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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across a wide
range of natural language processing tasks.
However, they are often distracted by irrele-
vant or noisy context in input sequences that
degrades output quality. This problem affects
both long- and short-context scenarios, such as
retrieval-augmented generation, table question-
answering, and in-context learning. We reveal
that LLMs can implicitly identify whether input
sequences contain useful information at early
layers, prior to token generation. Leveraging
this insight, we introduce Early Noise Drop-
ping (END), a novel approach to mitigate this
issue without requiring fine-tuning the LL.Ms.
END segments input sequences into chunks
and employs a linear prober on the early layers
of LLMs to differentiate between informative
and noisy chunks. By discarding noisy chunks
early in the process, END preserves critical in-
formation, reduces distraction, and lowers com-
putational overhead. Extensive experiments
demonstrate that END significantly improves
both performance and efficiency across differ-
ent LLMs on multiple evaluation datasets. Fur-
thermore, by investigating LLMs’ implicit un-
derstanding to the input with the prober, this
work also deepens understanding of how LLMs
do reasoning with contexts internally.

1 Introduction

Large language models (LLMs) have exhibited im-
pressive performance across a wide range of natu-
ral language processing tasks. As their application
scope expands, the input lengths of LLMs are also
increasing rapidly (Dubey et al., 2024; Yang et al.,
2024; Liu et al., 2024). However, when process-
ing long sequences, LLMs often face a significant
challenge from the noise in the contexts which may
distract LLMs. This issue arises when models fail
to effectively utilize relevant contextual informa-
tion, becoming distracted by irrelevant or noisy

data instead. Consequently, the quality of their
output deteriorates, resulting in inaccuracies, hal-
lucinations, incomplete responses, and occasional
failures to follow instructions (Anil et al., 2024,
Shi et al., 2023).

Such distraction is common and not limited to
long-sequence tasks. For instance, while retrieval-
augmented generation (RAG) can filter out most
noise, the prompt delivered to LLMs after retrieval
and reranking still contains a significant amount of
irrelevant information. Similar challenges arise in
table-based question answering (QA), multi-turn di-
alogue QA, and in-context learning (ICL). In these
scenarios, only a small fraction of the provided
context is directly relevant to the query, whereas
the remaining information—despite often being
contextually similar—acts as noise, potentially hin-
dering the model’s ability to focus on the most
relevant content and also affecting efficiency.

Existing approaches to mitigate this issue pri-
marily fall into two categories. The first involves
multi-agent collaboration frameworks (Team, 2024;
Lee et al., 2024), where the context is split into
segments processed by different agents, followed
by inter-agent interaction to produce a final out-
put. While effective, these methods often require
complex agent interaction designs and multiple
inference steps, resulting in increased latency. The
second approach, known as “Parallel Context En-
coding” (Yen et al., 2024; Merth et al., 2024), either
trains an additional encoder to process context seg-
ments before feeding them to the LLM or trains
a separate module to aggregate outputs from mul-
tiple LLM runs on different segments. However,
these solutions necessitate non-trivial training
of new components of the LLM itself and also
incorporates significant changes to LLMs’ original
forward mechanism.

This motivates us to explore whether it’s possi-
ble to leverage a LLM’s inherent ability to handle
noisy cases without fine-tuning. Inspired by previ-
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Figure 1: The framework of the proposed END. The long input, which might come from various sources such as
RAG, will be split into chunks for parallel processing first. It’s a partial forward. A linear prober is attached to
the designated layer (layer 13 in the diagram) of a LLM, and the prober is used to determine whether a chunk is

noisy (red) or not (
for the LLM, which will generate the final prediction.

ous works suggesting that LLMs implicitly know
when they are generating incorrect responses (Ka-
davath et al., 2022; Yin et al., 2023), we hypoth-
esize that LLMs can identify whether the input
contains useful information related to the questions
before generating the first response token. Our ex-
periments, using a simple linear prober, strongly
support this assumption and reveal that such distin-
guishing abilities emerge in very early layers.

Based on these findings, we propose “Early
Noise Dropping” (END), a novel approach to mit-
igate noise distraction in LLMs. END segments
the input into multiple chunks and processes them
in parallel. A linear prober, operating on hidden
states from lower layers, distinguishes between in-
formative and noisy chunks, discarding irrelevant
ones early while retaining essential context for the
final prediction. The remaining chunks are then
combined and processed in a full forward pass.
This method significantly reduces computational
overhead while preserving key information. Com-
pared to strong baselines, including direct LLM
noise discrimination approaches, END achieves
over 10% performance improvement and reduces
computation by approximately 50%.

Crucially, the proposed END requires no fine-
tuning, instead leveraging LLMSs’ innate ability to
discern task-relevant information. By dropping re-
dundant chunks early, it enhances both efficiency
and accuracy while shedding light on LLMs’ in-
ternal noise discrimination mechanisms. Our main
contributions include:

* We identify LLMs’ noise sensitivity: Even trivial
noise distracts LLMs, while noise resembling tar-
get information severely degrades performance.

). After that, those selected informative chunks will be combined together as the new input

* We find that LLMs can internally differentiate
relevant and irrelevant context at lower layers,
which can be effectively exploited via a linear
prober.

* We propose END: By selectively processing in-
put chunks, END mitigates noise distraction ef-
fectively and efficiently. Comprehensive experi-
ments confirm its superiority over baselines.

2 Methodology

In this section, we first show the harmfulness
caused by noise in the context and the impact of
longer contexts. Then via constructing a linear
prober, we elicit the LLMs’ inherent capabilities of
being aware of whether the input is informative or
noisy. Finally, based all previous results, we intro-
duce END, which processes segmented long input
with the help of a linear prober, and only retains
informative segments for predictions.

Difficulty Level Standard Extended (Long)
Level 0 1.00 1.00
Level 1 1.00 0.94
Level 2 0.91 0.71
Level_3 0.54 0.40
Level 4 0.08 0.04

Table 1: C omparison of performance (accuracy) on
NoisyRetrieval between "Standard" (=~ 4k) and "Ex-
tended" (= 8Kk) for Llama3-Instruct-8B with differ-
ent Difficulty levels. Level O is least confusable and
Level_4 is most confusable. By adding random texts to
the contexts, each instance from "Standard Context" is
transformed into "Extended Context". Such trivial noise
still significantly harms the performance.



2.1 The Impact of Noisy Contexts from
Longer Contexts.

In Table 1, we show how the performance
of Llama3-8B-instruct on our synthetic task
NoisyRetrieval shifts under two key factors: (1)
the difficulty of added noise and (2) overall context
length. Briefly, for each question, we add a single
true segment (containing the answer) plus 12 dis-
traction segments that range in noise difficulty from
Level_0 (Ieast confusable) to Level_4 (most confus-
able). These distraction segments have information
similar to the true answer but do not contain the
correct answer (Further details on how we generate
these segments and control the noise difficulty for
this task appear in Section 3.1.1). In this table, we
refer to it as the standard context setting for each
instance has approximately 4k tokens. Addition-
ally, we test an extended context setting with trivial
noise (2x length, ~ 8k tokens) by adding random
texts. Even this seemingly harmless extra material
leads to worse performance, particularly when com-
bined with harder noise (e.g., Level_4). We draw
two conclusions: (1). The sharp decrease in perfor-
mance as the noise level increases highlights the
critical need for removing noise from the input con-
texts. (2). The performance gap between the "Stan-
dard" and "Extended" settings demonstrates that
even trivial noise in longer context can cause severe
performance degradation. This finding underscores
the importance of reducing input length and miti-
gating noise to optimize LLM performance.

2.2 A Linear Prober can Effectively Elicit
LLMs’ Inherent Discrimination
Capabilities.

Previous works on LLMs’ implicit abilities suggest
that while generating predictions for a task, LLMs
inherently perform many functions beyond the task
itself. For instance, Slobodkin et al. (2023) found
that the last layer’s hidden states can be used to
reveal whether the generated prediction is halluci-
nation or not.

This insight prompts us to ask: Do LLMs in-
herently check whether the input contains infor-
mation related to the current queries? We hy-
pothesize that the answer is ‘Yes’, considering that
LLMs perform well when directly asked whether a
given input can answer a specific question. To
validate this hypothesis, we constructed linear
probers for four models: Llama3-8B-Instruct,
Mistal-Inst-v@.3, Qwen2-7B-Instruct, and

Gemma-1.1-7b-it, across three datasets: NoisyRe-
trieval, NaturalQA, and TriviaQA. Details of these
datasets can be found in Section 3.1.1. Following
common practice, the linear prober takes the hidden
representation of the last input tokens and predicts
binary labels for each input: ‘0’ for input irrelevant
to the query and ‘1’ for input informative to the
query. We also conducted a layer-wise analysis to
reveal how these inherent abilities emerge in LLMs.
The results are shown in Figure 2. For each query,
we set 10 negative inputs and 1 positive input.We
can conclude the following from our results:

* LLMs can successfully determine whether the in-
put is noisy via a simple linear prober. Although
we don’t explicitly require the model to discrim-
inate the input in the prompts, the linear prober
performs remarkably well.

* Such discrimination abilities arise at very early
layers. Using the hidden states from layers
around layer 13, the linear prober can already
achieve a high recall (>0.95) for the positive in-
put (i.e., the non-noise input).

* Different models exhibit similar behavior, sug-
gesting that these inherent abilities are universal
across LLMs.

These findings underscore the potential for lever-
aging LL.Ms’ innate discrimination capabilities in
handling noisy or irrelevant input data.

2.3 END: Early Noise Dropping.

The core idea of the proposed END is to segment
the input sequence into multiple chunks, process
these chunks in parallel through the lower layers
of the LLM, identify and retain only the essential
chunks, and finally forward the retained chunks
for the final prediction. This approach leverages
the LLM’s inherent ability to discriminate between
informative and noisy input early in its processing
stages. The framework of the proposed END is
shown in Figure 1. Its details are as follows:

Step 1: Input Segmentation. We begin by divid-
ing the input sequence into multiple chunks. The
optimal chunk size may vary depending on the spe-
cific task and model architecture. Most chunks will
only contain noise rather than the answer to the
task. These chunks are then processed in paral-
lel through the lower layers of the LLM, allowing
for efficient computation. During this parallel pro-
cessing, each chunk is attached to a task-related

query.
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Figure 2: This figure shows the recall for positive input of the linear prober when attached to different layers
of LLMs. The y-axis represents the recall value, while the x-axis indicates the index of LLM layers. Layer O
corresponds to the first layer of the model. The top four experiments were conducted on NoisyRetrieval, the middle
section on NaturalQA, and the bottom four on TriviaQA. "Top-1 recall" indicates that only the input with the highest
score is predicted as positive. "Top 20% recall" means that inputs with scores in the top 20% from the linear prober
are predicted as positive. Similar interpretations apply for "top 30% recall”, "top 50% recall", and "top 60% recall”

Step 2: Noise Discrimination and Chunk Drop-
ping. In this step, we leverage LLMs’ inherent
noise discrimination capability shown earlier to dis-
criminate noisy chunks and drop them. We employ
the previously described linear prober as the dis-
criminator, attached to the lower layers of the LLM.
Specifically, we use a logistic regression model as
the prober and, based on our previous study, we
attach it to layer 13. The prober predicts a score
for each chunk, and we drop all chunks with a pre-
diction score lower than a specific threshold. It’s
not necessary for the linear prober to predict with
100% accuracy whether a segment is noisy or not.
As long as it can filter out most noisy segments, we
can expect good downstream performance. Hence,
in our experiments, we keep chunks with the top
30% predicted scores.

Step 3: Continue the Forward Pass with Re-
tained Chunks. To obtain the final prediction
after noise reduction with the linear prober, we per-
form a complete forward pass with the remaining
segments. We combine all retained chunks and
feed them into the LLM in a new forward pass to
get the final output. Our approach requires slightly
more than one forward pass through the LLM but

involves less manipulation of the LLMs. Consid-
ering the parallel processing of the initial inputs,
the prober applis at early layers, and the largely
reduced input length for the final prediction, our
approach does not enforce efficiency burden at the
inference time.

3 Experiments

In this section, we introduce experimental settings
first. Then we show the effectiveness of the pro-
posed END and provide further analysis.

3.1 Experimental Settings

3.1.1 Dataset

We primarily tested the proposed method on
question-answering tasks.

NoisyRetrieval. This synthetic task requires re-
trieving the passkey of an item characterized by five
attributes: NAME, MATERIAL, COLOR, BRAND,
and ITEM. Each instance contains a positive seg-
ment (which includes the correct answer) and 12
noisy negative segments that serve as distractors.
To generate these negative segments, we control
the number of shared attributes between the dis-
tractor and the positive segment, creating 5 diffi-



Model Task Subtask RAG LLM-Discrim | END Prober Recall
level 0 1.0 1.0 1.0 1.0
Level 1 1.0 1.0 1.0 1.0
NoisyRetrieval(Acc) Level 2 0.95 1.0 1.0 1.0
Level_ 3 0.51 0.98 0.98 1.0
Llama3-8b-Instreut Level 4 0.07 0.20 0.68 0.99
Weak 694 70.69 69.8 1.0
NatualQA (F1) Hard  58.18 58.72 61.47 0.97
TriviaQA (F1) Hard _ 37.83 376 3734 0.96
level 0 1.0 0.96 1.0 1.0
Level 1 1.0 0.96 1.0 1.0
NoisyRetrieval(Acc) Level_2 1.0 0.96 1.0 1.0
. Level 3 0.81 0.96 0.98 1.0
Qwen2-7b-inst Level 4 0.52 0.89 0.79 0.99
Weak  70.18 60.09 67.8 0.96
NaturalQA (F1) Hard 5537 54.70 59.07 0.95
TriviaQA (F1) Hard 3571 36.40 36.93 0.92
level 0 1.0 0.93 1.0 1.0
Level 1 1.0 0.93 1.0 1.0
NoisyRetrieval(Acc) Level 2 0.96 0.93 1.0 1.0
. Level 3 0.64 0.93 0.99 1.0
Mistral-Inst-v0.3 Level 4 025 0.90 0.78 0.99
Weak  61.76 4839 57.53 1.0
NaturalQA (F1) Hard  48.58 45.66 4788 0.94
TriviaQA (F1) Hard  35.63 37.32 37.23 0.95

Table 2: The performance of the proposed END. For NoisyRetrieval, we use exact match accuracy as the metric.
For Natural QA and TriviaQA, we use F1 as the metric. We also listed the performance for the linear prober in the

Chunk Dropping stage (Prober Recall).

culty levels of noise (from Level_0 to Level_4).
Here, Level_4 is the most challenging, as the dis-
tractor shares 4 attributes with the positive seg-
ment, whereas Level_0 is the easiest, with no
shared attributes. For example, consider the ques-
tion, “What is the passkey of Jack’s Green Wooden
Samsung Phone?” The evidence is: “the pass-
word of Jack’s Green Wooden Samsung Phone is
12345.” A Level_0 distractor might be: “the pass-
word of Luke’s Red Metal LG Laptop is 54321,”
and a Level_4 distractor might be: “the password
of Metal is 41415
More details about this task and additional exam-
ples can be found in Appendix E.

Natural QA. This question answering dataset is
from DPR (Karpukhin et al., 2020), where each in-
stance has positive and negative segments retrieved
in advance. Each instance has negative segments
of two noise level ‘Weak’ and ‘Hard’ according to
the similarity score. Hard negative segments can
distract LLMs more easily because they have larger
similarity scores.

Trivia QA. This dataset is also from DPR. Similar
to Natural QA, each instance in trivia QA has pos-
itive and negative segments retrieved in advance.
Following the settings from previous work, each
instance has the negative segments with one noise
level as ‘Hard’.

3.1.2 Baselines

To ensure a fair comparison across scenarios with
varying noise levels and context lengths, we estab-
lish two baselines:

RAG serves as a baseline, simulating the full
retrieval-augmented generation (RAG) pipeline. A
typical RAG pipeline consists of three main stages:
retrieval, reranking, and prediction. During the
reranking stage, retrieved chunks or segments are
embedded, and similarity scores are computed to
reorder them. The top-ranked chunks are retained
and passed to the model for prediction. We didn’t
do real RAG for the proposed END can be attached
the prompt after RAG and further reduce noise. To
simulate a real-world RAG scenario, we combine



positive segments (containing the answer) with neg-
ative segments (distractors) as the post-reranking
inputs for prediction. For example, the datasets
from DPR (e.g., NatureQA, TriviaQA), inherently
include negative chunks that have already been fil-
tered and ranked based on similarity scores. This
makes our simulation particularly reasonable, as it
accurately reflects the reranking and filtering pro-
cess in the RAG pipeline, ensuring alignment with
real-world behavior.

LLM-Discrim acts as an ''formidable'" baseline
and is supposed to surpass all methods by de-
sign (although Table 2 shows this is not the case).
It has two forward passes. In the first forward pass,
it splits the input into chunks and asks the LLMs to
determine whether a segment contains the answer.
Then, in the second forward pass, it requires the
LLMs to provide the prediction using the remain-
ing chunks as input. LLM-Discrim is particularly
effective (Zheng et al., 2024; Fu et al., 2023), espe-
cially for hard tasks, as it explicitly leverages the
ability of LLM:s to discriminate input segments, set-
ting a performance benchmark that END method
does not aim to exceed.

3.2 Main Results & Analysis

The results for the proposed END are listed in Ta-
ble 2. In our experiments, we retained the segments
with the top 30% of linear prober prediction scores.

Effectiveness Analysis. As a result, our pro-
posed END significantly outperforms the RAG
baseline, it also achieves the best overall perfor-
mance even when compared to the strong LLM-
Discrim baseline. Besides, the superiority of END
becomes more pronounced on more challenging
tasks. As expected, the recall of this linear prober
is sufficiently high. Although there are some in-
stances of inferior performance, we believe these
may be attributed to the F1 metric used for evalua-
tion. For example, in the case of NaturalQA (Weak)
with Mistral-Inst-v@. 3, the recall is nearly per-
fect (0.998), yet the F1 score is still lower than
anticipated. This discrepancy suggests that while
our method is highly effective at identifying rele-
vant information, the overall performance metric
may not fully capture this advantage in certain sce-
narios.

Efficiency Analysis. While END appears to re-
quire an additional forward pass due to the ex-
tra probing and Chunk Dropping, it actually still
processes a significantly reduced input during its

Backbone NoisyRetrieval ~ NaturalQA  TriviaQA
Llama3-rand 0.60 0.71 0.66
Llama3 0.99 0.91 0.90
Qwen2-rand 0.64 0.71 0.67
Qwen2 0.95 0.88 0.86
Mistral-rand 0.60 0.70 0.66
Mistral 0.93 0.89 0.89

Table 3: Linear prober F1 scores on test sets com-
paring pre-trained and randomly initialized models.
Llama3 refers to Llama-3-8B-Instruct, Qwen2 to
Qwen2-7B-Inst, and Mistral to Mistral-Inst-v@. 3.
The -rand suffix indicates randomly initialized versions
of these models with preserved embedding layers.

second forward pass compared to the RAG base-
line, owing to the substantial chunk elimination.
Moreover, in comparison with the strong LLM-
Discrim baseline, the Chunk Dropping stage con-
sumes less than half of a forward pass. Assuming
quadratic complexity for LLM operations, and con-
sidering an input segmented into 10 chunks, each
of length L, using L1ama-3-8B-Instruct (32 lay-
ers) as the backbone LLLLM, and dropping 70% (7)
of chunks at layer-13, we can approximate the com-
putational cost as follows: RAG: O((10L)?%) =
©(100L?) LLM-Diserim (assuming 2 chunks re-
tained): ©((10L)? + (2L)?) = ©(104L?) END
(30% chunks retained): ©(33(10L)? + (3L)?) =
©(492L?) This demonstrates that END achieves
superior efficiency compared to both baselines.
Real-world wall-clock time analysis also support
its efficiency (Appendix D).

3.3 Analysis of the Linear Prober

The efficacy of END is heavily influenced by the
performance of the linear prober. A more accurate
and precise linear prober results in shorter final in-
puts, enabling LLMs to generate predictions more
efficiently and to better understand the contexts.
This section presents a comprehensive analysis of
the linear prober, demonstrating that, as hypothe-
sized in the introduction, it unveils LLMs’ inherent
capabilities and implicit reasoning processes when
addressing factual queries based on the input.

Linear Prober’s Effectiveness Is not from of fit-
ting. To verify that the linear prober’s discrim-
inative capability does not stem from the fitting
process of training the prober itself, we conducted
experiments using randomly initialized LLMs as
the backbone while maintaining the original em-
bedding layer to preserve semantic meaning. The
performance comparison between these randomly



Task [SICIQ]  [SIQIC] [QISIC] | [SIC]
NoisyRetrieval 1.0 0.98 0.96 0.25
NaturalQA 0.97 0.83 0.84 0.36
TriviaQA 0.96 0.70 0.68 0.36

Table 4: The top 30% recall of the linear prober (layer-
15) across different prompt formats for Llama-3-8B-
Instruct.

initialized LLMs and their pre-trained counterparts
is presented in Table 3. The substantial perfor-
mance gap of the linear prober demonstrates that
this implicit discriminative ability originates from
the pre-trained LLMs rather than training the linear
prober with a LLM as a general feature extractor.

The linear prober is robust to prompt varia-
tions. Previous research has shown that LLMs
can be sensitive to prompt formats (Sclar et al.,
2023). To explore the robustness of the linear
prober, we analyze its performance across four dif-
ferent prompt formats: [SICIQ], [SIQIC],[QISIC],
and [SIC], where ‘S’ represents the system prompt,
‘Q’ the question, and ‘C’ the context. The linear
prober is trained using the [SICIQ] format with
Llama-3-8B-Instruct as the backbone model.
As shown in Table 4, although the linear prober is
only trained on [SICIQ], it generalizes well across
[SICIQ], [SIQIC] and [QISIC] formats. Such kind
of generalization strongly supporting the idea that
LLMs are inherently prepared to answer a question
once the context is fully presented.

In contrast, the performance degradation on the
[SIC] format suggests that the linear prober relies
on more than just distinguishing between noise and
informative input—it extracts the model’s implicit
understanding of the input in relation to the ques-
tion. The specific prompts used for each dataset
and format are provided in Appendix F.

The distinguishing capabilities of large and
small models arise at similar layers. We con-
duct probing experiments on both Llama3-70B-
Instruct and Llama3-8B-Instruct to investigate
how their distinguishing abilities evolve across lay-
ers. Figure 3 shows the performance of linear
probers applied to both models. Interestingly, de-
spite the significant difference in size—Llama3-
70B-Instruct has 80 layers, while Llama3-8B-
Instruct has only 32 layers—the performance of
the linear prober saturates around similar layers for
both models, specifically between layers 10 and 15.
This finding suggests that the key distinguishing
capabilities in language models is not solely depen-

NoisyRetrieval

NaturalQA

Llama3-70B-Instruct

Llama3-8B-Instruct

Figure 3: The performance for the linear prober with
Llama-3-8B-Instruct and Llama-3-70B-Instruct
as the backbone.

dent on model size but is instead strongly tied to the
depth. Even in the larger L1ama3-70B-Instruct,
these capabilities arise early in the network, around
the same layer range as in the much smaller
Llama3-8B-Instruct. This consistency across
models of varying sizes implies that these distin-
guishing features are fundamental properties of the
model’s internal representations and layer-wise pro-
gression.

The implicit discrimination ability is as strong
as explicitly requiring LLMs to discriminate the
input. We conducted an experiment where we
replaced the task query in the prompt with a distin-
guishing query (Appendix F.4) that directly asks
the LLM to determine whether the input is rele-
vant to the question, similar to the first forward
pass of the baseline method LLM-Discrim. We
then attached the linear prober to the representa-
tions generated from this input to evaluate whether
this explicit requirement would lead to improved
performance. The results, shown in Figure 4, are
surprising. While the performance with the distin-
guishing query appears slightly better than with the
task query, the overall performance of the linear
prober remains nearly the same. This outcome sup-
ports our earlier hypothesis: regardless of whether
the model is explicitly instructed to distinguish
relevant input, LLMs seem to perform this discrim-
ination step implicitly before answering questions
related to context.

4 Related Work

Enhancing LLMs’ Long Context Ability.
Zhang et al. (2024) found that positional encod-
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Figure 4: The performance for the linear prober with
Llama-3-8B-Instruct as the backbone. The left three
figures use the task query in the prompts. The right
three figures use a distinguishing query in prompts.

ing decay weakens self-attention on relevant parts
and proposed modifying key attention head dimen-
sions to improve LLMs’ performance on noisy in-
put. Hsieh et al. (2024) addressed positional bias
by introducing a calibration mechanism that sub-
tracts baseline attention from a dummy document,
preventing overemphasis on input boundaries. He
et al. (2024) tackled this via instruction tuning to
help LLMs focus on target information. Beyond
data-centric approaches, Wu et al. (2024) applied
contrastive loss in post-training, enhancing robust-
ness by retrieving similar document pairs.

Retrieval Augmented Generation (RAG). Dif-
ferent from directly feeding all collected texts to
query the LLMs, RAG first performs chunking
and then retrieves the most related chunks across
all candidate texts (Lewis et al., 2020; Asai et al.,
2023). Although RAG can significantly boost the
performance of LLMs, it still suffers from the dis-
traction problem as we will show below. This is
because there are still only a few useful chunks
among all the retrieved chunks, even though they
all have scores considering their relation to the

query.

Prompt/Context Compression The original
prompts always contain many useless tokens, and
this line of works automatically prunes redundant

tokens in the prompts so as to reduce the input
length. They leverage tailored metrics such as self-
information to keep important information (Li et al.,
2023). Together, these studies demonstrate that
strategic compression of input contexts can lead
to computational savings without sacrificing accu-
racy (Jiang et al., 2023a,b; Xu et al., 2023).

Separate Context Processing. This approach de-
composes long inputs into separate parts for indi-
vidual processing, including agent collaboration
and parallel context processing. Multi-agent sys-
tems iteratively exchange results to refine predic-
tions (Zhao et al., 2024; Team, 2024; Lee et al.,
2024). Parallel processing extracts and merges
useful information (Yen et al., 2024) or employs
trainable selection mechanisms to determine pre-
dictions (Merth et al., 2024). Some methods ap-
ply KV-cache compression post-segmentation to
reduce noise and context length (Kim et al., 2024).

Linear Probing in Natural Language Processing.
Linear probing has been used to extract knowl-
edge from models, including LLMs (Gurnee and
Tegmark, 2023). Recent NLP studies show that
applying it to the first generated token can aid trust-
related tasks like hallucination detection (Slobod-
kin et al., 2023). Unlike prior work, we perform
layer-wise probing and find that LLMs assess input
informativeness at an early stage. Moreover, while
existing methods probe task-related concepts, our
approach explores unrelated concepts.

5 Conclusion

In this paper, we introduced Early Noise Drop-
ping (END), a novel method to improve Large
Language Models’ (LLMs) performance when pro-
cessing noisy or irrelevant context. END effectively
identifies and removes noisy input chunks early in
the LLM pipeline, improving performance across
various tasks. The method demonstrates versatility
by working well across different LLM architectures
without requiring fine-tuning. By reducing unnec-
essary computation on irrelevant information, END
offers both performance and efficiency gains.

While END shows significant promise, future
work could explore more advanced chunking strate-
gies and dynamic thresholding techniques. The
prober could be enhanced with additional trainable
parameters or greater complexity.



6 Limitations

We acknowledge that the linear prober’s general-
ization across tasks remains challenging (general-
ization analysis can be found in Appendix C.1).
While fitting a simple linear regression requires
minimal data, this limitation could potentially be
addressed through the implementation of a more so-
phisticated probing mechanism. Additionally, the
mechanism of LLMs’ internal behavior is still not
entirely clear, requiring further investigation. Be-
sides, due to our limited computational resources,
we did not conduct extensive experiments on large
LLMs such as Llama-3-70B. However, the prober
still performs well (Appendix C.2) at this scale and
appears to save more computation, considering that
huge models have more layers.
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A Dataset Statistics

The detailed statistics of the dataset are as follows.
After filtering out instances without a sufficient
number of negative chunks, the dataset used in our
study has the following distribution:

Dataset Train Set (Prober) Test Set
NQ 1000 2653
Trivia 1000 2619
NoisyRetrieval

(each difficulty level) 1000 2000

Table 5: Dataset statistics

B Prober Training Details

The prober was trained using the following steps:

1. For each question (instance), collect negative-
positive segment pairs.

Label negative segments as 0 and positive seg-
ments as 1.

Feed these segments, along with their corre-
sponding questions, into the model to extract
intermediate representations.

Split all instances, along with their corre-
sponding negative and positive segments, into
training and test sets.

. Train a simple sigmoid-based linear prober
(logistic regression).

The training set for each prober on each dataset
consists of 1,000 instances. Further details about
these data can be found in the previous section.

C More results of the Prober’s
performance

C.1 Generalization of The Linear Prober

We tested cross-task generalization with two set-
tings: The prober is trained with NQ, but tested
on Trivia; The prober is trained with Trivia, but
tested on NQ. As shown in Figure 5, we found that:
Cross-task performance is decent (about 0.9 recall),
but not perfect (1.0 recall). It still shows the exist-
ing ability of implicit discrimination. Meanwhile,
the performance shows some instability.
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Figure 5: The cross-task performance for the linear
prober with L1ama-3-8B-Instruct as the backbone.

Recall

—— Llama-3-708 Recall

“Layer

Figure 6: The performance for the linear prober with
Llama-3-70B-Instruct as the backbone.

C.2 Prober on Larger LLMs

We conducted probing experiments with Llama-3-
70B, which has 80 layers (Figure 6). The results
show that the optimal probing layer is similar to
that of much smaller models (e.g., the 8B model),
typically around layers 10-15. This finding sug-
gests that END remains beneficial for larger mod-
els, as the layer-wise performance does not shift
significantly and we just need to run the a few lay-
ers. The portion of the first partial forward in the
whole cost becomes lower (13/32 —> 13/80). How-
ever, if LLMDISCRIM is used instead, the cost of
full forward passes would increase considerably
due to the greater number of layers and parameters
per layer.

D Real-World Efficiency Analysis

In real-world LLM deployment, flash-
attention (Dao, 2024), which significantly reduces
the quadratic time complexity of self-attention,
is widely used. In this section, we demonstrate
that our proposed END method continues to yield
efficiency benefits with the flash-attention kernel.
Table 6 presents the wall-clock inference times
under the same experimental settings as our other



Model/Method Chunk Number 4k 8k 16k 32k

Llama3-8B-END 10 1.4810s 1.315s 1.887s 3.109s
Llama3-8B-END 20 1.508s 1.314s 1.871s 3.052s
Llama3-8B NA 1.226s  1.846s 2.996s 6.173s
Llama3-70B-END 10 5.049s 6.069s OOM OOM
Llama3-70B NA 6.416s 9.998s OOM OOM

Table 6: Wall-clock inference times (in seconds) with the flash-attention kernel for different models/methods and
sequence lengths. xxx-END indicates models equipped with the proposed END method; “Chunk Number” denotes

the number of segments for each input.

experiments: 30% of the chunks are retained for
the second forward pass, and the first forward pass
is executed in batch across layers 1 to 13.

Our results indicate that when the input is long
(i.e., when the computation cost is dominated by
the input length) or when the model is large, the pro-
posed END method clearly outperforms the stan-
dard approach of processing the entire sequence
in a single forward pass. Although the observed
efficiency improvement does not precisely match
the predictions from our complexity analysis, these
findings nonetheless highlight the practical benefits
of our method in real-world scenarios.

E NosiyNeedle

NoisyRetrieval (Synthetic)

The original "Needle-in-a-Haystack" style
task (gkamradt) such as passkey retrieval (Mo-
htashami and Jaggi, 2023) is too easy. The passkey
retrieval task is to retrieve a simple passkey like
"The passkey is 12345". Its contexts are some
meaningless texts such as repeated "The grass is
green, the sky is blue". An example looks like:

The grass is green, the sky is blue. The grass
is green, the sky is blue. The passkey is
12345. The grass is green, the sky is blue.
The passkey is 12345. The grass is green,
the sky is blue. The grass is green, the sky

is blue. The grass is green, the sky is
blue. What is the passkey?

This is far from real cases, and any retriever can per-
fectly find the answer segments. Hence, we design
the NoisyRetrieval task as a noisier version. We
set five noise levels (level_O - level_4) for segments,
by controlling five attributes in the target sentence:
[Namel, [Materiall, [Color], [Brand], [Item].
For example:

[Jack’s] Password to his [Green]
[Wooden] [Benz] [phone] is 34512:

With this sentence as the answerm, some exam-
ples are:

* level_0: Random but meaningful texts from
some papers.

* level_1: Random but meaningful texts from
some papers + a sentence with one attribute
the same as the target:

[Paul’s] Password to his [red]
[golden] [Apple] [phone] is 51233

* level_4: Random but meaningful texts from
some papers + a sentence with four attributes
the same as the target:

[Jack’s] Password to his [Green]
[Wooden] [Benz] [laptop] is 12345

An example input for NoisyRetrieval:

[other contexts] [Jack’s Password to his Green
Wooden Apple phone is 12345] [other contexts
1 [Paul’s Password to his Green Wooden Apple
phone] [other contexts] [Jack’s Password to
his red glass Benz phone is 11145] [other
contexts] [Jack’s Password to his yellow
glass Apple phone is 32525] [Noise] ...
Question: What is Jack’s Password to his Green
Wooden Benz phone?
Answer:
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For this task, each positive chunks contains the
answer inserted randomly into some random texts
from random essays. Each negative chunk include
distractor content inserted randomly into random
texts from random essays. For input context con-
struction, to ensure sufficient difficulty and realism,
the chunk containing the answer is placed in the
middle of the context. For example, with 10 nega-
tive chunks and 1 positive chunk, the positive chunk
is positioned as the 6th chunk within the context.

E.1 Attribute Value

The possible values of all attributes are listed be-
low:




Name = ["John"”, "Emma"”, "Alex", "Sophia”, "

Michael”, "Olivia"”, "Liam"”, "Ava", "Noah"”, "
Isabella”, "Ethan”, "Mia"”, "Mason”, "
Charlotte”, "William"”, "Amelia”, "James", "
Harper”, "Benjamin"”, "Evelyn"]
Color = ["red”, "blue"”, "green", "yellow", "
black”, "white”, "purple”, "orange”, "pink",
"brown”, "gray"”, "navy"”, "teal”, "maroon",
"olive"”, "silver"”, "gold", "turquoise”, "
lavender”, "coral"]
Item = ["bag", "watch”, "phone"”, "laptop”, "
headphones”, "sunglasses”, "shoes”, "jacket
", "camera", "tablet”, "wallet”, "backpack”,
"earbuds"”, "smartwatch”, "keyboard”, "mouse
", "speaker"”, "charger", "fitness tracker”,

"power bank"]
Brand = ["Apple”, "Samsung”, "Nike"”, "Adidas"”,
Sony”, "Gucci”, "Microsoft”, "Dell", "LG", "

"

Bose", "Lenovo", "Asus", "Logitech”, "Prada
", "Canon", "Nikon", "Fitbit", "Fossil”, "
JBL", "Anker"]

Material = ["leather”, "aluminum”, "plastic”, "
glass”, "titanium”, "silicone”, "ceramic", "
fabric"”,"wood”, "rubber”, "nylon"”, "
polyester”, "cotton”, "wool”, "denim", "
suede”, "velvet"”, "cork"]

F Used Prompts

The prompts used in the probing stage are listed
below. [SICIQ] is the default prompt format without
specifying.

F.1 NaturalQA

[SICIQ] Setting:

System Prompt: "You are given some pieces of a
story, which can be either a novel or a
movie script, and a question. Answer the
question as concisely as you can, using a
single phrase if possible. Do not provide
any explanation.”

Prompt Template:

"{SYSTEM}

Pieces of the story:

{CONTEXT?}

Now, if you can find the required information,
answer the question based on the story as
concisely as you can, using a single phrase
if possible. Do not provide any explanation.

Question: {QUERY}

Answer:"

[SIQIC] Setting:

System Prompt: "You are given some pieces of a
story, which can be either a novel or a
movie script, and a question. Answer the
question as concisely as you can, using a
single phrase if possible. Do not provide
any explanation.”

Prompt Template:
"{SYSTEM}

Now, if you can find the required information,
answer the question based on the story as
concisely as you can, using a single phrase
if possible. Do not provide any explanation.

Question: {QUERY}

Pieces of the story:
{CTX}

Answer:"

[QISIC] Setting:

System Prompt: "You are given some pieces of a
story, which can be either a novel or a
movie script, and a question. Answer the
question as concisely as you can, using a
single phrase if possible. Do not provide
any explanation.”

Prompt Template:

"Now, if you can find the required information,
answer the question based on the story as
concisely as you can, using a single phrase
if possible. Do not provide any explanation.

Question: {QUERY}

{SYSTEM}

Pieces of the story:
{CTX}

Answer:"

[SIC] Setting:

System Prompt: "You are given some pieces of a
story, which can be either a novel or a
movie script, and a question. Answer the
question as concisely as you can, using a
single phrase if possible. Do not provide
any explanation.”

Prompt Template:
{SYSTEM}

Pieces of the story:
{CTX}

Answer:"

F.2 NoisyNeedle
[SICIQ] Setting:

System Prompt: "There are information about a
passkey hidden in input. Please remember it

Prompt Template:

"{SYSTEM}

Part of the input:

{CTX}

Remeber your task: according to all previous
input, if there is the answer to: {QUERY},
answer the question
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[SIQIC] Setting:

System Prompt: "There are information about a
passkey hidden in input. Please remember it

n

Prompt Template:

"{SYSTEM}

Remeber your task: according to all previous
input, if there is the answer to: {QUERY},
answer the question

Part of the input:

{CTX}

[QISIC] Setting:

System Prompt: "There are information about a
passkey hidden in input. Please remember it

Prompt Template:

"Remeber your task: according to all previous
input, if there is the answer to: {QUERY},
answer the question

{SYSTEM}

Part of the input:

{CTX3}

"

[SIC] Setting:

System Prompt: "There are information about a
passkey hidden in input. Please remember it

”

Prompt Template:
"{SYSTEM}

Part of the input:
{CTX}

n

F.3 Trivia
[SICIQ] Setting:

System Prompt: "Answer the question based on the
given passage. Only give me the answer and
do not output any other words.”

Prompt Template:
"{SYSTEM}

The following are some passages:
{CTX}
Now, if you can find the required information,

answer the question based on those passages.

Do not provide any explanation.
Question: {QUERY}

Answer:"

[SIQIC] Setting:

System Prompt: "Answer the question based on the
given passage. Only give me the answer and
do not output any other words."”

Prompt Template:

"{SYSTEM}

Now, if you can find the required information,
answer the question based on those passages.
Do not provide any explanation.

Question: {QUERY}

The following are some passages:
{CTX}

Answer:"

[QISIC] Setting:

System Prompt: "Answer the question based on the
given passage. Only give me the answer and
do not output any other words.”

Prompt Template:

"Now, if you can find the required information,
answer the question based on those passages.
Do not provide any explanation.

Question: {QUERY}

{SYSTEM}

The following are some passages:
{CTX}

Answer:"

[SIC] Setting:

System Prompt: "Answer the question based on the
given passage. Only give me the answer and
do not output any other words."”

Prompt Template:
"{SYSTEM}

The following are some passages:
{CTX}

Answer:"

F.4 Distinguishing Prompt

The distinguishing prompt directly requires the
LLM to discriminate whether the context contains
answers to a given question.
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Prompt Template:

You are a helpful assistant. I will give you a
query and some contexts. Please help me with
my question about the given query and
contexts.

Question: {QUERY}

The following are some passages:
{CTX}

Do the given contexts contain the answers to the
given question? Use ’Yes’ or ’No’ to answer
it. Do not provide any explanation.




Answer:"
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