Under review as a conference paper at ICLR 2025

DYNAMIC MULTI-CHANNEL EEG GRAPH MODELING
FOR TIME-EVOLVING BRAIN NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

We describe a novel dynamic graph neural network (GNN) approach for seizure
detection and prediction from multi-channel Electroencephalography (EEG) data
that addresses several limitations of existing methods. While deep learning models
have achieved notable success in automating seizure detection, static graph-based
methods fail to capture the evolving nature of brain networks, especially during
seizure events. To overcome this, we propose EvoBrain, which uses a time-
then-graph strategy that first models the temporal dynamics of EEG signals and
graphs, and then employs GNNs to learn evolving spatial EEG representations.
Our contributions include (a) a theoretical analysis proving the expressivity advan-
tage of time-then-graph over other approaches, (b) a simple and efficient model
that significantly improves AUROC and F1 scores compared with state-of-the-art
methods, and (c) the introduction of dynamic graph structures that better reflect
transient changes in brain connectivity. We evaluate our method on the challeng-
ing early seizure prediction task. The results show improved performance, making
EvoBrain a valuable tool for clinical applications. The source code is available
at: https://anonymous.4open.science/r/EvoBrain—-FBC5

1 INTRODUCTION

Seizure affects 60 million of the population worldwide, and approximately 40% of patients are drug-
resistant that available medications cannot effectively control (WHO) [2024). Clinical analysis, in-
cluding detection and prediction, is vital as regards intervention and surgical treatment (Surges et al.,
2021). Electroencephalography (EEG) reveals the activities of billions of neurons in multi-channel
recordings and is the preferred tool for analyzing seizures. Despite promising clinical outcomes,
these advances impose massive burdens on clinicians, who need to review recordings made over
many days to identify seizure events. Due to the lack of validated EEG biomarkers, current gold-
standard detection still requires video monitoring, i.e., v-EEG (Zhang et al., [2022), which is costly
and only available in tertiary hospitals, hindering timely diagnosis and broader seizure research.

Deep learning models achieved noteworthy results as regards automating seizure detection using
EEGs (Khan et al., 2018} Burrello et al., 2020; |[Eldele et al., 2021; |Chen et al., [2022; Yang et al.,
2023b; |Y1 et al., |2023; Jiang et al., [2024)).

However, most existing methods are static graphs, embedding
raw EEGs as node features (Chen et al.,2022). This hinders the ability to fully capture the temporal
dynamics of brain activity, which are crucial for seizure analysis (D. V. Fallani et al.,[2014).

To tackle this, temporal models integrated with GNNs and known as dynamic GNNs have emerged
as a promising way of learning evolving patterns in EEGs explicitly (Jia et al.| [2020; |[Feng et al.,
2022). Methods for seizure research can be categorized into graph-then-time and time-and-graph
approaches, as shown in Figure [I] The graph-then-time approach represents EEGs as a sequence
of graph snapshots (Cai et al., 2023). GNNs are applied to each snapshot independently, learning
channel correlations at each time step. The outputs are concatenated and embedded in an RNN-based
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sequential model to learn temporal dynamics. The time-and-graph approach proposes an additional
recurrent GNN to learn interactions between EEG snapshots. It updates and evolves node features
based on the RNN cell output activated by the previous graph snapshots. While state-of-the-art
(SOTA) performance has been demonstrated (Tang et al., 2022)), only a few studies have included
further investigations of dynamic GNNs in seizure modeling, and some challenges may remain.

1. Inadequate learning of temporal dynamics. The independent GNNs in graph-then-time still
provide static graphs. They represent information at single time steps without accounting for in-
teractions between different time steps. While recurrent GNNs in time-and-graph capture graph
interactions, they rely on the independent initialization of the EEG graphs. This biases the model
toward graph information from earlier steps, limiting its ability to capture dynamic changes.

2. Empirical modeling. There has been little theoretical analysis of dynamic GNNs when model-
ing seizures. While existing studies (Tang et al.l [2022; |[Ho & Armanfard, 2023) offer valuable
insights, the optimal modeling strategy for combining temporal and graph-based representations,
as well as graph aggregation techniques for multi-channel EEG, remain poorly understood.

3. Static and fixed graph structure. While these methods are labeled as “dynamic,” they provide
static graph structures. The construction is predefined using channel correlations in the first
snapshot and remains fixed across time. This setting means only the temporal aspect of the nodes
is considered dynamic. Such fixed structures fail to represent the constantly changing nature of
brain networks (Bassett & Sporns, [2017; |L1 et al., 2021a).

this paper investigates a new dynamic GNNs approach, time-then-graph (Gao & Ribeiro, [2022), for
modeling multi-channel EEGs. This leads us to EvoBrain, which effectively learns Evolving, dy-
namic characteristics in Brain networks for accurate seizure detection and prediction. EvoBrain
first sequentially represents the temporal evolution of nodes and edges independently. Then, a GCN
is used to learn graph representations using sequential representations and their temporal interac-
tions.

When incorporated with temporal models, the dynamic
graphs provide insights into how brain networks vary. Contributions:

* Theoretical EEG modeling analysis. We are the first to theoretically analyze different dynamic
GNNs approaches from a node representation perspective.

We provide a
foundation for designing dynamic GNNs that effectively represents brain networks.

» Simple yet new SOTA performance. EvoBrain is a simple GRU-GCN architecture consisting
of only two GRUs and one GCN model. Despite its simplicity it achieves up to 8.5% and 15%
improvements in AUROC and F1 scores, respectively, compared with the SOTA seizure detection
baseline. Due to its simple architecture design, EvoBrain is 23x faster than the SOTA ftime-
and-graph method. More advanced model architectures can be easily integrated into EvoBrain.

* Dynamic graph structure. We propose dynamic graph structures that incorporate temporal EEG
graph modeling. The structures accurately reflect the true nature of brain networks, where con-
nectivity between regions fluctuates rapidly. The experiments confirm that simply using dynamic
structures can improve performance, even for time-and-graph and graph-then-time approaches.

* Early prediction task. Unlike most detection approaches (Eldele et al., 2021} |Cai et al., 2023 Ho
& Armanfard, 2023, we evaluate the more challenging task of seizure prediction, which aims to
identify the preictal state before seizures. This is critical for early intervention in clinical settings,
and EvoBrain consistently maintains performance, with a 13.8% improvement in AUROC.

2 RELATED WORK

The automated detecting or prediction of seizures has been a long-
standing challenge (Zhang et al., 2024b}; Zheng et al.|[2024). Deep learning has shown great achieve-
ments in automating EEG feature extraction and detection, using convolutional neural networks
(CNNs) (Fukumori et al., |2022a; |Ahmedt-Aristizabal et al., [2020; |Asif et al., 2020; Saab et al.,



Under review as a conference paper at ICLR 2025

_______ /V\ MMWA’\W /L A AN M NNWM,\ NV A Three dynamic GNN
A'z"ﬁ m N A (j\\v\wmwm/“jw %ﬁﬂﬁ ‘%Wmﬁﬁ%bm% "\ \f wv\ /@r/f:i modeling strategies
o %ﬂ e WM%NWWQ
N,

Multi-channel £ Wﬁwﬂm et MU
EEG signals IS i S A R .
g

A oo y
--------- wW% WMN”WWW@Q

V N Ay’

M
o Y | UNAATY, Wﬂf\ graph-then-time
R

14

Normal Pre-seizure Seizure
.'
'
. Brain connectivity o
B variations
VTR 0 07 0 00 sesees © 07 9 0 0 wsssas =9 A S O sammas
'l o
.‘ 12-second or changes even within the same state connectivity varies across states
\ 60-second I-second
\
\
y [ =
‘mm E : Graph time-then-graph
A . 5
W Split % construcuon .
AN = L EvoBrain
fredriios -y ]
PR i
Muw 4 Edge model
WW i Dynamic graph structure R
Data sample EEG snapshots Frequency dynamics | Edge feature

1
Node feature
Timc(RNNs) Graph (GNNs) [ [ [ ] Representation

Figure 1: The brain network evolves over time, and changes occurring during seizures and immedi-
ately before them in the pre-seizure phase, especially within specific zones, are clinically important.
These changes are captured using dynamic graphs derived from multi-channel EEG signals. Three
dynamic GNNs approaches to modeling these signals are shown: graph-then-time, time-and-graph,
and time-then-graph. Here EvoBrain is built based on time-then-graph approach.

2020), RNN-based models (Fukumori et al| 2022b}; [Ahmedt-Acristizabal et al.} 2020} Rasheed et al.]

2021), Transformers (Eldele et al.l 2021} [Yang et al., [2023b;, Jiang et al. 2024|; Y1 et al.,[2023)), and
brain-inspired models (Rich et al.,[2020; Burelo et al., 2022; |Chen et al.,[2023}; [Costa et al., 2024).

Spatial Relationships in EEG networks. A seizure is fundamentally a network disease, and
detection typically relies on the ability to determine abnormalities in EEG channels (Burns et al.

20144} [Li et al 20214} [Rolls et al, 202T). Many multi-channel methods have been proposed for
capturing spatial information in channels (Jiang et al., 2024} Yi et al.}, 2023};[Zhang et al., 2023} Mo-

[hammadi Foumani et al.,2024). Among them, recent studies have proposed GNNs to capture further
the non-Euclidean structure of EEG electrodes and the connectivity in brain networks
[2019}[Sun et al., 2021} [Li et al ., 2022} [Chen et al.}[2022; [Klepl et al., 2022;[Demir et al.}[2022). These
methods form EEGs as graphs, embedding each channel into the nodes and learning spatial graph
representations (Demir et al.}[2021; [Ho & Armanfard, [2023)). However, they do not explicitly model
temporal relationships, relying instead on convolutional filters or conventional linear projections for
node embeddings.

Dynamic GNNs for EEG Modeling. Dynamic GNN is effective in learning temporal graph dy-
namics, achieving promising results in tasks such as dynamic link prediction 2024), node
classification (Zhang et al, [2024a)), and graph clustering 2024). Recently, two studies
have focused on dynamic GNNs desired to enhance temporal dynamic and graph representations for
EEG-based seizure modeling. proposes a time-and-graph model , which uses fre-
quency features from FFT as node features and applies GNN and RNN processing simultaneously
for each sliding window. adopts a graph-then-time model that combines GCN
and RNN for seizure detection. However, these studies construct static graphs with fixed structures
across temporal learning. propose fime-then-graph model, BILSTM-GCNNet,
which uses RNNs to construct static graph from node feature. GRAPHS4MER
is also proposed as a time-then-graph method. This work effectively learns dynamic graphs using
an intermediate graph structure learning model. However, its input for graph structure learning is
still based on the Euclid distance or similarity of the entire data sample (e.g., 12 or 60 seconds)
rather than individual snapshots. Our work differs by defining dynamic graph structures that more
effectively capture the temporal evolution of brain connectivity in EEGs.
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3 DyNAMIC GNN MODELING ANALYSIS IN EEG

3.1 PROBLEM FORMULATION

Notations. We define an EEG X with N channel and T snapshots as a graph G = (A, X), where
A= (V,€) and A € RV*NXT ig the adjacency matrix. ) and € represent the channels (i.e., nodes)
and edges, respectively. Notably, existing work construct A as fixed across 7" meaning that all EEG
snapshots share the same graph structure and only the node features / are computed iteratively at
each snapshot. In this paper, each edge e; j; € £ represents pairwise connectivity between channels
v; and v;, where 4,7 € N. The feature vector z;; € R¢ captures the electrical activity of ¢-th
channel during the EEG snapshot at time step ¢. If e; ; ; exists, a; ;¢ is a non-zero value. a; ;; € R
quantifies the connectivity strength between two channels for each snapshot. To represent temporal
EEG graphs, we define the embedding of node v; at time step ¢ as hﬁ?de € R*, , which captures both
the spatial connectivity information from the adjacency matrix A and the temporal dynamics from
previous embeddings. The embedding of edge e; ; ;, denoted as hf";‘f’f € R!, captures the temporal
evolution of channel connectivity, reflecting changes in brain networks.

Problem (Dynamic GNN Expressivity in EEG Modeling.) We aim to investigate the expressivity
of temporal graph representation methods, including graph-then-time, time-and-graph, and time-
then-graph, in the context of dynamic EEG graph analysis. Brain networks in different states could
manifest as distinct graph structures, as shown in Figure [I] Clinically, abnormal EEG channel
connectivity may serve as seizure markers (Li et al., 2021a). We define Expressivity Analysis
as a graph isomorphism problem (Xu et al.l 2019), where non-isomorphic EEG graphs represent
different brain states, enabling the model to effectively distinguish between seizure and non-seizure
graphs.

3.2 EXPRESSIVITY ANALYSIS FOR DYNAMIC EEG GRAPHS

In the following analysis, we examine expressivity in node representation degree, as the EEG graph
structure is often based on node correlations (correlation graph (Tang et al.| 2022)). We employ the
1-Weisfeiler-Lehman (1-WL) GNNs for analyzing graph isomorphism (provided in Appendix [A).
The GNNss that can effectively differentiate non-isomorphic graphs have high expressiveness.

Lemma 1. [Necessity of Node Representations] Edges alone (Gao & Ribeirol |2022) are insuffi-
cient to uniquely distinguish certain temporal EEG graphs. Specifically, there exist pairs of temporal
EEG graphs that have identical edge features across all time steps but different node features, mak-
ing them indistinguishable based solely on edge representations. Therefore, incorporating node
representations is necessary to achieve full expressiveness in EEG graph classification tasks.

Proof. Given GW and G®@, with the same sets of V and &, for V t, the edge features satisfy:

.Ag’lj)’t = AE?}t V(vi,v;) € E,Vt € {1,2,...,T}. However, suppose there exists at least one node
vk € V and one time step ¢’ such that: Xélt), # X,Ei), Since A§1]) ;= ,452]) +» any GNN architecture
that relies solely on edge features will produce identical embeddings for G(") and G(?), Vt. [

Lemma 2. [Expressiveness with Node and Edge Representations] When both node and edge rep-
resentations are incorporated, a GNN can uniquely distinguish any pair of temporal EEG graphs
that differ in either node features or edge features at any time step, provided the GNN is sufficiently
expressive (e.g., I-WL GNN). Details of Lemma 2| can be found in Appendix[B.1

Definition 1 (Graph-then-time). This approach first apply GNNs to learn spatial, graph informa-
tion at each t independently, followed by the temporal processing (e.g., by RNNs) of the resulting
node embeddings. This approach prioritizes spatial relationships before incorporating the temporal
dynamics across EEG snapshots. The formal definition is given as:

Hi, = Cell<[GNN,ﬁ (X Ase) | Hi,H) ()

4
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Here, H;; denotes the embedding of node i € V at time t. GNNi(X;7t7A;,:,t) denotes a graph
learning on the current snapshot. The learned embeddings at time step t — 1, H; ;_1, are then
passed into the RNN cell, or other recurrent unit, to capture the temporal dependencies.

Definition 2 (Time-and-graph). This approach alternately processes time and graph components,
applying GNNs to each EEG snapshot, as formally defined by:

Hi, = cezz([GNN,ﬁ (XA )| o [GNNEH 1A ) Z=H,p, VieV (@
where H; ; is the final representations of temporal node i € V at time 1 < t < T. We initialize
H;o = 0 for Vi GNN{; encodes each X. . while GNN,LL. encodes representations from histori-

cal snapshots H. ;_1, and Cell embeds evolution of those graph representations. For an arbitrary
temporal EEG graph, the last step output H; 7 is considered the final representation of node i € V.

Definition 3 (Time-then-graph). This approach first models the evolution of node and edge at-
tributes over time and then applies a GNN to the resulting static graph for final representation:

HI™ = RNN™% (X; <7), Wi € V,  H = RN (A, ; <1),¥(i, j) € £, 3)

7z = GNNL (Hnode’ Hedge)
time-then-graph represents the evolution of H% and H***¢ using two sequential models RNN"%
and RNN°¢, resutling in a new (static) graph, which is then encoded by a GNN*.

Lemma 3. [graph-then-time 3 time-and-graph | time-and-graph is strictly more expressive than
graph-then-time representation family on Ty, 1 ¢ as long as we use 1-WL GNNs.

Proof. By Deﬁnition H; ;1 is passed without this additional GNN (i.e., GNNZ (-)) to learn inter-

actions between EEG snapshots. This results in a simpler form of temporal representation compared
to time-and-graph: H; ;1 C [GNN{;(H;,t,l, A...)],. graph-then-time is a strict subset of rime-

and-graph in terms of expressiveness. [

Lemma 4. [time-and-graph 3 time-then-graph | time-then-graph is strictly more expressive than
time-and-graph representation family on T,, ¢, as time-then-graph outputs different representa-
tions, while time-and-graph does not.

time-then-graph learn node and edge features across time steps to capture temporal dependencies.
This is done by encoding the temporal adjacency matrices A. . <; and node features X. <; together,
enabling the model to distinguish between graphs with distinct temporal structures. However, time-
and-graph handles each time step independently, leading to identical representations across time.

Theorem 1. [Temporal EEG Graph Expressivity] Based on Lemmas [3| and H} we conclude that
graph-then-time is strictly less expressive than time-and-graph, and time-and-graph is strictly less
expressive than time-then-graph on T, 1 ¢, when the graph representation is a I-WL GNN:

graph-then-time 2, . , time-and-graph 2 time-then-graph. 4

Tn,1,0
In Appendix[B.2] we prove Lemma]using both node and edge representation perspectives, based on

Lemma 2] to hold Theorem [T} Notably, we provide a synthetic EEG task where any time-and-graph
representation fails, while a time-then-graph approach succeeds.

4 EVOBRAIN

Based on the above analysis, this section presents our EvoBrain, which is built on top of time-then-
graph, and we propose a dynamic graph construction method to represent temporal EEG structures.

4.1 DYNAMIC BRAIN GRAPH STRUCTURE
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Dynamic EEG Graph Instead of constructing a single static graph from the entire EEG recording,
we propose to construct EEG graph for each snapshot. We first segment an EEG epoch into short
time durations (i.e., snapshots) at regular intervals and compute channel correlations to construct a
sequence of graph structures. Specifically, for the ¢-th snapshot, we define the edge weight a; ;; as
the weighted adjacency matrix A, computed as the absolute value of the normalized cross-correlation
between nodes v; and v;. To prevent information redundancy and create sparse graphs, we rank the
correlations among neighboring nodes and retain only the edges with the top-7 highest correlations.

aijt = |Tit x ], ifv; € N(v;), else O,

where x; . ; and x; . ; represent v; and v; channels of ¢-th EEG snapshot. * denotes the normalized
cross-correlation operation. N '(v;) denotes the set of top-7 neighbors of v; with relative higher
correlations. After computing this for 7" snapshots, we obtain a sequence of directed, weighted EEG
graph G to represent brain networks at different time points. In other words, the dynamic nature of
the EEG is captured by the evolving structure of these graphs over time.

4.2 DYNAMIC GNN IN TIME-THEN-GRAPH FRAMEWORK

Following the fime-then-graph approach outlined in Definition 3] we propose a GRU-GCN model,
where GRUs learn the temporal evolution of node and edge attributes independently, followed by
a GCN to capture spatial dependencies across electrodes in a static graph. This method effectively
captures the temporal and spatial dynamics inherent in EEG data for seizure detection and prediction.
Notably, the model input is not the raw EEG signals but their frequency spectrum representation.
Here, clinical seizure analysis aims to identify specific frequency oscillations and waveforms, such

as spikes(Khan et all 2018). To effectively capture such features, we apply a fast Fourier transform
(FFT) to each EEG snapshot, retaining the log amplitudes of the non-negative frequency compo-

nents, following prior studies (Covert et al.l 2019} [Asif et al. 2020} [Tang et all, 2022). The EEG

snapshots are then normalized using z-normalization across the training set. Consequently, an EEG
frequency representation with a sequence of snapshots is formulated as X € RY*4*T serving N
node initialization and dynamic graph construction.

Temporal Modeling with GRUs  Given a dynamic EEG graphs G, for each channel (node) i € V,
the node attribute sequence {X i,t}thl is processed by a GRU to obtain a hidden node representa-
tion. This captures the temporal-frequency dependencies across EEG snapshots. Similarly, for each
channel connectivity (edge) (i,j) € &, the edge attribute sequence {A;;;}7{_; is processed by
another GRU to obtain a edge hidden representation. Since each edge is defined based on a short-
time EEG snapshot, this edge representation learns how EEG channel connectivity evolves across
time/snapshots. These processes can be formulated as:

hI*% = GRU™* ({X;,}{_,).Vi € V,  h{ = GRU({A;;,}1,),Y(i,j) €€ (5)

We express the GRU updates for both nodes and edges in a unified manner. For each element e
(which can be a node 7 or an edge (4, j)), the GRU updates at each time step ¢ are defined as:

ry = U(Wrxf +U,hi ; + br), zy = U(szf +U.hi ; + bz),

(6)

ny = tanh (W, x{ + U, (ry ©hy_;) +b,), hf=(1-2{)©On{+z; ©hy_,,
where x7 is the input feature vector of element e at time ¢, hy is the hidden state at time ¢, o denotes
the sigmoid function, ® represents element-wise multiplication, and W, U, b, are learnable pa-
rameters (separate for nodes and edges). Finally, we obtain the final hidden states h?°® = hf, and
h:?ge = h%’ﬂ ), which encapsulate the temporal evolution of node and edge attributes.

Spatial Modeling with GCNs We hence construct a new graph G = (V, £) where the nodes and

edges are embedded with their respective temporal representations, h';"de and hgqge. We then adapt a
GCN to learn spatial dependencies. These graph embeddings capture the temporal evolution of EEG
snapshots, with each snapshot reflecting the brain state at that particular time. This GCN learning
can thus be viewed as summarizing the overall graph interactions and dynamics, defined as follows:
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Z = GNN® ({12} ey, (B}, jyee).- @

Each layer of the GCN updates the node embeddings by aggregating information from neighboring
nodes and edges. Specifically, the node embeddings are updated as follows:

b =0 | 3 fue(bi ) onled |, ®)
JEN ()

where hgl) is the embedding of node ¢ at layer [, N(i) denotes the neighbors of node i, feqge is

a function mapping edge embeddings to scalar weights or messages, ©") is the learnable weight
matrix at layer [, and o is an activation function (e.g., ReL.U).

Afterward, we apply max pooling over the node embeddings, i.e., th), followed by a fully con-
nected layer and softmax activation for seizure detection and prediction tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Tasks. In this study, we focus on two tasks: seizure detection and seizure early prediction.

* Seizure detection is framed as a binary classification problem, where the goal is to distinguish
between seizure and non-seizure EEG segments, termed epochs. This task serves as the foundation
for automated seizure monitoring systems.

* Seizure early prediction is the more challenging and clinically urgent task. It aims to predict the
onset of an epileptic seizure before it occurs. Researchers typically frame this task as a classifica-
tion problem (Burrello et al., [2020; Batista et al., 2024)), where the goal is to distinguish between
pre-ictal EEG epochs and the normal state. Accurate classification enables timely patient warn-
ings or preemptive interventions, such as electrical stimulation, to prevent or mitigate seizures.

Datasets. We used the Temple University Hospital EEG Seizure dataset v1.5.2 (TUSZ) (Shah
et al.| 2018) to evaluate EvoBrain. Description can be found in Appendix [G] TUSZ is the largest
public EEG seizure database, containing 5,612 EEG recordings with 3,050 annotated seizures. Each
recording consists of 19 EEG channels. A key strength of TUSZ is its diversity, with data collected
over different time periods, using various equipment, and covering a wide age range of subjects.
Additionally, we used the smaller CHB-MIT dataset, which consists of 844 hours of 22-channel
scalp EEG data from 22 patients, including 163 recorded seizure episodes.

Preprocessing. For early prediction task, we defined the one-minute period before a seizure as
the preictal phase, implying the ability to predict seizures up to one minute in advance. Detailed
description can be found in Appendix

Baselines. We selected two dynamic GNNs studies as baselines: EvolveGCN-O (Pareja et al.,
2020), which follows the graph-then-time approach, a time-and-graph work, DCRNN (Tang et al.,
2022), and time-then-graph approach, GRAPHS4MER (Tang et al|[2023). We included a bench-
mark Transformer baseline, BIOT (Yang et al., 2023a), which captures temporal-spatial information
for various EEG tasks. We also evaluated LSTM (Hochreiter & Schmidhuber, [1997) and CNN-
LSTM (Ahmedt-Aristizabal et al., 2020), as referenced in (Tang et al.| [2022)), Support Vector Ma-
chine (SVM) and Random Forest to assess the effectiveness of our temporal-graph learning.

Metrics. We used Area Under the Receiver Operating Characteristic curve (AUROC) and F1 score
as evaluation metrics. AUROC considers various threshold scenarios, providing an overall measure
of the model’s ability to distinguish between classes across a range of decision boundaries. F1 score
focuses on selecting the best threshold by balancing precision and recall, highlighting the model’s
performance at its most optimal point for a specific classification task.
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Model training. Training for all models was accomplished using the Adam optimizer (Kingma &

Bal 2014) in PyTorch on NVIDIA A6000 GPU and

Xeon Gold 6258R CPU. During training, we

performed data augmentation. Details are provided in Appendix

5.2 RESULTS

Table 1: Performance comparison of TUSZ dataset on seizure detection and prediction for 12s and
60s. The best and second best results are highlighted.

| Detection Prediction

| 12s 60s 12s 60s
Method Type ‘ AUROC F1 AUROC F1 ‘ AUROC F1 AUROC F1
SVM 0.765 0.369 0.721 0.390 0.562 0.312 0.561 0.312
Random Forests 0.778 0.354 0.737 0.384 0.563 0.352 0.547 0.327
LSTM 0.794  0.381 0.721 0390 | 0.568  0.353  0.553  0.387
CNN-LSTM 0.754 0354 0.680 0.329 | 0.621 0389 0528 0314
BIOT (Yang et al.||2023a) - 0.726 0.320 0.637 0.256 0.540 0.390 0.576 0.390
EvolveGCN (Pareja et al.|[2020) graph-then-time 0.757 0.343 0.655 0.334 0.622 0.437 0.511 0.356
DCRNN (Tang et al.|[2022) time-and-graph 0.817 0415 0.802 0.431 0.626 0.389 0.621 0.448
GRAPHSAMER (Tang et al.|2023)  time-then-graph | 0.833 0413  0.765 0439 | 0.648 0.440 0.651 0.370
EvoBrain (Ours) time-then-graph 0.869 0.506 0.832 0.443 0.679 0.473 0.631 0.452

Main results. Table |1| presents a performance comparison of seizure detection and prediction for
the TUSZ dataset using various models over 12-second and 60-second windows. EvoBrain con-
sistently outperforms baselines. For seizure detection in 12-second window, EvoBrain improves
over two dynamic GNNs baselines. EvoBrain shows a 15% increase in AUROC compared with
EvolveGCN (0.756 — 0.870) and a 7% increase compared to DCRNN (0.813 — 0.870). It also
improves the F1 score by 43.6% (0.351 — 0.504). These results highlight that even with a simple
architecture design, EvoBrain shows significant improvements, particularly in F1 scores across
both tasks and window lengths, supporting our analysis and conclusion of Theorem [I]in Section[3]

Figure 2] shows the ROC curves results comparing
EvoBrain with other dynamic GNN approaches.
In subfigure (a), for the TUSZ dataset, EvoBrain
achieves an AUC of 0.87, outperforming DCRNN
(0.81) and EvolveGCN (0.76). Our ROC curve
is positioned higher, indicating a stronger ability
to differentiate between seizure and non-seizure
events. In subfigures (b) for the CHB-MIT dataset,
EvoBrain achieves an AUC of 0.90, significantly
higher than the 0.81 and 0.59 of time-and-graph
and graph-then-time approaches, respectively. The
results show the effectiveness and discriminative
ability of time-then-graph for identifying seizures.

Dynamic graph structure evaluation.

Figure [3] shows the effectiveness of our proposed
dynamic graph structure compared to the static
graph structures commonly used in existing works.
The blue bar shows the performance of the origi-
nal static graph structure used in EvolveGCN and
DCRNN, while the bar represents the re-
sults when the static graph is replaced with our dy-
namic graph structures. As seen, the improvements
are not limited to our time-then-graph method
but also enhance the performance of all dynamic
GNN s approaches. The figure highlights the effec-
tiveness and necessity of dynamic graphs in captur-
ing brain dynamics. The results imply that model-
ing temporal dynamics in EEGs should incorporate
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Figure 2: ROC curve results for the 12-second
seizure detection task on two datasets.
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Interestingly, our approach improves perfor-
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various channel connectivity or structural information.
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datasets. Our model achieves up to 24x faster training times and 27x faster inference times than its
competitors, demonstrating significant scalability improvements.
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Figure 5: (a) Number of edges 7 evaluation. (b) Approach evaluation using same architecture. (c)
Results using raw EEG instead of frequency-domain features. (d) Results after modifying the node
pooling mechanism.

Computational efficiency. To assess the computational efficiency of our method, we measured
the training time and inference time. In addition to the baselines, we included time-and-graph and
graph-then-time models with the same architecture as ours for comparison. dynamic GNNs require
computation time proportional to the length of the input data (details are provided in Appendix [0).
Figure |§| (a) illustrates the average training time per step for dynamic GNNs with a batch size of
1 across various input lengths. In practice, while the RNN component operates very quickly, the
GNN processing accounts for most of the computation time. Since our method performs GNN
processing only once for each data sample, it is up to 24 x faster training time and more than 27 x
faster inference time than DCRNN. Thus, our approach is not only superior in performance but also
the fastest in terms of computational efficiency.

Ablation study. We set 7 = 3 and the top-3 neighbors’ edges were kept for each node. Figure
(a) shows results with varying 7, indicating minimal changes. This suggests that specific edges may
have a significant impact. Figure[3](b) shows the results of different approaches applied to the same
architecture. Consistent with the conclusion of Theorem 1, the time-then-graph approach achieved
the best performance. Figure [5] (c) shows the results when the FFT processing was removed, and
raw EEG data was used as node features. The use of raw EEG data resulted in a decrease in AUROC,
highlighting the importance of utilizing frequency-domain features. Figure[5](d) presents the results
when changing the pooling methods for graph classification. While we use max pooling by default,
we also tested average pooling, summation pooling, and concatenation of all node features. Max
pooling yielded the best performance. This suggests that seizures may occur in specific regions of
the brain, allowing the model to effectively leverage the influence of particular nodes.

5.3 CLINICAL ANALYSIS.

We show an analysis of our constructed dynamic graphs from a neuroscience perspective. For the
sake of blind review, the names are anonymized, but we conducted this analysis with two profes-
sors who are neurosurgeons. Figure [6] displays the top 10 edges with the strongest connections
in the learned dynamic graph, where the thickness of the color represents the strength of the con-
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Figure 6: Learned graph structure visualizations. The color intensity of the edges indicates the
strength of the connections. In (a) Normal state, the light color shows weak connections. In (b) Pre-
seizure state, the connections in specific regions strengthen over time. In (c) Focal seizure, which
occurs only in a specific area of the brain, strong connections are consistently present in a particular
region. In (d) Generalized seizure, strong connections are observed across the entire brain.

nections. These edges are selected based on the highest h°99¢ value, indicating the most significant
relationships captured by the model. In Figure[§(a), a sample unrelated to a seizure shows weak,
sparse connections spread across various regions over an extended period. Figure [§] (b) shows a
pre-seizure sample, where the connections between [T5, P3, O1, 02, P4, P6] gradually strengthen.
This could indicate a precursor state signaling an imminent seizure. Figures[6 (c) and (d) display
seizure samples, where the edges are notably stronger than in the normal state. In (c), we show the
result of a focal seizure, a type of seizure that originates in a specific area of the brain, with sustained
strong connections only in specific regions such as [F3, F7, P3, C3, C5, T3, Ol1]. In Figure|§|(d), a
generalized seizure is illustrated, characterized by strong connections across the entire brain.
Successful surgical and neuromodulatory treatments critically depend on accurate localization of the
seizure onset zone (SOZ) 021D). Even the most experienced clinicians are challenged
because there is no clinically validated biomarker of SOZ. Prior studies studies have shown that
abnormal connections across several channels may constitute a more effective marker of the SOZ
(Scharfman| 2007} [Burns et al} [2014b} [L1 et al] [2018)). Our dynamic graph structures aligns with
neuroscientific observations, successfully visualizing these abnormal connections and their changes.
This offers promising potential for application in surgical planning and treatment strategies. Ex-
isting methods predominantly employed static graphs (Ho & Armanfard} 2023}, [Tang et al.| [2022),
which are unable to capture such dynamic graph structures.

6 CONCLUSION

In this work, we introduced a novel dynamic multichannel EEG modeling approach, EvoBrain,
designed to address key limitations in existing seizure detection and prediction methods. By adopt-
ing a time-then-graph strategy, our model effectively captures the evolving nature of brain networks
during seizures, providing significant improvements in both AUROC and F1 scores compared to
state-of-the-art methods. Our theoretical analysis further demonstrated the expressivity advantage
of time-then-graph over traditional approaches, and we showcased the value of dynamic graph struc-
tures in better reflecting the transient changes in brain connectivity. Looking ahead, there are several
promising directions for future work. We aim to investigate explainability for both clinical applica-
tions and model transparency.

10
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A GRAPH ISOMORPHISM AND 1-WL TEST

Graph isomorphism refers to the problem of determining whether two graphs are structurally iden-
tical, meaning there exists a one-to-one correspondence between their nodes and edges. This is a
crucial challenge in graph classification tasks, where the goal is to assign labels to entire graphs
based on their structures. A model that can effectively differentiate non-isomorphic graphs is said to
have high expressiveness, which is essential for accurate classification. In many cases, graph classi-
fication models like GNNs rely on graph isomorphism tests to ensure that structurally distinct graphs
receive different embeddings, which improves the model’s ability to correctly classify graphs.

1-Weisfeiler-Lehman (1-WL) test is a widely used graph isomorphism test that forms the founda-
tion of many GNNs. In the 1-WL framework, each node’s representation is iteratively updated by
aggregating information from its neighboring nodes, followed by a hashing process to capture the
structural patterns of the graph. GNNs leveraging this concept, such as Graph Convolutional Net-
works (GCNs) and Graph Attention Networks (GATs), essentially perform a similar neighborhood
aggregation, making them as expressive as the 1-WL test in distinguishing non-isomorphic graphs
(Xu et al,|2019). Modern GNN architectures adhere to this paradigm, making the 1-WL a standard
baseline for GNN expressivity. In our work, we also use 1-WL-based GNNss, leveraging their proven
expressiveness for dynamic brain graph modeling.

B PROOFS OF EXPRESSIVITY ANALYSIS

B.1 EXPRESSIVENESS WITH NODE AND EDGE REPRESENTATIONS

Lemma 2. [Expressiveness with Node and Edge Representations] When both node and edge rep-
resentations are incorporated, a GNN can uniquely distinguish any pair of temporal EEG graphs
that differ in either node features or edge features at any time step, provided the GNN is sufficiently
expressive (e.g., I-WL GNN). Details of Lemma 2| can be found in Appendix[B.1

Proof. Given G = (AM x™M)and G?) = (AP X)), suppose they differ in at least one node
feature or edge feature at some time step ¢. An expressive GNN can produce different embeddings
for these graphs by capturing the differences in node and/or edge features. Specifically:

1. If X:Etl ) # X(?) for some ¢, then the node embeddings hglf) and hgzt) will differ for at least one
node v;. ’

2. If .Ag_rl-)yt # AE’Q]-)’t for some edge (v;,v;) and some ¢, then the edge embeddings hﬁ}}t and hg_’)t
will differ for that edge.

Since the GNN aggregates information from both node and edge embeddings, any difference in
either will propagate through the network, resulting in distinct final representations Z(") and Z(2).
Thus, the GNN can uniquely distinguish between G(!) and G(2). O

B.2 time-and-graph AND time-then-graph

Lemma 4. [time-and-graph 3 time-then-graph | time-then-graph is strictly more expressive than
time-and-graph representation family on T,, ¢, as time-then-graph outputs different representa-
tions, while time-and-graph does not.

Gao & Ribeiro| (2022) prove that a time-then-graph representation that outputs the same embed-
dings as an arbitrary time-and-graph representation. Thus, time-then-graph is as expressive as
time-and-graph. To prove Lemma [4] we also provide a EEG graph classification task where any
time-and-graph representation will fail while a time-then-graph would work, which then, added to
the previous result, proves that time-then-graph is strictly more expressive than time-and-graph.

Proof. We now propose a synthetic EEG task, whose temporal graph is illustrated in Figure[/} The
goal is to differentiate the topologies between two 2-step temporal graphs. Each snapshot is a static
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Time ﬁ —[0, 1]
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Dynamic EEG graph Edge feature

Figure 7: A synthetic EEG task where only time-then-graph is expressive. The top and bottom
2-time temporal graphs on the left side has snapshots of different structure at time ¢, (denote by C7 o
and C7 7). The top and bottom temporal graphs on the left show different dynamic-graph structures.
The right side shows their aggregated versions, where edge attributes indicate whether they existed
(1) or not (0) over time, using different colors. The goal is to distinguish the structural differences
between the top and bottom graphs. time-and-graph have the same node representation neighbors
in both snapshots, indistinguishable. time-then-graph aggregate the dynamic graphs into different
node representations and succeeds in distinguishing them.

EEG graph with 7 attributed nodes, denoted as C7 s, where s represents the smallest number of nodes
on the outer circle between two neighbors which are not connected by the outer circle.

Two temporal graphs differ in their second time step t,. If the graphs have the same features, any

1-WL GNN will output the same representations for both C7 ; and C7 2. We use AP (o represent
btm)

the adjacency matrix of dynamics in the top left of Figure and A®™ for dynamics in the bottom
left of Figure Note that X' = X®™ gince the temporal graph has the same features.

Hence, for a time-and-graph representation,

GNNE (X7, AlP)) = GNNE (XUP, ALY = GNNE (X, ALY = GNNE (X5™, ALY,
GNNE(HUP ALY = GNNE(HG™ APY),  GNNE(HYP, ALY = GNNL(H™, ALD).

Then, when we apply Equation (2)) at the first time step, we get:
For the top graph:

HP — el ( [GNNiﬁ (X5, A;(f?,pl))} [GNNrLc (HEEY, A:(,t:o,pl))] )

For the bottom graph:

HE™ = Cell ( |GNNE (X, AT | | [GNNE(HE™, AL )

L2
3

Since X(©P) = x(om) - Alton) A:(}’:T), and H:(fgp) = H:(})(;m), we have: Hg({p) = Hgf’ltm)

EEES]
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For the second time step:

HIS = celt [ONNE (X5, ALY) | L [GNNE (ISP, AL) | )

R — Cell([GNNiLn (X5, ACS)| | [oNNE(HE™, ATY)] i)

Despite A')) A(btm) the 1-WL GNN will output the same representations H(mp) H(btm) for
both C7 ; and Cr 2. Therefore

Z (top) H(lOP) H(blm) Z(btm)

Thus, Time-and-graph will output the same final representation Z(t?) = Z(®™) for two dif-
ferent temporal graphs in Figure
For the time-then-graph representation, we apply Equation (3)):

First, for the node representations:

Hl;ode(lop) _ RNNnode (X top) )
_ RNNnode([x(mP) X(IOP) )
Hl;ode(btm) _ RNNnode (let<n; )
(IX;

_ RNNnode (btm) X btm )

Since X(?) — X®™) e have Hmde(mp) H"Ode(btm) for all nodes s.

Now, for the edge representations:

Hedeeor) — RNNedee (AL )
d (t t
= RNN“= ([A{P), A{P)))
Hedge(btm) RNNedee ( Al bjtm<)2)
= RNNee ([APD, APY)

Here, A(mp) <o F Alb;m<)2 for some (%, j) pairs, because the graph structures differ at ¢o. Therefore,
ijljge(“’p) ;é ijjjge(btm) for these pairs.

Finally, we apply the GNN:

Z(lop) _ GNNL (Hnode(top)7 Hedge(top))
Z(btm) _ GNNL (Hnode(blm)’ Hedge(btm))

Since HeeeoP) £ Hedze®m) a4 1-WL GNNis can distinguish graphs with different edge attributes,
we have:
Z(lop) # Z(blm) (9)

Thus, time-then-graph outputs different final representations Z(°P) £ Z (™) for the two tem-
poral graphs in Figure [/, successfully distinguishing them.

Finally, we conclude:
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1. The time-then-graph is at least as expressive as the time-and-graph;

2. The time-then-graph can distinguish temporal graphs not distinguishable by time-and-
graph.

Thus, time-then-graph is strictly more expressive than time-and-graph. More precisely,
time-and-graph 2, .. , time-then-graph,

concluding our proof.

C COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexities of the three approaches: Graph-then-
time, Time-and-graph, and Time-then-graph. We demonstrate that the Time-then-graph approach
has the lowest computational complexity among them.

Let T' be the number of time steps, V' be the number of nodes, E; be the number of edges at time
t, >, E; be the total number of edges across all time steps, F,s, be the number of edges in the
aggregated graph (i.e., the union of all edges across time steps), and d be the dimension of the node
and edge representations.

C.1 GRAPH-THEN-TIME APPROACH
In the Graph-then-time approach, at each time step ¢, a GNN is applied to the snapshot graph

(X. ., A. . ;) to capture spatial relationships. Subsequently, an RNN processes the node embeddings
over time to capture temporal dependencies.

The computational complexity per time step ¢ is dominated by:
O (Vd* + Eyd),

where V' d? accounts for node-wise transformations (e.g., linear layers), and E;d accounts for mes-
sage passing over edges.

Over all time steps, the total complexity for the GNN computations is:

T
o0 <TVd2 +Y° Etd> .

t=1
The RNN processes the node embeddings over time with complexity:
@) (VTdQ) .

Therefore, the overall computational complexity of the Graph-then-time approach is:

T

@ <VTd2 +> Etd> . (10)

t=1

C.2 TIME-AND-GRAPH APPROACH

In the Time-and-graph approach, temporal dependencies are integrated into the GNN computations.
At each time step t, two GNNs are applied:

. GNNf1 processes the current snapshot inputs (X;7t7 A:7:,t).
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+ GNNZ processes the representations from the previous time step H.:—1,A..+).

The computational complexity per time step ¢ is:

O (Vd®+ Ed®),

due to the node-wise transformations and edge-wise message passing with updated representations.

Over all time steps, the total complexity for the GNN computations is:

T
1) (TVd2 +)° Etd2> .

t=1
The RNN (or any recurrent unit) further processes the node embeddings with complexity:
O (VTd?).
Therefore, the overall computational complexity of the Time-and-graph approach is:
T
o (de2 +)° Etd2> : (11)
t=1

C.3 TIME-THEN-GRAPH APPROACH

In the Time-then-graph approach, temporal evolutions of node and edge attributes are modeled first
using sequence models (e.g., RNNs). A GNN is then applied to the resulting static graph with
aggregated temporal information.

The computational complexities are as follows:
Node Sequence Modeling For each node ¢ € V), an RNN processes its temporal features X; <7
0 (VTdQ) .

Edge Sequence Modeling For each edge (7, j) € £, an RNN processes its temporal adjacency
features A; ; <r:

O (EueTd?) .

GNN over Aggregated Graph A GNN is applied once to the static graph with updated node and
edge representations:

O (Vd® + Eyged?) .
Therefore, the overall computational complexity of the Time-then-graph approach is:
O ((V + Eygy) Td?) . (12)

C.4 COMPARISON OF COMPLEXITIES

To compare the computational complexities, we consider the dominant terms in Equations equa-

tion[I0} equation[TT] and equation
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¢ Graph-then-time:

T
1) (v:m“‘ +) Etd> .

t=1
* Time-and-graph:

T
) <VTd2 + Z Etd2> .

t=1

¢ Time-then-graph:

O ((V + Eugg) Td?) .

By comparing these computational complexities, the Time-then-graph method is superior under
the aggregated number of edges E,,, is smaller than the total sum of edges over all time steps, i.e.,

Eage < Y1, Ey.

D IMPLEMENTATION AND MODEL TRAINING

Data augmentation. During the training process, we applied the following data augmentation
techniques, following prior studies (Tang et al.l 2022; Eldele et al., [2021): randomly scaling the
amplitude of the raw EEG signals by a factor between 0.8 and 1.2.

Implementation details. We used binary cross-entropy as the loss function to train all models.
The models were trained for 100 epochs with an initial learning rate of le-4. To enhance efficiency
and sparsity, we set 7 = 3 and the top-3 neighbors’ edges were kept for each node. The dropout
probability was O (i.e., no dropout). EvoBrain has two GRUs consisting of two stacked layers and
two-layer GCN with 64 hidden units, resulting in 114,794 trainable parameters. We set Our anony-
mous GitHub repositry (https://anonymous.4open.science/r/EvoBrain-FBC5) in-
cludes the source code of our EvoBrain and all baselines.

Implementation of baselines. For baselines, DCRNN (Tang et al. 2022), EvolveGCN (Pareja
et al.,|2020), and LSTM (Hochreiter & Schmidhuber, |1997), we used the number of RNN and GNN
layers and hidden units in our EvoBrain. For BIOT, we use the same model architecture described
in Yang et al.| (2023a)), i.e., four Transformer layers with eight attention heads and 256-dimensional
embedding. For CNN-LSTM, we use the same model architecture described in Ahmedt-Aristizabal
et al.| (2020), i.e., two stacked convolutional layers (32 3 x 3 kernels), one max-pooling layer (2 X 2),
one fully-connected layer (output neuron = 512), two stacked LSTM layers (hidden size = 128), and
one fully connected layer. Table[2]shows a comparison of trainable parameters, with our EvoBrain
achieving the best performance using the fewest parameters.

Table 2: Comparison of trainable parameters.
EvoBrain | DCRNN | EvolveGCN BIOT CNN-LSTM | LSTM

114,794 280,769 200,301 3,187,201 5,976,033 | 536,641

Trainable
Parameters

E PARAMETER SENSITIVITY OF BIOT.

Since parameter size of BIOT is larger than those of other baselines, we conducted parameter sen-
sitivity experiments on the number of layers and embedding dimensions using TUSZ 12 seconds
dataset.
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Configuration Parameters | AUROC F1

Layer 4 3,187,201 0.725 | 0.325
Layer 3 2,385,409 0.744 | 0.332
Layer 2 1,596,417 0.708 | 0.313

Embedding 256 | 3,187,201 0.725 | 0.325
Embedding 128 800,769 0.673 | 0.261
Embedding 64 203,777 0.738 | 0.341

Table 3: Parameter sensitivity evaluations of BIOT on layers and embedding dimensions

F SEIZURE PREDICTION TASK

The seizure prediction task is defined as a classification problem between inter-ictal (normal) and
pre-ictal states (Burrello et al} 2020). However, there is no clear clinical definition regarding its
onset or duration of preictal state [2023). So it is define as a fixed duration before the
seizure occurrence (Batista et al] [2024). This duration is chosen to account for the time required
for stimulation by implanted devices (Cook et al] 2013)) and to allow for seizure preparation. In
this study, we define the pre-ictal state as one minute, providing adequate time for effective electri-
cal stimulation to mitigate seizures or minimal preparation. A five-minute buffer zone around the
boundary between normal and seizure data was excluded from the analysis. Data labeled as seizures
were discarded, and a five-minute buffer zone around the boundary data was excluded from the
analysis. The remaining data were used as the normal state.

G DATA DESCRIPTION

Table 4: Number of EEG data samples and patients in the train, validation, and test sets on TUSZ
dataset. Train, validation, and test sets consist of distinct patients.

EEG Input Train Set Validation Set Test Set

Length EEG samples . EEG samples . EEG samples .
Task (Secs) % (Pre-) Seizure Patients % (Pre-) Seizure Patients % (Pre-) Seizure Patients
Seizure 60-s 38,613 (9.3%) 530 5,503 (11.4%) 61 8,848 (14.7%) 45
Detection | 12-s 196,646 (6.9%) 531 28,057 (8.7%) 61 44,959 (10.9%) 45
Seizure 60-s 7,550 (9.9%) 530 999 (12.0%) 61 1,277 (24.4%) 45
Prediction | 12-s 40,716 (12.8%) 531 5,439 (16.0%) 61 6,956 (27.6%) 45

22



	Introduction
	Related Work
	Dynamic GNN modeling analysis in EEG
	Problem Formulation
	Expressivity analysis for Dynamic EEG Graphs

	EvoBrain
	Dynamic brain graph structure
	Dynamic GNN in Time-Then-Graph Framework

	Experiments
	Experimental setup
	Results
	Clinical Analysis.

	Conclusion
	Graph isomorphism and 1-WL test
	Proofs of Expressivity analysis
	Expressiveness with Node and Edge Representations
	time-and-graph and time-then-graph

	Computational Complexity Analysis
	Graph-then-time Approach
	Time-and-graph Approach
	Time-then-graph Approach
	Comparison of Complexities

	Implementation and Model Training
	Parameter sensitivity of BIOT.
	Seizure prediction task
	Data description

