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Abstract

Recent NeRF and Gaussian Splatting methods have shown
remarkable reconstruction and novel view synthesis (NVS)
capabilities, but require a substantial number of images of
the scene from diverse viewpoints to render high-quality
novel views. With fewer images, they struggle with correctly
triangulating the underlying 3D geometry and converging
to a sub-optimal solution (e.g., with floaters or blurry ren-
derings). In this paper, we propose Re-Nerfing, a general
approach that leverages NVS itself to tackle this conver-
gence problem. Using an already optimized scene represen-
tation model, we generate novel views derived from existing
perspectives and use these to augment the training data of a
second model. We add the augmented views to improve the
scene coverage and mask out their uncertain areas to en-
hance the quality of the training signal. This introduces ad-
ditional multi-view constraints and allows the second model
to converge to a better solution. With Re-Nerfing, we in-
troduce an iterative paradigm that achieves significant im-
provements upon multiple pipelines based on NeRF and 3D
Gaussian Splatting in sparse and highly-sparse view set-
tings of the mip-NeRF 360, Tanks and Temples, and LLFF
datasets. Notably, Re-Nerfing does not require prior knowl-
edge or extra supervision signals, making it a flexible and
practical enhancement to any learnable NVS pipeline.

1. Introduction
Novel view synthesis (NVS) methods based on Neural
Radiance Field (NeRF) [39] and 3D Gaussian Splatting
(3DGS) [29] have recently revolutionized 3D scene repre-
sentation and rendering, enabling unprecedented quality in
synthesizing novel views from a set of images. These tech-
niques have been applied across various tasks, simplifying
content creation, rendering, and reconstruction workflows.

Despite its remarkable success, NeRF [39] has several
limitations, such as slow training [40], failures when noisy
or no camera poses are available [5, 35], and computation-
ally intense rendering mostly incompatible with mobile ap-
plications [13]. Many works have been proposed to ad-
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Figure 1. Examples of synthesized views by 3DGS [29], Instant-
NGP [40], RegNeRF [42], with and without our proposed Re-
Nerfing. Ours improves NVS by enhancing the optimization and
reaching better global solutions, thanks to novel views synthesized
by the baseline model added to the training data. Crops from the
mip-NeRF 360 [3] dataset for 3DGS and Instant-NGP trained on
30 views and from LLFF [38] for RegNeRF trained on 3 views
demonstrate the effectiveness of ours. White arrows indicate sig-
nificant rendering errors.

dress these issues, such as 3DGS [29], changing from an
implicit to an explicit representation, thus shortening train-
ing times and simplifying inference. However, collecting
enough high-quality images with sufficient overlap to en-
sure successful model convergence remains a challenging
task. Towards this end, researchers have explored the appli-
cation of NVS in sparse view settings with only a handful
of images available [42, 61, 69].

Complex geometries and large-scale environments often
lead to artifacts due to the inability to correctly triangulate
the scenes’ 3D structure [2, 16, 51]. This is particularly
severe in sparse-view settings, where the limited views lead
to hallucinations, e.g., floaters in free space due to the ambi-
guity of shape and radiance [16, 36, 61]. To mitigate these
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issues, depth and structural priors have been introduced to
the optimization, leveraging additional geometric informa-
tion [16, 51, 61]. However, reliable dense depth estimates
are also hard to obtain, and using wrongly estimated depth
can further decrease performance [16].

In this work, we mitigate these open issues with a simple
and effective add-on solution exploiting the inherent view
synthesis capability of NVS methods. We achieve this with
Re-Nerfing, a multi-stage, general pipeline that introduces
structural constraints from synthesized views generated by
a previously trained model on the same scene. As shown
in Figure 1, thanks to its ability to improve the view cov-
erage while preserving quality by discarding uncertain re-
gions, Re-Nerfing significantly improves the synthesis of
new views. The main contributions of this paper can be
summarized as follows:
• We show how NeRF’s and 3DGS’ novel view synthesis is

beneficial to enhance their own rendering quality.
• We propose Re-Nerfing, a simple and effective iterative

augmentation technique to enhance any NVS outputs by
optimizing a new NVS model with the addition of syn-
thesized views. We synthesize such views to improve the
scene coverage and mask them to discard uncertain areas.

• We analyze the origin of Re-Nerfing’s improvements with
respect to the optimization process of NVS pipelines
and show the wide applicability and effectiveness of Re-
Nerfing upon various NVS methods [29, 40, 42, 62] and
datasets [3, 30, 38].

2. Related Work
Traditional interpolation techniques based on light field
sampling can synthesize photorealistic novel views from
dense image sets [33]. In sparser settings, neural networks
exploit visual appearance correlation across views [20, 67],
while 3DGS [29] optimizes scenes as 3D Gaussians with
spherical harmonics.

Neural implicit representations encode 3D shapes in
network weights rather than explicit representations like
point clouds or meshes [48, 68]. Pioneering works include
Occupancy Networks [37] and DeepSDF [44], which en-
code complex shapes in continuous function spaces without
space discretization, enabling finer details [56].

NeRF NeRF [39] combines neural implicit represen-
tations with differentiable rendering, encoding volumetric
properties and view-dependent appearance for high-quality
novel views. Subsequent works address various limita-
tions: faster training [9, 21, 23, 40, 57], imperfect cam-
era poses [5, 35, 61], unbounded scenes [3], and dynamic
scenes [8, 22, 45, 46]. Additional extensions include con-
sistent geometry [51], output modification [28], scene un-
derstanding [31], city-scale rendering [58], and camera op-
timization [47]. PyNeRF [62] combines mip-NeRF [2] and
grid-based models for fast anti-aliased rendering.

Sparse-View Settings Highly sparse settings are chal-
lenging as standard multi-view constraints are insuffi-
cient [14, 61]. Researchers use additional data and exter-
nal models for geometric supervision [51, 61] or seman-
tic knowledge [49, 65]. PixelNeRF [65] learns priors from
multiple scenes, while Gaussian Splatting extensions han-
dle sparse views [18, 34, 43, 69]. ReconFusion [64] uses
diffusion models for additional view constraints. However,
these methods require external models and large training
datasets, eliminating NeRF and 3DGS’s advantage of need-
ing only scene-specific data.

Geometric Constraints Geometric consistency is cru-
cial for NVS quality [51]. DS-NeRF [16] uses sparse
COLMAP depth [53] for supervision, while [51] employs
depth completion networks with uncertainty estimation. Ur-
ban Radiance Fields [50] utilizes LiDAR data for outdoor
scenes. FSGS [69] and related methods [34, 43] rely on
monocular depth prediction. SPARF [61] exploits multi-
view geometry and pixel correspondences, minimizing re-
projection error with jointly optimized depth and poses.

Data Augmentation for NVS Data augmentation in-
creases training data with sample variations to regularize
models [25, 32, 41]. For NVS, PANeRF [1], GeoAug [10],
and VM-NeRF [6] generate views by warping existing ones
via homography [1] or depth estimates [6, 10]. Aug-
NeRF [12] trains robust NeRFs with worst-case perturba-
tions of input coordinates, features, and outputs.

Distillation and Semi-Supervised Learning Knowl-
edge distillation transfers knowledge from complex teacher
models to efficient student models [27], extending to semi-
supervised learning in segmentation [11] and depth esti-
mation [24]. Naive-student [11] predicts pseudo-labels
for unlabeled data. NeRF-based approaches include train-
ing stereo depth models [60] and monocular depth estima-
tors [19] using NeRF-synthesized data.

We enhance NVS in sparse settings by exploiting the
method’s inherent synthesis capabilities through data aug-
mentation using only available views without external data
or models. We train a baseline NVS method on available
data, then use it to generate novel views for training a sub-
sequent model. We sample views to improve scene cover-
age while preserving quality by masking uncertain regions.
Unlike [19, 60] who train depth estimators with NeRF data,
we train NVS models with NVS data, and unlike other aug-
mentation methods [1, 6, 10], our views are fully synthe-
sized from NVS models.

3. Preliminaries

In the following, we provide an overview of the com-
mon optimization strategies of NeRF- and 3DGS-based ap-
proaches for NVS.
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Figure 2. Re-Nerfing is an iterative framework. Compatible with any learned NVS pipeline, it first optimizes a model with the available
views (green, 1st). This model then generates novel views from poses selected to improve the scene coverage (orange). Then, it computes
the model’s uncertainty on such novel views (blue) to keep only the more certain regions (orange-blue). Finally, masked and original views
are used to optimize a second NVS model (orange, 2nd). This process can be repeated iteratively by generating novel views with the second
model (3rd stage and following stages).

3.1. Optimization of NeRF and 3DGS
To better understand the shortcomings of NeRF [39] and
3DGS [29] optimizations in sparse-view settings, we review
how they optimize their scene representation and render im-
ages from it. Both methods are optimized through photo-
metric consistency, where the color of each ray or pixel is
compared to the ground truth color with an L2 loss or a
mixture of L1 and SSIM losses [29].

Mathematically, this is represented as:

L =
∑

r→R

→C(r)↑ Ĉ(r)→2, (1)

where C(r) is the color of ray r in the ground truth image,
Ĉ(r) is the model’s prediction for r, and R is the set of rays
across all training views.

This color C(r) is obtained through volumetric render-
ing via the following equations, where density o, transmit-
tance T , and color c are taken along a ray or z-value at
intervals ωi:

C =
N∑

i

Tiεici,where (2)

εi = (1↑ exp(↑oiωi)) and Ti =
i↑1∏

j=1

(1↑ εj). (3)

This formulation holds for both NeRF-based architec-
tures and neural point-based rendering approaches, such as
3DGS [29], where the image formation process is the same,
but images are rendered through ray-tracing or rasterization.

4. Method
As shown in Figure 2, our proposed Re-Nerfing operates in
a multi-stage fashion. First, a baseline method is trained
with the available views (Section 3.1). It is then used to
generate novel views to improve the scene coverage (Sec-
tion 4.1), and lastly, a new model is trained on the original
and the synthesized views (Section 4.2), discarding uncer-
tain regions of the rendered views to improve the signal’s
quality. Re-Nerfing is a general framework compatible with
any learnable pipeline for NVS. Furthermore, Re-Nerfing
follows an iterative process, so consecutive iterations can be
executed using the model trained at the previous iteration as
a baseline for the next one.

4.1. Re-Nerfing: Augmenting via Synthesized Views
To represent the geometry of the given scene, only the den-
sity oi at the sampling or point locations can be optimized.
In scenarios with only a few views available, e.g., due to
crowd-sourced or previously captured images, NVS is par-
ticularly difficult as this density can no longer be correctly
triangulated since there are not enough multi-view con-
straints and excessive ambiguity in the color supervision.

This optimization depends critically on multi-view con-
straints, where views from different angles provide inter-
secting rays that enable triangulation of points in 3D space.
However, when the number of views is sparse, the con-
straints from these rays become insufficient to uniquely de-
termine the geometry, leading to multiple plausible 3D con-
figurations that satisfy the observed data, a phenomenon
known as ”local minima” or ”degenerate solutions.”

This can be seen in Figure 3, where green cameras rep-
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resent original views and the shaded green or orange re-
gions represent valid 3D solutions where density could be
distributed given the available green cameras. The overall
optimization process would converge to one of the many
valid 3D solutions within the green or orange region (e.g.,
a local minimum), leading to dissatisfying geometry recon-
struction and impaired NVS.

Various methods tackled this with prior knowledge [16,
61] or regularization [42]. Instead, we propose to lever-
age the inherent reconstruction and rendering capabilities
of NVS methods themselves. Our Re-Nerfing addresses the
sparse-view challenges by augmenting the original views
with synthesized views generated by the model itself. So,
we render novel views as additional training data in sub-
sequent optimizations (Section 4.2), thereby adding multi-
view constraints without any prior knowledge or external
models. From a theoretical perspective, our iterative view
generation process can be understood as progressively in-
creasing the density of multi-view constraints, which im-
proves the conditioning of the optimization problem.

4.1.1. Enhanced Scene Coverage and Constraints
We seek to improve the view coverage of the captured scene
or object through our augmentations. So, we generate mul-
tiple novel views from camera poses interpolated across ex-
isting neighboring views. Let P = {P1,P2, . . . ,Pn} rep-
resent the set of available camera poses in a sparse-view
setting. Given a novel camera pose Pnew

i interpolated from
pairs in P, we can synthesize a new view by rendering an
image from this pose. The addition of Pnew

i creates extra
constraints for 3D points that may not have been observable
from the original views alone (e.g., in Figure 3).

Mathematically, for a 3D point X , the reprojection error
across all views, including our synthesized ones, becomes:

Lreproj =
∑

Pi→P↓Pnew

→ϑ(Pi, X)↑ xi→2, (4)

where ϑ(Pi, X) denotes the projection of point X onto the
image plane of view Pi, and xi is the observed (or synthe-
sized) pixel location in view Pi. Adding new views Pnew

(orange cameras in Figure 3) increases the number of re-
projection terms, effectively regularizing the solution for X
and reducing the probability of degenerate reconstructions.
In the figure, possible solutions are reduced from the green-
shaded region to the orange-shaded region, aiding the trian-
gulation of the scene’s geometry/density.

4.1.2. View Coverage Details
We define the hyperparameters N and ! as the augmenta-
tion factor and the set of N ↑ 1 interpolation factors ϖj , re-
spectively. Specifically, for the case of equally spaced novel
views:

! =

{
ϖj | ϖj =

j

N
, j = 1, 2, . . . , N ↑ 1

}
(5)

original 
view

augmented 
view

more views reduce 
valid 3D solutions

Figure 3. Graphical explanation of how our augmented views (or-
ange) improve the scene geometry and the effectiveness of the
multi-view constraints by reducing the valid 3D solutions to a
smaller space (shaded orange) and ultimately enabling the con-
vergence of the optimization to a better solution.

However, equally spaced synthesized views are not ideal
as the quality would degrade around ϖ = 0.5. This is par-
ticularly relevant in sparser settings where the larger camera
displacement between existing poses would lead to worse
synthesized views (Section 4.1.3).

Considering the existing camera poses Pi and Pi+1 with
Pi = [pi,qi], such that pi is the position vector in 3D space
and qi is the quaternion representation of the rotation,

p̄i,j = (1↑ ϖj)pi + ϖjpi+1 (6)

is the interpolation of the position component given the in-
terpolation factor ϖj . For the rotation, we compute the in-
terpolated q̄i,j from the original pose quaternions qi and
qi+1 using SLERP [54] as follows:

q̄i,j =
sin((1↑ ϖj)ϱ)

sin(ϱ)
qi +

sin(ϖjϱ)

sin(ϱ)
qi+1 (7)

Instead of interpolating across existing views, other
strategies could generate novel views around a half dome
centered at the scene or object center, or following a spe-
cific pattern. However, in real-world scenes, such tech-
niques may raise issues with occlusions, as the sampled
poses might collide with parts of the scene (e.g., a wall) or
end up inside an object. Interpolating is more conservative
and does not require extra information about the scene, such
as the scene occupancy, to avoid collisions and unrealistic
viewpoints. Nevertheless, multiple pose sampling strategies
could be combined to further enhance the view synthesis.

The formulation above is based on two consecutive poses
Pi and Pi+1. In settings where sequential information
is not available, a sequence can be simulated by consid-
ering consecutive poses from neighboring positions in 3D
space [15]. This can be achieved with a nearest neighbor
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on the vectors p using the Euclidean distance or the angular
distance between the quaternions q.

4.1.3. Image Quality
Our proposed method has to balance the synthesized im-
age quality with achieving as wide a baseline as possible
with regard to the original views. This is because novel
views close to the training views will be of higher quality
and exhibit fewer artifacts compared to ones that are further
away, but add fewer multi-view constraints. In practice, we
achieve this trade-off through generating many interpolated
views between the original training views Pi and Pi+1 and
achieve a good balance between both factors. We illustrate
the trade-off in the Supplementary Material.

4.2. Re-Nerfing: Re-Optimizing NeRF or 3DGS
After optimizing the first model D1 and using it to gener-
ate novel views (Section 4.1), we train another NVS model
D2 from scratch with the addition of the synthesized views
as data augmentation. To improve the signal’s quality, we
mask out uncertain regions of the generated views (Sec-
tion 4.2.2).

4.2.1. Reducing Local Minima via Iterative Optimization
The proposed Re-Nerfing uses a base model D1 to augment
the training data for a later model D2. This introduces a
general iterative paradigm, where each iteration n refines
the model Dn by generating synthesized views Pnew

j from
the previous iteration’s model Dn↑1. This iterative pro-
cess can be seen as minimizing an energy function that con-
verges toward a better minimum as the iteration number n
increases:

Lreproj,n =
∑

Pi→P↓Pnew
1 ↓···↓Pnew

j

→ϑ(Pi, X)↑ xi→2, (8)

where Ln is minimized over the parameters of Dn. By aug-
menting via synthesized views with improved image quality
at each iteration, we effectively increase the conditioning of
the multi-view geometry problem, reducing the prevalence
of local minima that the optimization could otherwise con-
verge to. We avoid degeneration and forgetting [55] by op-
timizing Dn only on the views generated by Dn↑1 plus the
original ones and not those synthesized from Dn↑2.

4.2.2. Masking Uncertain Regions
We seek to add a high-quality training signal to the new
model Dn by means of augmentation with our synthesized
views. Since the quality of such synthesized views is not
on par with the originals, they may display artifacts that can
impact the renderings. Therefore, we aim to remove such
artifacts and improve the training signal. So, we estimate
the reconstruction uncertainty and use it to mask out the
uncertain regions from our synthesized images such that the
optimization focuses on the high-confidence areas.

Let U(Pnew
i ) be the uncertainty at view Pnew

i . The
masked loss is then:

Lmasked =
∑

r→R,Pi→P↓Pnew

→C(r)↑ Ĉ(r)→2 · 1{U(Pi)<ω}i,

(9)
where 1{U(Pi)<ω} is an indicator function that includes rays
from our synthesized views only if their uncertainty is be-
low a threshold ς .

The uncertainty obtained at each sampling location x can
then be rendered via volumetric rendering. Specifically, for
each ray r of a novel pose Pnew

i with ray samples x, we
synthesize the color CD1(r) and render the corresponding
uncertainty U(r(x)). Then, we create pixel masks where
rays with U(r(x)) higher than the threshold ς are masked
out. To optimize the second model D2, we use the gen-
erated views as part of the training images and query their
masked rays during the course of optimization. This mask-
ing step reduces the influence of unreliable regions on the
optimization, enhancing the robustness of Re-Nerfing.

In this work, we estimate the uncertainty using Bayes’
Rays [26], but the method is compatible with other tech-
niques, too. Bayes’ Rays [26] outputs a volumetric uncer-
tainty field for every input coordinate x:

U(x) = Trilinear(x,φ), where φ = ||ω||2 (10)

Here ω = (φx,φy,φz) represents the diagonal entries of
the variance ! of the deformation field, which intuitively
encodes how much one can permute the underlying NeRF
geometry (or Gaussian positions) without affecting the re-
construction quality. ! is approximated via the diagonal of
the Hessian H(ε), approximated for all rays r of a sam-
pling pool R on the parameters ε of the deformation field
as:

H(ε) ↓ 2

R

∑

r

Jω(r)
T
Jω(r) + 2↼I (11)

! ↓ diag(H(ε))↑1 (12)

For the full derivation of this formulation, we refer to [26].
Originally proposed for NeRF-based methods, we extend
Bayes’ Rays to 3DGS by replacing the sampling locations
x with the Gaussian positions.

4.2.3. Training Schedule
For both NeRF and 3DGS pipelines, optimization first fo-
cuses on scene geometry, then appearance. Since synthe-
sized views have lower quality than real images, especially
distant from training views (Section 4.1.3), we sample from
them only during early optimization stages where they help
disambiguate geometry, then remove them at iteration ↽ as
they become detrimental to appearance.

Third and later stages Since synthesized data augmen-
tation regularizes later models Dn, these are less prone

5



to overfitting, potentially allowing increased model size
and higher quality. However, this is beyond our scope as
we use identical architectures across iterations n. By it-
eratively augmenting training views, Re-Nerfing improves
NVS problem conditioning, increasing multi-view con-
straint density and reducing local minima prevalence (Fig-
ure 3). Uncertainty masking refines this by ensuring only
high-confidence synthesized data contributes to optimiza-
tion, resulting in more globally optimal 3D scene recon-
struction and rendering despite limited initial data.

5. Experiments and Results
Since having a more diverse set of views during the start
of optimization benefits reconstruction, we observe faster
convergence when using Re-Nerfing. Interestingly, not only
does using Re-Nerfing improve convergence speed and test-
view quality, but we also observe that it boosts PSNR values
on the training views, further reinforcing our intuition.

5.1. Experimental Setup
Datasets We evaluated Re-Nerfing on three public datasets.
We used the 7 scenes from mip-NeRF 360 [3] (bounded
indoor and unbounded outdoor scenes), the 8 scenes from
LLFF [38] (smaller forward-facing scenes), and the 7 train-
ing scenes from Tanks and Temples (T2) [30] (free-form
captures with varied camera trajectories and lighting). For
mip-NeRF 360 and Tanks and Temples, we created sparse
settings by sampling training views while preserving scene
coverage, then selecting test views from the remaining orig-
inal test set. We used 30 views out of 232 available on
average for mip-NeRF 360 (50 for stump and bicycle due
to baseline convergence issues), and 64 out of 470 images
(13.6%) for Tanks and Temples. For LLFF, we used highly
sparse settings with as few as 3 views, following RegN-
eRF [42]. Exact data splits will be made available.

Metrics We evaluate test views using standard metrics:
PSNR, SSIM [63], and LPIPS [66]. For 3D reconstruction
quality, we compare depth images from sparse-view mod-
els against a baseline model optimized with all available
views as pseudo ground truth. This evaluation is provided
on Tanks and Temples. Due to unbounded scenes with sky
regions causing large depth variance, we report both L1-
Error and L1-Error@0.9 (discarding the largest 10% of each
scene’s depth distribution). While Tanks and Temples pro-
vides laser scans, coordinate system misalignment between
camera poses and scans prevents their use, as reconstruction
noise makes initial alignment and ICP [4] impossible.

Prior Works and Baselines We showcase the effective-
ness of our method by applying it to a diverse set of NVS
methods, namely PyNeRF [62], Instant-NGP [40], RegN-
eRF [42], and 3DGS [29]. RegNeRF is implemented in
JAX [7], for which no implementation of Bayes’Rays [26]

Method PSNR SSIM LPIPS

Instant-NGP 20.76 0.659 0.301
+ Re-Nerfing [ours] 21.35 0.680 0.273

PyNeRF 22.65 0.746 0.182
+ Re-Nerfing [ours] 23.51 0.772 0.160

3DGS 20.49 0.600 0.259
+ Re-Nerfing [ours] 21.51 0.647 0.231

Table 1. Rendering performance on the mip-NeRF 360 [3] dataset
with sparse views. The proposed Re-Nerfing is applied on Instant-
NGP [40], PyNeRF [62] and 3DGS [29].

exists. Therefore, with RegNeRF, we show only the impact
of our augmentations without uncertainty masks.

Implementation Details We train our method on images
down-sampled by 8 from the original image sizes for the
available outdoor scenes and by 4 for the indoor scenes
of mip-NeRF 360, bringing both to a comparable image
size. For LLFF, we down-sample all images by 8, follow-
ing RegNeRF [42]. For PyNeRF [62], 3DGS [29] and
Instant-NGP [40], we used their implementation available
in Nerfstudio [59]. For RegNeRF, we used the original im-
plementation in JAX [7]. We trained all Nerfstudio models
for 30k iterations from scratch with a batch size of 8192
rays for PyNerf and 1024 rays for Instant-NGP and inher-
ited all other losses and hyperparameters of the baselines.
For RegNeRF, we followed their training paradigm and hy-
perparameters. We set our hyperparameter ↽ to 8k for PyN-
erf and Gaussian-Splatting, 5K for RegNeRF, and 200 for
Instant-NGP. We train all models on a 24GB NVIDIA RTX
3090 or 4090 GPU.

5.2. Quantitative Results
5.2.1. Re-Nerfing as Flexible Enhancer
In Table 1, we report the results on the mip-NeRF 360
dataset [3] applying the proposed Re-Nerfing on Instant-
NGP [40], PyNeRF [62], and 3D Gaussian Splatting [29] in
sparse view settings. In Table 2, we report the results on the
LLFF dataset [38] applying Re-Nerfing on RegNeRF [42]
in highly-sparse 3, 6, and 9 view settings.

Our method brings notable improvements across various
settings, increasing PSNR with a single round by 1.02 dB
over 3DGS, 0.86 dB over PyNeRF, 0.64 dB over Instant-
NGP (Table 1), and 0.50 dB over RegNeRF (6 views, Ta-
ble 2), while improving SSIM and LPIPS, too. With more
rounds (Appendix Table 5), ours reaches 3.53 dB PSNR
over 3DGS [29]. Despite their synthesized nature, adding
our augmented views mitigates overfitting and acts as a reg-
ularizer, supporting the improvements.

In Table 2, in particular, we combine Re-Nerfing with
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3 Views PSNR SSIM LPIPS

baseline: mip-NeRF 14.62 0.351 0.495
+ RegNeRF 19.08 0.685 0.148
+ Re-Nerfing, 1 round [ours] 19.35 0.713 0.133
+ extra round (2) [ours] 19.47 0.724 0.126
+ extra round (3) [ours] 19.52 0.725 0.127

6 Views PSNR SSIM LPIPS

baseline: mip-NeRF 20.87 0.692 0.255
+ RegNeRF 23.10 0.822 0.078
+ Re-Nerfing [ours] 23.60 0.839 0.069

9 Views PSNR SSIM LPIPS

baseline: mip-NeRF 24.26 0.805 0.172
+ RegNeRF 24.86 0.870 0.055
+ Re-Nerfing [ours] 25.14 0.877 0.052

Table 2. Highly sparse settings with 3, 6, and 9 views on the
LLFF dataset [38]. We apply ours on RegNeRF [42] (which
builds on mip-NeRF [2]), and then iteratively via extra rounds.
Results are averaged over all scenes.

the regularization of RegNeRF, showing how Re-Nerfing
can adapt to any optimized NVS method. This is because
Re-Nerfing is an add-on enhancer and not an alternative to
them. Paired with RegNeRF, Re-Nerfing further improves
the quality of the novel views.

We also perform comparisons on more in-the-wild cap-
tures of the Tanks & Temples dataset [30] in Table 3 with
3DGS [29], where our method brings an improvement in
both image metrics (0.49dB) and L1 depth errors (ca. 17%).

Overall, the efficacy of our method on both implicit
(NeRF-based) and explicit (3DGS) scene representations
is particularly notable as it is achieved without using ex-
tra data, additional models, or supervision, but only with
information already available to the baselines.

5.2.2. How it Works
As described in Section 3.1, NeRF’s and 3DGS’ optimiza-
tion is similar to SfM approaches, as matching pixel fea-
tures are triangulated in 3D. Especially in sparse-view set-
tings, this is highly under-constrained with many degenerate
solutions. This can lead to local minima, which fit well with
the training views but not the test views due to the inconsis-
tent geometry (Section 4.1).

With Re-Nerfing, we build upon this (potentially sub-
optimal) initial optimization and render synthesized views
as extra constraints for consecutive optimization rounds. It
is widely known in the community that more viewpoints
help NVS. This same concept drives Re-Nerfing, too, al-
beit a step further, with synthesized views. As described in

Metrics 3DGS [29] + Re-Nerfing

PSNR 16.64 17.13
SSIM 0.509 0.530
LPIPS 0.365 0.352
L1-Error 2.941 2.438
L1-Error@0.9 2.069 1.704

Table 3. Comparison of Re-Nerfing paired with 3DGS [29] on a
sparse version of the training samples from the Tanks & Temples
dataset [30].

Section 4.1, thanks to our extra constraints from the aug-
mented views, some degenerate solutions are removed and
the optimization converges to a better 3D structure. This
is supported by the improved L1-Error in Table 3 and 7 in
the Supplementary Material and can also be observed in the
supplementary video, where the rendered depth maps are
notably smoother and more complete.

Ablation study Through an ablation study based on
3DGS [29], Table 4 shows the importance of:
• early optimization stages for the scene geometry,
• the impact of the synthesized views on the scene geome-

try and early stages,
• removing the synthesized views as the scene geometry

converges to not learn wrong details from them, and
• resetting the optimization at each of the Re-Nerfing

rounds.
Specifically, adding the synthesized views without reset-

ting the optimization (a2) does not bring any benefits and
worsens LPIPS. Resetting and keeping the rendered views
until the end (a3) improves, but removing them leads to
better details (a5). On the contrary, adding the views after
the scene geometry has already been captured (a4) leads to
mixed results compared to the baselines. Finally, masking
out uncertain regions of the synthesized views (a6) further
improves across the board as it increases the quality of the
supervision signal. While Re-Nerfing increases the training
iterations, e.g., by 2x in the table, simply doubling the it-
erations performs even worse than the baseline (a1), as the
optimization overfits on the training views and converges to
a sub-optimal local minima.

Altogether, Re-Nerfing reaches a better global solution
without adding extra information to the baseline. This as-
pect is similar to other iterative or multi-stage frameworks
from different domains [11, 24], where resetting the opti-
mization at each round leads to better solutions. However,
what is notable with Re-Nerfing is that we use the optimized
model itself to fully generate the augmented training data.

5.3. Qualitative Results
In Figure 4, we demonstrate Re-Nerfing’s benefits on the
Tanks and Temples dataset [30] using 3DGS. Our method
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ID Configuration PSNR SSIM LPIPS

a0 baseline: 3DGS, optimized for 30k iterations 20.49 0.600 0.259
a1 a0 + 30k extra iterations (60k total) 20.40 0.598 0.260
a2 add to a0 our synthesized views after 30k iterations (no reset) 20.05 0.538 0.343
a3 reset the a0 optimization at 30k, then add our synthesized views 20.60 0.586 0.269
a4 reset a0 at 30k, then add our synthesized views after 15k 20.81 0.590 0.277
a5 reset a0 at 30k, add our syn.views, then remove them after 8k 21.30 0.627 0.235
a6 a5 + uncertainty masks = Re-Nerfing 21.51 0.647 0.231

Table 4. Ablation study. Sparse-view settings on the mip-NeRF 360 dataset [3] showing the impact of our method on 3DGS [29].
Configuration a6 represents our Re-Nerfing.
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Figure 4. Qualitative results on images from the test set of the Tanks and Temples dataset [30]. 3DGS [29] novel views are shown with
(second row) and without (third row) our proposed method. White arrows indicate significant rendering errors.

significantly improves rendering quality of challenging de-
tails like water fountains and windows, removes major
floater artifacts, and better preserves geometric information
such as the orange indicator light on the truck. These re-
sults demonstrate Re-Nerfing’s effectiveness across diverse
scenarios.

The Supplementary Material includes more details,
quantitative and qualitative results, and a qualitative video,
which showcases the effectiveness of Re-Nerfing with
RGB, depth images, and rendered uncertainty.

Limitations Our method relies on the first stage to pro-
vide reasonable renderings and a decent estimate of the
scene geometry, so it is challenging to enhance poorly ren-
dered scenes, e.g., the stump scene with Instant-NGP [40],
which could not converge. The proposed method also relies
on the uncertainty estimates to discard artifacts and low-
quality areas. Therefore, better uncertainty estimates would
be beneficial. Uncertainty calibration of the threshold ς per

scene could help refine the estimates while preserving the
signal in higher-quality areas.

6. Conclusion
This work enhances NeRFs and 3DGSs by leveraging their
own novel view synthesis capabilities. The introduced Re-
Nerfing is a general, iterative approach that synthesizes
novel views to improve the optimization of a successive
model by increasing the scene coverage and augmenting its
training data. To provide a valuable training signal for the
next model optimization, Re-Nerfing estimates the uncer-
tainty for each augmented view and discards the uncertain
regions. As shown with various NeRF- and 3DGS-based
pipelines, our method leads to better optimization outcomes
and yields improvements in both reconstruction and ren-
dering quality in sparse scenes. This makes the proposed
Re-Nerfing a solid and flexible complement to improve the
output quality of any learned NVS pipeline.
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