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Abstract
In this paper, we present a substantial step in001
better understanding the SOTA sequence-to-002
sequence (Seq2Seq) pretraining for neural ma-003
chine translation (NMT). We focus on study-004
ing the impact of the jointly pretrained de-005
coder, which is the main difference between006
Seq2Seq pretraining and previous encoder-007
based pretraining approaches for NMT. By008
carefully designing experiments on three lan-009
guage pairs, we find that Seq2Seq pretraining010
is a double-edged sword: On one hand, it helps011
NMT models to produce more diverse transla-012
tions and reduce adequacy-related translation013
errors. On the other hand, the discrepancies be-014
tween Seq2Seq pretraining and NMT finetun-015
ing limit the translation quality (i.e., domain016
discrepancy) and induce the over-estimation017
issue (i.e., objective discrepancy). Based on018
these observations, we further propose simple019
and effective strategies, named in-domain pre-020
training and input adaptation to remedy the do-021
main and objective discrepancies, respectively.022
Experimental results on several language pairs023
show that our approach can consistently im-024
prove both translation performance and model025
robustness upon Seq2Seq pretraining.026

1 Introduction027

There has been a wealth of research over the past028

several years on self-supervised pre-training for029

natural language processing tasks (Devlin et al.,030

2019; Liu et al., 2019; Conneau et al., 2020), which031

aims at transferring the knowledge of large-scale032

unlabeled data to downstream tasks with labeled033

data. Despite its success in other understanding034

and generation tasks, self-supervised pretraining035

is not a common practice in machine translation036

(MT). One possible reason is the architecture dis-037

crepancy between pretraining model (e.g., Trans-038

former encoder) and NMT models (e.g., Trans-039

former encoder-decoder).040

To remedy the architecture gap, several re-041

searchers propose sequence-to-sequence (Seq2Seq)042

pretraining models for machine translation, e.g., 043

MASS (Song et al., 2019) and BART (Zhu et al., 044

2019; Lewis et al., 2020). Recently, Liu et al. 045

(2020) extend BART by training on large-scale 046

multilingual language data (i.e., mBART), lead- 047

ing to significant improvement on translation per- 048

formance across various language pairs. While 049

previous pretraining approaches for NMT gener- 050

ally focus only on Transformer encoder (Lample 051

and Conneau, 2019), mBART pretrains a complete 052

autoregressive Seq2Seq model by recovering the 053

input sentences that are noised by masking phrases. 054

One research question naturally arises: how much 055

does the jointly pretrained decoder matter? 056

In this work, we present a substantial step in bet- 057

ter understanding the SOTA Seq2Seq pretraining 058

model. We take a fine-grained look at the impact of 059

the jointly pretrained decoder by carefully design- 060

ing experiments, which are conducted on several 061

WMT and IWSLT benchmarks across language 062

pairs and data scales using the released mBART-25 063

model (Liu et al., 2020). By carefully examining 064

the translation outputs, we find that (§ 2.2): 065

• Jointly pretraining decoder produces more di- 066

verse translations with different word orders, 067

which calls for multiple references to accurately 068

evaluate its effectiveness on large-scale data. 069

• Jointly pretraining decoder consistently reduces 070

adequacy-related translation errors over pretrain- 071

ing encoder only. 072

Although jointly pretraining decoder consis- 073

tently improves translation performance, we also 074

identify several side effects due to the discrepancies 075

between pretraining and finetuning (§2.3): 076

• domain discrepancy: Seq2Seq pretraining 077

model is generally trained on general domain 078

data while the downstream translation models 079

are trained on specific domains (e.g., news). The 080

domain discrepancy requires more efforts for the 081
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finetuned model to adapt the knowledge in pre-082

trained models to the target in-domain.083

• objective discrepancy: NMT training learns to084

translate a sentence from one language to an-085

other, while Seq2Seq pretraining learns to re-086

construct the input sentence. The objective dis-087

crepancy induces the over-estimation issue and088

tends to generate more hallucinations with noisy089

input. The over-estimation problem along with090

more copying translations induced by Seq2Seq091

pretraining (Liu et al., 2021) make it suffer from092

more serious beam search degradation problem.093

To remedy the above discrepancies, we propose094

simple and effective strategies, named in-domain095

pretraining and input adaptation in finetuning (§3).096

In in-domain pretraining, we propose to reduce097

the domain shift by continuing the pretraining of098

mBART on in-domain monolingual data, which is099

more similar in data distribution with the down-100

stream translation tasks. For input adaptation, we101

add noises to the source sentence of bilingual data,102

and combine the noisy data with the clean bilin-103

gual data for finetuning. We expect the perturbed104

inputs to better transfer the knowledge from pre-105

trained model to the finetuned model. Experimen-106

tal results on the benchmark datasets show that in-107

domain pretraining improves the translation perfor-108

mance significantly and input adaptation enhances109

the robustness of NMT models. Combining the110

two approaches gives us the final solution to a111

well-performing NMT system. Extensive analy-112

ses show that our approach can narrow the domain113

discrepancy, particularly improving the translation114

of low-frequency words. Besides, our approach can115

alleviate the over-estimation issue and mitigate the116

beam search degradation problem of NMT models.117

2 Understanding Seq2Seq Pretraining118

In this section, we conduct experiments and anal-119

yses to gain a better understanding of current120

Seq2Seq pretraining for NMT. We first present the121

translation performance of the pretrained compo-122

nents (§2.2), and then show the discrepancy be-123

tween pretraining and finetuning (§2.3).124

2.1 Experimental Setup125

Data. We conduct experiments on several bench-126

marks across language pairs, including high-127

resource WMT19 English-German (W19 En-De,128

36.8M instances), and low-resource WMT16129

English-Romanian (W16 En-Ro, 610K instances) 130

and IWSLT17 English-French (I17 En-Fr, 250K 131

instances). To eliminate the effect of different lan- 132

guages, we also sample a subset from WMT19 En- 133

De (i.e., W19 En-De (S), 610K instances) to con- 134

struct a low-resource setting for ablation studies. 135

For the proposed in-domain pretraining, we 136

collect the NewsCrawl monolingual data as the 137

in-domain data for WMT tasks (i.e., 200M En- 138

glish, 200M German, and 60M Romanian), and 139

the TED monolingual data for IWSLT tasks (i.e., 140

1M English and 0.9M French). Since the mono- 141

lingual data from TED is rare, we expand it with 142

pseudo in-domain data, OpenSubtitle (Tiedemann, 143

2016), which also provides spoken languages as 144

TED. Specifically, we use the latest 200M En- 145

glish subtitles and all the available French subti- 146

tles (i.e., 100M). We follow Liu et al. (2020) to 147

use their released sentence-piece model (Kudo and 148

Richardson, 2018) with 250K subwords to tokenize 149

both bilingual and monolingual data. We evalu- 150

ate the translation performance using the Sacre- 151

BLEU (Post, 2018). 152

Models. As for the pretrained models, we adopt 153

the officially released mBART25 model (Liu et al., 154

2020)1, which is trained on the large-scale Com- 155

monCrawl (CC) monolingual data in 25 lan- 156

guages. As a result, the vocabulary is very large in 157

mBART25, including 250K words. mBART uses 158

a larger Transformer model which extends both 159

the encoder and decoder of Transformer-Big to 12 160

layers. We use the parameters of either encoder 161

or encoder-decoder from the pretrained mBART25 162

for finetuning. Then, in the following section, we 163

use pretrained encoder, and pretrained encoder- 164

decoder for short. We follow the officially rec- 165

ommended finetuning setting with dropout of 0.3, 166

label smoothing of 0.2, and warm-up of 2500 steps. 167

We finetune on the high-resource task for 100K 168

steps and the low-resource tasks for 40K steps, re- 169

spectively. 170

We also list the results of vanilla Transformer 171

without pretraining as baseline. The vocabulary is 172

built on the bilingual data, hence is much smaller 173

(e.g., En-De 44K) than mBART25. Specifically, for 174

high-resource tasks we train 6L-6L Transformer- 175

Big with 460K tokens per batch for 30K steps, and 176

for low-resource tasks we train 6L-6L Transformer- 177

Base with 16K tokens per batch for 50K steps. 178

1https://github.com/pytorch/fairseq/
tree/main/examples/mbart
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Pretraining W19 En-De W19 En-De (S) W16 En-Ro I17 En-Fr

Model Enc Dec ⇒ ⇐ ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

no pretrain 39.6 41.0 29.7 30.1 34.5 34.3 37.3 38.0

mBART
× × 39.4 40.1 26.7 27.1 30.0 29.6 35.3 35.1
X × 40.8 41.1 31.7 33.5 35.0 35.6 38.4 38.4
X X 40.8 41.4 35.3 35.7 37.1 37.4 39.2 40.2

Table 1: BLEU scores on MT benchmarks. “Enc:×, Dec:×” represents that we use only the pre-trained embeddings
for fair comparisons, and we highlight performance improvement over this setting in red color.

2.2 Impact of Jointly Pretrained Decoder179

The main difference of Seq2Seq pretraining models180

(e.g., mBART) from previous pretraining models181

(e.g., BERT and XLM-R) lies in whether to train182

the decoder together. In this section, we investi-183

gate the impact of the jointly pretrained decoder in184

terms of BLEU scores, and provide some insights185

on where the jointly pretrained decoder improves186

performance.187

Translation Performance. Table 1 lists the188

BLEU scores of pretraining different components189

of NMT models, where we also include the re-190

sults of NMT models trained on the datasets from191

scratch (“no pretrain”). For fair comparisons, we192

use the same vocabulary size for all variants of193

pretraining NMT components. We use the pre-194

trained word embedding for the model variant195

with randomly initialized encoder-decoder (“Enc:×,196

Dec:×”), which makes it possible to train 12L-12L197

NMT models on the small-scale datasets. Accord-198

ingly, the results of (“Enc:×, Dec:×”) is worse than199

the “no pretrain” model due to the larger vocab-200

ulary (e.g., 250K vs. 44K) that makes the model201

training more difficult.202

Pretraining encoder only (“Enc:X, Dec:×”) sig-203

nificantly improves translation performance, which204

is consistent with the findings in previous stud-205

ies (Zhu et al., 2019; Weng et al., 2020). We also206

conduct experiments with the pretrained encoder207

XLM-R (Conneau et al., 2020), which achieves208

comparable performance as the mBART encoder209

(see Appendix A.1). For fair comparisons, we only210

use the mBART encoder in the following sections.211

Encouragingly, jointly pretraining decoder can fur-212

ther improve translation performance, although the213

improvement is not significant on the large-scale214

WMT19 En-De data. These results seem to pro-215

vide empirical support for the common cognition216

– pretraining is less effective on large-scale data.217

Src Sie bezichtigt die Erwachsenen Kinderhandel zu
betreiben.

Ref She accuses the adults of child trafficking.

Large-Scale Data
no pre. It accuses (the) adults of children trafficking.
(×, ×) It accuses (the) adults of children trafficking.
(X, ×) She accuses the adults of children trafficking.
(X, X) She accuses the adults of trafficking in children.

Small-Scale Data
no pre. It accuses the adults to trade children.
(×, ×) It requires adult trafficking on children.
(X, ×) It accuses (the) adults of children trafficking.
(X, X) She accuses the adults of trafficking in children.

Table 2: Translation examples on WMT19 De⇒En test
set. The translation errors are highlighted in red and
changes of word order are highlighted in blue.

However, we have some interesting findings of the 218

generated outputs, which may draw different con- 219

clusions. To eliminate the effect of language and 220

data bias, we use the full set and sampled subset of 221

WMT19 De⇒En data as representative large-scale 222

and small-scale data scenarios. 223

Table 2 shows some translation examples. 224

Firstly, jointly pretraining decoder can produce 225

good translations that are different in the word 226

order from the ground-truth reference (e.g., “traf- 227

ficking in children” vs. “child trafficking"), thus 228

are assigned low BLEU scores. This may explain 229

why jointly pretraining decoder only marginally 230

improves performance on large-scale data. Sec- 231

ondly, jointly pretraining decoder can reduce trans- 232

lation errors, especially on small-scale data (e.g., 233

correct the mistaken translation of “It” to “She”). 234

We empirically validate the above two findings in 235

the following experiments. 236

Impact on Translation Diversity. We fol- 237

low Du et al. (2021) to better evaluate the transla- 238

tion quality for different word orders using multiple 239

references. We use the test set released by Ott et al. 240
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Pretrain Single Multiple

BLEU 4 BLEU 4

Large-Scale Data
no pretrain 39.5 - 77.1 -

(×, ×) 38.6 -0.9 75.7 -1.4
(X, ×) 39.5 +0.0 77.8 +0.7
(X, X) 39.9 +0.4 79.1⇑ +2.0

Small-Scale Data
no pretrain 27.0 - 53.1 -

(×, ×) 27.0 +0.0 52.3 -0.8
(X, ×) 32.3 +5.3 63.4 +10.3
(X, X) 35.3⇑ +8.3 69.1⇑ +16.0

Table 3: BLEU scores on En⇒De testset with single
and multiple references. “⇑” denotes significantly bet-
ter (with p < 0.01) than No mBART pretraining.

Pretrain Large Small

Enc Dec Ut Mt Ot Ut Mt Ot

× × 4 9 0 25 45 0
X × 3 3 0 5 21 5
X X 2 0 0 3 15 0

Table 4: Human evaluation of mBART pretrained
NMT models in terms of under-translation (Ut), mis-
translation (Mt), and over-translation (Ot) errors.

(2018), which consists of 10 human translations for241

500 sentences taken from the WMT14 En⇒De test242

set. As shown in Table 3, the pretrained decoder243

achieves more significant improvement in all cases244

when measured by multiple references. These re-245

sults provide empirical support for our claim that246

jointly pretraining decoder produces more diverse247

translations with different word orders, which can248

be better measured by multiple references. These249

results may renew our cognition of pretraining, that250

is, they are also effective on large-scale data when251

evaluated more accurately.252

Impact on Adequacy. We conduct a human eval-253

uation to provide a more intuitive understanding254

of how jointly pre-training decoder improves trans-255

lation quality. Specifically, we ask two annota-256

tors to annotate under-translation, mis-translation257

and over-translation on 100 sentences randomly258

sampled from WMT19 De⇒En test set. As listed259

in Table 4, inheriting the pretrained decoder re-260

duces more translation errors on small data than261

on large data, which is consistent with the results262

of BLEU score in Table 1. Interestingly, inherit-263

ing only the pretrained encoder introduces more264
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Figure 1: Word distributions of English corpora from
general domain (i.e., CC data) and in-domain (i.e.,
WMT19 En-De news domain), respectively. The word
frequency is normalized and reported in log-scale.

over-translation errors on small data, which can be 265

solved by combining the pretrained decoder. One 266

possible reason is that inheriting only the pretrained 267

encoder excessively enlarges the impact of source 268

context.2 This problem does not happen on large 269

data, since the large amount of in-domain data can 270

balance the relation between encoder and decoder 271

to accomplish the translation task well. 272

2.3 Pretraining-and-Finetuning Discrepancy 273

Although Seq2Seq pretraining consistently im- 274

proves translation performance across data scales, 275

we find several side effects of Seq2Seq pretraining 276

due to the discrepancy between pretraining and fine- 277

tuning. In this section, we present two important 278

discrepancies: domain discrepancy and objective 279

discrepancy. Unless otherwise stated, we report 280

results on WMT19 En-De test set using small data. 281

2.3.1 Domain Discrepancy 282

Seq2Seq pretraining model is generally trained on 283

general domain data while the downstream trans- 284

lation models are trained on specific domains (e.g., 285

news). Such a domain discrepancy requires more 286

efforts for the finetuned models to adapt the knowl- 287

edge in pretrained models to the target in-domain. 288

We empirically show the domain discrepancy in 289

terms of lexical distribution and domain classifier. 290

Lexical Distribution in Training Data. In- 291

spired by lexicon distribution analysis (Ding et al., 292

2021), we first plot the word distributions of En- 293

glish corpora from general domain (i.e., CC data) 294

and in-domain (i.e., WMT19 En-De news domain) 295

2Tu et al. (2017a) showed that more impact of source
context leads to over-translation errors.
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Set En⇒De De⇒En

Source 77.5 73.7
Target 71.0 75.4

Table 5: Ratio of sentences in WMT19 En-De test sets
that are classified as WMT news domain.

to study their difference at the lexicon level. The296

words are ranked according to their frequencies297

in the WMT19 En-De training data. As shown in298

Figure 1, we observe a clear difference between299

WMT news data and CC data in the long tail region,300

which is supposed to carry more domain-specific301

information. Accordingly, there will be a domain302

shift from pretraining to finetuning.303

Domain Classifier for Test Data. We further304

demonstrate that the test data also follows a con-305

sistent domain as the training data. To distinguish306

general domain and in-domain, we build a domain307

classifier based on the WMT19 En-De training data308

and the CC data. We select a subset from the WMT309

training data with some trusted data (Wang et al.,310

2018; Jiao et al., 2020), which includes 22404311

sample from WMT newstest2010-2017 (see Ap-312

pendix A.2 for details). Specifically, we select313

1.0M samples from the WMT training data and the314

CC data, respectively, to train the domain classi-315

fier. The newstest2018 is combined with an equally316

sized subset of CC data for validation. We adopt317

the domain classifier to classify each sample in the318

test sets of WMT19 En-De. As shown in Table 5,319

most of the sentences (e.g., 70% - 80%) are recog-320

nized as WMT news domain, which demonstrates321

the domain consistency between the training data322

and test data in the downstream tasks.323

2.3.2 Objective Discrepancy324

The learning objective discrepancy between325

Seq2Seq pretraining and NMT training is that NMT326

learns to translate a sentence from one language to327

another, while Seq2Seq pretraining learns to recon-328

struct the input sentence (Liu et al., 2021). In this329

section, we study the side effects of the objective330

discrepancy by evaluating the predicting behaviors331

that are highly affected by the learning objective.332

Model Uncertainty. We follow Ott et al. (2018)333

to analyze the model’s uncertainty by computing334

the average probability at each time step across a335

set of sentence pairs. To evaluate the capability336

of LM modeling on the target language, we also337
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Figure 2: Per-token generation probability on the test
set of WMT19 En⇒De (S). Higher probabilities are
expected for the groundtruth references (a), and lower
probabilities are expected for the distractors (b).

follow Wang and Sennrich (2020) to consider a 338

set of “distractor” translations, which are random 339

sentences from the CC data that match the corre- 340

sponding reference translation in length. Figure 2 341

plots model uncertainties for both references (Y ) 342

and distractors (Ŷ ). We find that jointly pretrain- 343

ing decoder significantly improves model certainty 344

after the first few time steps (Figure 2a). As for 345

the distractors, pretraining encoder only results in 346

certainties even lower than training from scratch 347

(Figure 2b), which suggests that the correspond- 348

ing NMT model is more dominated by the source 349

context. It reconfirms the finding in our human 350

evaluation (Table 4). In contrast, jointly pretrain- 351

ing decoder leads to a significant improvement of 352

certainties, suggesting that the pretrained decoder 353

tends to induce the over-estimation issue of NMT 354

models. A possible reason is that Seq2Seq pre- 355

training does not establish the connection between 356

languages, such that its strong capability of LM 357

modeling still recognizes the distractor as a valid 358

target sentence even though it is mismatched with 359

the source sentence in semantics. 360

Hallucination under Perturbation. One trans- 361

lation problem associated with over-estimation is 362

hallucination (Wang and Sennrich, 2020), where 363

NMT models generate fluent translation but is 364

unrelated to the input. In this section, we fol- 365

low Lee et al. (2018) to evaluate the model’s ten- 366

dency of generating hallucination under noisy in- 367

put, to which NMT models are highly sensitive (Be- 368

linkov and Bisk, 2018). Specifically, we employ 369

two different perturbation strategies: (1) First posi- 370

tion insertion (FPI) that inserts a single additional 371

input token into the source sequence, which can 372
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Pretrain FPI (%) RSM (%)

Enc Dec 4BLEU HUP 4BLEU HUP

× × -1.3 0.5 -8.8 2.4
X × -0.3 0.5 -8.3 0.5
X X -3.2 7.8 -17.8 15.5

Table 6: BLEU change of model performance under
perturbed inputs over the standard inputs, and halluci-
nations under perturbation (HUP) score.

Pretrain BLEU Copy (%)

Enc Dec 5 100 5 100

× × 26.7 26.6 12.9 13.9
X × 31.7 31.6 12.7 12.9
X X 35.3 33.5 13.2 19.4

Table 7: Beam search degradation and ratio of copying
tokens in translation outputs.

completely divorce the translation from the input373

sentence (Lee et al., 2018). (2) Random span mask-374

ing (RSM) that simulates the noisy input in the375

Seq2Seq pretraining of mBART (Liu et al., 2020).376

We follow Lee et al. (2018) to count a translation377

as hallucination under perturbation (HUP) when:378

(1) BLEU between reference sentence and transla-379

tion of unperturbed sentence is bigger than 5 and380

(2) BLEU between the translation of perturbed sen-381

tence and the translation of unperturbed sentence is382

lower than 3. We calculate the percentage of hallu-383

cination as the HUP score. Table 6 lists the BLEU384

change and HUP score for the perturbed inputs. As385

expected, jointly pretraining decoder is less robust386

to perturbed inputs (more decline of BLEU scores),387

and produces more hallucinations than the other388

two model variants.389

Beam Search Problem. One commonly-cited390

weakness of NMT model is the beam search prob-391

lem, where the model performance declines as392

beam size increases (Tu et al., 2017b). Previous393

studies demonstrate that over-estimation is an im-394

portant reason for the beam search problem (Ott395

et al., 2018; Cohen and Beck, 2019). We revisit396

this problem for NMT models with Seq2Seq pre-397

training, as shown in Table 7. We also list the398

ratio of copying tokens in translation outputs (i.e.,399

directly copy source words to target side without400

translation) for different beam sizes, which has401

been shown as a side effect of Seq2Seq pretraining402

models (Liu et al., 2021). As seen, jointly pre-403

training decoder suffers from more serious beam 404

search degradation problem, which reconfirms the 405

connection between beam search problem and over- 406

estimation. In addition, larger beam size introduces 407

more copying tokens than the other model variants 408

(i.e., 19.4 vs. 13.9, 12.9), which also links copying 409

behaviors associated with Seq2Seq pretraining to 410

the beam search problem. 411

3 Improving Seq2Seq Pretraining 412

3.1 Approach 413

To bridge the above gaps between Seq2Seq pre- 414

training and finetuning, we introduce in-domain 415

pretraining and input adaptation to improve the 416

translation quality and model robustness. 417

In-Domain Pretraining. To bridge the domain 418

gap, we propose to continue the training of 419

mBART (Liu et al., 2020) on the in-domain mono- 420

lingual data. Specifically, we first remove spans 421

of text and replace them with a mask token. We 422

mask 35% of the words in each sentence by ran- 423

dom sampling a span length according to a Poisson 424

distribution (λ = 3.5). We also permute the order 425

of sentences within each instance. The training 426

objective is to reconstruct the original sentence at 427

the target side. We expect the in-domain pretrain- 428

ing to reduce the domain shift by re-pretraining on 429

the in-domain data, which is more similar in data 430

distribution with the downstream translation tasks. 431

Input Adaptation in Finetuning. To bridge the 432

objective gap and improve the robustness of mod- 433

els, we propose to add noises (e.g., mask, delete, 434

permute) to the source sentences during finetuning, 435

and keep target sentences as original ones. Em- 436

pirically, we add noises to 10% of the words in 437

each source sentence, and combine the noisy data 438

with the clean data by the ratio of 1:9, which are 439

used to finetune the pretraining model. We expect 440

the introduction of perturbed inputs in finetuning 441

can help to better transfer the knowledge from pre- 442

trained model to the finetuned model, thus alleviate 443

over-estimation and improve the model robustness. 444

3.2 Experimental Results 445

Main Results on Translation Performance and 446

Robustness. The main results are listed in Ta- 447

ble 8. We report the results of input adaptation, in- 448

domain pretraining, and the combination of these 449

two approaches, respectively. For input adaptation, 450

it achieves comparable translation quality as the 451
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Approach W19 En⇒De W19 En⇒De (S) W16 En⇒Ro I17 En⇒Fr

BLEU HUP BLEU HUP BLEU HUP BLEU HUP

Baseline 39.4 2.6 26.7 2.4 30.0 1.1 35.3 1.6
General 40.8 3.3 35.3 15.5 37.1 6.5 39.2 7.8

+ Input Adapt 40.8 2.7 35.6 5.7 37.2 2.4 39.4 1.5
+ In-Domain 42.2 9.2 36.4 10.4 38.0 8.2 39.9 5.5

+ Input Adapt 41.3 4.1 36.1 3.6 37.8 2.9 40.1 3.0

Approach W19 De⇒En W19 De⇒En (S) W16 Ro⇒En I17 Fr⇒En

BLEU HUP BLEU HUP BLEU HUP BLEU HUP

Baseline 40.1 2.8 27.1 1.3 29.6 1.3 35.1 1.7
General 41.4 7.7 35.7 4.9 37.4 6.0 40.2 4.7

+ Input Adapt 41.2 2.6 35.9 2.8 37.1 3.5 40.7 2.5
+ In-Domain 41.3 8.2 36.9 7.4 38.1 7.7 41.1 4.2

+ Input Adapt 41.4 3.1 36.8 2.9 37.9 3.9 41.0 1.7

Table 8: BLEU and HUP scores of our approaches for downstream translation tasks.

Approach W19 En-De W19 En-De (S)

BLEU 4 BLEU 4

Baseline 75.7 - 52.3 -
General 79.1 +3.4 69.1 +16.8

+ Input Adapt 79.2 +3.5 71.7 +19.4
+ In-Domain 80.1 +4.4 73.7 +21.4

+ Input Adapt 79.8 +4.1 75.6 +23.3

Table 9: BLEU scores with multiple references.

general domain pretrained model and significantly452

reduces the ratio of HUP, indicating the enhance-453

ment of model robustness. In-domain pretraining454

generally improves the translation quality but does455

not make the model more robust. On the contrary,456

it may increase the ratio of HUP in some cases (e.g.,457

En⇒Ro 5.6 vs. 8.2). Conducting input adaptation458

right after in-domain pretraining will combine the459

advantages of these two approaches, and improve460

both the translation quality and model robustness.461

The effectiveness of our approaches, especially in-462

put adaptation, is more significant when evaluated463

with multiple references, as shown in Table 9.464

In-Domain Only. Given the promising perfor-465

mance of in-domain pretraining, we investigate466

whether pretraining on in-domain data only can467

also obtain significant improvement. We report the468

results in Table 10. We can observe that pretrain-469

ing solely on the in-domain data can improve the470

translation performance noticeably over the mod-471

els without pretraining. However, the improvement472

Approach W19 En-De (S) W16 En-Ro

⇒ ⇐ ⇒ ⇐

Baseline 26.7 27.1 30.0 29.6
In-Domain 35.2 35.7 36.1 36.3

Table 10: BLEU scores of in-domain pretraining only.

is less competitive than the pretrained mBART25 473

(e.g., En⇒Ro: 36.1 v.s. 37.1 in Table 8), which 474

may result from the much larger scale of multilin- 475

gual data used in general pretraining. 476

3.3 Analysis 477

We provide some insights into how our approach 478

improves model performance over general pretrain- 479

ing. We report results on WMT19 En⇒De test set 480

using small-scale data. 481

Narrowing Domain Gap. Since the difference 482

of lexical distribution between general domain and 483

in-domain data mainly lies in the long tail region 484

(see Figure 1), we study how our approach per- 485

forms on low-frequency words. Specifically, we 486

calculate the word accuracy of the translation out- 487

puts for WMT19 En-De (S) by the compare-mt3 488

tool. We follow Wang et al. (2021) to divide words 489

into three categories based on their frequency in the 490

bilingual data, including High: the most 3,000 fre- 491

quent words; Medium: the most 3,001-12,000 fre- 492

quent words; Low: the other words. Table 11 lists 493

3https://github.com/neulab/compare-mt
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Approach Frequency

Low Med High

Baseline 36.8 45.3 57.5
General 44.5 54.3 64.2

+ In-Domain 46.2 54.3 64.9

Table 11: F-measures of word prediction for different
frequencies that are calculated in the bilingual data.

the results. The improvements on low-frequency494

words are the major reason for the performance495

gains of in-domain pretraining, where it outper-496

forms general pretraining on the translation accu-497

racy of low/medium/high- frequency words by 1.7,498

0.0, and 0.7 BLEU scores, respectively. These499

findings confirm our hypothesis that in-domain pre-500

training can narrow the domain gap with in-domain501

data, which is more similar in the lexical distribu-502

tion as the test sets.503

Alleviating Over-Estimation. Figure 3 shows504

the impact of our approach on model uncertainty.505

Clearly, our approach successfully alleviates the506

over-estimation issue of general pretraining in both507

the groundtruth and distractor scenarios.508

Mitigating Beam Search Degradation. We re-509

cap the beam search degradation problem with the510

application of our approaches in Table 12. The in-511

put adaptation approach can noticeably reduce the512

performance decline when using a larger beam size513

(e.g., from -1.8 to -0.9), partially due to a reduction514

of copying tokens in generated translations (e.g.,515

from 19.4% to 15.3%). Although in-domain pre-516

training does not alleviate the beam search degrada-517

tion problem, it can be combined with input adap-518

tation to build a well-performing NMT system.519

4 Related Work520

Pretraining for NMT. Previous pretraining ap-521

proaches for NMT generally focus on how to ef-522

fectively integrate pretrained BERT (Devlin et al.,523

2019) or GPT (Radford et al., 2019) to NMT mod-524

els. For example, Yang et al. (2020) propose a con-525

certed training framework, and Weng et al. (2020)526

propose a dynamic fusion mechanism and a distil-527

lation paradigm to acquire knowledge from BERT528

and GPT. In this work, we aim to provide a better529

understanding of how Seq2Seq pretraining model530

works for NMT, and propose a simple and effective531

approach to improve model performance based on532

these observations.533
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Figure 3: Per-token generation probability on WMT19
En⇒De (S) test set when adopting our approaches.

Approach BLEU Copy (%)

5 100 5 100

General 35.3 33.5 13.2 19.4
+ Input Adapt 35.6 34.7 12.5↓ 15.3↓

+ In-Domain 36.4 33.9 12.9 19.8
+ Input Adapt 36.1 35.0 12.6↓ 15.6↓

Table 12: Beam search degradation and “copy” transla-
tions when adopting our approaches.

Intermediate Pretraining. Our in-domain pre- 534

training approach is related to recent successes on 535

intermediate pretraining and intermediate task se- 536

lection in NLU tasks. For example, Ye et al. (2021) 537

investigate the influence of masking policies in in- 538

termediate pretraining. Poth et al. (2021) explore to 539

select tasks for intermediate pretraining. Closely re- 540

lated to our work, Gururangan et al. (2020) propose 541

to continue the pretraining of ROBERTA (Liu et al., 542

2019) on task-specific data. Inspired by these find- 543

ings, we employ in-domain pretraining to narrow 544

the domain gap between general Seq2Seq pretrain- 545

ing and NMT training. We also show the necessity 546

of target-side monolingual data on in-domain pre- 547

training (see Appendix A.3), which has not been 548

studied in previous works of in-domain pretraining. 549

5 Conclusion 550

In this paper we provide a better understanding of 551

Seq2Seq pretraining for NMT by showing both the 552

benefits and side effects. We propose simple and 553

effective approaches to remedy the side effects by 554

bridging the gaps between Seq2Seq pretraining and 555

NMT finetuning, which further improves transla- 556

tion performance and model robustness. Future 557

directions include validating our findings on more 558

Seq2Seq pretraining models and language pairs. 559
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A Appendix673

A.1 Comparison of XLM-R and mBART674

Pre-Train En-De En-De (S) En-Ro

Enc Dec ⇒ ⇐ ⇒ ⇐ ⇒ ⇐

mBART model
X × 40.8 41.0 31.7 33.5 35.0 35.6
X X 40.8 41.4 35.3 35.7 37.1 37.4

XLM-R model
X × 41.6 41.4 27.7 30.1 32.8 30.0
X X 41.1 40.4 31.4 32.3 34.4 33.4

Table 13: Comparison between 12L-12L mBART and
XLM-R in terms of BLEU scores on MT benchmarks.

Throughout our paper, we mainly rely on675

mBART to investigate the pretrained encoder only676

setting. Here, we report our results on the same677

benchmark datasets with the popular pretrained en-678

coder, XLM-R (Conneau et al., 2020). We also try679

to initialize the decoder of NMT models with XLM-680

R. The results are listed in Table 13. We find that681

XLM-R achieves comparable translation perfor-682

mance as mBART on the large-scale WMT19 En-683

De data but under-performs mBART on small-scale684

data significantly. The strong results of mBART685

ensure the reliability of our findings.686

A.2 Domain Classifier687

To distinguish general domain and in-domain, we688

build a domain classifier based on the WMT19689

En-De training data and the CC data. We select690

a subset from the full training data of WMT with691

some trusted data (Wang et al., 2018; Jiao et al.,692

2020) , i.e., WMT newstest2010-2017 consisting693

of 22404 samples, to reduce the impact of possible694

noises in the training data. Specifically, we first695

train a language model on the full WMT training696

data as the noisy model and then finetune it on the697

trusted data to obtain the denoised model. For a sen-698

tence x, the difference of confidence between the699

two models, i.e., logPnoisy(x)− logPdenoised(x),700

represents the noise score. We select 1.0M samples701

with the lowest noise score from the WMT training702

data and randomly select 1.0M samples from the703

CC data to train the domain classifier. The new-704

stest2018 combined with an equally sized subset705

of CC data is used as the validation data to select706

the best classifier.707

A.3 Involved Languages 708

Lang BLEU Frequency

Low Med High

None 40.8 50.9 58.0 67.0
En 41.3 51.1 58.1 67.5
En,De 42.2 52.2 59.2 67.7

Table 14: Effect of languages involved in in-domain
pretraining, evaluated on WMT19 En-De dataset.

We investigate whether the languages involved 709

in the in-domain pretraining process affect the final 710

performance of our approach. In Table 14, we 711

present the results of in-domain pretraining with 712

only one language involved, i.e., English. While 713

the translation quality can also be improved slightly, 714

the improvements of accuracy on medium- and 715

low-frequency words are very limited. It indicates 716

that in-domain pretraining on the target language 717

(i.e., German here) is critical for medium- and low- 718

frequency words. 719
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