
Functorial Clustering via Simplicial Complexes

Dan Shiebler
University of Oxford

daniel.shiebler@kellogg.ox.ac.uk

Abstract

We adapt previous research on topological unsupervised learning to characterize
a class of hierarchical overlapping clustering algorithms as functors that factor
through a category of simplicial complexes. We first develop a pair of adjoint
functors that map between simplicial complexes and the outputs of clustering algo-
rithms. Next, we introduce the maximal and single linkage clustering algorithms as
the respective composition of the flagification and connected components functors
with a finite singular set functor. We then demonstrate that all other hierarchical
overlapping clustering functors are refined by maximal linkage and refine single
linkage.

1 Introduction
Say we have a finite dataset X that has been sampled from some larger space X according to a
probability measure µX over X. Clustering algorithms group points in X together. In order for
a clustering algorithm to be useful, the properties of its output must be somewhat in line with the
structure of its input. One way to formalize this is to cast these algorithms as functors, or maps
between categories that preserve identity morphisms and morphism composition. We can use this
perspective to find commonalities between different algorithms, derive extensions of algorithms that
preserve functoriality and identify modifications that break it. For example, Carlsson et al [CM13]
use a functorial perspective to demonstrate that a broad class of non-overlapping clustering algorithms
factor through single linkage and to develop a simple framework for generating clustering algorithms.

Our novel contributions include:

1. Definitions of maximal and single linkage in terms of the finite fuzzy singular set functor.
2. A reformulation of existing results on hierarchical overlapping clustering algorithms

[CGHS16] in terms of functors that factor through a category of simplicial complexes.
3. A functorial strategy for using a finite clustering to partition an infinite space.

2 Uber-Metric Spaces, Simplicial Complexes, and Coverings
To stay consistent with McInnes et al [MHM18, McI19] and Spivak [Spi12], we represent datasets
with finite uber-metric spaces (X, dX). These metric-space-like objects permit d(x1, x2) to be
infinite and do not require d(x1, x2) = 0 to imply x1 = x2.
Definition 2.1. In the category UMet objects are finite uber-metric spaces and morphisms are
non-expansive maps, or functions f : X → Y such that dY (f(x1), f(x2)) ≤ dX(x1, x2).

Clustering algorithms group points in an uber-metric space together based on their distances. A
useful tool for reasoning about groups of points in a finite set X is a finite simplicial complex:
Definition 2.2. A finite simplicial complex is a family of finite sets that is closed under taking
subsets.

The finite sets in the simplicial complex are called faces, and the n-simplices are subcomplexes
that contain all of the subsets of a single (n + 1)-element face in the complex. For example, the

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



0-simplices (also called vertices) are points, the 1-simplices are pairs of points, the 2-simplices are
triples of intersecting 1-simplices that we can visualize as triangles, etc. Note that any n-simplex in a
simplicial complex is completely determined by the set of vertices that span it. We denote the set of
n-simplices of the simplicial complex SX as SX [n].
Definition 2.3. The category SCpx has finite simplicial complexes as objects. The morphisms
between the simplicial complex SX with vertex set (0-simplices) X and SY with vertex set Y are
simplicial maps, or functions f : X → Y such that if the vertices {x1, x2, ..., xn} span an n-simplex
in SX , then the vertices {f(x1), f(x2), ..., f(xn)} span an m-simplex in SY , where m ≤ n.

A particularly important class of simplicial complexes is the class determined by graphs:
Definition 2.4. A flag complex is a simplicial complex which is generated by the cliques in a graph:
the 0-simplices are the vertices, the 1-simplices are the pairs of vertices connected by an edge, and
the n-simplices are the n-element cliques.

The covers formed from the maximal simplices of flag complexes are particularly useful, since they
are uniquely determined by the 2-element subsets of their elements [CGHS16]. In Section 3 we will
define overlapping clustering algorithms as functors that map uber-metric spaces to these covers.
Definition 2.5. Given a set X , a non-nested flag cover CX of X is a cover of X such that: (1) if
A,B ∈ CX and A ⊆ B, then A = B, (2) the simplicial complex with vertices corresponding to the
elements of X and faces all finite subsets of the sets in CX is a flag complex.

Definition 2.6. The category Cov has tuples (X, CX) as objects where CX is a non-nested flag
cover of the finite set X . The morphisms between (X, CX) and (Y, CY ) are functions f : X → Y
where for any set S in CX there exists some set S′ in CY such that f(S) ⊆ S′.

2.1 Flagification

Given a non-nested flag cover (X, CX) in Cov, we can generate a flag complex by treating the sets
in CX as the maximal simplices of the complex and adding in all of the subsets of these sets as the
lower-dimensional simplices.
Definition 2.7. The functor Sfl : Cov→ SCpx maps the tuple (X, CX) in Cov to the simplicial
complex SX whose n-simplices are the n-element subsets of sets in CX . Note that the set of vertices
in SX is X . Sfl acts as the identity on morphisms.

Next, note that we can upgrade any cover U of a set X into a non-nested flag cover by iteratively
adjoining to U any clusters mandated by the flag condition, and then removing all the non-maximal
ones [CGHS16]. This procedure is called flagification. For example, consider some simplicial
complex SX with vertex set X . The simplices of SX form a cover of X , which we can convert to a
flag cover. We can use this procedure to develop the following functor:
Definition 2.8. The functor Flag : SCpx → Cov maps the simplicial complex SX to the tuple
(X, CX) where CX is the flagification of the covering formed from the simplices of SX . Flag acts as
the identity on morphisms.

Proposition 1. There exists an adjunction Sfl a Flag. (Proof in 5.1)

Another important functor is the connected components functor:
Definition 2.9. The functor π0 : SCpx → Cov has the same action on morphisms as Flag but
sends SX to the tuple (X, CX) where CX is the set of connected components of SX .

2.2 Fuzzy Simplicial Complexes and Coverings

In order to examine how points in an uber-metric space group together at different scales, we switch
to fuzzy simplicial complexes, which are a simplification of Spivak’s fuzzy simplicial sets [Spi12].
In a fuzzy simplicial complex, each simplex is present with a certain strength. We represent simplex
strengths with elements in the partially ordered set I = (0, 1] under the relation ≤.
Definition 2.10. A fibered fuzzy simplicial complex is a functor FX : Iop → SCpx such that for
any morphism a ≤ a′ in Iop, the simplicial map FX(a ≤ a′) acts as the identity on 0-simplices.

In a fibered fuzzy simplicial complex FX the vertex set of the simplicial complex FX(a) is the same
for all a in (0, 1]. For simplicity we will also call this set the vertex set of FX . The functoriality of
FX then implies that for a, a′ ∈ (0, 1] such that a ≤ a′, if the n-simplex σ is in FX(a′) then σ is
also in FX(a). The strength of σ in the fibered fuzzy simplicial complex FX is the largest a in (0, 1]

2



such that σ is in FX(a). Note also that for any S ⊆ (0, 1] and fibered fuzzy simplicial complex FX ,
the collection {FX(a) | a ∈ S} is a filtration of simplicial complexes [CM17].
Definition 2.11. The objects in the category FSCpx are fibered fuzzy simplicial complexes and the
morphisms are natural transformations.

We use a similar construction to build a category of fuzzy non-nested covers, which are similar to
Culbertson et al’s persistent covers [CGHS16, CGS18]:
Definition 2.12. The objects in the category FCov are functors FX : Iop → Cov such that Sfl◦FX
is a fibered fuzzy simplicial complex. The morphisms in FCov are natural transformations.

We can now define the functors (Sfl ◦−) : FCov→ FSCpx and (Flag ◦−) : FSCpx→ FCov
in order to build the functor FlagCpx = (Sfl ◦−)◦ (Flag ◦−), which converts any fuzzy simplicial
complex into a fuzzy simplicial flag complex.

2.3 The Realization and Singular Set Functors

Spivak [Spi12] and McInnes et al [MHM18] describe the adjoint functors FinReal and FinSing
which act similarly to the Realization and Singular Set functors from algebraic topology and transform
between fuzzy simplicial sets and uber-metric spaces. In this subsection we slightly adapt these
functors to transform between fibered fuzzy simplicial complexes and uber-metric spaces.
Definition 2.13. The functor Pair : UMet → FSCpx sends the uber-metric space (X, dX) ∈
UMet to the fibered fuzzy simplicial complex FX : Iop → FSCpx where for a ∈ (0, 1], FX(a) is a
simplicial complex whose set of 0-simplices is X and whose 1-simplices are the pairs {x1, x2} ⊆ X
such that dX(x1, x2) ≤ − log(a). FX(a) has no n-simplices for n > 1. Pair maps the morphism
f : X → Y to the natural transformation whose component at a is f .
Proposition 2. Pair is a functor. (Proof in 5.2)

We use − log because it is a monotonically decreasing function from (0, 1] to [0,∞). That is, if
dX(x1, x2) = 0, then the strength of the simplex {x1, x2} in the fibered fuzzy simplicial complex
Pair (X, dX) is 1, whereas when dX(x1, x2) approaches∞, the strength of the simplex {x1, x2}
approaches 0. We can now define the functor FinSing : UMet→ FSCpx as:

FinSing = FlagCpx ◦ Pair
For a ∈ (0, 1], FinSing(X, dX)(a) is a flag complex in which the set {x1, x2, ..., xn} ⊆ X forms
a simplex if all pairwise distances between points in the set are less than − log(a). This is the
Vietoris-Rips Complex of (X, dX) at − log(a).
Definition 2.14. The functor FinReal : FSCpx→ UMet maps FX : Iop → SCpx with vertex
set X to (X, dX) such that dX(x1, x2) = inf{− log(a) | a ∈ (0, 1], {x1, x2} ∈ FX(a)[1]}. On
morphisms, FinReal sends a natural transformation µ : FX → FY to the function determined
by µ’s actions on the vertex set of FX . Note that this function must be non-expansive since for all
a ∈ (0, 1], if {x1, x2} ∈ FX(a)[1] then {f(x1), f(x2)} is in FY (a)[0] or FY (a)[1].
Intuitively, FinReal FX is an uber-metric space where the distance between the points x1, x2 is
determined by the strength of the 1-simplex connecting them (if any).
Proposition 3. There exists an adjunction FinReal a FinSing. (Proof in 5.3)

3 Clustering With Overlaps
Overlapping clustering algorithms accept finite uber-metric spaces (X, dX) and return non-nested
flag covers of X .
Definition 3.1. A flat clustering functor is a functor C : UMet→ Cov that is the identity on the
underlying set.

Now define Λ1
ε to be the two-element metric space where the distance between the two elements is

ε ∈ R≥0. Most useful flat clustering functors are in the following class.
Definition 3.2. A non-trivial flat clustering functor C is a flat clustering functor such that there
exists a clustering parameter δC ∈ R≥0 where C(Λ1

ε) is two singleton clusters for any ε > δC and
a single two point cluster for any ε ≤ δC
Intuitively, the clustering parameter δC is the maximum distance at which the clustering functor will
identify two points as being part of the same cluster.

3



3.1 Extrapolating a Clustering

In practice we often need to extrapolate a clustering to out-of-sample points. Say we have a flat
clustering functor C, a not-necessarily-finite uber-metric space (X, dX), and some finite X ⊂ X. We
want to produce a covering of (X, dX) by grouping the points in X−X into the sets in C(X, dX).

To do this, first define a functor CX∪{x} that maps uber-metric spaces of the form (X ∪ {x}, dX)
to the maximal cover that is refined by C(X, dX) ∪ {{x}} and refines C(X ∪ {x}, dX). The cover
CX∪{x}(X ∪ {x}, dX) is identical to C(X, dX), except some of the sets in this cover will also
contain the point x. Intuitively, CX∪{x} assigns each x ∈ X−X to the sets in C(X, dX) that contain
the points inX that share a cluster with x in C(X ∪{x}, dX). In order to stitch together each of these
assignments into a cover of X, we can simply take the colimit of the functor CX∪{x}. Intuitively,
this colimit is a cover of X that is refined by C(X, dX) ∪ {{xi} | xi ∈ X−X}.

3.2 Hierarchical Clustering Functor

One of the largest challenges when building clustering algorithms is the difficulty in capturing
structure that exists at different scales. The Kleinberg Impossibility Theorem states that any scale
invariant clustering algorithm must sacrifice either surjectivity or consistency [Kle03]. One way to
get around this is to generate a series of clusterings, each at a different scale:
Definition 3.3. A hierarchical clustering functor is a functor H : UMet→ FCov such that for
a ∈ (0, 1], H(−)(a) : UMet→ Cov is a flat clustering functor.
Definition 3.4. A non-trivial hierarchical clustering functor H is a hierarchical clustering functor
such that for all a ∈ (0, 1], H(−)(a) : UMet→ Cov is a non-trivial flat clustering functor with
clustering parameter δH,a.

Hierarchical clustering functors are similar to Culbertson et al’s sieving functors [CGHS16].

3.3 Maximum Linkage and Single Linkage

The single linkage algorithm SL generates a covering of X such that the points x1, x2 ∈ X lie in
the same cluster with strength at least a if there exists a sequence of points x1, xi, xi+1, ..., xi+n, x2
such that the largest distance between any adjacent points in the sequence is no larger than − log(a).
In contrast, the maximal linkage algorithm ML generates a covering of X such that the points
x1, x2 ∈ X lie in the same cluster with strength at least a if the distance between them is no larger
than − log(a). Given a uber-metric space (X, dX), we can generate the maximal linkage and single
linkage clusterings by first forming the Vietoris-Rips complex with the FinSing functor and then
taking the maximal simplices and the connected components of this complex respectively.

ML = (Flag ◦ −) ◦ FinSing SL = (π0 ◦ −) ◦ FinSing
Note that the functors (Flag ◦ −) and (π0 ◦ −) respectively map the functor FX ∈ FSCpx to
Flag ◦ FX and π0 ◦ FX .
Proposition 4. ML and SL are non-trivial hierarchical clustering functors. (Proof in 5.4)

Single linkage always generates a partition of X , whereas maximal linkage does not. Furthermore,
unlike with single linkage it is possible to reconstruct an uber-metric space from its hierarchical
maximal linkage clustering:
Proposition 5. There exists an adjunction FinReal ◦ (Sfl ◦ −) a ML. (Proof in 5.5)

Intuitively, single linkage and maximal linkage clustering lie on two ends of a spectrum of clustering
refinement. Any other non-trivial hierarchical clustering functor lies between them. Formally, we can
make the following claim, which is inspired by Theorem 8 in Culbertson et al [CGHS16]:
Proposition 6. Suppose H : UMet→ FCov is a non-trivial hierarchical clustering functor such
that for all a ∈ (0, 1], the functor H(−)(a) : UMet → Cov has clustering parameter δH,a and
defineWH(a) = e−δH,a . Then there exist natural transformations with inclusion maps as components
fromML(−)(WH(−)) to H and from H to SL(−)(WH(−)). (Proof in 5.6)

4 Conclusion
In this paper we introduce a framework for describing clustering algorithms as functors between
categories of uber-metric spaces, simplicial complexes, and coverings. This strategy allows us to
directly model the invariants an algorithm preserves, reason about similarities and hierarchies between
algorithms or characterize them based on their functorial properties.

4



References
[CGHS16] Jared Culbertson, Dan P Guralnik, Jakob Hansen, and Peter F Stiller. Consistency

constraints for overlapping data clustering. arXiv preprint arXiv:1608.04331, 2016.

[CGS18] Jared Culbertson, Dan P Guralnik, and Peter F Stiller. Functorial hierarchical clustering
with overlaps. Discrete Applied Mathematics, 236:108–123, 2018.

[CM13] Gunnar Carlsson and Facundo Mémoli. Classifying clustering schemes. Foundations of
Computational Mathematics, 13(2):221–252, 2013.

[CM17] Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis:
fundamental and practical aspects for data scientists. arXiv preprint arXiv:1710.04019,
2017.

[Kle03] Jon M Kleinberg. An impossibility theorem for clustering. In Advances in Neural
Information Processing Systems, pages 463–470, 2003.

[McI19] Leland McInnes. Topological methods for unsupervised learning. In International
Conference on Geometric Science of Information, pages 343–350. Springer, 2019.

[MHM18] Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approxi-
mation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[Spi12] David I Spivak. Metric realization of fuzzy simplicial sets. Self published notes, 2012.

5 Appendix
5.1 Proof of Proposition 1

Proof. We will show that there exists an isomorphism:

SCpx[Sfl c, s] ' Cov[c, F lag s]

That is natural over s ∈ ob(SCpx) and c ∈ ob(Cov).

Consider first the function fc,s : SCpx[Sfl c, s] → Cov[c, F lag s] that sends a simplicial map
h : Sfl c→ s to the function defined by its action on vertices. We will show that this function is a
morphism in Cov[c, F lag s]. Consider the set S ∈ c. For any x1, x2 ∈ S the simplex {x1, x2} must
be in Sfl c. Since h is a simplicial map this implies that the simplex {h(x1), h(x2)} is in s, which
implies that there must exist some set in Flag s that contains {x1, x2} and therefore S.

Next, consider the function gc,s : Cov[c, F lag s]→ SCpx[Sfl c, s] that sends a function h : c→
Flag s to the map that applies h to the vertices of Sfl c. We will show that this is a simplicial map in
SCpx[Sfl c, s]. Note that since Sfl c is a flag complex we only need to show that this simplicial
map preserves 1-simplices. Consider the 1-simplex {x1, x2} ∈ Sfl c. There must exist some set
S in c such that {x1, x2} ⊆ S, which implies that there exists some set S′ in Flag s such that
{h(x1), h(x2)} ⊆ S. Then we can conclude that the simplex {h(x1), h(x2)} ∈ s.
Since these maps do not modify the action of a function over vertices it is clear that they are inverses
and are both natural in c and s.

5.2 Proof of Proposition 2

Proof. Pair trivially preserves identity and composition, so we just need to show that for a ∈ (0, 1],
the function h is a simplicial map from Pair(X, dX)(a) to Pair(Y, dY )(a). Since Pair(X, dX)(a)
is a flag complex, we simply need to demonstrate that h preserves 1-simplices. Now suppose {x1, x2}
is a simplex in Pair(X, dX)(a). Then by the definition of Pair we have dX(x1, x2) ≤ − log(a),
which by the non-expansiveness of h implies that dY (h(x1), h(x2)) ≤ − log(a), so {h(x1), h(x2)}
is a simplex in Pair(Y, dY )(a)

5



5.3 Proof of Proposition 3

Proof. We will show that there exists an isomorphism:

UMet[FinReal c,m] ' FSCpx[c, F inSing m]

That is natural over m ∈ ob(UMet) and c ∈ ob(FSCpx).

Consider first the function fc,m : UMet[FinReal c,m] → FSCpx[c, F inSing m] that sends
a non-expansive map h : FinReal c → m to the simplicial map that applies h to the vertices of
c. We will show that this function is a simplicial map in FSCpx[c, F inSing m]. Note that since
FinSing m is a flag complex we only need to show that this simplicial map preserves 1-simplices.
For any a ∈ (0, 1] suppose there exists a 1-simplex {x1, x2} in c(a). Then the distance between x1
and x2 in FinReal c must be less than − log(a), which implies that the distance between h(x1) and
h(x2) in m must be less than − log(a) as well. This implies that {h(x1), h(x2)} spans a simplex in
(FinSing m)(a)

Next, consider the function gc,m : FSCpx[c, F inSing m]→ UMet[FinReal c,m] that sends a
simplicial map h : c→ FinSing m to the function that is defined by the action of h on the vertices
of FinReal c. We will show that this is a non-expansive map in UMet[FinReal c,m]. Suppose
that for some a ∈ (0, 1] the distance between the points x1, x2 in FinReal c is less than − log(a).
Then the simplex {x1, x2} exists in c with strength at least a, so the simplex {h(x1), h(x2)} exists
in FinSing m with strength at least a. This implies that the distance between h(x1), h(x2) in m is
less than − log(a).

It is clear that both of these functions are natural in c and s and that they are inverses.

5.4 Proof of Proposition 4

Proof. First, we note thatML and SL are hierarchical clustering functors. Given an uber-metric
space (X, dX), the vertex set of FinSing (X, dX) is X . Since both (Flag ◦ −) and (π0 ◦ −) map
a fuzzy simplicial complex with vertex set X to a fuzzy covering of X ,ML(−)(a) and SL(−)(a)
commute with the forgetful functor.

Next,ML and SL are non-trivial since for a ∈ (0, 1] the functorsML(−)(a) and SL(−)(a) have
the clustering parameter − log(a).

5.5 Proof of Proposition 5

Proof. SinceML = (Flag ◦ −) ◦ FinSing we can express this as

FinReal ◦ (Sfl ◦ −) a (Flag ◦ −) ◦ FinSing

which holds by the composition of adjunctions since FinReal a FinSing by Proposition 3 and
(Sfl ◦ −) a (Flag ◦ −) by Proposition 1.

5.6 Proof of Proposition 6

Proof. First, we construct a natural transformation fromML(−)(WH(−)) to H by demonstrating
that for all (X, dX) ∈ UMet, a ∈ (0, 1], the identity function on X is a morphism in Cov from
ML(X, dX)(WH(a)) to H(X, dX)(a). Consider the set {x1, x2, ..., xn} ∈ ML(X, dX)(WH(a)).
The maximum distance between any two points in this set must less than δH,a. Therefore, for any
xi, xj in this collection, there exists a morphism in UMet from Λ1

δH,a
to (X, dX) that sends the

two elements of Λ1
δH,a

to xi and xj respectively. Since H is a functor and H(Λ1
δH,a

) is a single two-
point cluster, this implies that there is a set in the cover H(X, dX)(a) that contains both xi and xj .
Since H(X, dX)(a) is flag, there must exist a set S ∈ H(X, dX)(a) such that {x1, x2, ..., xn} ⊆ S,
which implies that the identity function on X is a morphism in Cov fromML(X, dX)(WH(a)) to
H(X, dX)(a).

Next, we construct a natural transformation from H to SL(−)(WH(−)) by demonstrating that
for all a ∈ (0, 1], the identity function on X is a morphism in Cov from H(X, dX)(a) to
SL(X, dX)(WH(a)). Suppose there exist x1, x2 ∈ X such that there is no S ∈ SL(X, dX)(WH(a))
where {x1, x2} ⊆ S. Then for some ε > δH,a there exists a morphism in UMet that sends all x′1
that share a set in SL(X, dX)(WH(a)) with x1 and all x′2 that share a set in SL(X, dX)(WH(a))

6



with x2 to different points. Since H is a functor this implies that there does not exist any S in
H(X, dX)(a) such that {x1, x2} ⊆ S. We can therefore conclude that the identity function on X is
a morphism in Cov from H(X, dX)(a) to SL(X, dX)(WH(a)).

7


	Introduction
	Uber-Metric Spaces, Simplicial Complexes, and Coverings 
	Flagification
	Fuzzy Simplicial Complexes and Coverings
	The Realization and Singular Set Functors

	Clustering With Overlaps
	Extrapolating a Clustering
	Hierarchical Clustering Functor
	Maximum Linkage and Single Linkage

	Conclusion 
	Appendix 
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6


