 63.5 / 69.2 76.2 / 85.7 22.0 / 37.0 3.5 / 8.0 35.1 / 45.3

Table 6: Better low sampling multi-turn performance with the RFT model. We prompt models
without CoT and perform multi-turns with a maximum of 3 turns. Results are reported under the
format pass 1@3 / pass 10@30. We use temperature 0.2 for sampling.

Model LiveCodeBench - v4

Easy Medium Hard

Llama 3.1 70B 82.8 / 94.3 30.8 / 49.2 4.77 / 9.45
Llama 3.1 70BRFT 86.0 / 94.4 31.5 / 50.1 4.74 / 9.19

C ADDITIONAL SINGLE-TURN RESULTS

C.1 GRID SEARCH RESULTS

We provide the complete grid search results for all our reasoning and instruction prompts across all
models and pass rates for the single turn setting. This demonstrates the variability in effectiveness
per sampling size and LLM series. The "weak solution" instruction prompt is a clear winner for
larger sampling sizes k ≥ 10. We show in Figure 11, 12, 13 and 14 the grid search of all reasoning
and instruction prompts for the Llama 3.0 and 3.1 series. As we increase the sampling budget, we
increase the sample diversity and the recall across all CoT. For a low sampling budget, most prompts
hurt performance. CoT is the most effective with Llama 3.0 70B.
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Figure 11: Grid search of all reasoning and instruction prompts for Llama 3.1 8B.
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Figure 12: Grid search of all reasoning and instruction prompts for Llama 3.0 8B.
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Figure 13: Grid search of all reasoning and instruction prompts for Llama 3.1 70B.
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Figure 14: Grid search of all reasoning and instruction prompts for Llama 3.0 70B.
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Figure 15: No gold CoT across models. Based on our grid search of instruction and reasoning
prompts, we compare all 63 single-turn results across three different models. With a low sampling
budget, most prompts perform similarly, if not worse than the baseline performance (without CoT).
The best prompt (in green) differs for each model, but we see similar patterns in the Llama models.

C.2 DETAILED ANALYSIS OF SINGLE-TURN PROMPTS

When comparing reasoning and instruction prompts, the values are normalized with respect to
the baseline in each respective pass rate specifically: x ← x−baseline

std(x) . The value at 0, therefore,
corresponds to no reasoning and no instruction prompts. We provide further results aggregated across
models and types of prompts.

As demonstrated by Figure 16 and Figure 17, we have large variations across models and prompt
types and observe that no reasoning and instruction prompt always performs above the 0 baseline. As
shown in Figure 18, the best combinations often rely on "weak solution" instruction but vary across
sample sizes for reasoning with "self-reflection" for lower sampling budget and "helper functions"
for higher sampling budget. We observed writing intermediate variables before code often made
performance worse and could be qualified as the "worst" reasoning prompt for all models.
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Figure 16: Group by instruction prompts averaged across all reasoning prompts for the Llama 3.0
and 3.1 models. We observe that "check constraints" is a winner for pass@1 and "weak solution" for
pass@100. Overall, "add a comment before each line" seems the least efficient across models.

C.3 GENERALIZATION OF SINGLE-TURN BEST COT TO LLAMA3.1 MODELS

We show in Figure 19 that the best CoT (i.e., reasoning and instruction prompt and their combination)
found with Llama 3.0 8B on TACO could be directly ported to Llama 3.1 8B and 70B models. We
also observe that CoT brings more boost on harder problems by comparing the relative gain of pass
rate on the easy and very-hard split.
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Figure 17: Group by reasoning prompts averaged across all instruction prompts (top) for small
models and (bottom) for large models. For pass@1, "explain IO pairs" helps small models, and
"helper function docstrings" helps large ones. The relative efficacy of each prompt converges to a
similar order for pass@100 for large and small models.
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Figure 18: Best combinations overall. We calculate the normalized pass@k improvement with
respect to the baseline averaged across all 6 models for pass@1 (3.0 8B, 70B, 3.1 8B, 70B, 405B and
GPT-4o) and 4 models (Llama 3.0, 3.1 8B and 70B) for pass@10 and pass@100 on CodeContests
test. We plot the top 3 means and their corresponding prompt combinations for different sample sizes.
0 on the y-axis corresponds to the models’ performance without CoT.

D JUSTIFICATION FOR PROMPTING SPACE

D.1 REASONING PROMPTS NOT ADDITIVE

We describe methods that did not help enhance multi-turn CoT, specifically adding more complex
execution feedback and more steps of reasoning prompts. Our experiment result is shown in Table 7
that before outputting the first code, stacking more reasoning steps hurt the performance, especially
for Llama 3.1 70B.
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Figure 19: We use the best CoT (i.e., reasoning and instruction prompt combination) found with
Llama 3.0 8B and test it directly with Llama 3.1 8B and Llama 3.1 70B on the easiest (easy) and the
most difficult (very-hard) split of TACO.

Table 7: Stacking more prompts can hurt performance for Llama 3.1 70B. Each line in the table is
added from the previous setup. +1 reasoning makes the model answer 2 reasoning prompts before
code generation. +1 instruction makes the model answer 2 reasoning prompts and 2 instructions
during code generation.

Number of prompts Llama 3.0 70B Llama 3.1 70B

1@3 100@300 1@3 100@300

1 reasoning × 1 instruction 11.2 40.0 24.5 59.2
+ 1 reasoning -0.4 -1.8 -2.0 -3.1
+ 1 instruction -0.1 +0.4 -4.0 -2.1

D.2 SIMPLE EXECUTION FEEDBACK IS SUFFICIENT

We show in Table 8 that execution feedback prompts with different granularity present low vari-
ance with respect to the pass rate, both in high-temperature setting (1.0, pass 100@300) and low-
temperature setting (0.2, pass 1@3).

We posit that for challenging problems presented in the competitive programming benchmark, models
generate wrong code not because the code is buggy by accident but because models do not understand
how to solve the problem correctly. It highlights the fact that for competitive programming benchmark,
algorithmic reasoning (to align what the models believe to be a correct solution with the ground-true
solution), as elicited by CoTs, impacts the performance more than bug-fixing ability (to align the
emitted code with what the models believe to be a correct solution).

Table 8: Execution feedback result on multi-turn CodeContests test set. Results are reported using
3-turn trajectories. We also include a single-turn repeated sampling for comparison. 1@3 is estimated
from 20 trajectories per problem under temperature 0.2. 100@300 is estimated from 200 trajectories
per problem under temperature 1.0.

Feedback Granularity Llama 3.1 70B Llama 3.1 8B

1@3 100@300 1@3 100@300

N/A (Single-Turn) N/A 27.3 53.5 11.9 28.0

Binary + 28.8 55.9 10.9 30.9
Failed tests (default) ++ 29.5 56.2 10.9 29.5
Failed & passed tests ++ 29.5 55.0 10.7 30.4
LDB (Zhong et al., 2024) +++ 26.5 54.8 9.9 29.1
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E ABLATION STUDIES

E.1 ABLATION OF RETRY PROMPT IN MULTI TURNS

In the multi-turn setting, after giving the execution feedback, we add at the end of the user message a
prompt to ask for another code solution. This prompt is fixed to "Give it another try" throughout the
whole paper.

We conduct an ablation experiment in which we use explicit prompting on reasoning about why the
test failed (Analyze) and fix the public tests (Fixme), as well as their combination, after giving the
execution feedback. The variants we experiment with are:

• Retry: "Give it another try." (Used in the paper)

• Fixme: "Generate a fixed version of the program to fix the failing test."

• Analyze→ Retry: "Analyze the execution feedback. If runtime exception, identify the source.
If wrong answer, simulate and analyze how the input maps to the actual output in your code and
where it differs from the expected output. After that, give it another try."

• Analyze→ Fixme: "Analyze the execution feedback. If runtime exception, identify the source.
If wrong answer, simulate and analyze how the input maps to the actual output in your code and
where it differs from the expected output. After that, generate a fixed version of the program to fix
the failing test."

Table 9: Ablation of retry prompt on multi-turn CodeContests test set. Results are reported using
3-turn trajectories without CoT prompting in 1@3 / 100@300. Both 1@3 and 100@300 are estimated
from 200 trajectories per problem under temperature 1.0.

Model Retry Fixme Analyze
↪→Retry

Analyze
↪→Fixme

Llama 3.1 8B 7.0 / 30.4 6.7 / 29.3 6.6 / 30.0 6.3 / 27.5
Llama 3.1 70B 24.1 / 56.2 25.2 / 55.7 25.2 / 54.6 24.9 / 55.9

We report the performance on CodeContests test set in Table 9. Our ablation shows that explicitly
prompting the model to focus on the failing tests and fix it degrades the performance for Llama
3.1 8B in 1@3 and 100@300. For Llama 3.1 70B, the 1@3 increases by 1.1% while the 100@300
drops. For Llama 3.1 70B, the ablation shows an exploration-exploitation trade-off between 1@3
and 100@300. We attribute the performance degradation in Llama 3.1 8B to the imperfect multi-turn
ability.

E.2 ABLATION OF NORMALIZATION STEP IN SIMILARITY SCORE

We show in Figure 20 and Figure 21 the distribution and histogram of similarity score without the
normalization step. The similarity score, therefore, measures the raw code generated by the LLM.
Compared with Figure 6 and 8, the fundamental trend does not change. The robustness against our
normalization step shows that the LLMs we study are already able to output coherent (in terms of
variable naming and formatting) code within the same dialog.

E.3 ABLATION OF RFT DATA MIXTURE

As detailed in Appendix B.2, we collect 2 sets of correct trajectories, single-turn (ST) and multi-turn
(MT), from the problems in CodeContests training set using Llama 3.1 70B. We perform LSH-
based deduplication to a maximum of 50 solutions (in each set) per problem statement. We also
decontaminate the 2 sets from TACO test set as detailed in Appendix I.

We show the ablation of the following design choices:

• Data Source: train on solutions generated by Llama 3.1 70B (RFT) or solutions in the CodeCon-
tests training set (SFT).
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Figure 20: Distribution of consecutive code similarity scores (without the normalization step described
in Appendix B.1) when varying the execution feedback granularity.
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Figure 21: Histogram of the similarity scores (without the normalization step described in Ap-
pendix B.1) of consecutive codes generated by the model before/after multi-turn CoT RFT on
CodeContests test set.

• ST v.s. MT Trajectories: train on single-turn (ST) trajectories only, multi-turn (MT) trajectories
only, or both of them (ST + MT).

• Including CoT Response: train on code solutions and CoT responses or train on code only.

For SFT, we follow the training set cleaning process of Jain et al. (2024b). We conduct LSH-based
deduplication to the solutions in the training set to limit a maximum of 25 solutions per problem. We
then construct a single-turn dialog with the user message being the problem statement and the model
message being the code solution.

We use the same set of hyperparameters described in Appendix B.2 of all the ablation experiments. All
the RFT experiments are finetuning for exactly 1 epoch to avoid over-fitting. For the SFT experiment,
we finetune for 1 and 2 epochs and report the best performance, which is at 1 epoch.

We show in Table 10 the ablation result. We find that SFT hurts the performance compared to the
base model. We posit that it is because the SFT dataset is far from the model output distribution of
Llama 3.1 70B. The reasons are:

1. Given that Llama 3.1 70B has already been heavily tuned in the post-training, some code
solutions in CodeContests training set are of less quality than the data presented in its
post-training phase. For example, some imports in the Python codes are outdated (e.g., from
fractions import gcd will throw an ImportError since Python 3.9).

2. The dialogs in the SFT set are constructed in a mechanical way with only code body in
the model response, therefore far from the dialog distribution, i.e., the interaction between
user and assistant in a natural way, that the Instruct series of Llama 3.1 has seen in the
post-training phase.

This is similar to the finding by Setlur et al. (2024) that RFT is more data efficient than SFT since the
RFT dataset is closer to the model output distribution.

24



Published as a conference paper at ICLR 2025

Our ablation shows that removing the CoT response will introduce a slight performance drop. We
also find that training on multi-turn (MT) data only provides better performance. We hypothesize that
the single-turn (ST) trajectories solve the problems of which models are already capable. Further
reinforcement on these problems could potentially lead to overfitting and bias the model behavior
towards trying to solve the problems in the first turn instead of enhancing its multi-turn capability.

Table 10: Ablation of RFT data mixture. We show the best performance of the ablation runs of the
following choices: training on single-turn (ST) or multi-turn (MT) data, whether to include the CoT
response. We show the performance of Llama 3.1 70B without finetuning and finetuning on the given
CodeContests training set (SFT) on the top as a reference.

Data Source ST MT CoT Response CodeContests / Test

1@3 10@30 100@300

Llama 3.1 70B ✗ ✗ ✗ 24.1 43.8 56.2

CodeContests/train (SFT) ✓ ✗ ✗ 16.6 33.6 44.9

Llama 3.1 70B (RFT)

✓ ✗ ✗ 26.8 47.5 58.3
✓ ✓ ✗ 28.9 49.2 60.1
✗ ✓ ✗ 29.1 50.1 60.0
✓ ✓ ✓ 29.1 49.6 60.0
✗ ✓ ✓ 29.7 50.5 61.1

F BEHAVIORAL ANALYSIS

F.1 RFT MODEL BEHAVIOR ANALYSIS

We show in Table 11 the fraction of text characters by the total response length. We take into account
the intermediary CoT response if CoT is used. RFT model significantly increases the text output
around the code output, which could contain reasoning traces.

Table 11: Fraction of text characters (not extracted as code) by the total response length. We also
count the CoT response when CoT is enabled. The RFTed model outputs more text in the response.

Model Non-Code
Fraction

Llama 3.1 70B 0.37
+ Multi-turn CoT 0.57

Llama 3.1 70BRFT 0.50

F.2 DOES MORE NON-CODE TOKENS CORRELATE TO BETTER PERFORMANCE?

We describe non-code tokens as responses to reasoning steps and natural language generated with a
code attempt. We look at the fraction corresponding to non-code tokens from all tokens for GPT-4o
and Llama 3.1 70B to understand their difference in pass rates across prompts. We made the hypothesis
that more non-code tokens correlate with more reasoning and, therefore, overall performance, with
the effect similar to the pause token (Goyal et al., 2024) or the thinking token (Herel & Mikolov,
2024) .

However, as shown in Figure 22, we observe that the same reasoning prompt, as well as combinations
with instruction prompt, leads to approximately the same number of tokens across models but different
pass rates. This invalidates our original hypothesis. We believe the fine-tuning prompts post-training
probably influence the most which prompts are effective with which model.
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Figure 22: Comparison of average non-code fraction between GPT-4o and Llama 3.1 70B based
on different prompting strategies. We sample from a pool of 7 reasoning and 6 instruction prompts
(with index 0 being no instruction) commonly used in code generation, with prompts as presented in
Appendix G.

G PROMPTS

We list the prompts used throughout our experiments inspired by recent works in code generation
(Zelikman et al., 2023; Jain et al., 2024b; Paul et al., 2024; Ridnik et al., 2024). We focus on zero-shot
prompting techniques specific to competitive programming problems or, more generally, to code
generation. We classify prompts into two categories: reasoning and instruction. To determine this list,
we ran experiments at a small scale (pass@10) with over 30 prompts on 500 examples sampled from
the CodeContest training set. We picked the most promising ones in terms of final unit test pass and
execution rates. Some of our prompts are adapted from recent works in competitive programming.

G.1 REASONING PROMPTS

• Adapted from AlphaCodium Ridnik et al. (2024)

– self-reflection: Given the code contest problem, reflect on the problem, and describe it in your
own words, in bullet points. Pay attention to small details, nuances, notes and examples in the
problem description.
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– predict IO pairs: Given the code contest problem and the provided examples, take the first
3 examples and explain how its input leads to the corresponding output. Read carefully the
problem description. Make sure the test explanations are consistent with them, and between
themselves. The explanation must coherently and logically lead from the input to the output. Be
succinct.

– write code solution with guidelines: Your goal is to come up with possible solutions to the
code contest problem. Guidelines: Make sure each solution fully addresses the problem goals,
constraints, examples, and notes. Each solution must have reasonable runtime and memory
complexity - less than three seconds on a modern computer, given the problem constraints for
large inputs. Double-check the solutions. Each possible solution must be able to generalize to
additional test cases, not just the ones provided in the problem description.

• predict problem tag: Explain which two tags from the following list best apply to this problem:
combinatorics, dynamic programming, math, bitmasks, number theory, brute force, data structures,
divide and conquer, graphs, greedy, depth first search and similar, implementation, binary search,
two pointers, strings, constructive algorithms, sortings, trees, disjoint set union.

• predict problem difficuly: Given the code contest problem, your task is to evaluate the difficulty
of the problem either easy, medium or hard. Explain the difficulties of the problem and potential
edge cases.

• write natural language solution: Generate a naive solution to this problem in natural language
and then explain how you could improve it.

• write helper function docstring: Explain which helper functions you will need to solve the code
contest problem. Without implementing them, write their signature and a doc string explaining
their purpose.

• write intermediate variables and type: Explain what necessary intermediate variables you will
need to solve the problem, specify their type and purpose in your solution.

G.2 INSTRUCTION PROMPTS

• Adapted from AlphaCodium Ridnik et al. (2024)
– use helper functions: Guidelines: You must divide the generated code into small sub-functions,

with meaningful names and functionality. Variables names should also be meaningful.
– double check the import, variable, constraints: Double-check the solution code. Make sure

to include all the necessary module imports, properly initialize the variables, and address the
problem constraints.

• comment before each line: Write a comment before each line of code to explain your thought
process.

• docstring before each function: Write a doc string before each function generated explaining its
utility and expected inputs and outputs.

• generate weak solution and a second better one: Generate one solution in python, identify its
weaknesses and then generate a second better algorithm to solve the problem.

• step by step: Think step by step and propose a clever algorithm.

G.3 COT-RETRY PROMPTS

For a given problem, the model first solves it without any reasoning. If the first code generation is
incorrect, we add an instruction prompt, "write code solution with guidelines," to separate problem-
solving and code writing. If the second code generation is false, we add another instruction prompt,
"generate a weak solution." These prompts are combined with the default (failed tests) execution
feedback after each turn. This setup provides up to +6% improvements for the Llama 3.1 series.

We show an example extracted from CodeContests generated by Llama 3.1 70B on the following
page. We picked this prompt combination based on the results in Figure 18. The instruction "weak
solution" appears most often as part of the top 3 best mean pass@ improvement from the baseline
across models for CodeContests. As the reasoning prompt varied more across sample sizes, we tried
all combinations and empirically "write code solution with guidelines" worked best in CoT-retry for
CodeContests and TACO.
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User (Turn 1)

Here is a competitive programming question: The new generation external memory contains
an array of integers a[1 . . . n] = [a_1 , a_2 , . . . , a_n].

This type of memory does not support changing the value of an arbitrary element.
Instead , it allows you to cut out any segment of the given array , cyclically shift (
rotate) it by any offset and insert it back into the same place.
Technically , each cyclic shift consists of two consecutive actions:

1. You may select arbitrary indices l and r (1 ≤ l ≤ r ≤ n) as the boundaries of
the segment.

2. Then you replace the segment a[l. . . r] with it 's cyclic shift to the left by an
arbitrary offset d. The concept of a cyclic shift can be also explained by following
relations: the sequence [1, 4, 1, 3] is a cyclic shift of the sequence [3, 1, 4, 1] to
the left by the offset 1 and the sequence [4, 1, 3, 1] is a cyclic shift of the
sequence [3, 1, 4, 1] to the left by the offset 2.
For example , if a = [1, {3, 2, 8}, 5], then choosing l = 2, r = 4 and d = 2 yields a
segment a[2 . . . 4] = [3, 2, 8]. This segment is then shifted by the offset d = 2 to the
left , and you get a segment [8, 3, 2] which then takes the place of of the original

elements of the segment. In the end you get a = [1, {8, 3, 2}, 5]. Sort the given array
a using no more than n cyclic shifts of any of its segments. Note that you don 't need

to minimize the number of cyclic shifts. Any method that requires n or less cyclic
shifts will be accepted.
Input
The first line contains an integer t (1 ≤ t ≤ 1000) - the number of test cases.
The next 2t lines contain the descriptions of the test cases.
The first line of each test case description contains an integer n (2 ≤ n ≤ 50) - the
length of the array. The second line consists of space -separated elements of the array
a_i (-10^9 ≤ a_i ≤ 10^9). Elements of array a may repeat and don 't have to be unique.
Output
Print t answers to all input test cases.
The first line of the answer of each test case should contain an integer k (0 ≤ k ≤ n)
- the number of actions to sort the array. The next k lines should contain

descriptions of the actions formatted as "l r d" (without quotes) where l and r (1 ≤ l
< r ≤ n) are the boundaries of the segment being shifted , while d (1 ≤ d ≤ r - l) is
the offset value. Please remember that only the cyclic shifts to the left are

considered so the chosen segment will be shifted by the offset d to the to the left.
Note that you are not required to find the minimum number of cyclic shifts needed for
sorting. Any sorting method where the number of shifts does not exceed n will be
accepted.
If the given array a is already sorted , one of the possible answers is k = 0 and an
empty sequence of cyclic shifts. If there are several possible answers , you may print
any of them.

Example

Input
4
2
2 1
3
1 2 1
4
2 4 1 3
5
2 5 1 4 3

Output
1
1 2 1
1
1 3 2
3
2 4 1
2 3 1
1 3 2
4
2 4 2
1 5 3
1 2 1
1 3 1

Note
Explanation of the fourth data set in the example:

1. The segment a[2 . . . 4] is selected and is shifted to the left by 2: [2, {5, 1, 4},
3] → [2, {4, 5, 1}, 3]
2. The segment a[1 . . . 5] is then selected and is shifted to the left by 3: [{2, 4,

5, 1, 3}] → [{1, 3, 2, 4, 5}]
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3. After that the segment a[1 . . . 2] is selected and is shifted to the left by 1:
[{1, 3}, 2, 4, 5] → [{3, 1}, 2, 4, 5]

4. And in the end the segment a[1 . . . 3] is selected and is shifted to the left by 1:
[{3, 1, 2}, 4, 5] → [{1, 2, 3}, 4, 5] .

Given the code contest problem and your self -reflection on the problem , your goal is to
write a valid Python code with stdio that correctly solves the problem. Your code

should be enclosed in triple backticks like so: ```python YOUR CODE HERE ```. Use the
backticks for your code only.

Assistant (Turn 1 Response)

```python
def sort_array(arr):

operations = []
arr.sort()
for i in range(len(arr)):

if arr[i] != arr[i-1]:
operations.append ((i, i+1, i - (arr.index(arr[i]) - (i-1))))

print(len(operations))
for operation in operations:

print(operation [0] + 1, operation [1], operation [2])

def main():
for _ in range(int(input())):

n = int(input())
arr = list(map(int , input().split()))
sort_array(arr)

if __name__ == "__main__ ":
main()

```

User (Turn 2)

Your code failed the following tests:

- input `4\n2\n2 1\n3\n1 2 1\n4\n2 4 1 3\n5\n2 5 1 4 3` failed:
Expected output `1\n1 2 1\n1\n2 3 1\n2\n1 3 2\n3 4 1\n3\n1 3 2\n3 5 2\n4 5 1` but got
`2\n1 1 -1\n2 2 0\n2\n1 1 -1\n3 3 1\n4\n1 1 -1\n2 2 0\n3 3 1\n4 4 2\n5\n1 1 -1\n2 2 0\
n3 3 1\n4 4 2\n5 5 3`

Give it another try.
Your code should be enclosed in triple backticks like so: ```python YOUR CODE HERE ```.
Use the backticks for your code only.Your goal is to come up with possible solutions

to the code contest problem.
Guidelines:
- Make sure each solution fully addresses the problem goals , constraints , examples , and
notes.

- Each solution must have reasonable runtime and memory complexity - less than three
seconds on a modern computer , given the problem constraints for large inputs.
- Double -check the solutions. Each possible solution must be able to generalize to
additional test cases , not just the ones provided in the problem description.

Assistant (Turn 2 Response)

```python
def sort_array(arr):

operations = []
i = 0
while i < len(arr):

if i != 0 and arr[i] <= arr[i-1]:
shift_arr(arr , i-1, operations)

i += 1
print(len(operations))
for operation in operations:

print(operation [0]+1, operation [1]+1, operation [2])

def shift_arr(arr , index , operations):
segment = arr[index +1:]
segment_len = len(segment)
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max_val = max(segment)
max_val_index = segment.index(max_val)
shift = max_val_index + 1
for i in range(index+1, index+segment_len):

if segment[i-index -1] > segment[i]:
shift -= 1

arr[index +1:] = segment[-shift:] + segment[:-shift]
operations.append ((index , index+segment_len , shift))

def main():
for _ in range(int(input())):

n = int(input())
arr = list(map(int , input().split()))
sort_array(arr)

if __name__ == "__main__ ":
main()

```

This solution sorts the array by shifting the maximum element of each unsorted segment
to the front , creating a new segment that starts at the current index `i`. The number
of shifts required to move the maximum element to the front is calculated , and these
shifts are stored in the `operations ` list. The process is repeated until the entire
array is sorted.

User (Turn 3)

Your code failed the following tests:

- input `4\n2\n2 1\n3\n1 2 1\n4\n2 4 1 3\n5\n2 5 1 4 3` failed:
Traceback (most recent call last):

File "python_iopairs.py", line 126, in main
execute_code(compiled)

File "python_iopairs.py", line 40, in execute_code
exec(code , {" __name__ ": "__main__ "})

File "<source >", line 32, in <module >
main()

File "<source >", line 29, in main
sort_array(arr)

File "<source >", line 7, in sort_array
shift_arr(arr , i-1, operations)

File "<source >", line 20, in shift_arr
if segment[i-index -1] > segment[i]:

IndexError: list index out of range

Give it another try.
Your code should be enclosed in triple backticks like so: ```python YOUR CODE HERE ```.
Use the backticks for your code only. Generate a naive solution to this problem to

make sure you pass all the tests then explain how you could improve it.

Assistant (Turn 3 Response)

```python
def sort_array(arr):

operations = []
n = len(arr)
for i in range(n):

max_index = i
for j in range(i+1, n):

if arr[j] < arr[max_index ]:
max_index = j

if max_index != i:
max_val = arr[max_index]
del arr[max_index]
arr.insert(i, max_val)
operations.append ((i+1, max_index+1, max_index -i))

print(len(operations))
for operation in operations:

print(operation [0], operation [1], operation [2])

def main():
for _ in range(int(input())):

30



Published as a conference paper at ICLR 2025

n = int(input())
arr = list(map(int , input().split()))
sort_array(arr)

if __name__ == "__main__ ":
main()

```

This naive solution simply finds the maximum element in each segment of the array and
shifts it to the front. This is done in a way that the maximum element is moved to its
correct position in a single pass , avoiding the need for repeated passes.

However , this solution has a time complexity of O(n^2) due to the nested loops used to
find the maximum element in each segment.

To improve this solution , we can use a more efficient sorting algorithm , such as merge
sort or heap sort , which have a time complexity of O(n log n). We can also use a
sorting algorithm that takes advantage of the fact that the array is being sorted in-
place , such as insertion sort or selection sort.

Alternatively , we can use a different approach to solve the problem , such as using a
data structure that allows for efficient insertion and deletion of elements , or using a
more advanced algorithm that can sort the array in less than n passes.

Here is an improved solution using bubble sort:

```python
def sort_array(arr):

operations = []
n = len(arr)
for i in range(n):

for j in range(n-1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]
operations.append ((j+1, j+2, 1))

print(len(operations))
for operation in operations:

print(operation [0], operation [1], operation [2])

def main():
for _ in range(int(input())):

n = int(input())
arr = list(map(int , input().split()))
sort_array(arr)

if __name__ == "__main__ ":
main()

```

This improved solution still has a time complexity of O(n^2), but it is slightly more
efficient than the naive solution due to the fact that it only requires a single pass
through the array.

H EXAMPLES WRONG COT

Some problems are solvable by the model without CoT in the single-turn setting but become wrong
when we add specific reasoning and instruction prompts. Some instruction prompts can lead to
incorrect planning. The weak solution prompt, although effective when done correctly as shown
by its high performance across models, can bias the model towards a brute force approach that it is
unable to recover from as shown below in Example 1 and Example 2. In Example 3, the reasoning
prompt for the model is to define intermediate variables which will be used in the code, while the
generated code does not contain the intermediate variables described earlier.

These examples are generated with Llama 3.1 8B and extracted from CodeContests.

Example 1: Brute Force Attempt

```python
def solve(a, b, c):

combinations = [(i, j, k) for i in range(a + 1) for j in range(b + 1) for k in
range(c + 1)]
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min_diff = float('inf ')
for a1, b1, c1 in combinations:

a2, b2, c2 = a - a1, b - b1, c - c1
if a2 >= 0 and b2 >= 0 and c2 >= 0:

diff = abs((a1 + 2 * b1 + 3 * c1) - (a2 + 2 * b2 + 3 * c2))
min_diff = min(min_diff , diff)

return min_diff

t = int(input())
for _ in range(t):

a, b, c = map(int , input().split())
print(solve(a, b, c))

```

This naive solution tries to generate all combinations of one -minute songs , two -minute
songs , and three -minute songs that add up to the total number of each song type , and
then calculates the absolute difference between the concerts for each combination. The
minimum difference is then returned.

However , this naive solution has a time complexity of O(n^3), where n is the total
number of each song type. This is because there are O(n) combinations for each song
type , and we need to try all combinations. This solution may not be efficient for large
inputs.

To improve the solution , we can use a more efficient algorithm to generate combinations
. For example , we can use the concept of partitioning , which is a more efficient way to
divide a set of objects into two subsets such that the sum of objects in each subset

is equal.

We can also use dynamic programming to store the intermediate results and avoid
redundant calculations.

However , the problem constraints are not large , so the naive solution is sufficient to
pass all tests within a reasonable time.

Example 2: Same Code Twice

```python
import sys

def solve():
n = int(input())
a = list(map(int , input().split()))
max_k = 1
for i in range (30):

count = sum((x >> i) & 1 for x in a)
max_k = max(max_k , count)

possible_k = set()
for k in range(1, max_k + 1):

possible_k.add(k)
print(* sorted(possible_k))

t = int(input())
for _ in range(t):

solve()
```
** Weaknesses of the first solution :**
1. The solution uses a brute -force approach to count the number of elements with a 1 at
each bit position , which has a time complexity of O(n \* m), where n is the length of

the array and m is the number of bit positions.
2. The solution uses a set to store the possible values of k, which has a time
complexity of O(n) for adding and removing elements.
3. The solution uses a single print statement to print all the possible values of k,
which has a time complexity of O(n).

** Second solution :**
```python
import sys

def solve():
n = int(input())
a = list(map(int , input().split()))
max_k = 1
for i in range (30):

count = sum((x >> i) & 1 for x in a)
max_k = max(max_k , count)
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possible_k = set()
for k in range(1, max_k + 1):

possible_k.add(k)
print(* sorted(possible_k))

def main():
t = int(input())
for _ in range(t):

solve()

if __name__ == "__main__ ":
main()

```
** Improvements :**
1. The second solution uses the same algorithm as the first solution , but it separates
the main logic into a separate function `solve()` and the input/output logic into a
separate function `main()`. This makes the code more modular and easier to understand.
2. The second solution uses the same data structure (set) to store the possible values
of k, but it uses a more efficient algorithm to find the maximum possible value of k.
Instead of iterating over each bit position , it uses a single pass over the array to
find the maximum possible value of k.
3. The second solution uses the same print statement to print all the possible values
of k, but it uses a more efficient algorithm to print the values in increasing order.
Instead of using a single print statement , it uses a loop to print each value
separately.
**Time complexity :**
The time complexity of the first solution is O(n \* m), where n is the length of the
array and m is the number of bit positions.
The time complexity of the second solution is O(n + m), where n is the length of the
array and m is the number of bit positions. This is because the solution uses a single
pass over the array to find the maximum possible value of k, and then uses a loop to
print each value separately.
**Space complexity :**
The space complexity of both solutions is O(m), where m is the number of bit positions.
This is because the solutions use a set to store the possible values of k, and the

size of the set is proportional to the number of bit positions.

Example 3: Not Using Intermediate Variables Defined Before

### Intermediate Variables

- **`n` and `k`** (`int `): The number of elements in the array and the range of
possible values for each element , respectively.
- **`a`** (`vector <int >`): The input array with -1 indicating unknown values.
- **`c`** (`int `): The number of elements in `a` that are -1 after replacing all -1s
with random values.
- **`inc `** (`int `): The increase in cost (which is equivalent to the reciprocal of k)
for each increment in `c`.
- **`expectedCost `** (`long long `): The expected number of operations to get all
elements in `a` to be the same , modulo `10^9 + 7`.
- **`tempSum `** (`long long `): A temporary variable to hold the sum of expected costs
for each possible configuration of `a` after replacing -1s.
- **`numConfigs `** (`long long `): The number of possible configurations of `a` after
replacing -1s.
- **`result `** (`long long `): The result , which is the expected cost of `a` modulo
`10^9 + 7`.
- **`mod `** (`const long long `): The modulo value (`10^9 + 7`).

```python
import sys
input = sys.stdin.readline

def inv(a, p):
res = 1
p = p-2
while p:

if p & 1: res = (res * a) % MOD
a = (a * a) % MOD
p = p >> 1

return res

def C(a, b):
if a == 0: return 0
if a == b: return 1
return (((fac[a]*i fac[a-b]*i fac[b])%MOD)*inv(fac[b], MOD))%MOD
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n, k = map(int , input().split())
a = list(map(int , input().split()))

def dfs(x):
global ans
if x == len(a) - 1:

v1 = C(k-1, a[x])
v2 = C(k-1, a[x]+1)
ans = (ans + v1*2)%MOD
ans = (ans + MOD - v2)%MOD
return

else:
v1 = C(k-1, a[x])
v2 = C(k-1, a[x]+1)
v3 = C(k-1, a[x]-1)
ans = (ans + v1 + v2 + v3)%MOD
for i in range(k):

a[x+1] = i
dfs(x+1)
ans = (ans + 1)%MOD

MOD = 10**9 + 7
i = 1
fac = [1]*100001
for j in range(1, 100001):

fac[j] = (fac[j-1]*i)%MOD
i = (i * j)%MOD

dfs(0)
print((ans%MOD + MOD)%MOD)
```

I DE-CONTAMINATION BETWEEN CODECONTESTS AND TACO

We found that there is a non-zero overlapping between CodeContests training set and TACO test
set. Therefore, after gathering successful trajectories from Llama 3.1 70B on CodeContests training
set, we further conduct de-contamination to filter out solutions to the problems that overlap with
problems in TACO test set. We mined the contaminated problems as follows.

We note that exact string matching will result in a lot of contamination remaining undetected due to the
different latex parsing and format between benchmarks. We, therefore, use an off-the-shelf sentence
embedding model to compute sentence similarity between problem statements from CodeContests
training set and TACO test set. For each problem Ptaco in TACO test set, we set the threshold of
sentence similarity to 0.8 to obtain similar CodeContests problems {PCodeContests}. We take the first 5
solutions from Ptaco and run each solution against all the unit tests available of each similar problem
PCodeContests. If any of the solutions passes the unit tests, we label this as a contamination.

Our dataset mined from the Llama 3.1 70B output on CodeContests comprises solutions to 7238
problems in the training set. We detect 288 problems contaminated with the TACO test set, resulting
in solutions to 6950 problems after filtering. This process further removes, after the LSH-based
de-duplication, a total of 6422 entries from the single-turn trajectories and 7463 entries from the
multi-turn trajectories.

We show an example of a contaminated problem in CodeContests training set and TACO test set
below.

Contaminated CodeContests Training Set Problem

You have an array a with length n, you can perform operations. Each operation is like
this: choose two adjacent elements from a, say x and y, and replace one of them with
gcd(x, y), where gcd denotes the [greatest common divisor ](https ://en.wikipedia.org/
wiki/Greatest_common_divisor).

What is the minimum number of operations you need to make all of the elements equal to
1?

Input
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The first line of the input contains one integer n (1 ≤ n ≤ 2000) - the number of
elements in the array.

The second line contains n space separated integers a1, a2, . . . , an (1 ≤ ai ≤ 109) -
the elements of the array.

Output

Print -1, if it is impossible to turn all numbers to 1. Otherwise , print the minimum
number of operations needed to make all numbers equal to 1.

Examples

Input
5
2 2 3 4 6

Output

5

Input

4
2 4 6 8

Output

-1

Input

3
2 6 9

Output

4

Note

In the first sample you can turn all numbers to 1 using the following 5 moves:

* [2, 2, 3, 4, 6].
* [2, 1, 3, 4, 6]
* [2, 1, 3, 1, 6]
* [2, 1, 1, 1, 6]
* [1, 1, 1, 1, 6]
* [1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less
than 5 moves.

Contaminated TACO Test Set Problem

You have an array a with length n, you can perform operations. Each operation is like
this: choose two adjacent elements from a, say x and y, and replace one of them with
gcd(x, y), where gcd denotes the greatest common divisor.

What is the minimum number of operations you need to make all of the elements equal to
1?

-----Input -----

The first line of the input contains one integer n (1 ≤ n ≤ 2000) - the number of
elements in the array.
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The second line contains n space separated integers a\_1, a2, . . . , aN (1 ≤ $a_{i}$ ≤
$10^9$) - the elements of the array.

-----Output -----

Print -1, if it is impossible to turn all numbers to 1. Otherwise , print the minimum
number of operations needed to make all numbers equal to 1.

-----Examples -----
Input
5
2 2 3 4 6
Output
5
Input
4
2 4 6 8
Output
-1
Input
3
2 6 9
Output
4

-----Note -----

In the first sample you can turn all numbers to 1 using the following 5 moves:

[2, 2, 3, 4, 6]. [2, 1, 3, 4, 6] [2, 1, 3, 1, 6] [2, 1, 1, 1, 6] [1, 1, 1, 1, 6]
[1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less
than 5 moves.

J CONTAMINATION OF TACO TRAINING SET AND TEST SET

We also find that there are non-zero overlaps between TACO training set and test set. These overlaps,
despite having different URL, have near identical problem statement. We find that this could be
attributed to the fact that on the Codeforces platform, harder problems from easy contest (div2) could
appear also in harder contest (div1) as easier problems. We show an example below, in which in
training set the problem URL is https://codeforces.com/problemset/problem/841/C and in
test set it is https://codeforces.com/problemset/problem/840/A.

Contaminated TACO Training Set Problem

Leha like all kinds of strange things. Recently he liked the function F(n, k). Consider
all possible k-element subsets of the set [1, 2, . . . , n]. For subset find minimal

element in it. F(n, k) - mathematical expectation of the minimal element among all k-
element subsets.

But only function does not interest him. He wants to do interesting things with it. Mom
brought him two arrays A and B, each consists of m integers. For all i, j such that 1

≤ i, j ≤ m the condition Ai ≥ Bj holds. Help Leha rearrange the numbers in the array
A so that the sum <image > is maximally possible , where A' is already rearranged array.

Input

First line of input data contains single integer m (1 ≤ m ≤ 2·105) - length of arrays
A and B.

Next line contains m integers a1, a2, . . . , am (1 ≤ ai ≤ 109) - array A.

Next line contains m integers b1, b2, . . . , bm (1 ≤ bi ≤ 109) - array B.

Output

Output m integers a'1, a'2, . . . , a'm - array A' which is permutation of the array A.
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Examples

Input

5
7 3 5 3 4
2 1 3 2 3

Output

4 7 3 5 3

Input

7
4 6 5 8 8 2 6
2 1 2 2 1 1 2

Output

2 6 4 5 8 8 6

Contaminated TACO Test Set Problem

Leha like all kinds of strange things. Recently he liked the function F(n, k). Consider
all possible k-element subsets of the set [1, 2, . . . , n]. For subset find minimal

element in it. F(n, k) - mathematical expectation of the minimal element among all k-
element subsets.

But only function does not interest him. He wants to do interesting things with it. Mom
brought him two arrays A and B, each consists of m integers. For all i, j such that 1

≤ i, j ≤ m the condition A_{i} ≥ B_{j} holds. Help Leha rearrange the numbers in the
array A so that the sum $\sum_{i = 1}^{m} F(A_{i}^{\ prime}, B_{i})$ is maximally
possible , where A' is already rearranged array.

-----Input -----

First line of input data contains single integer m (1 ≤ m ≤ 2·10^5) - length of arrays
A and B.

Next line contains m integers a_1 , a_2 , . . . , a_{m} (1 ≤ a_{i} ≤ 10^9) - array A.

Next line contains m integers b_1 , b_2 , . . . , b_{m} (1 ≤ b_{i} ≤ 10^9) - array B.

-----Output -----

Output m integers a'1, a'_2, . . . , a'_{m} - array A' which is permutation of the array A
.

-----Examples -----
Input
5
7 3 5 3 4
2 1 3 2 3

Output
4 7 3 5 3

Input
7
4 6 5 8 8 2 6
2 1 2 2 1 1 2

Output
2 6 4 5 8 8 6
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K UPPER BOUND PERFORMANCE ESTIMATION

Throughout this paper, we regard the CodeContests test set as a black box and use the performance
of the whole benchmark as the signal for analyzing different reasoning, instruction, and execution
feedback. However, optimizing the performance of these prompt variants on a per-problem level will
further boost performance. In this section, we aim to provide an upper bound estimation if we select
the CoT prompt based on the oracle, i.e., the best test set performance of each problem in the set of
prompts. We do not intend the number presented in this section to be compared with the existing
methods presented in the main text, as the performance of the test set is exposed, but rather to provide
an estimation of the potential room for improvement.

K.1 ADAPTIVE COT PROMPT SELECTION

Based on our grid search of 63 reasoning × instruction prompts, presented in Appendix C.1 and
summarized in Table 3. We post-hoc select the reasoning and instruction prompts, which induce the
highest performance per problem rather than over the whole dataset. Table 12 presents the potential
room for single-turn performance improvement on CodeContests test set. The best combination per
problem is selected based on the best performance in terms of pass@100, and the pass@1 is reported
using the same prompts selected by pass@100.

Table 12: Upper bound adaptive prompts on CodeContests test set chosen post-hoc from the 63
prompt single-turn CoT grid search (200 samples per problems generated with temperature 1.0). A
combination refers to a reasoning × instruction prompt. The results for the best combination per
dataset are the same as the ones presented in Table 3.

Best combination per dataset Best combination per problem

pass@1 pass@100 pass@1 pass@100

Llama 3.0 8B 1.5 17.3 2.5 22.6
Llama 3.0 70B 5.3 33.1 8.3 42.4
Llama 3.1 8B 4.0 26.1 5.3 41.5
Llama 3.1 70B 16.1 54.1 18.3 63.1

K.2 ADAPTIVE EXECUTION FEEDBACK GRANULARITY SELECTION

We show in Table 13 the post-hoc selection of execution feedback granularity based on Table 8 to
estimate the upper bound if we select the best granularity per problem in the multi-turn setting. Since
in Table 8, 1@3 is estimated from 20 trajectories generated with temperature 0.2 and 100@300
is estimated from 200 trajectories generated with temperature 1.0, we report the upper bound by
selecting the best execution feedback granularity separately in both setting.

Table 13: Upper bound adaptive execution feedback (EF) on CodeContests test set chosen post-hoc
from the 4 execution feedback granularity: binary, failed tests, failed & passed tests, LDB. The
number for the best dataset EF is extracted from Table 8. All experiments are in the multi-turn setup
with a maximum of 3 turns.

Best dataset EF Best problem EF

1@3 100@300 1@3 100@300

Llama 3.1 8B 10.9 30.9 13.1 34.8
Llama 3.1 70B 29.5 56.2 33.6 58.2
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