
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2025

α-DIVERGENCE LOSS FUNCTION FOR NEURAL DEN-

SITY RATIO ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Density ratio estimation (DRE) is a fundamental machine learning technique
for capturing relationships between two probability distributions. State-of-the-
art DRE methods estimate the density ratio using neural networks trained with
loss functions derived from variational representations of f -divergence. However,
existing methods face optimization challenges, such as overfitting due to lower-
unbounded loss functions, biased mini-batch gradients, vanishing training loss
gradients, and high sample requirements for Kullback-Leibler (KL) divergence
loss functions. To address these issues, we focus on α-divergence, which provides
a suitable variational representation of f -divergence. Subsequently, a novel loss
function for DRE, the α-divergence loss function (α-Div), is derived. α-Div is
concise but offers stable and effective optimization for DRE. The boundedness
of α-divergence provides the potential for successful DRE with data exhibiting
high KL-divergence. Our numerical experiments demonstrate the effectiveness in
optimization using α-Div. However, the experiments also show that the proposed
loss function offers no significant advantage over the KL-divergence loss function
in terms of RMSE for DRE. This indicates that the accuracy of DRE is primarily
determined by the amount of KL-divergence in the data and is less dependent on
α-divergence.

1 INTRODUCTION

Density ratio estimation (DRE), a fundamental technique in various machine learning domains, es-
timates the density ratio r∗(x) = q(x)/p(x) between two probability densities using two sample
sets drawn separately from p and q. Several machine learning methods, including generative mod-
eling (Goodfellow et al., 2014; Nowozin et al., 2016; Uehara et al., 2016), mutual information esti-
mation and representation learning (Belghazi et al., 2018; Hjelm et al., 2018), energy-based model-
ing (Gutmann & Hyvärinen, 2010), and covariate shift and domain adaptation (Shimodaira, 2000;
Huang et al., 2006), involve problems where DRE is applicable. Given its potential to enhance a
wide range of machine learning methods, the development of effective DRE techniques has gar-
nered significant attention.

Recently, neural network-based methods for DRE have achieved state-of-the-art results. These
methods train neural networks as density ratio functions using loss functions derived from varia-
tional representations of f -divergence (Nguyen et al., 2010), which are equivalent to density-ratio
matching under Bregman divergence (Sugiyama et al., 2012). The optimal function for a variational
representation of f -divergence, through the Legendre transform, corresponds to the density ratio.

However, existing neural network methods suffer from several issues. First, an overfitting phe-
nomenon, termed train-loss hacking by Kato & Teshima (2021), occurs during optimization when
lower-unbounded loss functions are used. Second, the gradients of loss functions over mini-
batch samples provide biased estimates of the full gradient when using standard loss functions de-
rived directly from the variational representation of f -divergences (Belghazi et al., 2018). Third,
loss function gradients can vanish when the estimated probability ratios approach zero or infinity
(Arjovsky & Bottou, 2017). Finally, optimization with a Kullback–Leibler (KL)-divergence loss
function often fails on high KL-divergence data because the sample requirement for optimization
increases exponentially with the true amount of KL-divergence (Poole et al., 2019; Song & Ermon,
2019; McAllester & Stratos, 2020).

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

To address these problems, this study focuses on α-divergence, a subgroup of f -divergence, which
has a sample complexity independent of its ground truth value. We then present a Gibbs density
representation for a variational form of the divergence to obtain unbiased mini-batch gradients, from
which we derive a novel loss function for DRE, referred to as the α-divergence loss function (α-Div).
Despite its conciseness, α-Div offers stable and effective optimization for DRE.

Furthermore, this study provides technical justifications for the proposed loss function. α-Div has a
sample complexity that is independent of the ground truth value of α-divergence and provides unbi-
ased mini-batch gradients of training losses. Additionally, α-Div is lower-bounded when α is within
a specific interval, thereby preventing train-loss hacking during optimization. By selecting α from
this interval, we also avoid vanishing gradients in neural networks when they reach extreme local
minima. We empirically validate our approach through numerical experiments using toy datasets,
which demonstrate the stability and efficiency of the proposed loss function during optimization.

However, we observe that the root mean squared error (RMSE) of the estimated density ratios in-
creases significantly for data with higher KL-divergence when using the proposed loss function. The
same phenomenon is observed with the KL-divergence loss function. These results suggest that the
accuracy of DRE is primarily determined by the amount of KL-divergence in the data and is less
influenced by the α-divergence, providing insights into the accuracy of downstream tasks in DRE
using f -divergence loss functions.

The key contributions of this study are as follows: (1) A novel loss function for DRE, α-Div, is
proposed, offering a concise solution to the instability and biased gradient issues in existing f -
divergence loss functions. (2) Technical justifications for the proposed loss function are presented.
(3) We empirically confirm the stability and efficiency of the proposed loss function in optimization.
(4) We find that RMSE in DRE increases significantly as the KL-divergence in the data rises when
using the α-divergence loss function, indicating that DRE and KL-divergence estimation accuracy
is primarily determined by the amount of KL-divergence in the data, rather than the α-divergence.

2 PROBLEM SETUP

Problem definition. P and Q are probability distributions on Ω ⊂ Rd with unknown probability
densities p and q, respectively. We assume p(x) > 0 ⇔ q(x) > 0 at almost everywhere x ∈ Ω.

The goal of DRE is to accurately estimate r∗(x) = q(x)/p(x) from given i.i.d. samples X̂P [R] =

{xpi }Ri=1 ∼ p and X̂Q[S] = {xqi }Si=1 ∼ q.

Additional notation. EP [·] denotes an expectation under the distribution P : EP [φ(x)] =∫
Ω φ(x)dP (x), where φ(x) is a measurable function over Ω. ÊP [R][·] denotes the empirical expec-

tation of X̂P [R]: ÊP [R][φ(x)] =
∑R

i=1 φ(x
p
i)/R. Variables of a function or the superscript variable

“ [R]”of ÊP [R] are omitted when unnecessary and represented as EP [φ] or ÊP [φ]. Similarly,

notations EQ[·] and ÊQ[S][·] are defined. E[·] is written for EP [EQ[·]].

3 DRE VIA f -DIVERGENCE VARIATIONAL REPRESENTATIONS AND ITS

MAJOR PROBLEMS

In this section, we introduce DRE using f -divergence variational representations and f -divergence
loss functions. First, we review the definition of f -divergences. Next, we identify four major issues
with existing f -divergence loss functions: the overfitting problem with lower-unbounded loss func-
tions, biased mini-batch gradients, vanishing training loss gradients, and high sample requirements
for Kullback-Leibler (KL) divergence loss functions.

3.1 DRE VIA f -DIVERGENCE VARIATIONAL REPRESENTATION

First, we review the definition of f -divergences.

Definition 3.1 (f -divergence). The f -divergence Df between two probability measures P and
Q, which is induced by a convex function f satisfying f(1) = 0, is defined as Df (Q||P) =
EP [f(q(x)/p(x))].

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2025

Many divergences are specific cases obtained by selecting a suitable generator function f . For
example, f(u) = u · log u corresponds to KL-divergence.

Then, we derive the variational representations of f -divergences using the Legendre transform of
the convex conjugate of a twice differentiable convex function f , f∗(ψ) = supu∈R

{ψ · u − f(u)}
(Nguyen et al., 2007):

Df(Q||P) = sup
φ≥0

{
EQ
[
f ′(φ)

]
− EP

[
f∗(f ′(φ))

]}
, (1)

where the supremum is taken over all measurable functions φ : Ω→ R with EQ[|f ′(φ)|] <∞ and
EP [|f∗(f ′(φ))|] <∞. The maximum value is achieved at φ(x) = q(x)/p(x).

By replacing φ with a neural network model φθ , the optimal function for Equation (1) is trained
through back-propagation using an f -divergence loss function, such that

L(R,S)f (φθ) = −
{
ÊQ[S]

[
f ′(φθ)

]
− ÊP [R]

[
f∗(f ′(φθ))

]}
, (2)

where φθ is a real-valued function, the superscript variable“ (R,S)”is omitted when unnecessary
and represented as Lf (·). As shown in Table 1, we list pairs of convex functions and the correspond-
ing loss functions Lf (φθ) in Equation (2) for several f -divergences.

3.2 TRAIN-LOSS HACKING PROBLEM

When f -divergence loss functions Lf (φθ), as defined in Equation (2), are not lower-bounded, over-

fitting can occur during optimization. For example, in the case of the Pearson χ2 loss function,

Lchi-sq = −2 · ÊQ
[
φθ
]
+ ÊP

[
φ2θ
]
, overfitting occurs as follows. Since the term −2 · ÊQ

[
φθ
]

is
not lower-bounded, it can approach negative infinity, causing the entire loss function to diverge to

negative infinity as φθ(x
q
i) → ∞ for x

q
i ∈ X̂Q[S]. Therefore, Lchi-sq → −∞ when φθ(x

q
i) → ∞

for some x
q
i ∈ X̂Q[S]. As shown in Table 1, both the KL-divergence and Pearson χ2 loss functions

are not lower-bounded, and hence, are prone to overfitting during optimization. This phenomenon
is referred to as train-loss hacking by Kato & Teshima (2021).

3.3 BIASED GRADIENT PROBLEM

Neural network parameters are optimized by summarizing the gradients of the loss function for each
mini-batch. It is desirable for these gradients to be unbiased, i.e., E

[
∇θLf (θ)

]
= ∇θE

[
Lf (θ)

]
holds. However, standard f -divergence loss functions derived solely from Equation (2) often result
in biased gradients. To illustrate this, consider the case of a KL-divergence loss function, where

f(u) = u · log u. The loss function is given by LKL(φθ) = −ÊQ
[
logφθ

]
+ ÊP

[
φθ
]
− 1, and

the gradient is expressed as ∇θLKL(φθ) = −ÊQ
[
∇θ(log φθ)

]
+ ÊP

[
∇θ(φθ)

]
. Notably, it does

not hold that ∇θEQ
[
logφθ

]
= EQ

[
∇θ(log φθ)

]
because EQ

[
·
]

represents an integral over Ω.

For example, consider φθ = |x − θ|, where x ∈ [0, 1] and θ ∈ (0, 1). Then, ∂
∂θE[logφθ(x)] =

∂
∂θ

∫ 1

0
log |x− θ| dx = − log(1− θ), whereas E[∂∂θ logφθ(x)] =

∫ θ
0

1
θ−xdx+

∫ 1

θ
1

x−θdx =∞.

Conversely, this equality does hold for the sample mean ÊQ, as shown above. Therefore, we find

that ∇θE
[
LKL(φθ)

]
6= E

[
∇θLKL(φθ)

]
. To mitigate this issue, Belghazi et al. (2018) introduced

a bias-reduction method for stochastic gradients in KL-divergence loss functions.

3.4 VANISHING GRADIENTS PROBLEM

The vanishing-gradient problem in optimizing divergences is a well-known issue in GANs
(Arjovsky & Bottou, 2017). To address the vanishing gradients of training losses, loss functions
with penalty terms have been proposed (Gulrajani et al., 2017; Roth et al., 2017).

We believe this problem occurs when the following two conditions are satisfied: (i) The loss function
causes slight updates to the model parameters, and (ii) Updating the model parameters causes min-
imal changes in the model outputs. Therefore, the problem can arise when the following relations
hold:

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2025

E
[
∇θLf (φθ)

]
= ~0︸ ︷︷ ︸

(i)

& EQ
[
∇θφθ

]
= ~0 & EP

[
∇θφθ

]
= ~0︸ ︷︷ ︸

(ii)

, (3)

where ~0 denotes a vector of zeros the same length as the model gradient.

In Equation (3), (i) represents the vanishing gradient of the loss function. Notably, (i) does not
necessarily lead to (ii). For example, in the case of the KL divergence loss, the gradient is expressed
as E

[
∇θLKL(φθ)

]
= −EQ

[
∇θφθ/φθ

]
+ EP

[
∇θφθ

]
. Then, we observe that (ii) generally cannot

be derived from E
[
∇θLKL(φθ)

]
= ~0. Additionally, (ii) serves as a condition that ensures (i)

persists. In fact, since (ii) is equivalent to the condition where no updates of the model parameters
occur, the model parameters are not updated under (ii). Consequently, the model’s predictions do
not change, yielding the same results as the current step. Thus, when (i) and (ii) are satisfied, the
loss gradient remains near zero.

Now, consider a case where the estimated density ratio becomes either very small or very large,
leading to sufficient conditions for Equation (3) to hold. Table 2 lists the gradient formulas for
divergence loss functions from Table 1, along with the asymptotic behavior of the loss gradients as
φθ → 0 or φθ → ∞. These results demonstrate that major f -divergence loss functions satisfy the
conditions for Equation (3), such that E

[
∇θLf (φθ)

]
→ c1 · EQ

[
∇θφθ

]
+ c2 · EP

[
∇θφθ

]
, where

c1 and c2 are constants, as φθ → 0 or φθ →∞.

In summary, all the divergence loss functions in Tables 1 and 2 can experience vanishing gradients
when the estimated density ratio approaches extreme local minima.

3.5 SAMPLE SIZE REQUIREMENT PROBLEM FOR KL-DIVERGENCE

The sample complexity of the KL-divergence is O(eKL(Q||P)), which implies that

lim
N→∞

N ·Var
[
K̂LN(Q||P)

]
≥ eKL(Q||P) − 1, (4)

where K̂LN(Q||P) represents an arbitrary KL-divergence estimator for sample sizeN using a vari-
ational representation of the divergence, and KL(Q||P) represents the true value of KL-divergence
(Poole et al., 2019; Song & Ermon, 2019; McAllester & Stratos, 2020). That is, when using KL-
divergence loss functions, the sample size of the training data must increase exponentially as the
true amount of KL-divergence increases in order to sufficiently train a neural network. To address
this issue, existing methods divide the estimation of high divergence values into multiple smaller
divergence estimations (Rhodes et al., 2020).

4 DRE USING A NEURAL NETWORK WITH AN α-DIVERGENCE LOSS

In this section, we derive our loss function from a variational representation of α-divergence and
present the training and prediction methods using this loss function. The exact claims and proofs for
all theorems are provided in C.2 in the Appendix.

4.1 DERIVATION OF OUR LOSS FUNCTION FOR DRE

Here, we define α-divergence (Amari’s α-divergence), which is a subgroup of f -divergence, as
(Amari & Nagaoka, 2000):

Dα(Q||P) = EP

[
1

α · (α− 1)
·
{(

q(x)

p(x)

)1−α

− 1

}]
, (5)

where α ∈ R \ {0, 1}. From Equation (5), Hellinger divergence is obtained when α = 1/2, and χ2

when α = −1.

Then, we achieve the following variational representation of α-divergence :

Theorem 4.1. A variational representation of α-divergence is given as

Dα(Q||P) = sup
φ≥0

{
1

α · (1− α) −
1

α
· EQ

[
φα
]
− 1

1− α ·EP
[
φα−1

]}
, (6)

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2025

Table 1: List of f -divergence loss functions Lf (φθ) in Equation (2) their associated convex func-
tions, and their lower-boundedness status. Part of the list of divergences and their convex functions
is based on Nowozin et al. (2016).

Name convex function f Lf (φθ) Lower-
bounded?

KL u · log u −ÊQ
[
log(φθ)

]
+ ÊP

[
φθ
]
− 1 No

Pearson χ2 (u − 1)2 −2 · ÊQ
[
φθ
]
+ ÊP

[
φ2θ
]

No

Squared Hellinger (
√
u− 1)2 ÊQ

[
φ
−1/2
θ

]
+ ÊP

[
φ
1/2
θ

]
− 2 Yes

GAN
u · log u
−(u+ 1) log(u+ 1)

ÊQ
[
log(1 + φ−1

θ)
]

+ ÊP
[
log(1 + φθ)

] Yes

Table 2: List of gradient formulas∇θLf (φθ) of loss functionsLf (φθ) in Table 1 and the asymptotic

behavior of E
[
∇θLf (φθ)

]
as φθ → 0 or φθ →∞ under regular conditions. A symbol“ *”in the

table indicates that the asymptotic value cannot be expressed as a linear combination of EQ
[
∇θφθ

]

and EP
[
∇θφθ

]
, and ~0 denotes a vector of zeros with the same length as the model gradient.

E
[
∇θLf (φθ)

]
→ ?

Name ∇θLf (φθ) φθ → 0 φθ →∞
KL −ÊQ

[
∇θφθ/φθ

]
+ ÊP

[
∇θφθ

]
* EQ

[
∇θφθ

]

Pearson χs −2 · ÊQ
[
∇θφθ

]
+ 2 · ÊP

[
∇θφθ · φθ

]
−2 ·EQ

[
∇θφθ

]
*

Squared Hellinger
− 1

2 · ÊQ
[
∇θφθ · φ−3/2

θ

]

+ 1
2 · ÊP

[
∇θφθ · φ−1/2

θ

] * ~0

GAN
−ÊQ

[
∇θφθ/(1 + φθ)

]

+ ÊP
[
∇θφθ/(1 + φθ)

] −EQ
[
∇θφθ

]

+ EP
[
∇θφθ

] ~0

where the supremum is taken over all overall measurable functions satisfying EP [φ
1−α] < ∞ and

EQ[φ
−α] <∞. The maximum value is achieved at φ(x) = q(x)/p(x).

From the right-hand side of Equation (6), we obtain a standard α-divergence loss function as

L(R,S)α-standard(φθ ; α) =
1

α
· ÊQ

[
φαθ

]
+

1

1− α · ÊP
[
φα−1
θ

]
. (7)

The above loss function has a biased gradient because ∇θEQ
[
φαθ
]
6= EQ

[
∇θ(φαθ)

]
and

∇θEP
[
φα−1
θ

]
6= EP

[
∇θ(φα−1

θ)
]

are generally observed. To obtain unbiased gradients for our

function, we rewrite the terms φαθ and φα−1
θ of the equation in Gibbs density form. Then, we have

another variational representation of α-divergence as

Theorem 4.2. A variational representation of α-divergence is given as

Dα(Q||P) = sup
T :Ω→R

{
1

α · (1− α) −
1

α
·EQ

[
eα·T

]
− 1

1− α ·EP
[
e(α−1)·T

]}
, (8)

where the supremum is taken over all measurable function T : Ω→ R satisfyingEP [e
(α−1)·T] <∞

and EQ[e
α·T] <∞. The equality holds for T ∗ satisfying e−T

∗(x) = q(x)/p(x).

Subsequently, we obtain our loss function for DRE, called α-Divergence loss function (α-Div).

Definition 4.3 (α-Div). α-Divergence loss is defined as:

L(R,S)α-Div (Tθ ; α) =
1

α
· ÊQ[S]

[
eα·Tθ

]
+

1

1− α · ÊP [R]

[
e(α−1)·Tθ

]
. (9)

The superscript“ (R,S)”is dropped when unnecessary and is given as Lα-Div(Tθ ; α).

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

Algorithm 1 Training for DRE with α-Div

Input: Data from a denominator distribution
{xpi }Ri=1, and from a numerator distribution

{xqi }Si=1.
Output: A Neural Network Model TθN .

for t = 1 to N do
ÊP ← 1

R

∑R
i=1 e

(α−1)·Tθt (x
p
i
)

ÊQ ← 1
S

∑S
i=1 e

α·Tθt(x
q
i
)

Lα-Div(θt)← ÊQ
α + ÊP

1−α

θt+1 ← θt −∇θtLα-Div(θt)
end for

4.2 TRAINING AND PREDICTING WITH α-DIV

We train a neural network with α-Div as described in Algorithm 1. In practice, neural networks
rarely achieve the maximum in Equation (8). The following theorem suggests that normalizing

the estimated values, q(x)/p(x) = e−Tθ(x)/ÊP
[
e−Tθ

]
, improves the optimization of the neural

networks.

Theorem 4.4. For a fixed function T : Ω → R, let c∗ be the optimal scalar value for the following
infimum:

c∗ = arg inf
c∈R

E
[
Lα-Div(T − c)

]
= arg inf

c∈R

{
1

α
· EQ

[
eα·(T−c)

]
+

1

1− α · EP
[
e(α−1)·(T−c)

]}
.

(10)
Then, c∗ satisfies EP

[
e−T−c∗

]
= 1. That is, e−T−c∗ = e−T /EP

[
e−T

]
.

5 THEORETICAL RESULTS FOR THE PROPOSED LOSS FUNCTION

In this section, we provide theoretical results that justify our approach with α-Div. The exact claims
and proofs for all the theorems are provided in Section C.3 in the Appendix.

5.1 ADDRESSING THE TRAIN-LOSS HACKING PROBLEM

α-Div avoids the train-loss hacking problem when α is within (0, 1). Table 3 summarizes the lower-
boundedness status of α-Div for each case: α < 0, 0 < α < 1, or α > 1. α-Div is lower-bounded
when 0 < α < 1, whereas it is not lower-bounded when α > 1 or α < 0. Thus, the train-loss
hacking problem is avoided when α is selected from the interval (0, 1).

5.2 UNBIASEDNESS OF GRADIENTS

The following Theorem 5.1 guarantees the unbiasedness of the gradients of α-Div.

Theorem 5.1 (Brief and informal). Let Tθ(x) : Ω → R be a function such that the map θ =
(θ1, θ2, . . . , θp) ∈ Θ 7→ Tθ(x) is differentiable for all θ and µ-almost every x ∈ Ω. Assume some
regular conditions, including the local Lipschitz continuity of Tθ. Then, the following holds:

E
[
∇θLα-Div(Tθ;α)

∣∣
θ=θ̄

]
= ∇θE

[
Lα-Div(Tθ;α)

]∣∣
θ=θ̄

. (11)

5.3 ADDRESSING GRADIENT VANISHING PROBLEM

When α is within (0, 1), α-Div avoids the vanishing gradient problem in its training losses. Below,
we describe why gradient vanishing does not occur in this case.

First, we obtain the gradients of the standard α-divergence loss in Equation (7) and α-Div:

∇θLα-standard(φθ) = ÊQ

[
∇θφθ · φθα−1

]
− ÊP

[
∇θφθ · φθ−α

]
, (12)

∇θLα-Div(e
Tθ) = ÊQ

[
∇θTθ · eα·Tθ

]
− ÊP

[
∇θTθ · e(α−1)·Tθ

]
. (13)

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2025

Table 3: Lower-boundedness status of α-Div for each case of α < 0, α > 1, and 0 < α < 1.

Intervals of α 1
α · ÊQ[S] + 1

1−α · ÊP
[
e(α−1)·T

]
= Lα-Div(T ;α)

α < 0 ↓ −∞ (as eT ↑ ∞) ≥ 0 lower-unbounded

α > 1 ≥ 0 ↓ −∞ (as eT ↑ ∞) lower-unbounded
0 < α < 1 ≥ 0 ≥ 0 lower-bounded

Table 4: Behavior of E
[
∇θLα-standard(φθ)

]
and E

[
∇θLα-Div(Tθ)

]
as estimated probability ratios

approach 0 or∞, for each case of α < 0, α > 1, and 0 < α < 1.

∥∥E
[
∇θLα-standard(φθ)

]∥∥
∞
→ ?

∥∥E
[
∇θLα-Div(Tθ)

]∥∥
∞
→ ?

Intervals of α EP
[
φθ
]
→ 0 EP

[
φθ
]
→∞ EP

[
eTθ
]
→ 0 EP

[
eTθ
]
→∞

α < 0 ∞ 0 ∞−∞ 0

α > 1 0 −∞ 0 ∞−∞
0 < α < 1 ∞ 0 −∞ ∞

Next, consider the case where the estimated probability ratios, φθ and eTθ , are either nearly zero
or very large for some point x. Let

∥∥θ
∥∥
∞

denote the maximum value of all elements in θ. Under

the assumption that p(x) > 0 ⇔ q(x) > 0 for all x ∈ Ω, we observe the following equivalences:
EQ[e

Tθ]→ 0⇔ EP [e
Tθ]→ 0; and EQ[e

Tθ]→∞⇔ EP [e
Tθ]→∞.

Finally, the behavior of E
[
∇θLα-Div(Tθ;α)

]
when EP [e

Tθ] → 0 or EP [e
Tθ] → ∞, under certain

regular conditions for Tθ, is summarized in Table 4.

In all cases except for α-Div with 0 < α < 1, vanishing of the loss gradients is observed, such
that

∥∥E
[
∇θLα-standard(φθ)

]∥∥
∞
→ 0 or

∥∥E
[
∇θLα-Div(Tθ)

]∥∥
∞
→ 0. This implies that, during

optimization, neural networks may remain stuck at extreme local minima when their estimations
for density ratios are either 0 or ∞. However, this issue is avoided when α is within the interval
(0, 1). Additionally, choosing αwithin the interval (0, 1) avoids numerical instability in cases where∥∥E
[
∇θLα-Div(Tθ;α)

]∥∥
∞
→∞−∞, which occurs for α > 1 and α < 0.

5.4 SAMPLE SIZE REQUIREMENTS FOR OPTIMIZING α-DIVERGENCE

We present the exact upper bound on the sample size required for minimizing α-Div in Theorem 5.2,
which corresponds to Equation (4) for KL-divergence loss functions. The sample size requirement
for minimizing α-Div is upper-bounded depending on the value of α. Intuitively, this property arises
from the boundedness of Amari’s α-divergence: 0 ≤ Dα ≤ 1/(α · (1− α)).
Theorem 5.2. Let T ∗ = − log(q(x)/p(x)) and N = min{R,S}. Subsequently, let

D̂(N)(Q||P ; α) =
1

α · (1− α) − L
(N,N)
α-Div (T ∗ ; α). (14)

Then, √
N ·

{
D̂(N)(Q||P ; α)−D(Q||P ; α)

}
d−−→ N

(
0, σα

)
(15)

holds, where

σ2
α = C1

α ·D(Q||P ; 2α) + C2
α ·D(Q||P ; 2α− 1)

+ C3
α ·D(Q||P ; α)2 + C4

α ·D(Q||P ; α) + C5
α,

(16)

and C1
α = 2α · (1 − 2α)/α2, C2

α = 2α · (1 − 2α)/(1 − α)2, C3
α = −1/α2 − 1/(1 − α)2,

C4
α = 2/α2 + 2/(1− α)2, and C5

α = (1/α2 + 1/(1− α)2) · (2− 2α · (1− α)).

Unfortunately, despite the sample requirement stated in Equation (15), we empirically find that the
estimation accuracy for α-Div and KL-divergence loss functions is roughly the same in downstream
tasks of DRE, including KL-divergence estimation, as discussed in Section 6.3.

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

We evaluated the performance of our approach using synthetic datasets. First, we assessed the sta-
bility of the proposed loss function due to its lower-boundedness for α within (0, 1). Second, we
validated the effectiveness of our approach in addressing biased gradients in the training losses. Fi-
nally, we examined the α-divergence loss function for DRE using high KL-divergence data. Details
on the experimental settings and neural network training are provided in Section D in the Appendix.

In addition to the results presented in this section, we conducted two additional experiments: a
comparison of α-Div with existing DRE methods, and experiments using real-world data. These
additional experiments are reported in Section E in the Appendix.

6.1 EXPERIMENTS ON THE STABILITY OF OPTIMIZATION FOR DIFFERENT VALUES OF α

We empirically confirmed the stability of optimization using α-Div, as discussed in Section 5.1. This
includes addressing the potential divergence of training losses for α > 1 and α < 0, and observing
the stability of optimization when α is within (0, 1). Subsequently, we conducted experiments using
synthetic datasets to examine the behavior of training losses during optimization across different
values of α at each learning step.

Experimental Setup. First, we generated 100 training datasets from two 5-dimensional normal
distributions, P = N (µp, I5) and Q = N (µq ,Σq), where µp = µq = (0, 0, . . . , 0), and I5 denotes

the 5-dimensional identity matrix. The covariance matrix Σq = (σij)
5
i=1 is defined as σii = 1,

and σij = 0.8 for i 6= j. Subsequently, we trained neural networks using the synthetic datasets
by optimizing α-Div for α = −3.0,−2.0,−1.0, 0.2, 0.5, 0.8, 2.0, 3.0, and 4.0, while measuring
training losses at each learning step. For each value of α, 100 trials were performed. Finally, we
reported the median of the training losses at each learning step, along with the ranges between the
45th and 55th percentiles and between the 2.5th and 97.5th percentiles.

Results. As shown in Figure 1, we present the training losses of α-Div across the learning steps for
α = −2.0, 3.0, and 0.5. Results for other values of α are provided in Section D.1 in the Appendix.
The figures on the left (α = −2.0) and in the center (α = 3.0) show that the training losses
diverged to negative infinity when α < 0 or α > 1. In contrast, the figure on the right (α = 0.5)
demonstrates that the training losses successfully converged. These results highlight the stability of
α-Div’s optimization when α is within the interval (0, 1), as discussed in Section 5.1.

6.2 EXPERIMENTS ON THE IMPROVEMENT OF OPTIMIZATION EFFICIENCY BY REMOVING

GRADIENT BIAS

Unbiased gradients of loss functions are expected to enhance the optimization of neural network
parameters by ensuring that updates are made in directions that are closer to the ideal ones at each
iteration, compared to biased gradient loss functions. We empirically compared the efficiency of
minimizing training losses between the proposed loss function and the standard α-divergence loss
function derived from Equation (12). Our observations indicated that the proposed loss function was
more effective in minimizing training loss than the biased-gradient α-divergence loss function. Ad-
ditionally, we found that the estimated density ratios using the standard α-divergence loss function
remained close to zero, whereas those obtained using α-Div did not. This finding is consistent with
the discussion in Section 5.3.

Experimental Setup. We first generated 100 training datasets from two normal distributions, P =
N (µp, I5) and Q = N (µq, I5), where I5 denotes the 5-dimensional identity matrix. The means
were set as µp = (−5/2, 0, 0, 0, 0) and µq = (5/2, 0, 0, 0, 0). We then trained neural networks using
three different loss functions: the standard α-divergence loss function defined in Equation (12), α-
Div, and deep direct DRE (D3RE) (Kato & Teshima, 2021). Training losses were measured at each
learning step. D3RE is designed to prevent issues such as train-hacking associated with Bregman
divergence loss functions, as described in Section 3.4, by addressing the lower-unboundedness of the
loss functions. The hyperparameter for D3RE was set to C = 2. We chose the Bregman divergence
least-squares importance fitting (nnBD-LSIF) loss function for D3RE due to its unbiased gradient
and expected stable optimization. For both the standard α-divergence loss and α-Div, we used

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2025

Figure 1: Results from Section 6.1. The left (α = −2.0), center (α = 3.0), and right (α = 0.5)
graphs show the training losses (y-axis) over learning steps (x-axis) during optimization using α-Div
for different α values. The solid blue line represents the median training losses, the dark blue shaded
area shows the 45th to 55th percentiles, and the light blue shaded area represents the 2.5th to 97.5th
percentiles.

Figure 2: Results from Section 6.2. The y-axis of the left, center, and right graphs represents training
losses during optimization using α-Div, the biased-gradient α-divergence loss function, and nnBD-
LSIF, respectively. The x-axis represents learning steps. The solid blue line indicates the median
training losses, the dark blue shaded areas show the 45th to 55th percentiles, and the light blue
shaded areas show the 2.5th to 97.5th percentiles.

α = 0.5. Finally, we reported the median training losses at each learning step, along with ranges
between the 45th and 55th percentiles and between the 2.5th and 97.5th percentiles.

Results. Figure 2 illustrates the training losses at each learning step for each loss function. The
center and right panels show that α-Div and nnBD-LSIF are more effective at minimizing training
losses compared to the standard α-divergence loss function. These findings indicate that the unbi-
ased gradient of α-Div, like nnBD-LSIF, leads to more efficient neural network optimization than the
biased gradient of the standard α-divergence loss function. Additionally, while the training losses
for the standard α-divergence loss function diverged after 400 steps, those for α-Div remained sta-
ble. According to Equation (12), the estimated density ratio φθ in Equation (12) approaches 0 or∞
as Lα-standard(φθ) → ∞. However, φθ → ∞ does not occur because there is neither a stable point
where Lα-standard(φθ) → c for some constant c nor does Lα-standard(φθ) decrease monotonically to
an extremely negative value. Therefore, it is considered that φθ → 0 when Lα-standard(φθ) → ∞,
which causes the gradients of Lα-standard(φθ) to vanish, i.e., ∇θLα-standard(φθ) → 0, as shown for
0 < α < 1 in Table 4. In contrast, this issue was not observed for α-Div, consistent with the
discussion in Section 5.3.

6.3 EXPERIMENTS ON THE ESTIMATION ACCURACY USING HIGH KL-DIVERGENCE DATA

In Section 3.5, we examined the α-divergence loss function, hypothesizing that its boundedness
could address sample size issues in high KL-divergence data. Theorem 5.2, based on this bound-
edness, suggests that α-Div can be minimized regardless of the true KL-divergence, indicating its
potential for effective DRE with high KL-divergence data. To validate this hypothesis, we assessed
DRE and KL-divergence estimation accuracy using both α-Div and a KL-divergence loss function.

Unfortunately, the RMSE of DRE using α-Div increased significantly with higher KL-divergence in
the test datasets, similar to the results obtained with the KL-divergence loss function. Additionally,

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2025

Figure 3: Results of Section 6.3. The x-axis represents the ground truth KL-divergence of the
data. The y-axis of the left and right graphs represents the RMSE and estimated KL-divergence,
respectively. The plot shows the median y-axis values for the ground truth KL-divergence. Vertical
lines indicate the interquartile range (25th to 75th percentiles) of the y-axis values.

both methods produced nearly identical KL-divergence estimations. These findings suggest that
the accuracy of DRE and KL-divergence estimation is primarily influenced by the true amount of
KL-divergence in the data rather than the α-divergence.

Experimental Setup. We generated 100 training and 100 test datasets, each containing 10,000
samples. The datasets were drawn from two normal distributions, P = N (µp, σ

2 · I3) and Q =
N (µq, 4

2 · I3), where µp = (−3/2,−3/2,−3/2) and µq = (3/2, 3/2, 3/2), with I3 denoting the
3-dimensional identity matrix. The values of σ were set to 1.0, 1.1, 1.2, 1.4, 1.6, 2.0, 2.5, and
3.0. Correspondingly, the ground truth KL-divergence values of the datasets were 31.8, 25.6, 21.0,
14.5, 10.4, 5.8, 3.1, and 1.8 nats1, reflecting the increasing σ2 values. The true density ratios of
the test datasets are known for this experimental setup. We trained neural networks on the training
datasets by optimizing bothα-Div with α = 0.5 and the KL-divergence loss function. After training,
we measured the root mean squared error (RMSE) of the estimated density ratios using the test
datasets. Additionally, we estimated the KL-divergence of the test datasets based on the estimated
density ratios using a plug-in estimator. Finally, we reported the median RMSE of the DRE and the
estimated KL-divergence, along with the interquartile range (25th to 75th percentiles), for both the
KL-divergence loss function and α-Div.

Results. Figure 3 shows the experimental results. The x-axis represents the true KL-divergence
values of the test datasets, while the y-axes of the graphs display the RMSE (left) and estimated
KL-divergence (right) for the test datasets. We empirically observed that the RMSE for DRE using
α-Div increased significantly as the KL-divergence of the datasets increased. A similar trend was
observed for the KL-divergence loss function. Additionally, the KL-divergence estimation results
were nearly identical for both methods. These findings indicate that the accuracy of DRE and KL-
divergence estimation is primarily determined by the amount of KL-divergence in the data and is
less influenced by α-divergence. Therefore, we conclude that the approach discussed in Section
5.4 offers no advantage over the KL-divergence loss function in terms of the RMSE for DRE with
high KL-divergence data. However, we believe that these empirical findings contribute to a deeper
understanding of the accuracy of downstream tasks in DRE using f -divergence loss functions.

7 CONCLUSION

This study introduced a novel loss function for DRE, α-Div, which is both concise and provides
stable, efficient optimization. We offered technical justifications and demonstrated its effectiveness
through numerical experiments. The empirical results affirmed the efficiency of the proposed loss
function. However, experiments with high KL-divergence data revealed that the α-divergence loss
function does not offer a significant advantage over the KL-divergence loss function in terms of
RMSE for DRE. These findings contribute to a deeper understanding of the accuracy of downstream
tasks in DRE when using f -divergence loss functions.

1A ’nat’ is a unit of information measured using the natural logarithm (base e)

10

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2025

REFERENCES

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2000.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 245–250, 2001.

Jeremiah Birrell, Paul Dupuis, Markos A Katsoulakis, Luc Rey-Bellet, and Jie Wang. Variational
representations and neural network estimation of rényi divergences. SIAM Journal on Mathemat-
ics of Data Science, 3(4):1093–1116, 2021.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual
meeting of the association of computational linguistics, pp. 440–447, 2007.

Likun Cai, Yanjie Chen, Ning Cai, Wei Cheng, and Hao Wang. Utilizing amari-alpha divergence to
stabilize the training of generative adversarial networks. Entropy, 22(4):410, 2020.

Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via infinitesi-
mal classification. In International Conference on Artificial Intelligence and Statistics, pp. 2552–
2573. PMLR, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Lukas Gruber, Markus Holzleitner, Johannes Lehner, Sepp Hochreiter, and Werner Zellinger.
Overcoming saturation in density ratio estimation by iterated regularization. arXiv preprint
arXiv:2402.13891, 2024.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. Advances in neural information processing systems, 30,
2017.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 297–304. JMLR Workshop and Conference Proceedings,
2010.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Correct-
ing sample selection bias by unlabeled data. Advances in neural information processing systems,
19, 2006.

Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct im-
portance estimation. The Journal of Machine Learning Research, 10:1391–1445, 2009.

Masahiro Kato and Takeshi Teshima. Non-negative bregman divergence minimization for deep
direct density ratio estimation. In International Conference on Machine Learning, pp. 5320–
5333. PMLR, 2021.

11

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2025

Masahiro Kato, Takeshi Teshima, and Junya Honda. Learning from positive and unlabeled data with
a selection bias. In International conference on learning representations, 2019.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Euijoon Kwon and Yongjoo Baek. α-divergence improves the entropy production estimation via
machine learning. Physical Review E, 109(1):014143, 2024.

David McAllester and Karl Stratos. Formal limitations on the measurement of mutual information.
In International Conference on Artificial Intelligence and Statistics, pp. 875–884. PMLR, 2020.

Aditya Menon and Cheng Soon Ong. Linking losses for density ratio and class-probability estima-
tion. In International Conference on Machine Learning, pp. 304–313. PMLR, 2016.

XuanLong Nguyen, Martin J Wainwright, and Michael Jordan. Estimating divergence functionals
and the likelihood ratio by penalized convex risk minimization. Advances in neural information
processing systems, 20, 2007.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,
56(11):5847–5861, 2010.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems,
29, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–
5180. PMLR, 2019.

Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu,
Chee-Keong Kwoh, and Xiaoli Li. Adatime: A benchmarking suite for domain adaptation on
time series data. ACM Transactions on Knowledge Discovery from Data, 17(8):1–18, 2023.

Benjamin Rhodes, Kai Xu, and Michael U Gutmann. Telescoping density-ratio estimation. Ad-
vances in neural information processing systems, 33:4905–4916, 2020.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of
generative adversarial networks through regularization. Advances in neural information process-
ing systems, 30, 2017.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

Albert Nikolaevich Shiryaev. Probability, 1995.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information
estimators. arXiv preprint arXiv:1910.06222, 2019.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by
importance weighted cross validation. Journal of Machine Learning Research, 8(5), 2007a.

12

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2025

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe.
Direct importance estimation with model selection and its application to covariate shift adaptation.
Advances in neural information processing systems, 20, 2007b.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density-ratio matching under the breg-
man divergence: a unified framework of density-ratio estimation. Annals of the Institute of Sta-
tistical Mathematics, 64:1009–1044, 2012.

Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. Generative
adversarial nets from a density ratio estimation perspective. arXiv preprint arXiv:1610.02920,
2016.

13

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2025

A ORGANIZATION OF THE SUPPLEMENTARY DOCUMENT

The organization of this supplementary document is as follows: Section B reviews prior work in
DRE using f -divergence optimization. Section C presents the theorems and proofs cited in this
study. Section D provides details of the numerical experiments conducted. Finally, Section D
presents additional experimental results. Additionally, the code used in the numerical experiments
is included as supplementary material.

B RELATED WORK

Nguyen et al. (2010) proposed DRE using variational representations of f -divergences.
Sugiyama et al. (2012) introduced the density-ratio matching under the Bregman divergence, which
is a general framework that unifies various methods for DRE. As Sugiyama et al. (2012) mentioned,
the density-ratio matching under the Bregman divergence is equivalent to DRE using variational rep-
resentations of f -divergences. For estimation with high KL-divergence data, Rhodes et al. (2020)
proposed a method that divides the high KL-divergence estimation into multiple smaller divergence
estimations. Choi et al. (2022) further developed a continuous decomposition approach by introduc-
ing an auxiliary variable for transforming the data distribution. DRE using variational representa-
tions of f -divergences has also been studied from the perspective of classification-based modeling.
Menon & Ong (2016) demonstrated that DRE through f -divergence optimization can be represented
as a binary classification problem. Kato et al. (2019) proposed using the risk functions in PU learn-
ing for DRE.

Finally we review prior studies on DRE regarding α-divergence loss functions. Birrell et al. (2021)
derived an α-divergence loss function from R’enyi’s α-divergence, while Cai et al. (2020) used a
standard variational representation of Amari’s α-divergence with α < 0 or α > 1. Kwon & Baek
(2024) presented the same α-divergence loss function as proposed in this study, using the Gibbs
density expression to measure entropy in thermodynamics. In contrast, we offer the proposed loss
function to address the biased gradient problem.

C PROOFS

In this section, we present the theorems and proofs referenced in this study. First, we define α-Div
within a probabilistic theoretical framework. Following that, we provide the theorems and proofs
cited throughout the study.

Capital, small and bold letters. Random variables are denoted by capital letters. For example,
X . Small letters are used for values of the random variables of the corresponding capital letters; a
denotes a value of the random variable X . Bold letters X and x represent sets of random variables
and their values.

C.1 DEFINITION OF α-DIV

Definition C.1 (α-Divergence loss). Let X1
P ,X

2
P , . . . ,X

R
P denote R i.i.d. random variables drawn

from P , and let X1
Q,X

2
Q, . . . ,X

S
Q denote S i.i.d. random variables drawn from Q. Then, the α-

Divergence loss L(R,S)α-Div (· ; α) is defined as follows:

L(R,S)α-Div (T ; α) =
1

α
· 1
S
·
S∑

i=1

eα·T (Xi
Q) +

1

1− α ·
1

R
·
R∑

i=1

e(α−1)·T (Xi
P), (17)

where T is a measurable function over Ω such that T : Ω→ R.

C.2 PROOFS FOR SECTION 4

In this section, we provide the theorems and proofs referenced in Section 4.

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2025

Theorem C.2. A variational representation of α-divergence is given as

D(Q||P ; α) = sup
φ≥0

{
1

α · (1− α) −
1

α
· EQ

[
φ−α

]
− 1

1− α · EP
[
φ1−α

]}
, (18)

where the supremum is taken over all measurable functions with EP [φ
1−α] < ∞ and EQ[φ

−α] <
∞. The maximum value is achieved at φ = dQ/dP .

Proof of Theorem C.2. Let fα(t) = {t1−α − (1− α) · t− α}/{α · (α− 1)} for α 6= 0, 1, then

EP

[
fα

(
dQ

dP

)]
= EP

[
1

α · (1− α) ·
(
dQ

dP

)1−α

+
1

α
·
(
dQ

dP

)
+

1

1− α

]

=
1

α · (1− α) · EP
[(

dQ

dP

)1−α
]
+

1

α
+

1

1− α
= D(Q||P ; α). (19)

Note that, the Legendre transform of gα(x) = x1−α/(1− α) is obtained as

g∗α(x) =
α

α− 1
· x1− 1

α , (20)

and for the Legendre transforms of functions, it holds that

{C · h(x)}∗ = C · h∗
(x
C

)
and {h(x) + C · x+D}∗ = h∗(x− C)−D. (21)

Here, A∗ denotes the Legendre transform of A.

From Equations (20) and (21), we have

f∗
α(t) =

{
1

(−α) · gα(t) +
1

α
· t+ 1

1− α

}∗

=
1

(−α) · g
∗
α

(
−α ·

{
t− 1

α

})
− 1

1− α

= − 1

α
· g∗α (1− αt) +

1

α− 1

= − 1

α
·
{

α

α− 1
· (1− αt)1− 1

α

}
+

1

α− 1

=
1

1− α · (1− αt)
1− 1

α +
1

α− 1
. (22)

By differentiating fα(t), we obtain

f ′
α(t) = −

1

α
· t−α +

1

α
. (23)

Thus,

EQ
[
f ′
α(φ)

]
= EQ

[
− 1

α
· φ−α +

1

α

]
. (24)

From (22) and (23), we have

EP
[
f∗
α(f

′
α(φ))

]
= EP

[
1

1− α ·
{
1− α ·

(
− 1

α
· φ−α +

1

α

)}1− 1

α

+
1

α− 1

]

= EP

[
1

1− α · φ
1−α +

1

α− 1

]
. (25)

In addition, from Equations (24) and (25), we observe that EP
[
φ1−α

]
< ∞ is equivalent to

EP
[∣∣f∗

α(f
′
α(φ))

∣∣] <∞. Similarly, EQ
[
φ−α

]
<∞ is equivalent to EQ

[∣∣f ′
α(φ)

∣∣] <∞.

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2025

Finally, by substituting Equations (24) and (25) into Equation (1), we get

D(Q||P ; α) = sup
φ≥0

{
EQ
[
f ′
α(φ)

]
− EP

[
f∗
α(f

′
α(φ))

]}

= sup
φ≥0

{
EQ

[
− 1

α
· φ−α +

1

α

]
− EP

[
1

1− α · φ
1−α +

1

α− 1

]}

= sup
φ≥0

{
1

α · (1− α) −
1

α
· EQ

[
φ−α

]
− 1

1− α ·EP
[
φ1−α

]}
.

This completes the proof.

Theorem C.3 (Theorem 4.2 in Section 4 restated). The α-divergence is represented as

D(Q||P ; α) = sup
T :Ω→R

{
1

α · (1− α) −
1

α
· EQ

[
eα·T

]
− 1

1− α · EP
[
e(α−1)·T

]}
, (26)

where the supremum is taken over all measurable functions T : Ω → R with EP [e
(α−1)·T] < ∞

and EQ[e
α·T] <∞. The equality holds for T ∗ satisfying

dQ

dP
= e−T

∗

. (27)

proof of Theorem 4.2. Substituting e−T into φ in Equation (18), we have

D(Q||P ; α) = sup
φ≥0

{
1

α · (1− α) −
1

α
· EQ

[
φ−α

]
− 1

1− α ·EP
[
φ1−α

]}

= sup
T :Ω→R

{
1

α · (1− α) −
1

α
·EQ

[{
e−T

}−α]− 1

1− α · EP
[{
e−T

}1−α]}

= sup
T :Ω→R

{
1

α · (1− α) −
1

α
·EQ

[
eα·T

]
− 1

1− α · EP
[
e(α−1)·T

]}
. (28)

Finally, from Theorem C.2, the equality for Equation (28) holds if and only if

dQ

dP
= e−T

∗

. (29)

This completes the proof.

Lemma C.4. For a measurable function T : Ω→ R with EP [e
(α−1)·T] <∞ and EQ[e

α·T] <∞,
let

l̃α-Div (T (x) ; α) =
1

α
· eα·T (x) · dQ

dµ
(x) +

1

1− α · e
(α−1)·T (x) · dP

dµ
(x). (30)

Then the optimal function T ∗ for infT :Ω→R l̃α-Div (T ; α) is obtained as T ∗ = − log dQ/dP , µ-
almost everywhere.

proof of Lemma C.4. First, note that it follows from Jensen’s inequality that

log(p ·X + q · Y) ≥ p · log(X) + q · log(Y), (31)

for X,Y > 0 and p, q > 0 with p+ q = 1, and equality holds when X = Y .

Substitute X = eα·T (x) · dQdµ (x), Y = e(α−1)·T (x) · dPdµ (x), p = 1 − α, and q = α into Equation

(31), we obtain

log(p ·X + q · Y) = log

(
1

α · (1− α) · l̃α-Div(T ; α)

)
,

and log
(

1
α·(1−α) · l̃α-Div(T ; α)

)
is minimized when eα·T (x) · dQdµ (x) = e(α−1)·T (x) · dPdµ (x), µ-

almost everywhere. Therefore, infT :Ω→R l̃α-Div(T ; α) is achieved at e−T
∗(x) = dQ

dP (x), µ-almost

everywhere. Thus, we obtain T ∗(x) = − log dQdP (x), µ-almost everywhere.

This completes the proof.

16

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2025

Lemma C.5. For a measurable function T : Ω→ R with EP [e
(α−1)·T] <∞ and EQ[e

α·T] <∞,
let

Lα-Div(T ; α) = Eµ

[
l̃α-Div (T (x ; α))

]
(32)

=
1

α
· EQ

[
eα·T (x)

]
+

1

1− α · EP
[
e(α−1)·T (x)

]
, (33)

and let

l̃∗α-Div(α) = inf
T :Ω→R

l̃α-Div(T ; α), and (34)

L∗α-Div(α) = inf
T :Ω→R

Lα-Div(T ; α), (35)

where the infima of Equations (34) and (35) are considered over measurable functions T : Ω → R

with EP [e
(α−1)·T] <∞ and EQ[e

α·T] <∞.

Then,

Eµ

[
l̃∗α-Div(α)

]
= L∗α-Div(α). (36)

Additionally, the equality in Equations (34) and (35) hold for T ∗(x) = − log dQ/dP (x).

proof of Lemma C.5. Let T ∗(x) = − log dQ/dP (x).

First, it follows from Lemma C.4 that

l̃∗α-Div(α) = inf
T :Ω→R

l̃α-Div(T ; α) = l̃α-Div(T
∗ ; α). (37)

Next, we obtain

Eµ

[
1

α · (1− α) − l̃
∗
α-Div(α)

]
=

∫ {
1

α · (1− α) − l̃
∗
α-Div(α)

}
dµ

=

∫ {
1

α · (1− α) − inf
T :Ω→R

l̃α-Div(T ; α)

}
dµ

=

∫
sup

T :Ω→R

{
1

α · (1− α) − l̃α-Div(T ; α)

}
dµ. (38)

Let Tk = T ∗ + 1/k. Note that,

lim
k→∞

l̃α-Div(Tk ; α) = inf
T :Ω→R

l̃α-Div(T ; α) = l̃∗α-Div(α). (39)

Then, we have

lim
k→∞

{
1

α · (1 − α) − l̃α-Div(Tk ; α)

}

=
1

α · (1− α) − lim
k→∞

{
l̃α-Div(Tk ; α)

}

=
1

α · (1− α) − inf
T :Ω→R

l̃α-Div(T ; α)

= sup
T :Ω→R

{
1

α · (1− α) − l̃α-Div(T ; α)

}
. (40)

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2025

From Theorem C.3, we have

lim
k→∞

Eµ

[
1

α · (1− α) − l̃α-Div(Tk ; α)

]

=
1

α · (1− α) − lim
k→∞

Eµ

[
l̃α-Div(Tk ; α)

]

=
1

α · (1− α) − lim
k→∞

{
1

α
· EQ

[
eα·Tk

]
+

1

1− α · EP
[
e(α−1)·Tk

]}

=
1

α · (1− α) − inf
T :Ω→R

{
1

α
·EQ

[
eα·T

]
+

1

1− α · EP
[
e(α−1)·T

]}

=
1

α · (1− α) − inf
T :Ω→R

Eµ

[
l̃α-Div(T ; α)

]

= sup
T :Ω→R

{
1

α · (1− α) − Eµ
[
l̃α-Div(T ; α)

]}

= sup
T :Ω→R

Eµ

[
1

α · (1− α) − l̃α-Div(T ; α)

]
. (41)

Now, we have

∣∣∣∣
1

α · (1− α) − l̃α-Div(Tk ; α)

∣∣∣∣

=

∣∣∣∣
1

α · (1 − α) −
1

α
·
(
dQ

dP
(x)

)α
· dQ
dµ

(x) · eαk

− 1

1− α ·
(
dQ

dP
(x)

)α−1

· dP
dµ

(x) · eα−1

k

∣∣∣∣∣

≤ 1

α · (1− α) +
1

α
· eαk ·

(
dQ

dP
(x)

)α
· dQ
dµ

(x)

+
1

1− α · e
α−1

k ·
(
dQ

dP
(x)

)α−1

· dP
dµ

(x) .

=
1

α · (1− α) +
{
1

α
· eαk +

1

1− α · e
α−1

k

}
·
(
dQ

dP
(x)

)α−1

· dP
dµ

(x) , (42)

and let φ(x) denote the term on the right hand side of Equation (42).

Then, we observe that

∣∣∣∣
1

α · (1− α) − l̃α-Div(Tk(x) ; α)

∣∣∣∣ ≤ φ(x) and Eµ
[
φ(x)

]
<∞.

That is, the following sequence is uniformly integrable for µ:

{
1

α · (1− α) − l̃α-Div(Tk ; α)

}∞

k=1

.

Thus, from the property of the Lebesgue integral (Shiryaev, P188, Theorem 4), we have

Eµ

[
lim
k→∞

{
1

α · (1− α) − l̃α-Div(Tk ; α)

}]
= lim

k→∞
Eµ

[
1

α · (1− α) − l̃α-Div(Tk ; α)

]
. (43)

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2025

From Equations (40), (41) and (43), we obtain

1

α · (1− α) − Eµ
[
l̃∗α-Div(α)

]
= Eµ

[
1

α · (1− α) − l̃
∗
α-Div(α)

]

= Eµ

[
sup

T :Ω→R

{
1

α · (1− α) − l̃α-Div(T ; α)

}]

= Eµ

[
lim
k→∞

{
1

α · (1− α) − l̃α-Div(Tk ; α)

}]

(∴ Equation (40))

= lim
k→∞

Eµ

[
1

α · (1− α) − l̃α-Div(Tk ; α)

]
(∴ Equation (43))

= sup
T :Ω→R

{
Eµ

[
1

α · (1− α) − l̃α-Div(Tk ; α)

]}

(∴ Equation (41))

=
1

α · (1− α) − inf
T :Ω→R

Eµ

[
l̃α-Div(Tk ; α)

]

=
1

α · (1− α) − L
∗
α-Div(α).

Here, we have

Eµ

[
l̃∗α-Div(α)

]
= L∗α-Div(α). (44)

From Equations (32) and (44, we have

Lα-Div(T
∗ ; α) = Eµ

[
l̃∗α-Div(α)

]
= L∗α-Div(α). (45)

This completes the proof.

Theorem C.6 (Theorem 4.4 in Section 4 restated). For a fixed function T : Ω → R, let c∗ be the
optimal scalar value for the following infimum:

c∗ = arg inf
c∈R

E[Lα-Div(T + c ; α)]

= arg inf
c∈R

{
1

α
EQ

[
eα·(T+c)

]

+
1

1− αEP
[
e(α−1)·(T+c)

]}
, (46)

Then, c∗ satisfies ec∗ = EP
[
e−T

]
, or equivalently, e−(T+c∗) = e−T /EP

[
e−T

]
.

proof of Theorem C.6. Now, we have

l̃α-Div(T + c ; α) =
1

α
· eα·c · eα·T (x) · dQ

dµ
(x) +

1

1− α · e
(α−1)·c · e(α−1)·T (x) · dP

dµ
(x).

For Equation (31), let X = eα·c · eα·T (x) · dQdµ (x), Y = e(α−1)·c · e(α−1)·T (x) · dPdµ (x), p =

1 − α and q = α. Then, from Jensen’s inequality, l̃α-Div (T + c ; α) is minimized at c∗ such taht

eα·c∗ · eα·T (x) · dQdµ (x) = e(α−1)·c∗ · e(α−1)·T (x) · dPdµ (x), µ-almost everywhere.

Hence,

ec∗ · dQ
dµ

(x) = e−T (x) · dP
dµ

(x).

By integrating both sides of the above equality over Ω with µ, we obtain

ec∗ = EP
[
e−T

]
.

This completes the proof.

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2025

C.3 PROOFS FOR SECTION 5

In this section, we provide the theorems and proofs referred to in Section 5.

Theorem C.7 (Theorem 5.1 in Section 5 restated). Let Tθ(x) : Ω → R be a function such that
the map θ = (θ1, θ2, . . . , θp) ∈ Θ 7→ Tθ(x) is differentiable for all θ and µ-almost every x ∈ Ω.

Assume for a point θ̄ ∈ Θ, it holds that EP [e
(α−1)·Tθ̄] <∞ and EQ[e

α·Tθ̄] <∞, and there exists a

compact neighborhood of θ̄, denoted by Bθ̄, and a constant value L, such that |Tψ(x) − Tθ̄(x)| <
L‖ψ − θ̄‖.
Then,

E
[
∇θ L(R,S)α-Div (T ; α)

∣∣∣
θ=θ̄

]
= ∇θ E

[
L(R,S)α-Div (T ; α)

] ∣∣∣
θ=θ̄

. (47)

proof of Theorem C.7. We now consider the values, as ψ → θ̄, of the following two integrals:
∫

1

‖ψ − θ̄‖

{
1

α
eα·Tψ − 1

α
eα·Tθ̄

}
dQ, (48)

and ∫
1

‖ψ − θ̄‖

{
1

1− αe
(α−1)·Tψ − 1

1− αe
(α−1)·Tθ̄

}
dP. (49)

Note that it follows from the intermediate value theorem that∣∣∣∣
1

α
eα·x − 1

α
eα·y

∣∣∣∣ =
∣∣x− y

∣∣ · eα·{y+τ ·(x−y)} (∃τ ∈ [0, 1]). (50)

By using the above equation with x = Tψ(x) and y = Tθ̄(x) for the integrand of Equation (48), we
have ∣∣∣∣

1

‖ψ − θ̄‖ ·
{
1

α
eα·Tψ(x) − 1

α
eα·Tθ̄(x)

}∣∣∣∣

=
1

‖ψ − θ̄‖ ·
∣∣Tψ(x)− Tθ̄(x)

∣∣ · eα·{Tθ̄(x)+τx·(Tψ(x)−Tθ̄(x))} (τx ∈ [0, 1])

=
1

‖ψ − θ̄‖ ·
∣∣Tψ(x)− Tθ̄(x)

∣∣ · eα·τx·(Tψ(x)−Tθ̄(x)) · eα·Tθ̄(x)

≤ 1

‖ψ − θ̄‖ ·
∣∣Tψ(x)− Tθ̄(x)

∣∣ · eατx|Tψ(x)−Tθ̄(x)| · eα·Tθ̄(x)

≤ L · eα·L·‖ψ−θ̄‖ · eα·Tθ̄(x), (51)

for all ψ ∈ Bθ̄.

Integrating the term on the left-hand side of Equation (51) with respect to Q, we have
∫ ∣∣∣∣

1

‖ψ − θ̄‖ ·
{
1

α
· eα·Tψ(xq) − 1

α
· eα·Tθ̄(xq)

}∣∣∣∣ dQ(xq)

≤
∫
L · eα·L·‖ψ−θ̄‖ · eα·Tθ̄(xq)dQ(xq)

= L · eα·L·‖ψ−θ̄‖ ·EQ
[
eα·Tθ̄

]
. (52)

Considering the supremum for ψ ∈ Bθ̄ in Equation (52), we obtain

sup
ψ∈Bθ̄

{∫ ∣∣∣∣
1

‖ψ − θ̄‖ ·
{
1

α
· eα·Tψ − 1

α
eα·Tθ̄

}∣∣∣∣ dQ
}

≤ sup
ψ∈Bθ̄

{
L · eα·L·‖ψ−θ̄‖ ·EQ

[
eα·Tθ̄

]}

= EQ
[
eα·Tθ̄

]
· sup
ψ∈Bθ̄

L · eα·L·‖ψ−θ̄‖ <∞, (53)

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

since Bθ̄ is compact.

Therefore, the following set is uniformly integrable for Q:

{
1

‖ψ − θ̄‖

{
1

α
· eα·Tψ(xq) − 1

α
eα·Tθ̄(x

q)

}
: ψ ∈ Bθ̄

}
. (54)

Similarly, for Equation (49), we have

sup
ψ∈Bθ̄

∫ ∣∣∣∣
1

‖ψ − θ̄‖ ·
{

1

1− αe
(α−1)·Tψ(x

p) − 1

1− αe
(α−1)·Tθ̄(x

p)

}∣∣∣∣ dP (xp)

≤ sup
ψ∈Bθ̄

{
L · e(1−α)L·‖ψ−θ̄‖ ·EP

[
e(1−α)·Tθ̄

]}

= EP

[
e(1−α)·Tθ̄

]
· sup
ψ∈Bθ̄

L · e(1−α)L·‖ψ−θ̄‖ <∞. (55)

Therefore, the following set is uniformly integrable for P :

{
1

‖ψ − θ̄‖ ·
{

1

1− α · e
(α−1)·Tψ(x

p) − 1

1− α · e
(α−1)·Tθ̄(x

p)

}
: ψ ∈ Bθ̄

}
. (56)

Thus, the Lebesgue integral and limψ→θ̄ are exchangeable for the set in Equation (56). Then, we
have

∇θEQ
[
1

α
· eα·Tθ(xq)

] ∣∣∣∣∣
θ=θ̄

= lim
ψ→θ̄

∫
1

‖ψ − θ̄‖ ·
{
1

α
· eα·Tψ(xq) − 1

α
· eα·Tθ̄(xq)

}
dQ(xq)

=

∫
lim
ψ→θ̄

[
1

‖ψ − θ̄‖ ·
{
1

α
· eα·Tψ(xq) − 1

α
· eα·Tθ̄(xq)

}]
dQ(xq)

= EQ

[
∇θ
(
1

α
· eα·Tθ(xq)

) ∣∣∣∣∣
θ=θ̄

]
. (57)

Similarly, we obtain

∇θEP
[

1

1− α · e
(α−1)·Tθ(x

p)

] ∣∣∣∣∣
θ=θ̄

= lim
ψ→θ̄

∫
1

‖ψ − θ̄‖ ·
{

1

1− α · e
(α−1)·Tψ(x

p) − 1

1− α · e
(α−1)·Tθ̄(x

p)

}
dP (xp)

=

∫
lim
ψ→θ̄

[
1

‖ψ − θ̄‖ ·
{

1

1− α · e
(α−1)·Tψ(x

p) − 1

1− α · e
(α−1)·Tθ̄(x

p)

}]
dP (xp)

= EP

[
∇θ
(

1

1− α · e
(α−1)·Tθ(x

p)

) ∣∣∣∣∣
θ=θ̄

]
. (58)

21

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2025

From Equations (57) and (58), we have

E
[
∇θ L(R,S)α-Div (Tθ ; α)

∣∣∣
θ=θ̄

]

= EP

[
EQ

[
∇θ L(R,S)α-Div (T ; α)

∣∣∣
θ=θ̄

]]

= EP

[
EQ

[
∇θ|θ=θ̄

{
1

α
· 1
S
·
S∑

i=1

eα·Tθ(x
q
i
) +

1

1− α ·
1

R
·
R∑

i=1

e(α−1)·Tθ(x
p
i
)

}]]

= EP

[
EQ

[
1

α
· 1
S
·
S∑

i=1

∇θ
(
eα·Tθ(x

p
i
)
) ∣∣∣

θ=θ̄

+
1

1− α ·
1

R
·
R∑

i=1

∇θ
(
e(α−1)·Tθ(x

p
i
)
) ∣∣∣

θ=θ̄

]]

=
1

α
· 1
S
·
S∑

i=1

EQ

[
∇θ
(
eα·Tθ(x

q
i
)
)] ∣∣∣

θ=θ̄

+
1

1− α ·
1

R
·
R∑

i=1

EP

[
∇θ
(
e(α−1)·Tθ(x

p
i
)
) ∣∣∣

θ=θ̄

]

=
1

α
· 1
S
·
S∑

i=1

∇θEQ
[
eα·Tθ(x

q
i
)
] ∣∣∣
θ=θ̄

+
1

1− α ·
1

R
·
R∑

i=1

∇θEP
[
e(α−1)·Tθ(x

p
i
)
] ∣∣∣
θ=θ̄

= ∇θ EQ
[
1

α
· 1
S
·
S∑

i=1

eα·Tθ(x
q
i)

] ∣∣∣
θ=θ̄

+ ∇θ EP
[

1

1− α ·
1

R
·
R∑

i=1

e(α−1)·Tθ(x
p
i
)

] ∣∣∣
θ=θ̄

= ∇θ
{
EP

[
EQ

[
1

α
· 1
S
·
S∑

i=1

eα·Tθ(x
q
i
)

+
1

1− α ·
1

R
·
R∑

i=1

e(α−1)·Tθ(x
p
i
)

]]} ∣∣∣
θ=θ̄

= ∇θ EP
[
EQ

[
L(R,S)α-Div (Tθ ; α)

]] ∣∣∣
θ=θ̄

= ∇θ E
[
L(R,S)α-Div (Tθ ; α)

] ∣∣∣
θ=θ̄

. (59)

This completes the proof.

Theorem C.8 (Theorem 5.2 in Section 5 restated). Assume EP
[
(dQ/dP (X))2·α

]
<∞. Let T ∗ =

− log dQ/dP . Subsequently, let

D̂(N)(Q||P ; α) =
1

α · (1− α) − L
(N,N)
α-Div (T ∗ ; α). (60)

Then, it holds that as N →∞,
√
N
{
D̂(N)(Q||P ; α)−D(Q||P ; α)

}
d−−→ N

(
0, σ2

α

)
, (61)

where

σ2
α = C1

α ·D(Q||P ; 2α) + C2
α ·D(Q||P ; 2α− 1)

+ C3
α ·D(Q||P ; α)2 + C4

α ·D(Q||P ; α) + C5
α, (62)

22

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Under review as a conference paper at ICLR 2025

and

C1
α =

2α · (1− 2α)

α2
, (63)

C2
α =

2α · (1− 2α)

(1− α)2 , (64)

C3
α = − 1

α2
− 1

(1− α)2 , (65)

C4
α =

2

α2
+

2

(1 − α)2 ,

C5
α =

(
1

α2
+

1

(1 − α)2
)
· (2− 2α · (1− α)). (66)

proof of Theorem C.8. First, note that

D̂(N)(Q||P ; α) =
1

α · (1− α) −
1

α
·
{

1

N
·
N∑

i=1

eα·T
∗(Xi

Q)

}
− 1

1− α ·
{

1

N
·
N∑

i=1

e(α−1)·T∗(Xi
P)

}

=
1

α · (1− α) −
1

α
·
{

1

N
·
N∑

i=1

(
dQ

dP
(Xi

Q)

)−α
}

− 1

1− α ·
{

1

N
·
N∑

i=1

(
dQ

dP
(Xi

P)

)1−α
}
. (67)

On the other hand, from Lemma C.5, we obtain

D(Q||P ; α) = sup
T :Ω→R

{
1

α · (1 − α) −
1

α
·EQ

[
eα·T

]
− 1

1− α ·EP ·
[
e(α−1)·T

]}

=
1

α · (1− α) − inf
T :Ω→R

{
1

α
·EQ

[
eα·T

]
− 1

1− α ·EP
[
e(α−1)·T

]}

=
1

α · (1− α) − L
∗
α-Div(α)

=
1

α · (1− α) −
1

α
· EQ

[
eα·T

∗

]
− 1

1− α · EP
[
e(α−1)·T∗

]

=
1

α · (1− α) −
1

α
· EQ

[(
dQ

dP
(x)

)−α
]
− 1

1− α · EP
[(

dQ

dP
(x)

)1−α
]

=
1

α · (1− α) −
1

α
·
{

1

N
·
N∑

i=1

EQ

[(
dQ

dP
(xi)

)−α
]}

− 1

1− α ·
{

1

N
·
N∑

i=1

EP

[(
dQ

dP
(xi)

)1−α
]}

.

(68)

23

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2025

Subtracting Equation (68) from Equation (67), we have

D̂(N)(Q||P ; α)−D(Q||P ; α)

=
1

N
·
N∑

i=1

1

α
·
{(

dQ

dP
(Xi

Q)

)−α

− EQ
[(

dQ

dP
(xi)

)−α
]}

+
1

N
·
N∑

i=1

1

1− α ·
{(

dQ

dP
(Xi

P)

)1−α

− EP
[(

dQ

dP
(xi)

)1−α
]}

=
1

N
·
N∑

i=1

1

α
·
{(

dQ

dP
(Xi

Q)

)−α

− EQ
[(

dQ

dP
(x)

)−α
]}

+
1

N
·
N∑

i=1

1

1− α ·
{(

dQ

dP
(Xi

P)

)1−α

− EP
[(

dQ

dP
(x)

)1−α
]}

. (69)

Let LiQ = 1
α ·
{(

dQ
dP (X

i
Q)
)−α

− EQ
[(

dQ
dP (x)

)−α]}
. Then {LiQ}Ni=1 are independent and identi-

cally distributed variables whose means and variances are as follows:

EQ

[
LiQ

]
= 0, (70)

and

VarQ

[
LiQ

]

= EQ


 1

α2
·
{ (

dQ

dP
(x)

)−α

− EQ
[(

dQ

dP
(x)

)−α
]}2




=
1

α2
· EQ



{(

dQ

dP
(x)

)−α
}2

− 1

α2
·
{
EQ

[(
dQ

dP
(x)

)−α
]}2

=
1

α2
· EP

[
dQ

dP
(x) ·

(
dQ

dP
(x)

)−2α
]
− 1

α2
·
{
EP

[
dQ

dP
(x) ·

(
dQ

dP
(x)

)−α
]}2

=
1

α2
· EP

[(
dQ

dP
(x)

)1−2α
]
− 1

α2
·
{
EP

[(
dQ

dP
(x)

)1−α
]}2

=
1

α2
·
{

2α · (2α− 1) ·
(

1

2α · (2α− 1)
· EP

[(
dQ

dP
(x)

)1−2α

− 1

])
+ 1

− α2 · (1 − α)2 ·
(

1

α · (α− 1)
·EP

[(
dQ

dP
(x)

)1−α

− 1

])2

+ 1

+ α2 · (1 − α)2 ·
(

2

α · (α− 1)
·EP

[(
dQ

dP
(x)

)1−α

− 1

])

− 2α · (1− α)
}
. (71)

Similarly, let LiP = 1
1−α ·

{(
dQ
dP (X

i
P)
)1−α

− EP
[(

dQ
dP (x)

)1−α]}
. Then {LiP}Ni=1 are indepen-

dent and identically distributed variables whose means and variances are as follows:

EP

[
LiP

]
= 0, (72)

24

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Under review as a conference paper at ICLR 2025

and

VarP

[
LiP

]

= EP


 1

(1− α)2 ·
{ (

dQ

dP
(x)

)1−α

− EP
[(

dQ

dP
(x)

)1−α
]}2




=
1

(1 − α)2 ·EP



{(

dQ

dP
(x)

)1−α
}2

− 1

(1− α)2 ·
{
EP

[(
dQ

dP
(x)

)1−α
]}2

=
1

(1 − α)2 ·EP
[(

dQ

dP
(x)

)2(1−α)
]
− 1

(1− α)2 ·
{
EP

[(
dQ

dP
(x)

)1−α
]}2

=
1

(1 − α)2 ·EP
[(

dQ

dP
(x)

)1−(2α−1)
]
− 1

(1 − α)2 ·
{
EP

[(
dQ

dP
(x)

)1−α
]}2

=
1

(1 − α)2 ·
{

2α · (2α− 1) ·
(

1

2α · (2α− 1)
·EP

[(
dQ

dP
(x)

)1−(2α−1)

− 1

])
+ 1

− α2 · (1− α)2 ·
(

1

α · (α− 1)
· EP

[(
dQ

dP
(x)

)1−α

− 1

])2

+ 1

+ α2 · (1− α)2 ·
(

2

α · (α− 1)
· EP

[(
dQ

dP
(x)

)1−α

− 1

])

− 2α · (1− α)
}
. (73)

Now, we consider an asymptotical distribution of the following term:

√
N ·

{
D̂(N)(Q||P ; α)−D(Q||P ; α)

}

=
√
N ·

(
1

N
·
N∑

i=1

{
LiQ − EQ

[
LiQ
] }
)

+
√
N ·

(
1

N
·
N∑

i=1

{
LiP − EP

[
LiP
]}
)
. (74)

By the central limit theorem, we observe that as N →∞,

√
N ·

(
1

N
·
N∑

i=1

{
LiQ − EQ

[
LiQ
]}
)

d−−→ N
(
0,VarQ

[
LiQ
])
, (75)

and

√
N ·

(
1

N
·
N∑

i=1

{
LiP − EP

[
LiP
]}
)

d−−→ N
(
0,VarP

[
LiP
])
. (76)

Therefore, from Equations (75) and (76), we obtain

√
N ·

{
D̂(N)(Q||P ; α)−D(Q||P ; α)

}
d−−→ N

(
0, σ2

α

)
, (77)

and

σ2
α = VarQ

[
LiQ
]
+VarP

[
LiP
]

= C1
α ·D(Q||P ; 2α) + C2

α ·D(Q||P ; 2α− 1)

+ C3
α ·D(Q||P ; α)2 + C4

α ·D(Q||P ; α) + C5
α, (78)

25

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Under review as a conference paper at ICLR 2025

where

C1
α =

2α · (1 − 2α)

α2
, (79)

C2
α =

2α · (1 − 2α)

(1− α)2 , (80)

C3
α = − 1

α2
− 1

(1− α)2 , (81)

C4
α =

2

α2
+

2

(1 − α)2 ,

C5
α =

(
1

α2
+

1

(1− α)2
)
·
(
2− 2α · (1− α)

)
. (82)

This completes the proof.

D DETAILS OF THE EXPERIMENTS IN SECTION 6

In this section, we provide details on the hyperparameter settings used in the experiments described
in Section 6.

D.1 DETAILS OF THE EXPERIMENTS IN SECTION 6.1

In this section, we detail the experiments reported in Section 6.1.

D.1.1 DATASETS.

We generated the following 100 train datasets. P = N (µp, I5) and Q = N (µq ,Σq) where µp =
µq = (0, 0, . . . , 0), and I5 denotes the 5-dimensional identity matrix, and Σq = (σij)

5
i=1 with

σii = 1, and σij = 0.8 for i 6= j. The size of each dataset was 5000.

D.1.2 EXPERIMENTAL PROCEDURE.

Neural networks were traind using the synthetic datasets by optimizing α-Div for α = −3.0,−2.0,
−1.0, 0.2, 0.5, 0.8, 2.0, 3.0, and 4.0 while measuring the training losses for each learning step. For
each value of α, 100 trials were conducted. Finally, we reported the median, ranging between the
45th and 55th quartiles, and between the 2.5th and 97.5th quartiles of the training losses at each
learning step.

D.1.3 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND

HYPERPARAMETERS.

A 5-layer perceptron with ReLU activation was used, with each hidden layer comprising 100 nodes.
For optimization, the learning rate was set to 0.001, the batch size was 2500, and the number of
epochs was 250. The models for DRE were implemented using the PyTorch library (Paszke et al.,
2017) in Python. Training was conducted with the Adam optimizer (Kingma, 2014) in PyTorch and
an NVIDIA T4 GPU.

D.1.4 RESULTS.

As shown in Figure 4, the training losses of α-Div across learning steps are presented for α =
−3,−2,−1, 0.2, 0.5, 0.8, 2.0, 3.0, and 4.0. The upper (α = −3.0,−2.0, and −1.0) and middle
(α = 2.0, 3.0 and 4.0) figures in Figure 4show that the training losses diverged to large negative
values when α < 0 or α > 1. In contrast, the bottom figure (α = 0.2, 0.5, and 0.8) Figure 1,
the training losses of α-Div converged, illustrating the stability of optimization with α-Div when
0 < α < 1.

26

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Under review as a conference paper at ICLR 2025

Figure 4: All results of Section 6.1. for α = −3,−2,−1, 0.2, 0.5, 0.8, 2.0, 3.0, and 4.0. Each graph
displays the training losses (y-axis) against the learning steps (x-axis) during optimization using α-
Div for different values of α values. The solid blue line represents the median training losses. The
dark blue area indicates the range between the 45th and 55th percentiles, while the light blue area
shows the range between the 2.5th and 97.5th percentiles of the training losses.

D.2 DETAILS OF THE EXPERIMENTS IN SECTION 6.2

In this section, we provide details about the experiments reported in Section 6.2.

D.2.1 DATASETS.

We first generated 100 training datasets, each with a total size of 10000 samples. Each dataset was
drawn from two normal distributions: P = N (µp, ·I5) and Q = N (µq, ·I5) where I5 denotes the
5-dimensional identity matrix, and µp = (−5/2, 0, 0, 0, 0, 0) and µq = (5/2, 0, 0, 0, 0, 0).

D.2.2 EXPERIMENTAL PROCEDURE.

We trained neural networks using the training datasets, optimizing both α-Div and the standard
α-divergence loss function defined in Equation (7) with α = 0.5, as well as nnBD-LSIF, while
measuring the training losses at each learning step. We conducted 100 trials and reported the median

27

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Under review as a conference paper at ICLR 2025

training losses, along with the ranges between the 45th and 55th percentiles, and between the 2.5th
and 97.5th percentiles, at each learning step.

Loss functions used in the experiments. We used α-Div, the standard α-divergence loss func-
tion, and the non-negative Bregman divergence least-squares importance fitting (nnBD-LSIF) loss
function (Kato & Teshima, 2021) to train neural networks. The standard α-divergence loss function,
presented in Equation (7), exhibits a biased gradient when α < 1.

nnBD-LSIF is an unbounded Bregman divergence loss function obtained from the deep direct DRE
(D3RE) method proposed by Kato & Teshima (2021), which is defined as

LnnBD-LSIF(φ) = −ÊQ
[
φ(x) − C

2
φ2(x)

]
+

(
1

2
· ÊP

[
φ2(x)

]
− C

2
· ÊQ

[
φ2(x)

])

+

, (83)

where (a)+ = a if a > 0 otherwise (a)+ = 0 and C is positive constant. Note that, nnBD-LSIF
has a unbiased gradient. The optimization efficiency of nnBD-LSIF was observed to confirm the
effectiveness of an unbiased gradient of an f -divergence loss function as well as α-Div.

D.2.3 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND

HYPERPARAMETERS.

We used a 4-layer perceptron with ReLU activation, where each hidden layer contained 100 nodes.
For optimization, the learning rate was set to 0.00005, the batch size was 2500, and the number of
epochs was 1000. We implemented all models for DRE using the PyTorch library (Paszke et al.,
2017) in Python. Training was performed with the Adam optimizer (Kingma, 2014) in PyTorch,
utilizing an NVIDIA T4 GPU.

D.3 DETAILS OF THE EXPERIMENTS IN SECTION 6.3

In this section, we provide details on the experiments reported in Section 6.3.

D.3.1 DATASETS.

Initially, we created 100 train and test datasets, each with a size of 10,000. Each dataset is generated
from two normal distributions P = N (µp, σ

2 · I3) and Q = N (µq, 4
2 · I3) where I3 denotes

the 3-dimensional identity matrix and σ values were 1.0, 1.1, 1.2, 1.4, 1.6, 2.0, 2.5, or 3.0, and
µp = (−3/2,−3/2,−3/2) and µq = (3/2, 3/2, 3/2). In the aforementioned setting, the ground
truth KL-divergence amounts of the datasets is obtained as

KL(P ||Q) = EP

[
log

(
dP

dQ

)]

=
1

2
·
[
log
|Σp|
|Σq|

− d+Tr(Σ−1
p · Σq) + (µp − µq)T · Σ−1

p · (µp − µq)
]

=
1

2
·
[
log

σ2 · |I3|
42 · |I3|

− 3 + Tr(σ−2 · I3 · 42 · I3) + 3 · 1T · σ−2 · I3 · 3 · 1
]

=
1

2
·
(
6 logσ − 12 log 2− 3 + 3 · σ−2 · 16 + 27 · σ−2

)

= 3 logσ − 6 log 2− 3

2
+ σ−2 · 75

2
. (84)

From Equation (84), we see that the ground truth KL-divergence amounts of the datasets were 31.8,
25.6, 21.0, 14.5, 10.4, 10.4, 5.8, 3.1, and 1.8, which correspond to the ascending σ values, such that
σ = 1.0, 1.1, ...3.0.

D.3.2 EXPERIMENTAL PROCEDURE.

We trained neural networks using the training datasets by optimizing both α-Div with α = 0.5 and a
KL-divergence loss function. Details of the KL-divergence loss function used in the experiments are
provided in the following paragraph. Training was halted if the validation losses, measured using the

28

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Under review as a conference paper at ICLR 2025

validation datasets, did not improve during an entire epoch. After training the neural networks, we
measured the root mean squared error (RMSE) of the estimated density ratios using the test datasets.
We estimated the KL-divergence of the test datasets for each trial using the estimated density ratios
and the plug-in estimation method, which is detailed below. A total of 100 trials were conducted.
Finally, we reported the median RMSE of the DRE and the estimated KL-divergence, along with
the interquartile range (25th to 75th percentiles), for each KL-divergence loss function and α-Div.

KL-divergence loss function. A standard KL-divergence loss function is obtained as

Lstandard-KL(φ) = ÊP [φ]− ÊQ [logφ] . (85)

In our pre-experiment, the standard KL-divergence loss function exhibited poor optimization perfor-
mance, which we attribute to its biased gradients. However, we found that the Gibbs density trans-
formation, as described in Section 4.1, improved optimization performance for the KL-divergence
loss function. Therefore, we used the following KL-divergence loss function, LKL(·) in our experi-
ments:

LKL(T) = ÊP
[
eT
]
− ÊQ [T] . (86)

Plug-in KL-divergence estimation method using the estimated density ratios. The KL-
divergence of the test datasets was estimated by estimated predicted density ratios for the test
datasets using a plug-in estimation, such that

K̂L(P ||Q) = ÊQ [log r̂q(x)] , (87)

where r̂q(x) = eT (x)/ÊQ[e
T (x)].

D.3.3 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND

HYPERPARAMETERS.

The same neural network architecture, optimization algorithm, and hyperparameters were used for
both α-Div and the KL-divergence loss function. A 4-layer perceptron with ReLU activation was
employed, with each hidden layer consisting of 256 nodes. For optimization with the α-Div loss
function, the value of α was set to 0.5, the learning rate was 0.00005, and the batch size was 256.
Early stopping was applied with a patience of 32 epochs, and the maximum number of epochs was
set to 5000. For optimization using the KL-divergence loss function, the learning rate was 0.00001,
with a batch size of 256. Early stopping was applied with a patience of 2 epochs, and the maximum
number of epochs was 5000. Pytorch (Paszke et al., 2017) library in Python was used to implement
all models for DRE, with the Adam optimizer (Kingma, 2014) in PyTorch and an NVIDIA T4 GPU
used for training the neural networks.

E ADDITIONAL EXPERIMENTS

E.1 COMPARISON WITH EXISTING DRE METHODS

We empirically compare the proposed DRE method with existing DRE methods in terms of accuracy
in DRE tasks. This experiment followed the setup described in Kato & Teshima (2021).

E.1.1 EXISTING f -DIVERGENCE LOSS FUNCTIONS FOR COMPARISON.

The proposed method was compared with the Kullback-Leibler importance estimation proce-
dure (KLIEP) (Sugiyama et al., 2007b), unconstrained least-squares importance fitting (uLSIF)
(Kanamori et al., 2009), and deep direct DRE (D3RE) (Kato & Teshima, 2021). The densratio
library in R was used for KLIEP and uLSIF.2 For D3RE, the non-negative Bregman divergence
least-squares importance fitting (nnBD-LSIF) loss function was employed.

E.1.2 DATASETS.

For each d = 10, 20, 30, 50, and 100, 100 datasets were generated, comprising training and test sets
drawn from two d-dimensional normal distributions P = N (µp, Id) and Q = N (µq, Id), where Id
denotes the d-dimensional identity matrix, µp = (0, 0, . . . , 0), and µq = (1, 0, . . . , 0).

2https://cran.r-project.org/web/packages/densratio/index.html

29

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Under review as a conference paper at ICLR 2025

Table 5: Results of additional experiments described in Section E.1. The table reports the average
mean and standard deviation of the MSE for DRE with each method. Results are presented in the
format "mean (standard deviation)." The lowest MSE values are highlighted in bold.

Data dimentions (d)

Model d = 10 d = 20 d = 30 d = 50 d = 100

KLIEP 2.141(0.392) 2.072(0.660) 2.005(0.569) 1.887(0.450) 1.797(0.419)
uLSIF 1.482(0.381) 1.590(0.562) 1.655(0.578) 1.715(0.446) 1.668(0.420)
D3RE 1.111(0.314) 1.127(0.413) 1.219(0.458) 1.222(0.305) 1.369(0.355)
α-Div 0.173(0.072) 0.278(0.113) 0.479(0.259) 0.665(0.194) 1.118(0.314)

E.1.3 EXPERIMENTAL PROCEDURE.

Model parameters were trained using the training datasets, and density ratios for the test datasets
were estimated. The mean squared error (MSE) of the estimated density ratios for the test datasets
was calculated based on the true density ratios. Finally, the average mean and standard deviation of
the MSE for each method were reported.

E.1.4 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND

HYPERPARAMETERS.

For both D3RE and α-Div, a 3-layer perceptron with 100 hidden units per layer was used, consistent
with the neural network structure employed in Kato & Teshima (2021). For D3RE, the learning
rate was set to 0.00005, the batch size was 128, and the number of epochs was 250 for each data
dimension. The hyperparameter C was set to 2.0. For α-Div, the learning rate was set to 0.0001,
the batch size was 128, and the value of α was set to 0.5 for each data dimension. The number of
epochs was set to 40 for data dimensions of 10, 50 for dimensions of 20, 30, and 50, and 60 for a
dimension of 100. The PyTorch library (Paszke et al., 2017) in Python was used to implement all
models for both D3RE and α-Div. The Adam optimizer (Kingma, 2014) in PyTorch, along with an
NVIDIA T4 GPU, was used for training the neural networks.

Results. Table 5 summarizes the results for each method across different data dimensions. Six
cases where the MSE for KLIEP exceeded 1000 were excluded. For all data dimensions, α-Div
consistently demonstrated superior accuracy compared to the other methods, achieving the lowest
MSE values. However, it is important to note that the prediction accuracy of α-Div significantly
decreased as the data dimensions increased. The curse of dimensionality in DRE was also observed
in experiments with real-world data, which will be reported in the next section.

E.2 EXPERIMENTS USING REAL-WORLD DATA

We present numerical experiments using real-world data to highlight important considerations for
applying the proposed method. Specifically, we conducted experiments on Domain Adaptation (DA)
for classification models using the Importance Weighting (IW) method (Shimodaira, 2000). The
IW method builds a prediction model for a target domain using data from a source domain, while
adjusting the distribution of source domain features to match that of the target domain features by
employing the density ratio between the source and target domains as sample weights.

In these experiments, we used Amazon review data (Blitzer et al., 2007) and employed two predic-
tion algorithms: linear regression and gradient boosting. The hyperparameters for each algorithm
were selected from a predefined set based on validation accuracy, using the Importance Weighted
Cross Validation (IWCV) method (Sugiyama et al., 2007a) on the source domain data.

Through these experiments, we observed a decline in prediction accuracy on test data from the target
domain as the data dimensionality increased. Specifically, there were instances where the accuracy
worsened compared to models that did not use importance weighting―i.e., models trained solely on
the source data. These phenomena are likely due to two issues in DRE: the degradation in density
ratio estimation accuracy as dimensionality increases, as noted in Section E.1, and the negative

30

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Under review as a conference paper at ICLR 2025

impact of high KL-divergence on density ratio estimation, as observed in Section 6.3. It is important
to note that KL-divergence increases with the number of features (i.e., data dimensions), unless all
features are fully independent.

E.2.1 DATASETS.

The Amazon review dataset (Blitzer et al., 2007) includes text reviews and rating scores from four
domains: books, DVDs, electronics, and kitchen appliances. The text reviews are one-hot encoded,
and the rating scores are converted into binary labels. Twelve domain adaptation classification tasks
were conducted, with each domain serving once as the source domain and once as the target domain.

Notation. X
d
S and X

d
T denote subsets of the original data for the source and target domains, re-

spectively, for each feature dimension d, where the columns of Xd
S and X

d
T are identical. yS and yT

represent the objective variables in the source and target domains, respectively, which are binary la-
bels assigned to each sample in the source and target domain data. ZdS and Z

d
T denote d-dimensional

feature tables used to estimate the density ratio r̂(ZdS), which is the ratio of the target domain density
to the source domain density. dim(X) indicates the number of columns (features) in the data X .

E.2.2 EXPERIMENTAL PROCEDURE.

Step 1. Creation of feature tables. Many DA methods utilize feature embedding techniques to
project high-dimensional data into a lower-dimensional feature space, facilitating the handling of
distribution shifts between source and target domains (Ragab et al., 2023). However, our prelim-
inary experiments revealed that model prediction accuracies were significantly influenced by the
embedding procedures. To address these effects on DA task accuracies, we explored an embedding
method with theoretical considerations detailed in the next section.

Specifically, we selected an identical set of columns from the original data of both the source and
target domains for each feature dimension, d = 8, 16, 32, 64, and 128, arranging the columns in
ascending order of d. Let Xd

S and X
d
T denote the subsets of the original data for the source and

target domains, respectively, determined by these selected columns for each d. We then generated
a d × dim(Xd

S) matrix Ad from a normal distribution. Finally, by multiplying X
d
S and Ad, and X

d
T

andAd, we obtained the feature tables ZdS and Z
d
T, embedding the original source and target domain

data into a d-dimensional feature space. 3

Step 2. Estimation of importance weights. Using the proposed loss function with Z
d
S and Z

d
T

obtained from the previous step, we estimated the probability density ratio r̂(ZdS) for each feature

dimension d, where r(ZdS) = q(ZdT)/p(Z
d
S). This ratio represents the density of the target domain

relative to the source domain.

Step 3. Model construction. We constructed the target model using the IW method. Specifically,
we built a classification model using the training dataset (Xd

S, yS), where the estimated density ratio

r̂(ZdS) served as the sample weights for the IW method. Additionally, we constructed a prediction
model using only the source data, i.e., a model built without importance weighting.

Step 4. Verification of prediction accuracy To evaluate the prediction accuracy of the models,
we selected the ROC AUC score, as it measures accuracy independently of the thresholds used
for label determination. For the classification tasks in domain adaptation, we employed two clas-
sification methods, each representing a different algorithmic approach: LogisticRegression
from the scikit-learn library (Pedregosa et al., 2011) for linear classification, and LightGBM
(Ke et al., 2017) for nonlinear classification.

The hyperparameter sets for both methods used to evaluate prediction accuracy on target domains
were selected using the IWCV method (Sugiyama et al., 2007a). These hyperparameter sets were

3In our experiments, we utilized matrices generated from the normal distribution as embedding maps, which
is equivalent to random projection (Bingham & Mannila, 2001). However, the linearity of the map is not nec-
essary for preserving the density ratios, as discussed in Section E.2.3. In contrast, linearity is a key requirement
for the distance-preserving property of random projection.

31

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Under review as a conference paper at ICLR 2025

defined as all combinations of the values listed in Table 6 for LogisticRegression and Table
7 for LightGBM, respectively. Finally, the prediction accuracies on the target domain were as-
sessed using the best model selected through IWCV, with the target domain data (Xd

T, yT) used for
reporting.

Table 6: Hyperparameter values for LogisticRegression. "Hyperparameters" shows the hyperparam-
eter names used in the library. Texts inside parentheses provide explanations of the parameters.

Hyperparameters Values

l1_ratio (Elastic-Net mixing parameter) 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0

lambda (Inverse of regularization strength) 0.0001, 0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1,
1.5, 2, and 5

Table 7: Hyperparameter values for LightGBM. "Hyperparameters" shows the hyperparameter
names used in the library. Texts inside parentheses provide explanations of the parameters.

Hyperparameters Values

lambda_l1 (L1 regularization) 0.0, 0.25, 0.5, 0.75, and 1.0

lambda_l2 (L2 regularization) 0.0, 0.0001, 0.001, 0.01, 0.1, 0.5,
1.0, 2.0, and 4.0

num_leaves (Number of leaves in trees) 64, 248, 1024, 2048, and 4096

learning_rate (Learning rate) 0.01, and 0.001

feature_fraction (Ratio of featuresr used for modeling) 0.4, 0.8, and 1.0

Table 8: Original data dimensions (dim(X)) used to obtain feature dimensions (dim(Z)) by em-
bedding.

Feature dimensions (d = dim(Z))

d = 8 d = 16 d = 32 d = 64 d = 128

Original data dimensions (dim(X)) 500 700 900 1700 4600

E.2.3 CONSIDERATION OF THE FEATURE EMBEDDING METHOD

Let f : X 7−→ Z denote a C1-class embedding map which transforms the original data X ⊆ RN×D

to the feature table Z ⊆ RN×d with d < D.

We now demonstrate that if f is injective for both the source and target domain data, it preserves the
density ratio between the target and source domain densities when mapping from the original data
to the embedded data.

To see this, we use the singular value decomposition (SVD) of the Jacobian matrix Jf (x) of f ,
which gives

Jf (x) = U(x) · Σ(x) · V T (x)

with

32

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Under review as a conference paper at ICLR 2025

Σ(x) =




σ1(x) 0 . . . 0
0 σ2(x) . . . 0
...

...
. . .

...
0 0 . . . σdim(z)(x)
0 0 . . . 0
...

... . . .
...

0 0 . . . 0,




where U(x) and V T (x) are orthogonal matrices in Rdim(x)×dim(x) and Rdim(z)×dim(z), respectively,
and σi(x) 6= 0 for all i. This leads to the following relationship for the probability densities between
the original and embedded data:

pX(x) =




dim(z)∏

i=1

σi(x)


 pZ(f(x)). (88)

From Equation (88), the probability density ratio between the source and target domains of data
embedded by f is obtained as

qX(x)

pX(x)
=

(∏dim(z)
i=1 σi(x)

)
· qZ(f(x))

(∏dim(z)
i=1 σi(x)

)
· pZ(f(x))

=
qZ(z)

pZ(z)
.

Therefore, f preserves the density ratio from the original data to the embedded data. Additionally,
if f is a matrix multiplication, its injectivity can be achieved for X by reducing its dimensionality
sufficiently. Reducing the dimensionality of X can induce the injectivity of f .

We heuristically detected the injectivity of our embedding by observing the following: We identified
the largest subset of columns in Z

d
S such that a sufficient increase in the KL divergence between

P (ZdS) and P (ZdT) increased significantly as the number of columns increased. Injectivity was
assumed for columns within this subset.

Although our feature embedding procedure is based on heuristic observations and lacks thorough
theoretical analysis, we find it adequate for evaluating the performance of the proposed method in
DRE downstream tasks with real-world data as the number of features increases.

The number of columns in the original data used in the experiments is listed in Table 8.

Neural Network Architecture, Optimization Algorithm, and Hyperparameters. A 5-layer
perceptron with ReLU activation was used, with each hidden layer consisting of 256 nodes. For
optimization, the value of α was set to 0.5, the learning rate was 0.0001, and the batch size was 128.
Early stopping was applied with a patience of 1 epoch, and the maximum number of epochs was set
to 5000. The PyTorch library (Paszke et al., 2017) in Python was used to implement all models for
DRE. The Adam optimizer (Kingma, 2014) in PyTorch, along with an NVIDIA T4 GPU, was used
to train the neural networks.

Results. The results are shown in Figure 5 (LogisticRegression) and Figure 6 (LightGBM). The
domain names at the origin of the arrows in the figure titles represent the source domains, while
those at the tip represent the target domains. The x-axis of each figure shows the number of features,
and the y-axis represents the ROC AUC for the domain adaptation tasks. The orange line (SO)
represents models trained using source-only data, i.e., models trained using source data without
importance weighting, while the blue line (IW) represents models trained using source data with
importance weighting.

Prediction accuracy for the models trained solely on the source data improved as the number of fea-
tures increased, which is expected since more features typically lead to better accuracy. However,
for both Logistic Regression and LightGBM, the performance of the IW method deteriorated as the

33

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Under review as a conference paper at ICLR 2025

Figure 5: Results of Section E.2 for LogisticRegression. In the figure titles, domain names at the
origin of the arrows indicate the source domains, while those at the tip represent the target domains.
The x-axis shows the number of features, and the y-axis represents the ROC AUC for the domain
adaptation tasks. The orange line (SO) denotes models trained using source-only data (i.e., models
trained on source data without importance weighting), while the blue line (IW) represents models
trained using source data with importance weighting.

number of features increased. A more significant decline in performance with increasing features
was observed for most domain adaptation (DA) tasks, except for "books→ DVDs" and "kitchen→
DVDs". These results suggest that the distributions shifted by the estimated density ratios using the
proposed method diverged further from the target domain as the number of features increased. Con-
sequently, the accuracy of the density ratio estimation (DRE) likely worsened with more features.

34

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Under review as a conference paper at ICLR 2025

Figure 6: Results of Section E.2. Results of Section E.2 for LightGBM. In the figure titles, domain
names at the origin of the arrows represent the source domains, while those at the tip indicate the
target domains. The x-axis shows the number of features, and the y-axis represents the ROC AUC
for the domain adaptation tasks. The orange line (SO) denotes models trained using source-only
data (i.e., models trained on source data without importance weighting), whereas the blue line (IW)
represents models trained using source data with importance weighting.

35

	Introduction
	Problem Setup
	DRE via f-divergence variational representations and its major problems
	DRE via f-divergence variational representation
	Train-loss hacking problem
	Biased gradient problem
	Vanishing gradients problem
	Sample size requirement problem for KL-divergence

	DRE using a neural network with an -divergence loss
	Derivation of our loss function for DRE
	Training and predicting with -Div

	Theoretical results for the proposed loss function
	Addressing the train-loss hacking problem
	Unbiasedness of gradients
	Addressing gradient vanishing problem
	Sample size requirements for optimizing -divergence

	Experiments
	Experiments on the Stability of Optimization for Different Values of
	Experiments on the Improvement of Optimization Efficiency by Removing Gradient Bias
	Experiments on the Estimation Accuracy Using High KL-Divergence Data

	Conclusion
	Organization of the Supplementary Document
	Related Work
	Proofs
	Definition of -Div
	Proofs for Section 4
	Proofs for Section 5

	Details of the experiments in Section 6
	Details of the experiments in Section 6.1
	DataSets.
	Experimental Procedure.
	Neural Network Architecture, Optimization Algorithm, and Hyperparameters.
	Results.

	 Details of the experiments in Section 6.2
	DataSets.
	Experimental Procedure.
	Neural Network Architecture, Optimization Algorithm, and Hyperparameters.

	Details of the experiments in Section 6.3
	DataSets.
	Experimental Procedure.
	Neural Network Architecture, Optimization Algorithm, and Hyperparameters.

	Additional Experiments
	Comparison with Existing DRE Methods
	Existing f-Divergence Loss Functions for Comparison.
	Datasets.
	Experimental Procedure.
	Neural Network Architecture, Optimization Algorithm, and Hyperparameters.

	Experiments Using Real-World Data
	DataSets.
	Experimental Procedure.
	Consideration of the Feature Embedding Method

