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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable performance across a wide002
range of natural language processing tasks.003
However, they are often distracted by irrele-004
vant or noisy context in input sequences that005
degrades output quality. This problem affects006
both long- and short-context scenarios, such as007
retrieval-augmented generation, table question-008
answering, and in-context learning. We reveal009
that LLMs can implicitly identify whether input010
sequences contain useful information at early011
layers, prior to token generation. Leveraging012
this insight, we introduce Early Noise Drop-013
ping (END), a novel approach to mitigate this014
issue without requiring fine-tuning the LLMs.015
END segments input sequences into chunks016
and employs a linear prober on the early layers017
of LLMs to differentiate between informative018
and noisy chunks. By discarding noisy chunks019
early in the process, END preserves critical in-020
formation, reduces distraction, and lowers com-021
putational overhead. Extensive experiments022
demonstrate that END significantly improves023
both performance and efficiency across differ-024
ent LLMs on multiple evaluation datasets. Fur-025
thermore, by investigating LLMs’ implicit un-026
derstanding to the input with the prober, this027
work also deepens understanding of how LLMs028
do reasoning with contexts internally.029

1 Introduction030

Large language models (LLMs) have exhibited im-031

pressive performance across a wide range of natu-032

ral language processing tasks. As their application033

scope expands, the input lengths of LLMs are also034

increasing rapidly (Dubey et al., 2024; Yang et al.,035

2024; Liu et al., 2024). However, when process-036

ing long sequences, LLMs often face a significant037

challenge from the noise in the contexts which may038

distract LLMs. This issue arises when models fail039

to effectively utilize relevant contextual informa-040

tion, becoming distracted by irrelevant or noisy041

data instead. Consequently, the quality of their 042

output deteriorates, resulting in inaccuracies, hal- 043

lucinations, incomplete responses, and occasional 044

failures to follow instructions (Anil et al., 2024; 045

Shi et al., 2023). 046

Such distraction is common and not limited to 047

long-sequence tasks. For instance, while retrieval- 048

augmented generation (RAG) can filter out most 049

noise, the prompt delivered to LLMs after retrieval 050

and reranking still contains a significant amount of 051

irrelevant information. Similar challenges arise in 052

table-based question answering (QA), multi-turn di- 053

alogue QA, and in-context learning (ICL). In these 054

scenarios, only a small fraction of the provided 055

context is directly relevant to the query, whereas 056

the remaining information—despite often being 057

contextually similar—acts as noise, potentially hin- 058

dering the model’s ability to focus on the most 059

relevant content and also affecting efficiency. 060

Existing approaches to mitigate this issue pri- 061

marily fall into two categories. The first involves 062

multi-agent collaboration frameworks (Team, 2024; 063

Lee et al., 2024), where the context is split into 064

segments processed by different agents, followed 065

by inter-agent interaction to produce a final out- 066

put. While effective, these methods often require 067

complex agent interaction designs and multiple 068

inference steps, resulting in increased latency. The 069

second approach, known as “Parallel Context En- 070

coding” (Yen et al., 2024; Merth et al., 2024), either 071

trains an additional encoder to process context seg- 072

ments before feeding them to the LLM or trains 073

a separate module to aggregate outputs from mul- 074

tiple LLM runs on different segments. However, 075

these solutions necessitate non-trivial training 076

of new components of the LLM itself and also 077

incorporates significant changes to LLMs’ original 078

forward mechanism. 079

This motivates us to explore whether it’s possi- 080

ble to leverage a LLM’s inherent ability to handle 081

noisy cases without fine-tuning. Inspired by previ- 082
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Figure 1: The framework of the proposed END. The long input, which might come from various sources such as
RAG, will be split into chunks for parallel processing first. It’s a partial forward. A linear prober is attached to
the designated layer (layer 13 in the diagram) of a LLM, and the prober is used to determine whether a chunk is
noisy (red) or not (green). After that, those selected informative chunks will be combined together as the new input
for the LLM, which will generate the final prediction.

ous works suggesting that LLMs implicitly know083

when they are generating incorrect responses (Ka-084

davath et al., 2022; Yin et al., 2023), we hypoth-085

esize that LLMs can identify whether the input086

contains useful information related to the questions087

before generating the first response token. Our ex-088

periments, using a simple linear prober, strongly089

support this assumption and reveal that such distin-090

guishing abilities emerge in very early layers.091

Based on these findings, we propose “Early092

Noise Dropping” (END), a novel approach to mit-093

igate noise distraction in LLMs. END segments094

the input into multiple chunks and processes them095

in parallel. A linear prober, operating on hidden096

states from lower layers, distinguishes between in-097

formative and noisy chunks, discarding irrelevant098

ones early while retaining essential context for the099

final prediction. The remaining chunks are then100

combined and processed in a full forward pass.101

This method significantly reduces computational102

overhead while preserving key information. Com-103

pared to strong baselines, including direct LLM104

noise discrimination approaches, END achieves105

over 10% performance improvement and reduces106

computation by approximately 50%.107

Crucially, the proposed END requires no fine-108

tuning, instead leveraging LLMs’ innate ability to109

discern task-relevant information. By dropping re-110

dundant chunks early, it enhances both efficiency111

and accuracy while shedding light on LLMs’ in-112

ternal noise discrimination mechanisms. Our main113

contributions include:114

• We identify LLMs’ noise sensitivity: Even trivial115

noise distracts LLMs, while noise resembling tar-116

get information severely degrades performance.117

• We find that LLMs can internally differentiate 118

relevant and irrelevant context at lower layers, 119

which can be effectively exploited via a linear 120

prober. 121

• We propose END: By selectively processing in- 122

put chunks, END mitigates noise distraction ef- 123

fectively and efficiently. Comprehensive experi- 124

ments confirm its superiority over baselines. 125

2 Methodology 126

In this section, we first show the harmfulness 127

caused by noise in the context and the impact of 128

longer contexts. Then via constructing a linear 129

prober, we elicit the LLMs’ inherent capabilities of 130

being aware of whether the input is informative or 131

noisy. Finally, based all previous results, we intro- 132

duce END, which processes segmented long input 133

with the help of a linear prober, and only retains 134

informative segments for predictions. 135

Difficulty Level Standard Extended (Long)
Level_0 1.00 1.00
Level_1 1.00 0.94
Level_2 0.91 0.71
Level_3 0.54 0.40
Level_4 0.08 0.04

Table 1: C omparison of performance (accuracy) on
NoisyRetrieval between "Standard" (≈ 4k) and "Ex-
tended" (≈ 8k) for Llama3-Instruct-8B with differ-
ent Difficulty levels. Level_0 is least confusable and
Level_4 is most confusable. By adding random texts to
the contexts, each instance from "Standard Context" is
transformed into "Extended Context". Such trivial noise
still significantly harms the performance.
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2.1 The Impact of Noisy Contexts from136

Longer Contexts.137

In Table 1, we show how the performance138

of Llama3-8B-instruct on our synthetic task139

NoisyRetrieval shifts under two key factors: (1)140

the difficulty of added noise and (2) overall context141

length. Briefly, for each question, we add a single142

true segment (containing the answer) plus 12 dis-143

traction segments that range in noise difficulty from144

Level_0 (least confusable) to Level_4 (most confus-145

able). These distraction segments have information146

similar to the true answer but do not contain the147

correct answer (Further details on how we generate148

these segments and control the noise difficulty for149

this task appear in Section 3.1.1). In this table, we150

refer to it as the standard context setting for each151

instance has approximately 4k tokens. Addition-152

ally, we test an extended context setting with trivial153

noise (2× length, ≈ 8k tokens) by adding random154

texts. Even this seemingly harmless extra material155

leads to worse performance, particularly when com-156

bined with harder noise (e.g., Level_4). We draw157

two conclusions: (1). The sharp decrease in perfor-158

mance as the noise level increases highlights the159

critical need for removing noise from the input con-160

texts. (2). The performance gap between the "Stan-161

dard" and "Extended" settings demonstrates that162

even trivial noise in longer context can cause severe163

performance degradation. This finding underscores164

the importance of reducing input length and miti-165

gating noise to optimize LLM performance.166

2.2 A Linear Prober can Effectively Elicit167

LLMs’ Inherent Discrimination168

Capabilities.169

Previous works on LLMs’ implicit abilities suggest170

that while generating predictions for a task, LLMs171

inherently perform many functions beyond the task172

itself. For instance, Slobodkin et al. (2023) found173

that the last layer’s hidden states can be used to174

reveal whether the generated prediction is halluci-175

nation or not.176

This insight prompts us to ask: Do LLMs in-177

herently check whether the input contains infor-178

mation related to the current queries? We hy-179

pothesize that the answer is ‘Yes’, considering that180

LLMs perform well when directly asked whether a181

given input can answer a specific question. To182

validate this hypothesis, we constructed linear183

probers for four models: Llama3-8B-Instruct,184

Mistal-Inst-v0.3, Qwen2-7B-Instruct, and185

Gemma-1.1-7b-it, across three datasets: NoisyRe- 186

trieval, NaturalQA, and TriviaQA. Details of these 187

datasets can be found in Section 3.1.1. Following 188

common practice, the linear prober takes the hidden 189

representation of the last input tokens and predicts 190

binary labels for each input: ‘0’ for input irrelevant 191

to the query and ‘1’ for input informative to the 192

query. We also conducted a layer-wise analysis to 193

reveal how these inherent abilities emerge in LLMs. 194

The results are shown in Figure 2. For each query, 195

we set 10 negative inputs and 1 positive input.We 196

can conclude the following from our results: 197

• LLMs can successfully determine whether the in- 198

put is noisy via a simple linear prober. Although 199

we don’t explicitly require the model to discrim- 200

inate the input in the prompts, the linear prober 201

performs remarkably well. 202

• Such discrimination abilities arise at very early 203

layers. Using the hidden states from layers 204

around layer 13, the linear prober can already 205

achieve a high recall (>0.95) for the positive in- 206

put (i.e., the non-noise input). 207

• Different models exhibit similar behavior, sug- 208

gesting that these inherent abilities are universal 209

across LLMs. 210

These findings underscore the potential for lever- 211

aging LLMs’ innate discrimination capabilities in 212

handling noisy or irrelevant input data. 213

2.3 END: Early Noise Dropping. 214

The core idea of the proposed END is to segment 215

the input sequence into multiple chunks, process 216

these chunks in parallel through the lower layers 217

of the LLM, identify and retain only the essential 218

chunks, and finally forward the retained chunks 219

for the final prediction. This approach leverages 220

the LLM’s inherent ability to discriminate between 221

informative and noisy input early in its processing 222

stages. The framework of the proposed END is 223

shown in Figure 1. Its details are as follows: 224

Step 1: Input Segmentation. We begin by divid- 225

ing the input sequence into multiple chunks. The 226

optimal chunk size may vary depending on the spe- 227

cific task and model architecture. Most chunks will 228

only contain noise rather than the answer to the 229

task. These chunks are then processed in paral- 230

lel through the lower layers of the LLM, allowing 231

for efficient computation. During this parallel pro- 232

cessing, each chunk is attached to a task-related 233

query. 234
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Figure 2: This figure shows the recall for positive input of the linear prober when attached to different layers
of LLMs. The y-axis represents the recall value, while the x-axis indicates the index of LLM layers. Layer 0
corresponds to the first layer of the model. The top four experiments were conducted on NoisyRetrieval, the middle
section on NaturalQA, and the bottom four on TriviaQA. "Top-1 recall" indicates that only the input with the highest
score is predicted as positive. "Top 20% recall" means that inputs with scores in the top 20% from the linear prober
are predicted as positive. Similar interpretations apply for "top 30% recall", "top 50% recall", and "top 60% recall"

Step 2: Noise Discrimination and Chunk Drop-235

ping. In this step, we leverage LLMs’ inherent236

noise discrimination capability shown earlier to dis-237

criminate noisy chunks and drop them. We employ238

the previously described linear prober as the dis-239

criminator, attached to the lower layers of the LLM.240

Specifically, we use a logistic regression model as241

the prober and, based on our previous study, we242

attach it to layer 13. The prober predicts a score243

for each chunk, and we drop all chunks with a pre-244

diction score lower than a specific threshold. It’s245

not necessary for the linear prober to predict with246

100% accuracy whether a segment is noisy or not.247

As long as it can filter out most noisy segments, we248

can expect good downstream performance. Hence,249

in our experiments, we keep chunks with the top250

30% predicted scores.251

Step 3: Continue the Forward Pass with Re-252

tained Chunks. To obtain the final prediction253

after noise reduction with the linear prober, we per-254

form a complete forward pass with the remaining255

segments. We combine all retained chunks and256

feed them into the LLM in a new forward pass to257

get the final output. Our approach requires slightly258

more than one forward pass through the LLM but259

involves less manipulation of the LLMs. Consid- 260

ering the parallel processing of the initial inputs, 261

the prober applis at early layers, and the largely 262

reduced input length for the final prediction, our 263

approach does not enforce efficiency burden at the 264

inference time. 265

3 Experiments 266

In this section, we introduce experimental settings 267

first. Then we show the effectiveness of the pro- 268

posed END and provide further analysis. 269

3.1 Experimental Settings 270

3.1.1 Dataset 271

We primarily tested the proposed method on 272

question-answering tasks. 273

NoisyRetrieval. This synthetic task requires re- 274

trieving the passkey of an item characterized by five 275

attributes: NAME, MATERIAL, COLOR, BRAND, 276

and ITEM. Each instance contains a positive seg- 277

ment (which includes the correct answer) and 12 278

noisy negative segments that serve as distractors. 279

To generate these negative segments, we control 280

the number of shared attributes between the dis- 281

tractor and the positive segment, creating 5 diffi- 282

4



Model Task Subtask RAG LLM-Discrim END Prober Recall

Llama3-8b-Instrcut

NoisyRetrieval(Acc)

level_0 1.0 1.0 1.0 1.0
Level_1 1.0 1.0 1.0 1.0
Level_2 0.95 1.0 1.0 1.0
Level_3 0.51 0.98 0.98 1.0
Level_4 0.07 0.20 0.68 0.99

NatualQA (F1)
Weak 69.4 70.69 69.8 1.0
Hard 58.18 58.72 61.47 0.97

TriviaQA (F1) Hard 37.83 37.6 37.34 0.96

Qwen2-7b-inst

NoisyRetrieval(Acc)

level_0 1.0 0.96 1.0 1.0
Level_1 1.0 0.96 1.0 1.0
Level_2 1.0 0.96 1.0 1.0
Level_3 0.81 0.96 0.98 1.0
Level_4 0.52 0.89 0.79 0.99

NaturalQA (F1)
Weak 70.18 60.09 67.8 0.96
Hard 55.37 54.70 59.07 0.95

TriviaQA (F1) Hard 35.71 36.40 36.93 0.92

Mistral-Inst-v0.3

NoisyRetrieval(Acc)

level_0 1.0 0.93 1.0 1.0
Level_1 1.0 0.93 1.0 1.0
Level_2 0.96 0.93 1.0 1.0
Level_3 0.64 0.93 0.99 1.0
Level_4 0.25 0.90 0.78 0.99

NaturalQA (F1)
Weak 61.76 48.39 57.53 1.0
Hard 48.58 45.66 47.88 0.94

TriviaQA (F1) Hard 35.63 37.32 37.23 0.95

Table 2: The performance of the proposed END. For NoisyRetrieval, we use exact match accuracy as the metric.
For NaturalQA and TriviaQA, we use F1 as the metric. We also listed the performance for the linear prober in the
Chunk Dropping stage (Prober Recall).

culty levels of noise (from Level_0 to Level_4).283

Here, Level_4 is the most challenging, as the dis-284

tractor shares 4 attributes with the positive seg-285

ment, whereas Level_0 is the easiest, with no286

shared attributes. For example, consider the ques-287

tion, “What is the passkey of Jack’s Green Wooden288

Samsung Phone?” The evidence is: “the pass-289

word of Jack’s Green Wooden Samsung Phone is290

12345.” A Level_0 distractor might be: “the pass-291

word of Luke’s Red Metal LG Laptop is 54321,”292

and a Level_4 distractor might be: “the password293

of Jack’s Green Metal Samsung Phone is 41415.”294

More details about this task and additional exam-295

ples can be found in Appendix E.296

Natural QA. This question answering dataset is297

from DPR (Karpukhin et al., 2020), where each in-298

stance has positive and negative segments retrieved299

in advance. Each instance has negative segments300

of two noise level ‘Weak’ and ‘Hard’ according to301

the similarity score. Hard negative segments can302

distract LLMs more easily because they have larger303

similarity scores.304

Trivia QA. This dataset is also from DPR. Similar 305

to Natural QA, each instance in trivia QA has pos- 306

itive and negative segments retrieved in advance. 307

Following the settings from previous work, each 308

instance has the negative segments with one noise 309

level as ‘Hard’. 310

3.1.2 Baselines 311

To ensure a fair comparison across scenarios with 312

varying noise levels and context lengths, we estab- 313

lish two baselines: 314

RAG serves as a baseline, simulating the full 315

retrieval-augmented generation (RAG) pipeline. A 316

typical RAG pipeline consists of three main stages: 317

retrieval, reranking, and prediction. During the 318

reranking stage, retrieved chunks or segments are 319

embedded, and similarity scores are computed to 320

reorder them. The top-ranked chunks are retained 321

and passed to the model for prediction. We didn’t 322

do real RAG for the proposed END can be attached 323

the prompt after RAG and further reduce noise. To 324

simulate a real-world RAG scenario, we combine 325
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positive segments (containing the answer) with neg-326

ative segments (distractors) as the post-reranking327

inputs for prediction. For example, the datasets328

from DPR (e.g., NatureQA, TriviaQA), inherently329

include negative chunks that have already been fil-330

tered and ranked based on similarity scores. This331

makes our simulation particularly reasonable, as it332

accurately reflects the reranking and filtering pro-333

cess in the RAG pipeline, ensuring alignment with334

real-world behavior.335

LLM-Discrim acts as an "formidable" baseline336

and is supposed to surpass all methods by de-337

sign (although Table 2 shows this is not the case).338

It has two forward passes. In the first forward pass,339

it splits the input into chunks and asks the LLMs to340

determine whether a segment contains the answer.341

Then, in the second forward pass, it requires the342

LLMs to provide the prediction using the remain-343

ing chunks as input. LLM-Discrim is particularly344

effective (Zheng et al., 2024; Fu et al., 2023), espe-345

cially for hard tasks, as it explicitly leverages the346

ability of LLMs to discriminate input segments, set-347

ting a performance benchmark that END method348

does not aim to exceed.349

3.2 Main Results & Analysis350

The results for the proposed END are listed in Ta-351

ble 2. In our experiments, we retained the segments352

with the top 30% of linear prober prediction scores.353

Effectiveness Analysis. As a result, our pro-354

posed END significantly outperforms the RAG355

baseline, it also achieves the best overall perfor-356

mance even when compared to the strong LLM-357

Discrim baseline. Besides, the superiority of END358

becomes more pronounced on more challenging359

tasks. As expected, the recall of this linear prober360

is sufficiently high. Although there are some in-361

stances of inferior performance, we believe these362

may be attributed to the F1 metric used for evalua-363

tion. For example, in the case of NaturalQA (Weak)364

with Mistral-Inst-v0.3, the recall is nearly per-365

fect (0.998), yet the F1 score is still lower than366

anticipated. This discrepancy suggests that while367

our method is highly effective at identifying rele-368

vant information, the overall performance metric369

may not fully capture this advantage in certain sce-370

narios.371

Efficiency Analysis. While END appears to re-372

quire an additional forward pass due to the ex-373

tra probing and Chunk Dropping, it actually still374

processes a significantly reduced input during its375

Backbone NoisyRetrieval NaturalQA TriviaQA
Llama3-rand 0.60 0.71 0.66

Llama3 0.99 0.91 0.90
Qwen2-rand 0.64 0.71 0.67

Qwen2 0.95 0.88 0.86
Mistral-rand 0.60 0.70 0.66

Mistral 0.93 0.89 0.89

Table 3: Linear prober F1 scores on test sets com-
paring pre-trained and randomly initialized models.
Llama3 refers to Llama-3-8B-Instruct, Qwen2 to
Qwen2-7B-Inst, and Mistral to Mistral-Inst-v0.3.
The -rand suffix indicates randomly initialized versions
of these models with preserved embedding layers.

second forward pass compared to the RAG base- 376

line, owing to the substantial chunk elimination. 377

Moreover, in comparison with the strong LLM- 378

Discrim baseline, the Chunk Dropping stage con- 379

sumes less than half of a forward pass. Assuming 380

quadratic complexity for LLM operations, and con- 381

sidering an input segmented into 10 chunks, each 382

of length L, using Llama-3-8B-Instruct (32 lay- 383

ers) as the backbone LLM, and dropping 70% (7) 384

of chunks at layer-13, we can approximate the com- 385

putational cost as follows: RAG: Θ((10L)2) = 386

Θ(100L2) LLM-Discrim (assuming 2 chunks re- 387

tained): Θ((10L)2 + (2L)2) = Θ(104L2) END 388

(30% chunks retained): Θ(1332(10L)
2 + (3L)2) = 389

Θ(495
8L

2) This demonstrates that END achieves 390

superior efficiency compared to both baselines. 391

Real-world wall-clock time analysis also support 392

its efficiency (Appendix D). 393

3.3 Analysis of the Linear Prober 394

The efficacy of END is heavily influenced by the 395

performance of the linear prober. A more accurate 396

and precise linear prober results in shorter final in- 397

puts, enabling LLMs to generate predictions more 398

efficiently and to better understand the contexts. 399

This section presents a comprehensive analysis of 400

the linear prober, demonstrating that, as hypothe- 401

sized in the introduction, it unveils LLMs’ inherent 402

capabilities and implicit reasoning processes when 403

addressing factual queries based on the input. 404

Linear Prober’s Effectiveness Is not from of fit- 405

ting. To verify that the linear prober’s discrim- 406

inative capability does not stem from the fitting 407

process of training the prober itself, we conducted 408

experiments using randomly initialized LLMs as 409

the backbone while maintaining the original em- 410

bedding layer to preserve semantic meaning. The 411

performance comparison between these randomly 412
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Task [S|C|Q] [S|Q|C] [Q|S|C] [S|C]
NoisyRetrieval 1.0 0.98 0.96 0.25
NaturalQA 0.97 0.83 0.84 0.36
TriviaQA 0.96 0.70 0.68 0.36

Table 4: The top 30% recall of the linear prober (layer-
15) across different prompt formats for Llama-3-8B-
Instruct.

initialized LLMs and their pre-trained counterparts413

is presented in Table 3. The substantial perfor-414

mance gap of the linear prober demonstrates that415

this implicit discriminative ability originates from416

the pre-trained LLMs rather than training the linear417

prober with a LLM as a general feature extractor.418

The linear prober is robust to prompt varia-419

tions. Previous research has shown that LLMs420

can be sensitive to prompt formats (Sclar et al.,421

2023). To explore the robustness of the linear422

prober, we analyze its performance across four dif-423

ferent prompt formats: [S|C|Q], [S|Q|C],[Q|S|C],424

and [S|C], where ‘S’ represents the system prompt,425

‘Q’ the question, and ‘C’ the context. The linear426

prober is trained using the [S|C|Q] format with427

Llama-3-8B-Instruct as the backbone model.428

As shown in Table 4, although the linear prober is429

only trained on [S|C|Q], it generalizes well across430

[S|C|Q], [S|Q|C] and [Q|S|C] formats. Such kind431

of generalization strongly supporting the idea that432

LLMs are inherently prepared to answer a question433

once the context is fully presented.434

In contrast, the performance degradation on the435

[S|C] format suggests that the linear prober relies436

on more than just distinguishing between noise and437

informative input—it extracts the model’s implicit438

understanding of the input in relation to the ques-439

tion. The specific prompts used for each dataset440

and format are provided in Appendix F.441

The distinguishing capabilities of large and442

small models arise at similar layers. We con-443

duct probing experiments on both Llama3-70B-444

Instruct and Llama3-8B-Instruct to investigate445

how their distinguishing abilities evolve across lay-446

ers. Figure 3 shows the performance of linear447

probers applied to both models. Interestingly, de-448

spite the significant difference in size—Llama3-449

70B-Instruct has 80 layers, while Llama3-8B-450

Instruct has only 32 layers—the performance of451

the linear prober saturates around similar layers for452

both models, specifically between layers 10 and 15.453

This finding suggests that the key distinguishing454

capabilities in language models is not solely depen-455
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Llama3-8B-Instruct Llama3-70B-Instruct

Figure 3: The performance for the linear prober with
Llama-3-8B-Instruct and Llama-3-70B-Instruct
as the backbone.

dent on model size but is instead strongly tied to the 456

depth. Even in the larger Llama3-70B-Instruct, 457

these capabilities arise early in the network, around 458

the same layer range as in the much smaller 459

Llama3-8B-Instruct. This consistency across 460

models of varying sizes implies that these distin- 461

guishing features are fundamental properties of the 462

model’s internal representations and layer-wise pro- 463

gression. 464

The implicit discrimination ability is as strong 465

as explicitly requiring LLMs to discriminate the 466

input. We conducted an experiment where we 467

replaced the task query in the prompt with a distin- 468

guishing query (Appendix F.4) that directly asks 469

the LLM to determine whether the input is rele- 470

vant to the question, similar to the first forward 471

pass of the baseline method LLM-Discrim. We 472

then attached the linear prober to the representa- 473

tions generated from this input to evaluate whether 474

this explicit requirement would lead to improved 475

performance. The results, shown in Figure 4, are 476

surprising. While the performance with the distin- 477

guishing query appears slightly better than with the 478

task query, the overall performance of the linear 479

prober remains nearly the same. This outcome sup- 480

ports our earlier hypothesis: regardless of whether 481

the model is explicitly instructed to distinguish 482

relevant input, LLMs seem to perform this discrim- 483

ination step implicitly before answering questions 484

related to context. 485

4 Related Work 486

Enhancing LLMs’ Long Context Ability. 487

Zhang et al. (2024) found that positional encod- 488
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Figure 4: The performance for the linear prober with
Llama-3-8B-Instruct as the backbone. The left three
figures use the task query in the prompts. The right
three figures use a distinguishing query in prompts.

ing decay weakens self-attention on relevant parts489

and proposed modifying key attention head dimen-490

sions to improve LLMs’ performance on noisy in-491

put. Hsieh et al. (2024) addressed positional bias492

by introducing a calibration mechanism that sub-493

tracts baseline attention from a dummy document,494

preventing overemphasis on input boundaries. He495

et al. (2024) tackled this via instruction tuning to496

help LLMs focus on target information. Beyond497

data-centric approaches, Wu et al. (2024) applied498

contrastive loss in post-training, enhancing robust-499

ness by retrieving similar document pairs.500

Retrieval Augmented Generation (RAG). Dif-501

ferent from directly feeding all collected texts to502

query the LLMs, RAG first performs chunking503

and then retrieves the most related chunks across504

all candidate texts (Lewis et al., 2020; Asai et al.,505

2023). Although RAG can significantly boost the506

performance of LLMs, it still suffers from the dis-507

traction problem as we will show below. This is508

because there are still only a few useful chunks509

among all the retrieved chunks, even though they510

all have scores considering their relation to the511

query.512

Prompt/Context Compression The original513

prompts always contain many useless tokens, and514

this line of works automatically prunes redundant515

tokens in the prompts so as to reduce the input 516

length. They leverage tailored metrics such as self- 517

information to keep important information (Li et al., 518

2023). Together, these studies demonstrate that 519

strategic compression of input contexts can lead 520

to computational savings without sacrificing accu- 521

racy (Jiang et al., 2023a,b; Xu et al., 2023). 522

Separate Context Processing. This approach de- 523

composes long inputs into separate parts for indi- 524

vidual processing, including agent collaboration 525

and parallel context processing. Multi-agent sys- 526

tems iteratively exchange results to refine predic- 527

tions (Zhao et al., 2024; Team, 2024; Lee et al., 528

2024). Parallel processing extracts and merges 529

useful information (Yen et al., 2024) or employs 530

trainable selection mechanisms to determine pre- 531

dictions (Merth et al., 2024). Some methods ap- 532

ply KV-cache compression post-segmentation to 533

reduce noise and context length (Kim et al., 2024). 534

Linear Probing in Natural Language Processing. 535

Linear probing has been used to extract knowl- 536

edge from models, including LLMs (Gurnee and 537

Tegmark, 2023). Recent NLP studies show that 538

applying it to the first generated token can aid trust- 539

related tasks like hallucination detection (Slobod- 540

kin et al., 2023). Unlike prior work, we perform 541

layer-wise probing and find that LLMs assess input 542

informativeness at an early stage. Moreover, while 543

existing methods probe task-related concepts, our 544

approach explores unrelated concepts. 545

5 Conclusion 546

In this paper, we introduced Early Noise Drop- 547

ping (END), a novel method to improve Large 548

Language Models’ (LLMs) performance when pro- 549

cessing noisy or irrelevant context. END effectively 550

identifies and removes noisy input chunks early in 551

the LLM pipeline, improving performance across 552

various tasks. The method demonstrates versatility 553

by working well across different LLM architectures 554

without requiring fine-tuning. By reducing unnec- 555

essary computation on irrelevant information, END 556

offers both performance and efficiency gains. 557

While END shows significant promise, future 558

work could explore more advanced chunking strate- 559

gies and dynamic thresholding techniques. The 560

prober could be enhanced with additional trainable 561

parameters or greater complexity. 562

8



6 Limitations563

We acknowledge that the linear prober’s general-564

ization across tasks remains challenging (general-565

ization analysis can be found in Appendix C.1).566

While fitting a simple linear regression requires567

minimal data, this limitation could potentially be568

addressed through the implementation of a more so-569

phisticated probing mechanism. Additionally, the570

mechanism of LLMs’ internal behavior is still not571

entirely clear, requiring further investigation. Be-572

sides, due to our limited computational resources,573

we did not conduct extensive experiments on large574

LLMs such as Llama-3-70B. However, the prober575

still performs well (Appendix C.2) at this scale and576

appears to save more computation, considering that577

huge models have more layers.578
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A Dataset Statistics736

The detailed statistics of the dataset are as follows.737

After filtering out instances without a sufficient738

number of negative chunks, the dataset used in our739

study has the following distribution:740

Dataset Train Set (Prober) Test Set

NQ 1000 2653
Trivia 1000 2619
NoisyRetrieval
(each difficulty level) 1000 2000

Table 5: Dataset statistics

B Prober Training Details741

The prober was trained using the following steps:742

1. For each question (instance), collect negative-743

positive segment pairs.744

2. Label negative segments as 0 and positive seg-745

ments as 1.746

3. Feed these segments, along with their corre-747

sponding questions, into the model to extract748

intermediate representations.749

4. Split all instances, along with their corre-750

sponding negative and positive segments, into751

training and test sets.752

5. Train a simple sigmoid-based linear prober753

(logistic regression).754

The training set for each prober on each dataset755

consists of 1,000 instances. Further details about756

these data can be found in the previous section.757

C More results of the Prober’s758

performance759

C.1 Generalization of The Linear Prober760

We tested cross-task generalization with two set-761

tings: The prober is trained with NQ, but tested762

on Trivia; The prober is trained with Trivia, but763

tested on NQ. As shown in Figure 5, we found that:764

Cross-task performance is decent (about 0.9 recall),765

but not perfect (1.0 recall). It still shows the exist-766

ing ability of implicit discrimination. Meanwhile,767

the performance shows some instability.768

Recall

Layer

Figure 5: The cross-task performance for the linear
prober with Llama-3-8B-Instruct as the backbone.

Recall

Layer

Figure 6: The performance for the linear prober with
Llama-3-70B-Instruct as the backbone.

C.2 Prober on Larger LLMs 769

We conducted probing experiments with Llama-3- 770

70B, which has 80 layers (Figure 6). The results 771

show that the optimal probing layer is similar to 772

that of much smaller models (e.g., the 8B model), 773

typically around layers 10–15. This finding sug- 774

gests that END remains beneficial for larger mod- 775

els, as the layer-wise performance does not shift 776

significantly and we just need to run the a few lay- 777

ers. The portion of the first partial forward in the 778

whole cost becomes lower (13/32 –> 13/80). How- 779

ever, if LLMDISCRIM is used instead, the cost of 780

full forward passes would increase considerably 781

due to the greater number of layers and parameters 782

per layer. 783

D Real-World Efficiency Analysis 784

In real-world LLM deployment, flash- 785

attention (Dao, 2024), which significantly reduces 786

the quadratic time complexity of self-attention, 787

is widely used. In this section, we demonstrate 788

that our proposed END method continues to yield 789

efficiency benefits with the flash-attention kernel. 790

Table 6 presents the wall-clock inference times 791

under the same experimental settings as our other 792
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Model/Method Chunk Number 4k 8k 16k 32k

Llama3-8B-END 10 1.4810s 1.315s 1.887s 3.109s
Llama3-8B-END 20 1.508s 1.314s 1.871s 3.052s
Llama3-8B NA 1.226s 1.846s 2.996s 6.173s
Llama3-70B-END 10 5.049s 6.069s OOM OOM
Llama3-70B NA 6.416s 9.998s OOM OOM

Table 6: Wall-clock inference times (in seconds) with the flash-attention kernel for different models/methods and
sequence lengths. xxx-END indicates models equipped with the proposed END method; “Chunk Number” denotes
the number of segments for each input.

experiments: 30% of the chunks are retained for793

the second forward pass, and the first forward pass794

is executed in batch across layers 1 to 13.795

Our results indicate that when the input is long796

(i.e., when the computation cost is dominated by797

the input length) or when the model is large, the pro-798

posed END method clearly outperforms the stan-799

dard approach of processing the entire sequence800

in a single forward pass. Although the observed801

efficiency improvement does not precisely match802

the predictions from our complexity analysis, these803

findings nonetheless highlight the practical benefits804

of our method in real-world scenarios.805

E NosiyNeedle806

NoisyRetrieval (Synthetic)807

The original "Needle-in-a-Haystack" style808

task (gkamradt) such as passkey retrieval (Mo-809

htashami and Jaggi, 2023) is too easy. The passkey810

retrieval task is to retrieve a simple passkey like811

"The passkey is 12345". Its contexts are some812

meaningless texts such as repeated "The grass is813

green, the sky is blue". An example looks like:814
815

The grass is green, the sky is blue. The grass816
is green, the sky is blue. The passkey is817
12345. The grass is green, the sky is blue.818
The passkey is 12345. The grass is green,819
the sky is blue. The grass is green, the sky820
is blue. The grass is green, the sky is821

blue. What is the passkey?822823

This is far from real cases, and any retriever can per-824

fectly find the answer segments. Hence, we design825

the NoisyRetrieval task as a noisier version. We826

set five noise levels (level_0 - level_4) for segments,827

by controlling five attributes in the target sentence:828

[Name], [Material], [Color], [Brand], [Item].829

For example:830

[Jack’s] Password to his [Green]831

[Wooden] [Benz] [phone] is 34512:832

With this sentence as the answerm, some exam- 833

ples are: 834

• level_0: Random but meaningful texts from 835

some papers. 836

• level_1: Random but meaningful texts from 837

some papers + a sentence with one attribute 838

the same as the target: 839

[Paul’s] Password to his [red] 840

[golden] [Apple] [phone] is 51233 841

• level_4: Random but meaningful texts from 842

some papers + a sentence with four attributes 843

the same as the target: 844

[Jack’s] Password to his [Green] 845

[Wooden] [Benz] [laptop] is 12345 846

An example input for NoisyRetrieval: 847
848

[other contexts] [Jack’s Password to his Green 849
Wooden Apple phone is 12345] [other contexts 850
] [Paul’s Password to his Green Wooden Apple 851
phone] [other contexts] [Jack’s Password to 852
his red glass Benz phone is 11145] [other 853
contexts] [Jack’s Password to his yellow 854
glass Apple phone is 32525] [Noise] ... 855

Question: What is Jack’s Password to his Green 856
Wooden Benz phone? 857

Answer: 858859

For this task, each positive chunks contains the 860

answer inserted randomly into some random texts 861

from random essays. Each negative chunk include 862

distractor content inserted randomly into random 863

texts from random essays. For input context con- 864

struction, to ensure sufficient difficulty and realism, 865

the chunk containing the answer is placed in the 866

middle of the context. For example, with 10 nega- 867

tive chunks and 1 positive chunk, the positive chunk 868

is positioned as the 6th chunk within the context. 869

E.1 Attribute Value 870

The possible values of all attributes are listed be- 871

low: 872
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873
Name = ["John", "Emma", "Alex", "Sophia", "874

Michael", "Olivia", "Liam", "Ava", "Noah", "875
Isabella", "Ethan", "Mia", "Mason", "876
Charlotte", "William", "Amelia", "James", "877
Harper", "Benjamin", "Evelyn"]878

Color = ["red", "blue", "green", "yellow", "879
black", "white", "purple", "orange", "pink",880
"brown", "gray", "navy", "teal", "maroon",881

"olive", "silver", "gold", "turquoise", "882
lavender", "coral"]883

Item = ["bag", "watch", "phone", "laptop", "884
headphones", "sunglasses", "shoes", "jacket885
", "camera", "tablet", "wallet", "backpack",886
"earbuds", "smartwatch", "keyboard", "mouse887

", "speaker", "charger", "fitness tracker",888
"power bank"]889

Brand = ["Apple", "Samsung", "Nike", "Adidas", "890
Sony", "Gucci", "Microsoft", "Dell", "LG", "891
Bose", "Lenovo", "Asus", "Logitech", "Prada892
", "Canon", "Nikon", "Fitbit", "Fossil", "893
JBL", "Anker"]894

Material = ["leather", "aluminum", "plastic", "895
glass", "titanium", "silicone", "ceramic", "896
fabric","wood", "rubber", "nylon", "897
polyester", "cotton", "wool", "denim", "898
suede", "velvet", "cork"]899900

F Used Prompts901

The prompts used in the probing stage are listed902

below. [S|C|Q] is the default prompt format without903

specifying.904

F.1 NaturalQA905

[S|C|Q] Setting:906
907

System Prompt: "You are given some pieces of a908
story, which can be either a novel or a909
movie script, and a question. Answer the910
question as concisely as you can, using a911
single phrase if possible. Do not provide912
any explanation."913

914
Prompt Template:915
"{SYSTEM}916
Pieces of the story:917
{CONTEXT}918
Now, if you can find the required information,919

answer the question based on the story as920
concisely as you can, using a single phrase921
if possible. Do not provide any explanation.922

923
Question: {QUERY}924

925
Answer:"926927

[S|Q|C] Setting:928
929

System Prompt: "You are given some pieces of a930
story, which can be either a novel or a931
movie script, and a question. Answer the932
question as concisely as you can, using a933
single phrase if possible. Do not provide934
any explanation."935

936
Prompt Template:937
"{SYSTEM}938

939
Now, if you can find the required information, 940

answer the question based on the story as 941
concisely as you can, using a single phrase 942
if possible. Do not provide any explanation. 943
Question: {QUERY} 944

945
Pieces of the story: 946
{CTX} 947

948
Answer:" 949950

[Q|S|C] Setting: 951
952

System Prompt: "You are given some pieces of a 953
story, which can be either a novel or a 954
movie script, and a question. Answer the 955
question as concisely as you can, using a 956
single phrase if possible. Do not provide 957
any explanation." 958

959
Prompt Template: 960
"Now, if you can find the required information, 961

answer the question based on the story as 962
concisely as you can, using a single phrase 963
if possible. Do not provide any explanation. 964

965
Question: {QUERY} 966

967
{SYSTEM} 968

969
Pieces of the story: 970
{CTX} 971

972
Answer:" 973974

[S|C] Setting: 975
976

System Prompt: "You are given some pieces of a 977
story, which can be either a novel or a 978
movie script, and a question. Answer the 979
question as concisely as you can, using a 980
single phrase if possible. Do not provide 981
any explanation." 982

983
Prompt Template: 984
" 985
{SYSTEM} 986

987
Pieces of the story: 988
{CTX} 989

990
Answer:" 991992

F.2 NoisyNeedle 993

[S|C|Q] Setting: 994
995

System Prompt: "There are information about a 996
passkey hidden in input. Please remember it 997
." 998

999
Prompt Template: 1000
"{SYSTEM} 1001
Part of the input: 1002
{CTX} 1003
Remeber your task: according to all previous 1004

input, if there is the answer to: {QUERY}, 1005
answer the question 1006

" 10071008
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[S|Q|C] Setting:1009
1010

System Prompt: "There are information about a1011
passkey hidden in input. Please remember it1012
."1013

1014
Prompt Template:1015
"{SYSTEM}1016
Remeber your task: according to all previous1017

input, if there is the answer to: {QUERY},1018
answer the question1019

Part of the input:1020
{CTX}1021
"10221023

[Q|S|C] Setting:1024
1025

System Prompt: "There are information about a1026
passkey hidden in input. Please remember it1027
."1028

1029
Prompt Template:1030
"Remeber your task: according to all previous1031

input, if there is the answer to: {QUERY},1032
answer the question1033

{SYSTEM}1034
Part of the input:1035
{CTX}1036
"10371038

[S|C] Setting:1039
1040

System Prompt: "There are information about a1041
passkey hidden in input. Please remember it1042
."1043

1044
Prompt Template:1045
"{SYSTEM}1046
Part of the input:1047
{CTX}1048

1049
"10501051

F.3 Trivia1052

[S|C|Q] Setting:1053
1054

System Prompt: "Answer the question based on the1055
given passage. Only give me the answer and1056

do not output any other words."1057
1058

Prompt Template:1059
"{SYSTEM}1060

1061
The following are some passages:1062
{CTX}1063
Now, if you can find the required information,1064

answer the question based on those passages.1065
Do not provide any explanation.1066

1067
Question: {QUERY}1068

1069
Answer:"10701071

[S|Q|C] Setting:1072
1073

System Prompt: "Answer the question based on the1074
given passage. Only give me the answer and1075

do not output any other words."1076
1077

Prompt Template: 1078
"{SYSTEM} 1079
Now, if you can find the required information, 1080

answer the question based on those passages. 1081
Do not provide any explanation. 1082

1083
Question: {QUERY} 1084

1085
The following are some passages: 1086
{CTX} 1087

1088
Answer:" 10891090

[Q|S|C] Setting: 1091
1092

System Prompt: "Answer the question based on the 1093
given passage. Only give me the answer and 1094
do not output any other words." 1095

1096
Prompt Template: 1097
"Now, if you can find the required information, 1098

answer the question based on those passages. 1099
Do not provide any explanation. 1100

1101
Question: {QUERY} 1102

1103
{SYSTEM} 1104

1105
The following are some passages: 1106
{CTX} 1107

1108
Answer:" 11091110

[S|C] Setting: 1111
1112

System Prompt: "Answer the question based on the 1113
given passage. Only give me the answer and 1114
do not output any other words." 1115

1116
Prompt Template: 1117
"{SYSTEM} 1118

1119
The following are some passages: 1120
{CTX} 1121

1122
Answer:" 11231124

F.4 Distinguishing Prompt 1125

The distinguishing prompt directly requires the 1126

LLM to discriminate whether the context contains 1127

answers to a given question. 1128
1129

Prompt Template: 1130
" 1131
You are a helpful assistant. I will give you a 1132

query and some contexts. Please help me with 1133
my question about the given query and 1134
contexts. 1135

1136
Question: {QUERY} 1137

1138
The following are some passages: 1139
{CTX} 1140

1141
Do the given contexts contain the answers to the 1142

given question? Use ’Yes’ or ’No’ to answer 1143
it. Do not provide any explanation. 1144

1145

14



Answer:"11461147

15
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