
Published at Building Trust Workshop at ICLR 2025

FIDELIS: FAITHFUL REASONING IN LARGE LAN-
GUAGE MODELS FOR KNOWLEDGE GRAPH QUESTION
ANSWERING

Yuan Sui1, Yufei He1, Nian Liu1, Xiaoxin He1, Kun Wang1,2, Bryan Hooi1∗
1National University of Singapore
2University of Science and Technology of China
{yuansui, yufei.he, nianliu, xiaoxin, bhooi}@comp.nus.edu.sg,
wk520529@mail.ustc.edu.cn

ABSTRACT

Large language models (LLMs) are often challenged by generating erroneous
or hallucinated responses, especially in complex reasoning tasks. Leveraging
knowledge graphs (KGs) as external knowledge sources has emerged as a viable
solution. However, existing KG-enhanced methods, either retrieval-based or agent-
based, encounter difficulties in accurately retrieving knowledge and efficiently
traversing KGs at scale. In this paper, we propose a unified framework, FiDeLiS,
designed to improve the factuality of LLM responses by anchoring answers to
verifiable reasoning steps retrieved from a KG. To achieve this, we leverage step-
wise beam search with a deductive scoring function, allowing the LLM to validate
each reasoning step and halt the search once the question is deducible. In addi-
tion, our Path-rag module pre-selects a smaller candidate set for each beam
search step, reducing computational costs by narrowing the search space. Exten-
sive experiments show that our training-free and efficient approach outperforms
strong baselines, enhancing both factuality and interpretability. Code is released at
https://anonymous.4open.science/r/FiDELIS-E7FC.

1 INTRODUCTION

Large language models (LLMs) have shown impressive reasoning capabilities in tackling complex
tasks (Yu et al., 2024). However, the reasoning of LLMs is not always reliable and can be prone to
generating outputs that are either inconsistent with real-world facts (Xu et al., 2024; Huang et al.,
2025) or show flawed reasoning process (Li et al., 2024; Sui et al., 2024), which greatly undermine
the reliability of LLMs in real-world applications (Kung et al., 2023; Zhang et al., 2024).

To address this issue, leveraging knowledge graphs (KGs) as external knowledge sources has emerged
as a viable solution (Sun et al., 2023; Ma et al., 2024; Luo et al., 2024a). Unlike traditional retrieval-
augmented generation (RAG) that relies on web pages or documents (Liu et al., 2024; Qian et al.,
2024; Bayarri-Planas et al., 2024), KGs represent information in a structured and interconnected
format, where each fact is stored as entities and relations. This format supports explicit, traceable
reasoning processes (Pan et al., 2023) and facilitates multi-hop reasoning through graph traversal.
Moreover, each fact in a KG can be traced back to its source (Sui et al., 2024; Agrawal et al., 2024),
providing both context and original details, which further enhances the information authenticity and
reliability of the reasoning processes.

Existing KG-enhanced LLM reasoning methods face notable challenges and can be roughly catego-
rized into two primary approaches: retrieval-based and agent-based paradigms (Luo et al., 2024b).
Retrieval-based methods (Wang et al., 2023; Luo et al., 2024a; Baek et al., 2023) retrieve relevant KG
facts to support LLM reasoning by either prompting (Baek et al., 2023) or fine-tuning LLMs to learn
the underlying structure of KG (Luo et al., 2024a;b). These methods often suffer from incomplete or
imprecise information extraction due to a lack of contextual understanding or an inability to fully cap-
ture the graph structure (Luo et al., 2024b).Our error analysis of a strong retrieval-based method (i.e.,

∗ Corresponding author.

1

https://anonymous.4open.science/r/FiDELIS-E7FC


Published at Building Trust Workshop at ICLR 2025

Figure 1: Challenges for existing KG-enhanced methods: How to balance faithfulness and efficiency?

(Luo et al., 2024a)) in §4.3 reveals that only 67% of the generated reasoning steps are valid, with 33%
containing format errors or referencing non-existent KG facts. In contrast, agent-based methods (Sun
et al., 2023; Ma et al., 2024) treat LLMs as interactive agents that explore KGs iteratively to construct
reasoning paths and generate answers. While this approach by nature can enhance reasoning accuracy,
it is computationally expensive, resulting in high latency and scalability limitations. As illustrated in
Figure 1, balancing faithfulness and efficiency remains a critical challenge for existing KG-enhanced
reasoning methods.

To this end, we propose FiDeLiS, a unified framework designed to improve the factual accuracy and
reasoning efficiency of LLMs on KGQA task. FiDeLiS anchors LLM responses to verifiable reasoning
steps derived from a KG by employing two core components: (1) Deductive-Verification
Beam Search (DVBS) which systematically constructs and validates reasoning paths step-by-
step, ensuring logical consistency and factual correctness (discussed in §3.2). This module also
prevents premature reasoning termination and incorrect path extension to ensure the validity of
the generated reasoning paths. (2) Path-RAG, a retrieval-augmented mechanism that pre-selects a
constrained set of candidate entities and relations for each step to mitigate computational inefficiencies.
It combines semantic similarity measures with graph-based connectivity analysis to optimize the
search space, significantly reducing latency without sacrificing recall or accuracy (discussed in §3.1).
Extensive experiments show that our method outperform strong baselines in both accuracy and
efficiency, offering a scalable, training-free solution for KG-enhanced LLM reasoning. Overall, our
main contributions include:

• We propose FiDeLiS, a unified framework designed to improve the factual accuracy of LLMs by
grounding reasoning paths in structured KG efficiently.

• We enable efficient, verifiable reasoning by deductively validating reasoning steps and narrowing
the search space with high-quality retrieval mechanism.

• FiDeLiS performs robustly across different experiments without the need for model fine-tuning,
demonstrating adaptability and scalability with improved performance on multiple benchmarks.

• By anchoring responses in verifiable reasoning paths, FiDeLiS enhances interpretability, enabling
users to verify and understand each reasoning step.

2 PRELIMINARY

Notation. To facilitate the demonstration of our method, we define the necessary notation below:

• Definition 1. A reasoning step is a pair (r, e), where r is the relation and e is the corresponding
entity.

• Definition 2. A reasoning path P is a pair (s, T ), where s is the starting entity for the reasoning
path, and T is a sequence of reasoning steps T = {t1, . . . , tn} and tk = (rk, ek) denotes the k-th
reasoning step in the path and n denotes the length of the path.

• Definition 3. The next-hop candidates given path P , denoted N1(en), is defined as the 1-hop
neighborhood of en, the last node in the reasoning path P .

• Definition 4. A reasoning path P = (s, T ) is valid if every step (rk, ek) corresponds to an actual
triplet (ek−1, rk, ek) in the KG (with e0 = s). For example, a valid reasoning path could be: P =

Justin_Bieber
people.person.son−−−−−−−−−−→ Jeremy_Bieber

people.person.ex_wife−−−−−−−−−−−−→ Erin_Wagner, which denotes that

2



Published at Building Trust Workshop at ICLR 2025

Lou Seal

Lou seal 
giants mascot

San Francisco 
Giants

Mascot

m.03_dwt

sports.ma
scot.team

common.topic.image

common.topic.notab
le_types

common.topi
c.article

Seals Stadium

Bruce Bochy

2014 World Series

sports.sports_team
.arena_stadium

sports.sports_team
.championships

baseball.baseb
all_team.curre
nt_manager

Entity emb !!
Relation emb !"

𝑹 = 𝑺𝟏, 𝑺𝟐, … , 𝑺𝑻 = 𝑺𝟏:𝑻

𝐴

Predicted Final Answer

LLM Driven

Extending Multiple-step 
Reasoning Paths

𝑄

𝐿𝑀(𝑥, 𝑆!!:#$!, 𝑝) 𝐶(𝑥%, 𝑠!# , 𝑠!!:#$!)

𝐿𝑀(𝑥, 𝑆&!:#$!, 𝑝) 𝐶(𝑥%, 𝑠&# , 𝑠&!:#$!)

𝐿𝑀(𝑥, 𝑆'!:#$!, 𝑝) 𝐶(𝑥%, 𝑠'# , 𝑠'!:#$!)

𝐿𝑀(𝑥, 𝑆'(!!:#$!, 𝑝) 𝐶(𝑥%, 𝑠&'() , 𝑠&'((:)*()

𝐿𝑀(𝑥, 𝑆&'!:#$!, 𝑝) 𝐶(𝑥%, 𝑠+&, , 𝑠+&(:)*()

⋯ ⋯

Deductive Verification guided Beam Search Section 2.2

Select 𝒌 Paths
(𝒌 = 𝟐)

⋯ ⋯ ⋯

𝑆!"

𝑆#"

𝑆$"

𝑆$%!"

𝑆#$"

⋯
⋯

Reasoning Chain

LM❉ + prompt

Keywords list
Reasoning Step

Candidates 
Construction 

Retrieval

Question: Lou Seal is the mascot for the team 
that last won the World Series when? 

Knowledge Graph Path-RAG  Section 2.1

𝑻 − 𝟏 length reasoning path

Nodes/Relations

Deductive Verification

Next Reasoning Step

Figure 2: An illustration of FiDeLiS. Top: The workflow of Path-RAG. An LLM first extracts key terms
and generates dense embeddings that feed into the Path-RAG module. Path-RAG rapidly retrieves relevant
entities and relations from a pre-embedded KG and constructs candidate reasoning steps by combining semantic
similarity with graph connectivity. Bottom: The workflow of DVBS. Then, the DVBS module uses an LLM-
generated planning outline to guide a beam search that builds reasoning paths step-by-step over candidates
constructed by Path-RAG, with deductive verification ensuring each step logically follows the previous steps and
support the user question.

“Jeremy Bieber” is the father of “Justin Bieber” and “Erin Wagner” is the ex-wife of “Jeremy
Bieber”.

Task definition. In this work, we focus on the task of knowledge graph-based question answering
(KGQA), a common reasoning task involving KGs. It is defined as: given a user query q and a KG
G = {(e, r, e′) | e, e′ ∈ E , r ∈ R}, where E and R denote the set of entities and relations in KG,
the task aims to design a function f to predict answers a ∈ Aq conditioned on q and G. Following
existing KG-enhanced LLMs methods (Sun et al., 2023; Ma et al., 2024), the function f can be
generally expressed as finding valid reasoning path(s) P on KGs that connects the entities mentioned
in the query and the answer as: P (a|q,G) =

∑
P Pθ(a|q,P)Pϕ(P|q,G), where Pθ(a|q,P) denotes

the probability of generating answer a conditioned on q and reasoning path(s) P by a function
parameterized by θ, and Pϕ(P|q,G) denotes the probability of discovering reasoning path(s) P by a
function parameterized by ϕ. As reasoning path P is defined as a sequence of reasoning steps, we
factorize the reasoning path probability using the chain rule as Eq 1:

P (a|q,G) =
∑
P

Pθ(a|q,P)
n∏

k=1

Pϕ(tk|q, t<k,G) (1)

To acquire valid reasoning paths, most prior studies follow the retrieval-based (Li et al., 2023; Luo
et al., 2024a) or agent-based (Sun et al., 2023) paradigm. As indicated in Luo et al. (2024b), retrieval-
based methods rely on precise additional retrievers, while agent-based methods are computationally
intensive and lead to high latency. To address these issues, we propose our method, FiDeLiS, to
enable both efficient and faithful reasoning over KGs.

3 METHOD

Motivated by the insight that integrating KGs with LLMs can mitigate hallucinations and en-
able verifiable reasoning, we propose FiDeLiS to improve the factuality of LLM responses
by anchoring answers to verifiable reasoning steps retrieved from a KG. The overall frame-
work of FiDeLiS is illustrated in Figure 2, which consists of two main components: (1)
Reasoning Path Retrieval-Augmented Generation (Path-RAG, Algorithm 1) and
(1) Deductive-verification Beam Search (DVBS, Algorithm 2).

3



Published at Building Trust Workshop at ICLR 2025

Given a complex question q, we first use an LLM to extract key terms from q and generate dense
embeddings that capture the question’s core concepts. These embeddings are input into Path-RAG
module, which rapidly retrieves relevant entities and relations from a pre-embedded KG to select
a smaller candidate sets for further beam search step, addressing the latency and computational
burden of traditional agent-based methods. Path-RAG then constructs candidate reasoning steps by
combining immediate semantic similarity with the structural connectivity of the graph, overcoming
the dependence on highly precise retrievers in standard retrieval-based approaches. Next, the DVBS
module employs an LLM-generated planning outline to guide a beam search that builds reasoning
paths step-by-step. At each step, deductive verification checks that the accumulated reasoning steps
logically supports the user question, ensuring the final reasoning path is both verifiable and accurate.

3.1 PATH-RAG: REASONING PATH RETRIEVAL-AUGMENTED GENERATION

Previous agent-based methods (Ma et al., 2024; Sun et al., 2023) treat LLMs as agents that iteratively
interact with KGs to find reasoning paths and answer, which necessitate multiple rounds of interaction
between agents and KGs and lead to high computational costs and latency. We instead propose a
module, Path-RAG which iteratively pre-select a smaller candidate set to reduces the search space
for exploring the potential reasoning paths from KGs. It consists of three steps and we detail the
workflow as follows:

Initialization. We initiate the Path-RAG by encoding each entity ei ∈ E , and relation ri ∈ R in the
KG using a pre-trained language model (LM), which produces dense vectors z(ei) = LM(ei) ∈ Rd

and z(ri) = LM(ri) ∈ Rd, where d denotes the embedding dimension. These embeddings are stored
in a nearest neighbor structure to facilitate rapid similarity search.

Keyword-Driven Retrieval. We then populate a nearest neighbor index to retrieve relevant entities
and relations for the user query. We first use an LLM to analysis the user query and generate
exhaustive keywords/relation names that could be useful for finding the reasoning path to answer
the query (See the prompt in §D.1). This step is designed to maximize coverage of potential
reasoning steps, ensuring that no potential reasoning paths are overlooked during the retrieval
process. The extracted keywords are then encoded using the same LM in initialization, yielding
z(K) = LM(K) ∈ Rd. We subsequently compute the cosine similarity between z(K) and the pre-
stored embeddings, retrieving the top-m entities and relations: Em = argtopmi∈|E| cos (z(K), z(ei))

and Rm = argtopmi∈|R| cos (z(K), z(ri)).

Reasoning Step Candidates Construction. Next, we construct candidate reasoning steps defined
in §2 using the retrieved candidate entities Em and relations Rm. To guide the selection of potential
candidate, we propose a scoring function that combines semantic similarity with the KG’s structural
connectivity. First we define the base score function S0 that captures only the semantic alignment of
the candidate with the query as: S0((r, e)) = Srel(r)+Sent(e), where Sent(e) and Srel(r) represents
the cosine similarity between the entity/relation to the query respectfully. To account for the KG’s
structural connectivity, i.e., the potential for a candidate to lead to fruitful next steps, we incorporate
information from the next-hop candidates and define the overall scoring function as Eq 2:

S((r, e)) = S0((r, e)) + α max
∀(rj ,ej)∈N(e)

S0((rj , ej)) (2)

Where N(e) denotes the set of candidate relation-entity pairs reachable from entity e within one
hop in the KG. α is a hyper-parameter that balances the immediate semantic relevance (captured by
S0((r, e)) with the candidate’s potential for future connectivity (captured by the maximum next-hop
score). A higher α favors candidates with long-term benefits, even if they seem sub-optimal initially,
while a lower α emphasizes immediate rewards, potentially overlooking future impacts. We verify the
effectiveness of this new scoring function in Table 3 and append the tuning results of hyper-parameter
α in Figure 5.

3.2 DEDUCTIVE-VERIFICATION BEAM SEARCH

The objective of DVBS is two-fold: (1) to provide a step-wise beam search for exploring verifiable
reasoning paths from KG based on candidates constructed by Path-RAG (§3.1), and (2) to verify
each reasoning step based on deductive reasoning (Ling et al., 2023) to ensure each step logically

4



Published at Building Trust Workshop at ICLR 2025

follows the previous steps and supports the user query. Compared with existing methods like Sun et al.
(2023) and Ma et al. (2024), while we both consider treat LLMs as agents that iteratively interact with
KGs to find reasoning paths and answers, our method leverage deductive reasoning to ensure each
reasoning steps are logically connected and only halt the search if the question can be deduced based
on the reasoning paths. Based on our robustness analysis in §4.3, DVBS demonstrate higher ratio
of valid reasoning paths and can prevent issues of either premature stopping (Huang et al., 2017) or
excessive continuation of reasoning path extension. The DVBS consists of three steps and we detail
the workflow as follows:

Plan Generation. Inspired by the recent works regarding planning capabilities of LLMs (Zhang
et al., 2023; Kagaya et al., 2024), we prompt an LLM to generate the planning steps for answering the
user query, denoted as w. This step is designed to provide more hints for subsequent LLM decision
making process. Even this step is more like an engineering trick, we find that it may unlock some of
the capabilities of LLM to do “higher-order” thinking. By including more hints in the prompt, the
LLM tends to make more accurate and deterministic decisions during beam search, thus improving
the quality of the traversed reasoning paths. (See Table 2 for ablation analysis).

Beam Search. We then construct the multi-step reasoning paths by iteratively extending partial
paths using a beam search strategy. At each time step t, we use an LLM as agent to select one
reasoning step st from a candidates set St (§3.1) conditioned on (1) the likelihood of each candidate
si ∈ St, (2) the user query q, (3) the history of previous steps s1:t−1, and (4) planning context w
(§3.2), denoted as LM(st|q, s1:t−1, w,St). Instead of exploring every possibility, we retain only the
top-k scoring paths from the previous beam Ht−1 and extend them by appending candidate steps.
The overall process can be expressed as Eq 3:

Ht = Topk

{
h⊕ LM(st|q, s1:t−1, w,St) : h ∈ Ht−1

}
(3)

where ⊕ denotes the concatenation of the current path h with the selected candidate step st. The
beam search strategy enable efficiently navigate the vast space of potential reasoning paths while
concentrating on the most promising ones.

While beam search, by its nature, can incur high computational costs and latency due to multiple
rounds of LLM interactions. Our retrieval module Path-RAG mitigate this issue by constraining
candidate set St at each time step t to a narrow, high-quality subset rather than requiring the LLM to
consider all available options. This targeted retrieval not only reduces the number of candidates to
evaluate at each step but also increases the likelihood of selecting relevant reasoning steps, thereby
enabling efficient traversal of KGs at scale. Find more discussion regarding efficiency of FiDeLiS in
§4.4 and Appendix §B.

Deductive Verification. To ensure that each reasoning step logically follows from its predecessors
and adequately supports the original query, we leverage the deductive reasoning capabilities of LLMs
as a verification criterion (Ling et al., 2023) for the beam search process. We first convert the user
query q into a clear declarative statement q′, which encapsulates its logical intent and allows the LLM
to operate on a well-defined logical target (See the concrete example in §D.6). Next, during the beam
search, candidate reasoning step st are appended to the history s1:t−1 to form potential reasoning
paths. For each candidate, we then invoke two deductive verification checks, Cglobal and Clocal (the
prompts are given in §D.2). Only those candidates that pass local verification, indicating that the
new step maintains logical consistency with the established context, are retained in the beam search
process. Once the candidates pass both verification indicate that the user query q can be deduced
based on the retained reasoning paths s1:t and the beam search progress should be halted.

Global Verification: Cglobal(s
1:t−1, st) returns 1 if (st ∧ s1:t−1) |= q′, and 0 otherwise.

Local Verification: Clocal(s
1:t−1, st) returns 1 if st logically follows from s1:t−1, and 0

otherwise.

By integrating this verification into the beam search offers several benefits: it (1) enhances the
robustness and validity of the final answer by enforcing logical coherence at every step, (2) reduces

5



Published at Building Trust Workshop at ICLR 2025

computational overhead by pruning unpromising paths early, and (3) mitigates risks such as premature
termination or excessive extension of the reasoning process. We provide a concrete example of the
deductive verification process in §D.6 and the complete DVBS algorithm in Algorithm 2.

4 EXPERIMENTS

In this section, we focus on verifying FiDeLiS from four perspectives as follows: (1) comparison
results with other baselines over KGQA; (2) ablation study; (3) robustness analysis and (4) efficiency
analysis. We provide all the experiment settings in Appendix A due to page constraints. The
prompts for plan generation, beam search and deductive verification can be found in §D.

4.1 MAIN RESULTS

In Table 1, we compare the performance of different methods with various backbend LLMs across
three datasets. We found that LLM + KG approaches generally outperform LLM-only methods
(Zero-shot, Few-shot, and CoT) by a wide margin, indicating the significant benefit of incorporating
KGs into LLM reasoning. In the LLM + KG category, FiDeLiS stands out as the best-performing
method across all datasets, particularly when paired with GPT-4-turbo. For example, on WebQSP,
FiDeLiS achieves 84.39% Hits@1 and 78.32% F1, surpassing ToG (81.84% Hits@1, 75.97% F1) and
RoG (83.15% Hits@1, 69.81% F1). This improvement is consistent across other datasets, and even
compared with some finetuning methods like DeCAF and RoG, FiDeLiS as a training-free method
still demonstrate better performance. The consistent performance of FiDeLiS highlights its effective
use of both the KG and LLM, as well as its optimization of hyper-parameters like beam width and
depth. Overall, the results illustrate that FiDeLiS, leveraging advanced LLMs like GPT-4-turbo and
KG-based reasoning, sets a new standard for performance in KG-related tasks.

Backend Models Methods WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Prompting - LLM Only
gpt-3.5-turbo

Zero-shot 54.37 52.31 34.87 28.32 32.74
Few-shot 56.33 53.12 38.52 33.87 36.61
CoT 57.42 54.72 43.21 35.85 37.42

Prompting - LLM Only
gpt-4-turbo

IO 62.32 59.71 42.71 37.93 37.74
Few-shot 68.65 62.71 51.52 43.70 43.61
CoT 72.11 65.37 53.51 44.76 45.42

Finetuning - LLM + KG

NSM (He et al., 2021) 74.31 - 53.92 - -
CBR-KBQA (Das et al., 2021) - - 67.14 - -
DeCAF (Yu et al., 2023) 82.1 - 70.42 - -
KD-CoT (Wang et al., 2023) 73.7 50.2 50.5 - -
RoG (Luo et al., 2024a) 83.15 69.81 61.39 56.17 60.32

Prompting - LLM + KG
gpt-3.5-turbo

ToG (Sun et al., 2023) 75.13 72.32 57.59 56.96 62.48
KAPING (Baek et al., 2023) 72.42 65.12 53.42 50.32 -
FiDeLiS 79.32 76.78 63.12 61.78 67.34

Prompting - LLM + KG
gpt-4-turbo

ToG (Sun et al., 2023) 81.84 75.97 68.51 60.20 67.24
FiDeLiS 84.39 78.32 71.47 64.32 72.12

Table 1: Comparison of FiDeLiS with baseline methods and different backbone LLMs. We replicate the
outcomes of ToG and RoG, and retrieve other baseline results directly from the original paper. We utilize 5
demonstrations as our default setting for FiDeLiS, ToG, Few-shot, and CoT. The experiment results of open-
source models can be found in Table 11.

4.2 ABLATION STUDY

Table 2 demonstrates the ablation study of FiDeLiS using the gpt-3.5-turbo-0125 model,
highlighting the contributions of individual components (Path-RAG and DVBS) to overall perfor-
mance. We conduct the ablation of the Path-RAG by replacing it with either a vanilla retriever or
ToG (Sun et al., 2023) as retriever. We find that using ToG shows slight improvements over the vanilla
retriever but remains below using Path-RAG. Ablating DVBS components also leads to performance
declines, particularly when beam search is removed, causing Hits@1 on WebQSP to drop sharply
to 60.35%. The deductive verifier and last-step reasoning show moderate but noticeable impacts on
performance. The effects are less pronounced on CR-LT, suggesting it is more tolerant of simpler
methods. Overall, the results confirm the critical roles of Path-RAG and DVBS, especially beam
search, in ensuring robust and accurate reasoning across domains.

6



Published at Building Trust Workshop at ICLR 2025

Ablation Setting Components WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

No ablation FiDeLiS 79.32 63.12 67.34

w/o Path-RAG using vanilla retriever 72.35 57.11 59.78
using ToG 75.11 59.47 63.47

w/o DVBS

w/o last step reasoning 75.68 59.45 63.72
w/o planning 76.23 60.14 64.13
w/o beam-search 60.35 49.78 61.87
w/o deductive-verifier 74.13 57.23 63.89

Table 2: Ablation Studies of FiDeLiS using model gpt-3.5-turbo-0125. ∆ refers to the performance
gap between each component and the entire method.

Methods Backbones WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

Vanilla Retriever

w/ BM25 58.31 48.39 50.73
w/ SentenceBert 62.74 50.14 51.80
w/ E5 68.42 52.84 54.31
w/ Openai-Emb∗ 72.35 57.11 59.78

Path-RAG

w/ BM25 70.34 56.11 58.77
w/ SentenceBert 73.45 58.41 60.45
w/ E5 77.93 62.74 65.23
w/ Openai-Emb∗ 79.32 63.12 67.34

Table 3: Performance of FiDeLiS with various embedding methods. * refers to text-embedding-3-small
from OpenAI. We detail the tested embedding methods in §A.3.

4.3 ROBUSTNESS ANALYSIS

Robustness of Path-RAG. Table 3 presents the performance of FiDeLiS compared to a vanilla
retriever with different embedding methods. The results consistently show that FiDeLiS outperforms
the vanilla retriever irrespective of the underlying embedding strategy. For instance, with Openai-
Emb∗, the vanilla retriever achieves 72.35% on WebQSP, whereas Path-RAG reaches 79.32%,
indicating a notable improvement. Similar performance gains are observed with the other embeddings.
These improvements suggest that integrating graph connections can enhance retrieval effectiveness
by providing more informative and contextually relevant information, thereby bolstering the overall
robustness and accuracy of the method.

Effectiveness of Path-RAG. We verify the effectiveness of the retrieval module Path-RAG with
two baselines: (1) a vanilla retriever and (2) KAPING (Baek et al., 2023) method. The vanilla
retriever concatenates each entity with its relation to form a reasoning step and selects candidates
based on cosine similarity with the query embeddings. In contrast, KAPING (Baek et al., 2023)
converts each triple into text and retrieves the top-K similar triples based on semantic similarity.
We quantify the retrieval performance using the coverage ratio (CR), defined as the percentage
of the ground-truth reasoning steps being retrieved throughout the reasoning path extension (i.e.,
CR =

Nretrieved∩Nground−truth

Nground−truth
). Table 4 illustrate the experimental setup and corresponding results.

We find that compared with the baselines, our Path-RAG achieves a higher CR value and aligns
better with the ground-truth paths. It demonstrates superior ability to capture connections that simpler
retrieval models may overlook. This advantage is critical for guiding subsequent LLM processing
toward relevant information, ultimately yielding more accurate and coherent answers.

Method Depth = 1 Depth = 2 Depth > 3
Vanilla Retriever 59.34 52.17 47.31
KAPING (Baek et al., 2023) 65.72 60.41 53.11
Path-RAG w/ keywords 72.61 69.38 62.78
Path-RAG w/o keywords 68.78 (↓ 3.83) 65.27 (↓ 4.11) 57.13 (↓ 5.65)

Table 4: Analysis of the CR of reasoning paths over CWQ.

Path Error Analysis. To verify the faithfulness of our step-wise method, we conduct an error
analysis regarding the whole reasoning path generation using RoG (Luo et al., 2024a). We quantify
the validity of reasoning path using validity ratio (VR), which is defined as the ratio of reasoning

7



Published at Building Trust Workshop at ICLR 2025

Methods WebQSP (hits@1) CWQ (hits@1)
Deductive Verification 79.32 63.12
Adequacy Verification (used in ToG) 74.13 57.23
Logit-based Scoring 73.47 54.78

Table 5: Analysis of different verification methods.

Dataset Method Hits@1 Runtime Token #

WebQSP

FiDeLiS (ours) 79.32 43.83 2,452 10.7
w/o Path-RAG using vanilla retriever 72.35 48.37 2,873 10.7
w/o Path-RAG using ToG 75.11 74.26 6,437 10.7

FiDeLiS (ours) - GPT-4o 81.17 37.82 2,452 10.7
FiDeLiS (ours) - GPT-4o-mini 76.48 24.31 2,452 10.7

CWQ

FiDeLiS (ours) 63.12 74.59 2,741 15.2
w/o Path-RAG using vanilla retriever 57.11 78.41 3,093 15.2
w/o Path-RAG using ToG 59.47 132.59 5,372 15.2

FiDeLiS (ours) - GPT-4o 65.33 50.12 2,741 15.2
FiDeLiS (ours) - GPT-4o-mini 58.34 42.54 2,741 15.2

Table 7: Runtime efficiency of FiDeLiS per question.

steps that existed in the KG to the total number of the reasoning steps in the output reasoning path
(i.e., VR =

Nvalid−steps

Nall-steps
). As shown in Figure 3, only 67% of generated reasoning steps are valid,

while the remaining 33% of reasoning steps either have a format error or do not exist in the KG. This
illustrates that the reasoning steps generated offer few guarantees about feasibility especially when
multiple consecutive steps are combined into a reasoning path. While our method leverage step-wise
verification to ensure that each of the reasoning step exist in the KG and logically connected.

Figure 3: Analysis of reasoning errors in RoG (Luo et al., 2024a) over WebQSP.

Effectiveness of Deductive-Verification. To verify the effectiveness of deductive-verification
mentioned in §3.2, we calculate the average depths of the generated reasoning paths as shown
in Table 6. We find that by considering deductive verification, it consistently shows shorter and
closer reasoning depths to ground-truth across all datasets compared to baseline. This implies that
FiDeLiS may offer more precise termination signals and potentially more accurate reasoning paths.
We also compare deductive-verification methods with other baselines in Table 5, like logit-based
scoring that assign softmax probability scores to determine the endpoint of beam search process,
and adequacy verification used in ToG (Sun et al., 2023). Experiments show higher accuracy with
deductive verification compared to adequacy verification and logit-based scoring, demonstrating its
effectiveness in enhancing reasoning accuracy.

Method WebQSP CWQ CR-LT

GT 2.3 3.2 4.7

ToG 3.1 4.1 5.2

FiDeLiS 2.4 2.8 4.6

Table 6: Average depths of the re-
turned reasoning paths. GT refers
to ground-truth reasoning paths.

This finding is further supported by a case study regarding a com-
plex question of Iran’s government system, which blends elements
of religion and democracy as shown in Table 8. While baseline
methods such as GPT + CoT and RoG predominantly identified Iran
as an “Islamic Republic” and ToG produce mixed responses, our
approach—enhanced by deductive verification—delivers a reasoning
path that is both concise and context-aware. The proposed verifica-
tion mechanism not only streamlines the reasoning process but also
ensures comprehensive coverage of grounded answers, demonstrat-
ing FiDeLiS’s strength in handling intricate questions.

8



Published at Building Trust Workshop at ICLR 2025

Question What form of government is in the country that uses the Iranian Rail and was established in 1979?

Answer ’Parliamentary system’, ’Presidential system’, ’Islamic republic’, ’Unitary state’, ’Theocracy’

GPT + CoT

Think step by step. First, identify the country: the country that uses the Iranian Rail is Iran. Then, retrieve the historical Context of 1979: In 1979, Iran underwent a significant transformation with the
Iranian Revolution, which led to the overthrow of the Pahlavi monarchy. Third, following the revolution, the country adopted a new form of government based on Islamic law. The result was the
establishment of the Islamic Republic of Iran, which combines elements of a theocracy and a democracy, where religious leaders have significant influence over the state governance. So, the government
form is the Islamic Republic of Iran, established in 1979 following the Iranian Revolution.

RoG
location.country.form_of_government, location.location.containedby location.country.form_of_government’
location.location.containedby → government.form_of_government.countries
The results are Islamic republic.

ToG

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic → government.form_of_government.countries → Iran
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy → government.form_of_government.countries → Iran
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state → government.form_of_government.countries → Iran
Based on the reasoning paths, the result is Iran.

FiDeLiS

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state
Based on the reasoning paths, the results are Theocracy, Unitary state, Islamic republic.

Table 8: Case study of FiDeLiS. We highlight the wrong answers with red color, and correct answers with blue
color.

4.4 EFFICIENCY ANALYSIS

To investigate the runtime efficiency and cost efficiency of FiDeLiS, we present a comparison
regarding the average runtime, average token usage, average times of LLM calling per question
in Table 7. We find that (1) our method shows superior efficiency compared to the ToG (which
is also training-free), by reducing approximately 1.7x runtime costs. (2) Path-Rag component is
critical in enhancing both the accuracy and efficiency of the model. Its ability to constrain potential
path candidates effectively reduces unnecessary computational overhead, leading to quicker and
more accurate results. To address concern regarding our method’s potential application in real-time
scenarios, we also test our method using faster and more advanced LLMs. Table 7 shows that our
method could be further accelerated with newer, faster models like GPT-4o or GPT-4-mini. The
potential of the ongoing advancements in LLMs are expected to further enhance the scalability and
efficiency of FiDeLiS, making it a practical development in challenging environments. More detailed
analysis of bottleneck of computation of FiDeLiS can be further found in Appendix B.

5 RELATED WORK

LLM Reasoning & Role of KGs. Large language models (LLMs) demonstrate impressive capa-
bilities in reasoning tasks but often generate hallucinated or factually incorrect outputs, particularly
in complex, multi-step scenarios (Huang et al., 2025; Li et al., 2024). This unreliability reduces
their effectiveness in knowledge-intensive applications. Knowledge graphs (KGs) have emerged as a
solution by offering structured, verifiable data that supports transparent and multi-hop reasoning (Sui
et al., 2024). Unlike document-based retrieval-augmented generation approaches, KGs provide direct
access to relational facts, enhancing both interpretability and traceability (Chen et al., 2024).

KG-enhanced LLM Reasoning. KG-enhanced reasoning methods are generally categorized into
retrieval-based and agent-based models. Retrieval-based approaches, such as DeCAF (Yu et al., 2023),
rely on text-based retrieval to select relevant information from KGs and jointly generate answers and
logical forms, but their performance can degrade without precise retrieval mechanisms. In contrast,
agent-based models, like ToG (Sun et al., 2023), iteratively explore reasoning paths but suffer from
high computational overhead. To address these limitations, recent methods like RoG (Luo et al.,
2024a) and GCR (Luo et al., 2024b) have sought to integrate KG structure into LLM training or
decoding to improve reasoning fidelity and explanation generation. To improve the faithfulness of the
LLM reasoning, KD-CoT (Wang et al., 2023) verifies sub-reasoning steps through external KGs to
prevent errors during inference, while NSM (He et al., 2021) employs a teacher-student architecture
to learn intermediate supervision signals that guide reasoning.

6 CONCLUSION

This paper proposes a retrieval-exploration interactive method specifically designed to enhance
intermediate steps of LLM reasoning grounded by KGs. The Path-RAG module and the use of
deductive reasoning as a calibration tool effectively guide the reasoning process, leading to more
accurate knowledge retrieval and prevention of misleading reasoning chains. Extensive experiments

9



Published at Building Trust Workshop at ICLR 2025

demonstrate that our method, being training-free, not only reduces computational costs but also offers
superior generality. We believe this study will significantly benefit the integration of LLMs and KGs,
or serve as an auxiliary tool to enhance the interpretability and factual reliability of LLM outputs.

REFERENCES

Garima Agrawal, Tharindu Kumarage, Zeyad Alghamdi, and Huan Liu. Can Knowledge Graphs
Reduce Hallucinations in LLMs? : A Survey, 2024. URL http://arxiv.org/abs/2311.
07914.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-Augmented Language Model Prompt-
ing for Zero-Shot Knowledge Graph Question Answering, 2023.

Jordi Bayarri-Planas, Ashwin Kumar Gururajan, and Dario Garcia-Gasulla. Boosting Healthcare
LLMs Through Retrieved Context, 2024.

Yuxuan Chen, Daniel Röder, Justus-Jonas Erker, Leonhard Hennig, Philippe Thomas, Sebastian
Möller, and Roland Roller. Retrieval-Augmented Knowledge Integration into Language Models:
A Survey. In Sha Li, Manling Li, Michael JQ Zhang, Eunsol Choi, Mor Geva, Peter Hase, and
Heng Ji (eds.), Proceedings of the 1st Workshop on Towards Knowledgeable Language Models
(KnowLLM 2024), pp. 45–63, Bangkok, Thailand, 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.knowllm-1.5.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases. CoRR, abs/2104.08762, 2021. URL https://arxiv.org/
abs/2104.08762.

Willis Guo, Armin Toroghi, and Scott Sanner. CR-LT-KGQA: A Knowledge Graph Question
Answering Dataset Requiring Commonsense Reasoning and Long-Tail Knowledge, 2024.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and Ji-Rong Wen. Improving Multi-hop Knowl-
edge Base Question Answering by Learning Intermediate Supervision Signals. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining, pp. 553–561, 2021. doi:
10.1145/3437963.3441753.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A Survey on Hallucination in Large
Language Models: Principles, Taxonomy, Challenges, and Open Questions. ACM Transactions on
Information Systems, 43:1–55, 2025. doi: 10.1145/3703155.

Liang Huang, Kai Zhao, and Mingbo Ma. When to Finish? Optimal Beam Search for Neural Text
Generation (modulo beam size). In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 2134–2139, Copenhagen, Denmark, 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1227.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from
Medical Exams, 2020.

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou, Jayashree Karlekar, Sugiri Pranata, Akira Kinose,
Koki Oguri, Felix Wick, and Yang You. RAP: Retrieval-Augmented Planning with Contextual
Memory for Multimodal LLM Agents, 2024. URL http://arxiv.org/abs/2402.03610.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos, Lorie De Leon, Camille
Elepaño, Maria Madriaga, Rimel Aggabao, Giezel Diaz-Candido, James Maningo, et al. Perfor-
mance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language
models. PLoS digital health, 2:e0000198, 2023.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
The Dawn After the Dark: An Empirical Study on Factuality Hallucination in Large Language
Models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd

10

http://arxiv.org/abs/2311.07914
http://arxiv.org/abs/2311.07914
https://arxiv.org/abs/2104.08762
https://arxiv.org/abs/2104.08762
http://arxiv.org/abs/2402.03610


Published at Building Trust Workshop at ICLR 2025

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 10879–10899, Bangkok, Thailand, 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.586.

Shiyang Li, Yifan Gao, Haoming Jiang, Qingyu Yin, Zheng Li, Xifeng Yan, Chao Zhang, and Bing
Yin. Graph reasoning for question answering with triplet retrieval. In Findings of the Association
for Computational Linguistics: ACL 2023, 2023.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su.
Deductive Verification of Chain-of-Thought Reasoning, 2023.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, Chen Chen, Fan Yang, Yuqing Yang, and Lili Qiu.
RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval, 2024.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on Graphs: Faithful and
Interpretable Large Language Model Reasoning, 2024a.

Linhao Luo, Zicheng Zhao, Chen Gong, Gholamreza Haffari, and Shirui Pan. Graph-constrained
Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models, 2024b.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-
guided Retrieval Augmented Generation, 2024.

Shirui Pan, Yizhen Zheng, and Yixin Liu. Integrating Graphs with Large Language Models: Methods
and Prospects, 2023.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, and Zhicheng Dou. MemoRAG: Moving
towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery, 2024.

Yuan Sui, Yufei He, Zifeng Ding, and Bryan Hooi. Can Knowledge Graphs Make Large Language
Models More Trustworthy? An Empirical Study over Open-ended Question Answering, 2024.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-Graph: Deep and Responsible Reasoning of Large
Language Model on Knowledge Graph. In The Twelfth International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=nnVO1PvbTv.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 641–651,
2018.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li, Yunsen Xian, Chuantao Yin, Wenge Rong, and
Zhang Xiong. Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for Knowledge-
intensive Question Answering, 2023.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is Inevitable: An Innate Limitation of
Large Language Models, 2024.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh. The value of
semantic parse labeling for knowledge base question answering. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 201–206,
Berlin, Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-2033.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Wang, Zhiguo Wang, and Bing Xiang. DecAF: Joint Decoding of Answers and Logical
Forms for Question Answering over Knowledge Bases, 2023.

Junchi Yu, Ran He, and Rex Ying. Thought Propagation: An Analogical Approach to Complex
Reasoning with Large Language Models, 2024.

11

https://openreview.net/forum?id=nnVO1PvbTv


Published at Building Trust Workshop at ICLR 2025

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao
Wang, Xiaotong Li, Zhuoyi Xiang, Kehua Feng, Xiang Zhuang, Zeyuan Wang, Ming Qin, Mengyao
Zhang, Jinlu Zhang, Jiyu Cui, Tao Huang, Pengju Yan, Renjun Xu, Hongyang Chen, Xiaolin Li,
Xiaohui Fan, Huabin Xing, and Huajun Chen. Scientific Large Language Models: A Survey on
Biological & Chemical Domains, 2024.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.
Planning with Large Language Models for Code Generation, 2023.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy Liang, Christopher D.
Manning, and Jure Leskovec. GreaseLM: Graph REASoning Enhanced Language Models for
Question Answering, 2022.

12



Published at Building Trust Workshop at ICLR 2025

A EXPERIMENT DETAILS

A.1 BASELINES

We consider the following methods including training-free (highlighted with *) and training-based
methods as baselines:

• NSM He et al. (2021) propose a teacher-student approach for KGQA task, where the student
network aims to find the correct answer to the query, while the teacher network tries to learn
intermediate supervision signals for improving the reasoning capacity of the student network.

• KD-CoT Wang et al. (2023) propose to verify the sub-reasoning process of LLMs through the
external KGs to facilitate faithful reasoning.

• DeCAF Yu et al. (2023) use a text-based retrieval instead of entity linking to select question-related
information from the KG, and generate logical forms and direct answers respectively. They combine
the logical-form-executed answers and directly-generated answers to obtain the final output.

• KAPING∗ Baek et al. (2023) proposes a zero-shot knowledge-augmented prompting method. It
first retrieves triples related to the question from the graph, then prepends them to the input question
in the form of a prompt, which is then forwarded to LLMs to generate the answer.

• ToG∗ Sun et al. (2023): conduct the reasoning on KGs by iteratively exploring multiple potential
reasoning paths and concludes the final answer by aggregating the evidence from retrieved reasoning
paths.

• RoG Luo et al. (2024a): incorporate the underling structure of KGs into LLMs throught pre-training
and fine-tuning to generate the reasoning path and explanation.

• GCR Luo et al. (2024b) propose to integrate KG structure into the LLM decoding process to
conduct graph-constrained reasoning.

A.2 DATASETS & METRICS

We consider three KGQA benchmark: WebQuestionSP (WebQSP) Yih et al. (2016), Complex
WebQuestions (CWQ) Talmor & Berant (2018) and CR-LT-KGQA Guo et al. (2024) in this work. We
follow previous work Luo et al. (2024a) to use the same training and testing splits for fair comparison
over WebQSP and CWQ. The questions from both WebQSP and CWQ can be reasoned using
Freebase KGs1. To address the bias in WebQSP and CWQ, which predominantly feature popular
entities and there is a likelihood that their data might have been incorporated into the pre-training
corpora of LLMs, we further test our method on CR-LT-KGQA (discussed in §A.2). We use the
complete dataset from CR-LT-KGQA in our experiments, as it comprises only 200 samples. Each
of the question can be reasoned based on the Wikidata2. The statistics of the datasets are given
in Table 10 and Table 9. To streamline the KGs, we follow RoG Luo et al. (2024a) and utilize a
subgraph of Freebase by extracting all triples that fall within the maximum reasoning hops from the
question entities in WebQSP and CWQ. Similarly, we construct the corresponding sub-graphs of
Wikidata for CR-LT-KGQA. We assess the performance of the methods by analyzing the F1 and
Hits@1 metrics for CWQ and WebQSP, and by evaluating the accuracy for CR-LT-KGQA. The
statistics of the datasets can be found in Table 9 and Table 10.

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49 % 34.51% 0.00%
CWQ 40.91 % 38.34% 20.75%
CR-LT 5.31 % 43.22% 51.57%

Table 9: Statistics of the question hops in WebQSP, CWQ and CR-LT-KGQA.

Motivation of CR-LT-KGQA. The motivation for evaluating over CR-LT-KGQA is that the
majority of existing KGQA datasets, including WebQSP and CWQ, predominantly feature popular
entities. These entities are well-represented in the training corpora of LLMs, allowing to often

1https://github.com/microsoft/FastRDFStore
2https://www.wikidata.org/wiki/Wikidata:Main_Page

13

https://github.com/microsoft/FastRDFStore
https://www.wikidata.org/wiki/Wikidata:Main_Page


Published at Building Trust Workshop at ICLR 2025

Dataset #Ans = 1 2 ≥ #Ans ≤ 4 5 ≥ #Ans ≤ 9 #Ans ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 10: Statistics of the number of answers for questions in WebQSP and CWQ.

generate correct answers based on their internal knowledge, potentially without external KGs.
Moreover, since WebQSP and CWQ have been available for several years, there is a likelihood
that their data might have been incorporated into the pre-training corpora of LLMs, further reducing
the need for external KGs during question-answering. To this end, we utilize the CR-LT-KGQA
benchmark, which features queries specifically crafted to target obscure and long-tail entities. Figure 4
illustrates the distribution of entity frequency and popularity in CR-LT, underscoring the inherent
challenges of these queries. In such scenarios, knowledge graphs are indispensable as they offer a
reliable, verifiable source of information, particularly for entities that are poorly represented in the
training data of large language models. By testing our methods on CR-LT-KGQA, we investigate the
extent to which integrating KGs can bolster LLM performance in less common knowledge domains,
where their effectiveness typically declines. This evaluation not only demonstrates the potential
synergy between LLMs and KGs but also clarifies the critical role that KGs continue to play in
supporting LLMs across diverse query scenarios.

0 50 100 150 200 250 300
Entity Popularity

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Original
CR-LT

Figure 4: Distribution of CR-LT-KGQA dataset.

A.3 BACKBONE LLMS & EMBEDDING METHODS

Backbone LLMs. We assess our approach on closed- and open-source LLMs. We consider closed-
source models like GPT-4-turbo (between Feb, 2024 to July, 2024), GPT-3.5-turbo (between Feb,
2024 to July, 2024), GPT-4o, GPT-4o-mini (between Nov, 2024 to Jan 2025) from OpenAI, and open-
sourced models like meta-llama-2-13B from Meta and mixtral-7B from Mixtral AI. The experiment
results of open-source models can be found in Table 11. We set all the inference configs using
temperature T = 0.3 and p = 1.0.

Embedding Methods. We assess the robustness of the retrieval module Path-RAG on different
embedding models. We consider probabilistic ranking function like BM253, dense retrieval using
smaller language models like SentenceBERT4 and E55, and more advanced embedding model like
text-embedding-3-small from OpenAI6.

3https://en.wikipedia.org/wiki/Okapi_BM25
4https://sbert.net
5https://huggingface.co/intfloat/e5-large
6https://platform.openai.com/docs/guides/embeddings

14

https://en.wikipedia.org/wiki/Okapi_BM25
https://sbert.net
https://huggingface.co/intfloat/e5-large
https://platform.openai.com/docs/guides/embeddings


Published at Building Trust Workshop at ICLR 2025

Backend Models WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Llama-2-13B 72.34 69.78 58.41 54.78 60.87
Mistral-7B 74.11 70.23 60.71 56.87 63.12

Table 11: Performance over Open-sourced LLMs.

A.4 IMPLEMENTATION DETAILS

We set the default beam width as 4 and depth as 4 without specific annotation. We set the α in Eq 2
as 0.3 to ensure reproducibility. For hyper-parameter tuning regarding α for Eq 2 and beam search
width and length, we conduct experiments as shown in Figure 5 and Figure 6.

Figure 5: Parameter tuning for α for scoring function over WebQSP

Analysis of Beam Search. We investigate the effect of hyper-parameters like beam width and depth
in beam search, as illustrated in Figure 6. By varying the width and depth from 1 to 4, we observe that
overall performance improves as both parameters increase, peaking when the search depth exceeds 3
for the WebQSP and CWQ datasets. However, beyond a depth of 3, performance begins to decline,
likely because only a small fraction of questions in these datasets require reasoning at greater depths.
In contrast, increasing the beam width consistently enhances performance, highlighting the benefits
of broader exploration in search.

(a) RD over CWQ (b) RD over WebQSP (c) BW over CWQ (d) BW over WebQSP

Figure 6: Analysis of various beam search width (BW) and reasoning depth (RD).

A.5 ROBUSTNESS ANALYSIS ACROSS DIFFERENT DOMAINS AND KGS

KGs vary in structure and domain-specific characteristics, so consistent performance across both
general and specialized KGs can reflect a method’s adaptability to diverse real-world applications. To
this end, we conduct robustness analysis of FiDeLiS across different domains and KGs to verify the
generalizability. To perform this analysis, we introduced a new dataset, MedQA-USMIE, sourced
from MedQA Jin et al. (2020), which is designed to require domain-specific biomedical and clinical
knowledge. The dataset is a 4-way multiple-choice question-answering task, and we extracted 300
examples from its test set for evaluation. The corresponding biomedical KG is based on Disease
Database and DrugBank Zhang et al. (2022). The results, presented in Table 2, indicate that our
method exhibits consistent robustness across different types of KGs. Our scoring function, enhanced
by incorporating next-hop neighbor information Si

r + Si
e + αmax∀j∈Ni

(Sj
r + Sj

e), achieves higher
performance gains in both WebQSP and MedQA-USMIE, particularly improving accuracy in the
specialized biomedical domain. These findings validate that our method can effectively handle

15



Published at Building Trust Workshop at ICLR 2025

Method WebQSP MedQA-USMIE
ToG 81.84 42.37

Path-RAG w/ Si
r + Si

e 83.15 44.31
Path-RAG w/ Si

r + Si
e + αmax∀j∈Ni

(Sj
r + Sj

e) 84.39 46.45

Table 12: Robustness analysis of our method across different domains

the challenges posed by both general and domain-specific knowledge graphs, indicating strong
adaptability and robustness.

B BOTTLENECK OF BEAM SEARCH EFFICIENCY

The bottleneck of computation is the beam search process, which contributes to N ∗D times LLM
calling, where D is the depth (or equivalently length) of the reasoning path, and N is the width of the
beam-search (how many paths are remained in the pool in each iteration). Specifically, we need to
call ND+D+C times LLM for each sample question, where C is a constant (equals to 1 if there is
no error occurs when calling the API). Sun et al. (2023) indicate that the computational efficiency
can be alleviated by replacing LLMs with small models such as BM25 and Sentence-BERT for the
beam search decision since the small models are much faster than LLM calling. In this way, we can
reduce the number of LLM calling from ND +D + C to D + C. However, this may sacrifices the
accuracy due to the weaker scoring model in decision making Sun et al. (2023).

We noted that ND +D + C is the maximal computational complexity. In most cases, FiDeLiS does
not need ND + D + C LLM calls for a question because the whole reasoning process might be
early stopped before the maximum reasoning depth D is reached if LLM determines the query can be
deductive reasoning by the current retrieved reasoning paths. As an illustration, Table 7 shows the
average numbers of LLM calls per question needed by FiDeLiS on different datasets. It can be seen
that in three KGQA datasets, the average numbers of LLM calls (ranging from ) are smaller than 21,
which is the theoretical maximum number of LLM calls calculated from ND +D +C when N = 4
and D = 4. We can also see that this average number gets even smaller for dataset covering a lot of
single-hop reasoning questions, such as WebQSP.

C LIMITATIONS

Our work demonstrates a promising advancement by integrating KGs with LLMs to reduce halluci-
nations and promote deep, faithful reasoning through deductive verification. However, the method
exhibits certain limitations. Its reliance on external KGs means that the overall effectiveness is
contingent on the quality and comprehensiveness of these resources, and challenges may arise when
encountering incomplete, inconsistent or outdated information. Despite these limitations, the open-
KGs like Wikidata and DBpedia used in our study are of high quality, benefiting from years of
updates by an extensive community. For domain-specific KGs, although there may currently be gaps
in quality, we are optimistic about future enhancements. Given the significant societal impact and the
noticeable boosts in LLM performance facilitated by KGs, it is likely that community efforts will
continue to refine and expand these resources.

16



Published at Building Trust Workshop at ICLR 2025

D PROMPT LIST

In this section, we show all the prompts that need to be used in the main experiments. The
In-Context Few-shot refers to the few-shot examples we used for in-context learning.

D.1 PLAN-AND-SOLVE

You are a helpful assistant designed to output JSON that aids in navigating a knowledge graph to
answer a provided question. The response should include the following keys:

(1) ’keywords’: an exhaustive list of keywords or relation names that you would use to find the
reasoning path from the knowledge graph to answer the question. Aim for maximum coverage to
ensure no potential reasoning paths will be overlooked;

(2) ’planning_steps’: a list of detailed steps required to trace the reasoning path with. Each step
should be a string instead of a dict.

(3) ’declarative_statement’: a string of declarative statement that can be transformed from the given
query, For example, convert the question ’What do Jamaican people speak?’ into the statement
’Jamaican people speak *placeholder*.’ leave the *placeholder* unchanged; Ensure the JSON object
clearly separates these components.

In-Context Few-shot

Q: {Query}

A:

D.2 DEDUCTIVE-VERIFICATION

You are asked to verify whether the reasoning step follows deductively from the question and the
current reasoning path in a deductive manner. If yes return yes, if no, return no".

In-Context Few-shot

Whether the conclusion ’{declarative_statement}’ can be deduced from ’{parsed_reasoning_path}’,
if yes, return yes, if no, return no.

A:

D.3 ADEQUACY-VERIFICATION

You are asked to verify whether it’s sufficient for you to answer the question with the following
reasoning path. For each reasoning path, respond with ’Yes’ if it is sufficient, and ’No’ if it is not.
Your response should be either ’Yes’ or ’No’.

In-Context Few-shot

Whether the reasoning path ’{reasoning_path}’ be sufficient to answer the query ‘{Query}’, if yes,
return yes, if no, return no.

A:

D.4 BEAM SEARCH

Given a question and the starting entity from a knowledge graph, you are asked to retrieve reasoning
paths from the given reasoning paths that are useful for answering the question.

In-Context Few-shot

Considering the planning context {plan_context} and the given question {Query}, you are asked
to choose the best {beam_width} reasoning paths from the following candidates with the highest
probability to lead to a useful reasoning path for answering the question. {reasoning_paths}. Only
return the index of the {beam_width} selected reasoning paths in a list.

17



Published at Building Trust Workshop at ICLR 2025

A:

D.5 REASONING

Given a question and the associated retrieved reasoning path from a knowledge graph, you are asked
to answer the following question based on the reasoning path and your knowledge. Only return the
answer to the question.

In-Context Few-shot

Question: {Query}

Reasoning path: {reasoning_path}

Only return the answer to the question.

A:

D.6 DEMONSTRATION OF DEDUCTIVE VERIFICATION

Deductive Verification Example

Question: Who is the ex-wife of Justin Bieber’s father?

After one round of beam searching, the current reasoning path is:
Justin_bieber → people.person.father → Jeremy_bieber.

The next step candidates are:
1. people.married_to.person → Erin Wagner
2. people.person.place_of_birth → US, . . .

The deductive reasoning can be formulated as follows:

Premises:

- Justin_bieber → people.person.father → Jeremy_bieber
(from the current reasoning path)
- Jeremy_bieber → people.married_to.person → Erin Wagner
(from the next step candidates)

Conclusion:

Erin Wagner is the ex-wife of Justin Bieber’s father.
(Using a large language model (LLM) zero-shot approach to reformat the question into a
cloze filling task, we use the last entity from the next step candidates, "Erin Wagner", to fill
the cloze.)

The prompt will ask whether the conclusion can be deduced from the given premises. If the
answer is "yes", return “yes”, otherwise return “no.”

18



Published at Building Trust Workshop at ICLR 2025

Algorithm 1 Path-RAG Initialization and Retrieval Process
1: Initialization:
2: for all ei ∈ E , ri ∈ R do
3: zie = LM(ei) ▷ Embed entities
4: zir = LM(ri) ▷ Embed relations
5: end for
6: Populate nearest neighbor index with {zie} and {zir} ▷ Facilitate retrieval
7: procedure RETRIEVE(query q)
8: Ki = LM(‘prompt’, q) ▷ Generate keywords
9: for all km

i ∈ Ki do
10: ki ← concatenate(km

i )
11: zk = LM(ki) ▷ Embed concatenated keywords
12: Ek = argtopki∈E cos(zk, z

i
e) ▷ Retrieve top-k entities

13: Rk = argtopki∈R cos(zk, z
i
r) ▷ Retrieve top-k relations

14: end for
15: return Ek,Rk

16: end procedure
17: procedure SCOREPATH(Ek,Rk)
18: Initialize Score← 0
19: for each ek ∈ Ek and rk ∈ Rk do
20: Calculate Si

e, S
i
r ← cos(zk, z

i
e), cos(zk, z

i
r) ▷ Compute similarity scores

21: S(p) = Si
r + Si

e + αmax∀j∈Ni(S
j
r + Sj

e) ▷ Score path using Eq. 2
22: Score← max(Score, S(p)) ▷ Update max score
23: end for
24: return Score, p
25: end procedure

Algorithm 2 Deductive-Verification Guided Beam Search
Require: User query x, Beam width B
Ensure: Reasoning path s1:T

1: InitializeH0 = {∅}
2: Utilize LLM to generate from x:
3: Planning steps.
4: Declarative statement x′.
5: for t = 1 to T do
6: for each h ∈ Ht−1 do
7: Generate possible next steps st ∈ S using Path-RAG.
8: for each st do
9: Compute C(x′, st, s1:t−1) using LLM:

10: C(x′, st, s1:t−1) =

{
1 if x′ can be deduced from st and s1:t−1,

0 otherwise.

11: if C(x′, st, s1:t−1) = 1 then
12: Append st to h to form new hypothesis h′.
13: Add h′ toHt.
14: end if
15: end for
16: end for
17: Ht = TopB(Ht) based on scoring function (like plausibility or likelihood).
18: end for
19: return the best hypothesis fromHT .

19


	Introduction
	Preliminary
	Method
	Path-RAG: Reasoning Path Retrieval-Augmented Generation
	Deductive-Verification Beam Search

	Experiments
	Main Results
	Ablation Study
	Robustness Analysis
	Efficiency Analysis

	Related Work
	Conclusion
	Experiment Details
	Baselines
	Datasets & Metrics
	Backbone LLMs & Embedding Methods
	Implementation Details
	Robustness Analysis Across Different Domains and KGs

	Bottleneck of Beam Search Efficiency
	Limitations
	Prompt List
	Plan-and-solve
	Deductive-verification
	Adequacy-verification
	Beam Search
	Reasoning
	Demonstration of Deductive Verification


