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Abstract
The Linearized Laplace Approximation (LLA) has been recently used to perform uncer-
tainty estimation on the predictions of pre-trained deep neural networks (DNNs). However,
its widespread application is hindered by significant computational costs, particularly in
scenarios with a large number of training points or DNN parameters. Consequently, addi-
tional approximations of LLA, such as Kronecker-factored or diagonal approximate GGN
matrices, are employed, potentially compromising the model’s performance. To address
these challenges, we propose a new method for approximating LLA using a variational
sparse Gaussian Process (GP). Our method is based on the dual RKHS formulation of GPs
and retains as the predictive mean the output of the original DNN. Furthermore, it allows
for efficient stochastic optimization, which results in sub-linear training time in the size of
the training dataset. Specifically, its training cost is independent of the number of training
points. We compare our proposed method against accelerated LLA (ELLA), which relies
on the Nyström approximation, as well as other LLA variants employing the sample-then-
optimize principle. Experimental results show that our method outperforms these already
existing efficient variants of LLA, both in terms of the quality of the predictive distribution
and in terms of total computational time.

1. Introduction
Deep neural networks (DNNs) have gained widespread popularity for addressing pattern
recognition problems due to their state-of-the-art performance in predicting target values
from a set of input attributes (He et al., 2016; Vaswani et al., 2017). Despite this great
success, DNNs exhibit limitations when computing a predictive distribution that accounts
for the confidence in the predictions. Specifically, DNNs result in weak calibration (Guo
et al., 2017) and in poor reasoning regarding model uncertainty (Blundell et al., 2015).
These issues become particularly critical in risk-sensitive situations like autonomous driving
(Kendall and Gal, 2017) and healthcare systems (Leibig et al., 2017) among others.

The Laplace Approximation (LA) leverages the maximum a posteriori (MAP) solution,
attainable via back-propagation, providing a Gaussian posterior approximation where the
pre-trained optimal solution furnishes the mean. This resembles a pre-training step followed
by fine-tuning, a common practice in deep learning (Daxberger et al., 2021a). LA’s weakness
is the necessity of computing the Hessian at the MAP, which becomes prohibitive for large
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Figure 1: Predictive distribution (mean in blue and shaded two times the standard devi-
ation) on a toy 1D regression dataset with a 2 hidden layer MLP with 50 units
trained using back-propagation. The predictive distribution of VaLLA is on par
with or better than other approximations (last layer, diagonal and Kronecker fac-
torization) and other methods (ELLA). The optimal values for the noise and the
Gaussian prior are optimized by maximizing the marginal log likelihood estimate
of LLA. VaLLA and ELLA use the optimal values found by LLA. VaLLA uses
20 inducing points for the predictive variances. ELLA uses 20 random locations
and 20 features.

DNNs. To simplify this, the Hessian is often approximated using the generalized Gauss-
Newton (GGN) matrix (Martens and Grosse, 2015). This approach aligns with the fact that
the GGN Hessian estimate is exact when applying LA to a linearized DNN. This method is
referred to as Linearized LA (LLA) (Immer et al., 2021). However, in the context of large
DNNs, further approximations on top of GGN are required.

In this work, we broaden LLA’s usage for DNNs to cases with a substantial number of
parameters and training instances. We reinterpret the LLA predictive distribution as that
of a Gaussian Process (GP) (Khan et al., 2019), and use a sparse variational GP based
on inducing points to approximate it (Titsias, 2009). Standard sparse GPs often alter the
predictive mean and hence may deteriorate the accuracy of the pre-trained DNN, which is
assumed to have minimal generalization error. To avoid this, we use a dual representation of
the GP in the Reproducing Kernel Hilbert Space (RKHS). This enables the sparse approxi-
mation to be used only in the computation of the predictive variances of the GP. The result
is a sparse GP approximation where the predictive mean coincides with the predictions of
the pre-trained DNN, without introducing additional prediction error.

We call our method Variational LLA (VaLLA) and conduct a series of experiments
to compare its performance and computational cost with that of related methods from
the literature. Our comparisons include (i) a method that uses Kronecker and diagonal
approximations of the GGN matrix, (ii) a method that uses a Nyström approximation of
that matrix (ELLA) (Deng et al., 2022), and (iii) a method that relies on generating samples
from LLA’s posterior distribution using the sample-then-optimize principle (Antorán et al.,
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2023). VaLLA’s performance is comparable or better than that of these other methods and
is obtained at a smaller cost. Specifically, VaLLA adopts mini-batch training, resulting in
sub-linear cost w.r.t. the training set size. Furthermore, VaLLA often generates predictive
distributions that closely resemble those of LLA. Figure 1 shows this in a simple 1-D toy
regression problem.

2. Background

Consider the task of inferring an unknown function f : RD → R based on noisy observations
y = (y1, . . . , yN )T at corresponding locations X = (x1, . . . ,xN ). Deep learning (DL) defines
a Neural Network g : RD×RP → R with P parameters so that ∃θ⋆ ∈ RP s.t. f(·) ≈ g(·,θ⋆).

The Laplace approximation (LA) builds a Gaussian approximate posterior (Mackay,
1992). This takes the form of q(θ) = N (θ|θ̂,Σ), where θ̂ denotes the MAP solution, i.e.,
θ̂ = argmaxθ log p(y|θ) + log p(θ), and Σ is the inverse of the negative Hessian of the log
posterior, i.e.,Σ−1 = −∇2

θθ [ log p(y|θ) + log p(θ)]|θ=θ̂. Often, an isotropic Gaussian prior
p(θ) = N (θ|0, σ2

0IP ) is considered. Due to the intractability of the Hessian in large DNNs,
it is common to approximate it with the generalized Gauss-Newton (GGN) matrix (Immer
et al., 2021):

Σ−1 ≈
∑N

n=1 Jθ̂(xn)
TΛ(xn, yn)Jθ̂(xn) +

1
σ2
0
IP , (1)

where Jθ̂(xn) = ∇θ g(xn,θ)|θ=θ̂ and Λ(xn, yn) = −∇2
gg log p(yn|g)|g=gθ̂(xn,θ)

. The GGN
matrix is guaranteed to be positive definite, which means that θ̂ need not be a maximum
of the log posterior. It can be, e.g., any solution found by early-stopping back-propagation.

The earlier formulation of LA suffers from underfitting (Lawrence, 2001). This is at-
tributed to the fact that the GGN approximation is the true Hessian matrix of the linearized
DNN glin

θ̂
(x,θ) := g(x, θ̂) + Jθ̂(xn)(θ − θ̂) (Immer et al., 2021). This implies a shift be-

tween posterior inference and predictions that can be mitigated by also predicting using the
linearized model:

pLLA(y
⋆|x⋆,y) = Eq(θ)

[
p(y⋆|glin

θ̂
(x⋆,θ))

]
. (2)

This method is known as the linearized LA (LLA). Despite these approximations, LLA still
requires the inversion of Σ−1 which scales cubically with the number of parameters of the
DNN. A dual formulation of LLA as a Gaussian Process (GP), described in the next section,
scales with cubic cost in the number of training points.

2.1. Gaussian Process (GP) Interpretation of LLA

Using the approximate posterior from LLA, i.e., q(θ) = N (θ|θ̂,Σ), we also obtain a GP for
prediction. The mean and covariance functions, providing the predictive mean and variances
of the LLA approximation, are in this case m(x) = g(x, θ̂) , and K(x,x′) = Jθ̂(x)

TΣJθ̂(x
′),

respectively. Using the Woodbury formula on Σ and defining κ(x,x′) = σ2
0Jθ̂(x)

TJθ̂(x
′) as

the (scaled) Neural Tangent Kernel (i.e., prior covariance function) of the GP (Immer et al.,
2021), and Q = Λ−1

X,y + κ(X,X), the covariance function of the GP takes the expression

K(x,x′) = κ(x,x′)− κ(x,X)Q−1κ(X,x′) . (3)

3



Ortega Santana Hernández-Lobato

This allows us to interpret the LLA approximate predictive distribution as a posterior
GP in function space, with prior covariance function given by κ(·, ·). The bottleneck of this
interpretation is the evaluation of Q−1, with O(N3+N2P ) cost. In the case of classification
problems with C classes, κ(X,X) and Q have size NC ×NC, thus the cost is also cubic in
the number of classes C or DNN outputs.

2.2. Dual formulation of Gaussian Processes in RKHS

A Reproducing Kernel Hilbert Space (RKHS) H is a Hilbert space of functions with the
reproducing property: ∀x ∈ X ∃ϕx ∈ H such that ∀f ∈ H, f(x) = ⟨ϕx, f⟩. In general, H
can be infinite-dimensional and approximate continuous functions on a compact set.

A zero-mean prior GP with posterior mean and covariance functions m(·) and K(·, ·),
respectively, has a dual representation in a RKHS (Cheng and Boots, 2016). There exists
µ ∈ H and a linear semi-definite positive operator Σ : H → H s.t. ∀x,x′ ∈ X , ∃ϕx, ϕx′

verifying m(x) = ⟨ϕx, µ⟩ and K(x,x′) = ⟨ϕx,Σ(ϕx′)⟩.

3. Variational LLA (VaLLA)

Variational sparse GPs approximate the GP posterior using a GP parameterized by M
inducing points Z, each in RD, and associated process values u = f(Z) (Titsias, 2009),
p(f ,u|y) ≈ q(f ,u) = p(f |u)q(u), where q(u) = N (u|m̂, Ŝ), f = f(X) and p(f |u) is
fixed. The approximate distribution q(u) is obtained by minimizing the KL-divergence
KL (q(f ,u) | p(f ,u|y)). In practice, the minimization problem is transformed into the max-
imization of the lower bound of the log-marginal likelihood

log p(y) ≥ max
Z,m̂,Ŝ

∫
f ,u

q(f ,u) log
p(y|f)p(f |u)p(u)

q(f ,u)
, (4)

with cost O(NM2 +M3) due to q(f ,u) = p(f |u)q(u).

Theorem 1 (Cheng and Boots, 2016) Using a sparse GP approximation with q(f ,u) =
p(f |u)q(u) is equivalent to restricting the mean and covariance functions of the dual rep-
resentation in the RKHS to µ̃ = ΦZ(a) and Σ̃ = I + ΦZAΦT

Z. Where the functional
ΦZ : RM → H defines a linear combination of basis functions as ΦZ(a) =

∑M
m=1 amϕzm,

with a = (a1, . . . , aM ) ∈ RM and the functional ΦZAΦT
Z =

∑M
i=1

∑M
j=1 ϕziAi,jϕ

T
zj , defines

a quadratic expression where A ∈ RM×M such that Σ̃ ≥ 0. Proof in Appendix A.

Theorem 1 indicates that the algorithm of Titsias (2009) optimizes a variational Gaus-
sian measure where µ̃ and Σ̃ are parameterized by a function basis {ϕz ∈ H | z ∈ Z}.
Cheng and Boots (2017) propose to generalize this so that each of the linear operators is
optimized using different bases (sets of inducing points). Let Zα and Zβ be two sets of in-
ducing points for the mean and the variance, respectively. The parameterization of Cheng
and Boots (2017) is µ̃ = ΦZα(a) and Σ̃ = (I + ΦZβ

AΦT
Zβ

)−1. Where ΦZα : RMα → H
and ΦZβ

: RMβ → H are defined as ΦZ using Zα and Zβ, respectively. Now, there are two
sets of inducing points, Mα for the mean and Mβ for the covariances, respectively. This
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parameterization is a generalization and cannot be obtained using the approach of Titsias
(2009). Here, q must be found by optimizing Gaussian measures (Cheng and Boots, 2016):

max
q(f)
L(q(f)) = max

q(f)
Eq [log p(y|f)]−KL (q | p) , (5)

where KL (q | p) = 1
2a

TKαa+ 1
2 log |I+KβA|− 1

2tr
(
Kβ(A

−1 +Kβ)
−1
)
; with Kα and Kβ

matrices with the prior covariances among f(Zα) and f(Zβ), respectively. In practice, the
objective leads to null variances and α-divergences with Early-Stopping are used instead of
the standard ELBO (see Appendix D for further information).

3.1. Using Decoupled SGP and LLA

We use the decoupled reparameterization of sparse GPs to establish a model where the
mean of the approximated posterior distribution is fixed to a pre-trained MAP solution.
We denote this method as variational LLA (VaLLA).

Proposition 2 If g(·, θ̂) ∈ H, then ∀ϵ > 0 exists a set of Mα inducing points Zα and a
collection of scalar values a ∈ RMα such that the dual representation of the sparse Gaussian
process defined by µ̃ = ΦZα(a) and Σ̃ = (I+ΦZβ

AΦT
Zβ

)−1 corresponds to a GP posterior
approximation with mean m⋆(x) = hϵ(x) and covariance function defined as

K⋆(x,x′) = K(x,x′)−Kx,Zβ
(A−1 +Kβ)

−1KZβ ,x′ , (6)

where Zβ is a set of Mβ inducing points, A ∈ RMβ×Mβ , Kx,Zβ
is a vector with the covariances

between f(x) and f(Zβ), and hϵ verifies dH(g(·, θ̂), hϵ) ≤ ϵ, with dH(·, ·) the distance in the
RKHS. Proof in Appendix A.

Proposition 2 implies that if g(·, θ̂) ∈ H we can find values for a and inducing points for
the mean Zα s.t. dH(g(·, θ̂), hϵ) can be made as small as desired. For sufficiently small ϵ,
hϵ(·) ≈ g(·, θ̂), and g(·, θ̂) can be used for prediction instead of hϵ(x). Thus, there is no
need to optimize a and Zα in (5), and the posterior distribution of VaLLA uses g(·, θ̂) as
its mean function. The optimal parameters Zβ and A can be found by optimizing (5) with
a and Zα held constant. From the following proposition, computing the optimal value of
A has cost O(NM2

β +M3
β).

Proposition 3 The value of A in Proposition 2 that minimizes Equation (5) is A =
1
σ2K

−1
β KZβ ,XKX,Zβ

K−1
β where σ2 is the noise variance and KX,Zβ

is a matrix with the
prior covariances between f(X) and f(Zβ). If Zβ = X, the covariance function of the
predictive distribution in (6) is equal to that of the full GP. Proof in Appendix A.

3.2. Limitations of VaLLA

VaLLA is limited by three factors: (i) Computing the predictive distribution at each training
iteration involves inverting A−1 + KZβ

in (6), with cubic cost in the number of inducing
points Mβ. Therefore, VaLLA cannot accommodate a very large number of inducing points.
(ii) The minimization objective requires a validation set and the use of early-stopping to
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ResNet-20 ResNet-32 ResNet-44 ResNet-56 Mean Rank
Method ACC NLL ECE ACC NLL ECE ACC NLL ECE ACC NLL ECE
MAP 92.6 0.282 0.039 93.5 0.292 0.041 94.0 0.275 0.039 94.4 0.252 0.037 −
MF-VI 92.7 0.231 0.016 93.5 0.222 0.020 93.9 0.206 0.018 94.4 0.188 0.016 −

LLA Diag 92.2 0.728 0.404 92.7 0.755 0.430 92.8 0.778 0.445 92.9 0.843 0.480 −
LLA KFAC 92.0 0.852 0.467 91.8 1.027 0.547 91.4 1.091 0.566 89.8 1.174 0.579 −
LLA∗ 92.6 0.269 0.034 93.5 0.259 0.033 94.0 0.237 0.028 94.4 0.213 0.022 −
LLA∗ KFAC 92.6 0.271 0.035 93.5 0.260 0.033 94.0 0.232 0.028 94.4 0.202 0.024 −

ELLA 92.5 0.233 0.009 93.5 0.215 0.008 93.9 0.204 0.007 94.4 0.187 0.007 2.375
Sampled LLA 92.5 0.231 0.006 93.5 0.217 0.008 94.0 0.200 0.007 94.4 0.185 0.015 2.000
VaLLA 92.6 0.228 0.007 93.5 0.211 0.007 94.0 0.198 0.008 94.4 0.183 0.009 1.375

Table 1: Results on CIFAR10. ACC, NLL and ECE are computed using Monte-Carlo
estimation. Best value highlighted in purple and second to best in teal. Sampled
LLA uses 64 samples. ELLA uses M = 2000 points and K = 20. Average
results over 5 different random seeds (standard deviations < 10−4 in all cases and
omitted). ∗ for Last Layer LLA. Mean rank only considers both NLL and ECE.

effectively optimize the prior variance σ2
0, thus further increasing training time. (iii) Mini-

batch optimization involves evaluating Kx,Zβ
∀x ∈ B and Kβ. Hence, we require efficient

evaluation of the (scaled) Neural Tangent Kernel, κ(·, ·) = σ2Jθ̂(·)
TJθ̂(·) and its gradients

to find Zβ. While there are libraries that use structure in the derivatives for the efficient
computation of κ(·, ·), these are limited to a few DNN models (Novak et al., 2022). A simple
but inefficient approach to evaluate κ(·, ·) involves computing and storing all full Jacobians in
memory, for each mini-batch instance and inducing point. This is tractable in our problems,
but makes VaLLA infeasible in very large problems, e.g., ImageNet. Appendix H.3 shows
a very efficient layer-by-layer method to get Kx,Zβ

∀x ∈ B and Kβ. However, this requires
computing each layer’s contribution to the Jacobian at hand, which is difficult for large and
complex DNNs.

4. Experiments

We compare VaLLA with other methods using the LLA implementation by Daxberger et al.
(2021a) on various ResNet models trained on Cifar10 data. VaLLA uses a batch size of 100.
We extract the results for other methods from Deng et al. (2022) and use the same DNN for
VaLLA. The corresponding pre-trained models are those of Deng et al. (2022) (accessible
here). Table 1 shows ACC, NLL and ECE for each method, including LLA variants and a
mean-field VI approach (Deng and Zhu, 2023). We compare with Antorán et al. (2023)’s
approach to retrieve samples from the true GP posterior defined by LLA. Since we use the
same pre-trained models, the results of all other methods are consistent with those reported
by Deng et al. (2022). VaLLA with Mβ = 100 outperforms other methods in most cases,
always being either the best or second-best method.

Appendix G contains further experimentation of the proposed method. More precisely,
regression experiments in Year, Airline and Taxi datasets are reported; along with further
classification results in MNIST and FMNIST with OOD detection.
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5. Conclusions

We introduced VaLLA, a method derived from the formulation of a generalized sparse GP
that offers the flexibility to fix the predictive mean to any desired function in the RKHS.
VaLLA excels in computing error bars for pre-trained DNNs with a vast number of pa-
rameters on extensive datasets, handling even millions of training instances. VaLLA’s ap-
plicability spans both regression and classification problems, showcasing costs independent
of the number of training points N . In comparison, the Nyström approximation by Deng
et al. (2022) incurs a linear cost in N , unless early-stopping is employed. Furthermore,
VaLLA surpasses the sample-then-optimize method of Antorán et al. (2023) in terms of
speed, while also providing predictive distributions robust to input corruptions. In essence,
VaLLA stands out by delivering robust predictive distributions akin to LLA, all while main-
taining noteworthy computational efficiency.
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Appendix A. Proofs

Theorem 1 (Cheng and Boots, 2016) Using a sparse GP approximation with q(f ,u) =
p(f |u)q(u) is equivalent to restricting the mean and covariance functions of the dual rep-
resentation in the RKHS to µ̃ = ΦZ(a) and Σ̃ = I + ΦZAΦT

Z. Where the functional
ΦZ : RM → H defines a linear combination of basis functions as ΦZ(a) =

∑M
m=1 amϕzm,

with a = (a1, . . . , aM ) ∈ RM and the functional ΦZAΦT
Z =

∑M
i=1

∑M
j=1 ϕziAi,jϕ

T
zj , defines

a quadratic expression where A ∈ RM×M such that Σ̃ ≥ 0.

Proof First of all, notice that ΦZ =
(
ϕz1 , · · · , ϕzM

)
∈ HM , leading to

KZ := ΦZΦ
T
Z =

 ⟨ϕz1 , ϕz1⟩ ⟨ϕz1 , ϕz2⟩ · · · ⟨ϕz1 , ϕzM ⟩
...

...
...

⟨ϕzM , ϕz1⟩ ⟨ϕzM , ϕz2⟩ · · · ⟨ϕzM , ϕzM ⟩

 ∈ RM×M . (7)

Furthermore, Kx,Z defined as v → ⟨ϕx,ΦZ(v)⟩ can be seen as a vector of RM , considering
the image of any orthonormal basis of RM . In fact, let e1, . . . , eM be the usual basis of RM :

Kx,Z
∼=


⟨ϕx,ΦZ(e1)⟩
⟨ϕx,ΦZ(e2)⟩

...
⟨ϕx,ΦZ(eM )⟩

 =


⟨ϕx,

∑M
i=1 e1,iϕz1⟩

⟨ϕx,
∑M

i=1 e2,iϕz2⟩
...

⟨ϕx,
∑M

i=1 eM,iϕzM ⟩

 =


⟨ϕx, ϕz1⟩
⟨ϕx, ϕz2⟩

...
⟨ϕx, ϕzM ⟩

 ∈ RM . (8)

Assume a variational distribution q(u) = N (u|m̃, S̃) with m̃ ∈ RM and S̃ ∈ RM×M . Then,
defining the correspondent dual vectors as

a = K−1
Z m̃ ∈ RM , A = K−1

Z S̃K−1
Z −K−1

Z ∈ RM×M , (9)

the mean and covariance functions in the dual formulation of the sparse GP q(f) are

m⋆(x) = ⟨ϕx, µ̃⟩ = ⟨ϕx,ΦZ(K
−1
Z m̃)⟩ = Kx,ZK

−1
Z m̃ , (10)

and

K⋆(x,x′) = ⟨ϕx,Σ(ϕx′)⟩ = ⟨ϕx, ϕx′ +ΦZAΦT
Zϕx′⟩ = ⟨ϕx, ϕx′⟩+ ⟨ϕx,ΦZAΦT

Zϕx′⟩
= K(x,x′) +Kx,ZAKT

x′,Z = K(x,x′) +Kx,Z(K
−1
Z S̃K−1

Z −K−1
Z )KZ,x′ ,

(11)

which is the same approximate GP posterior p(f) =
∫
p(f |u)q(u) du found in Equation (6)

of Titsias (2009).

Proposition 2 If g(·, θ̂) ∈ H, then ∀ϵ > 0 exists a set of Mα inducing points Zα and a
collection of scalar values a ∈ RMα such that the dual representation of the sparse Gaussian
process defined by

µ̃ = ΦZα(a) and Σ̃ = (I +ΦZβ
AΦT

Zβ
)−1 , (12)
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corresponds to a GP posterior approximation with mean and covariance functions defined
as

m⋆(x) = hϵ(x) , (13)
K⋆(x,x′) = K(x,x′)−Kx,Zβ

(A−1 +Kβ)
−1KZβ ,x′ ,

where Zβ is a set of Mβ inducing points, A ∈ RMβ×Mβ , Kx,Zβ
is a vector with the covariances

between f(x) and f(Zβ), and hϵ verifies dH(g(·, θ̂), hϵ) ≤ ϵ, with dH(·, ·) the distance in the
RKHS.

Proof First of all, if g(·, θ̂) ∈ H, the reproducing property of the RKHS verifies that ∀ϵ > 0
there exists Zα ⊂ X , with X the input space, and {ai}i∈N such that hϵ :=

∑Mα
i=1 aiϕzi =

ΦZα(a) verifies
dH(g(·, θ̂), hϵ) ≤ ϵ . (14)

As a result, the mean function of the approximate posterior is

m⋆(x) = ⟨ϕx, µ̃⟩ = µ̃(x) = hϵ(x) ≈ g(x, θ̂) . (15)

On the other hand, using that

(I +ΦZβ
AΦT

Zβ
)−1 = I − ΦZβ

(A−1 +ΦT
Zβ

ΦZβ
)−1ΦT

Zβ
, (16)

the covariance function is

K⋆(x,x′) = ⟨ϕx, Σ̃(ϕx′)⟩ = ⟨ϕx, ϕx′⟩ − ⟨ϕx,ΦZβ
(A−1 +ΦT

Zβ
ΦZβ

)−1ΦT
Zβ

ϕx′⟩

= K(x,x′)−Kx,Zβ
(A−1 −KZβ

)−1KZβ ,x′ .
(17)

Where the characterization of KZβ
and Kx,Zβ

as elements of RMβ×Mβ and RMβ of Equations
(7) and (8) are used.

Proposition 3 The value of A in Proposition 2 that minimizes Equation (5) is

A =
1

σ2
K−1

β KZβ ,XKX,Zβ
K−1

β , (18)

where σ2 is the noise variance and KX,Zβ
is a matrix with the prior covariances between

f(X) and f(Zβ). If Zβ = X, the covariance function of the predictive distribution in (6) is
equal to that of the full GP.

Proof For simplicity, assume a non-inverse reparameterization where

q(f) = N
(
f
∣∣ΦZα(a), I +ΦZβ

ÂΦZβ

)
. (19)

We will find the optimal value for Â and compute the corresponding value for A (using the
inverse reparameterization). First, we will show that the true GP posterior can be written
in the dual formulation as the following

p(f |y) = N
(
f |(ΦXΦT

X + σ2I)−1ΦXy), σ2(ΦXΦT
X + σ2I)−1

)
, (20)

12
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where it verifies that the GP posterior mean function is

m(x) = ⟨ϕx, (ΦXΦT
X + σ2I)−1ΦXy⟩ = (ΦXΦT

X + σ2I)−1ΦXϕxy

= (KX,X + σ2I)−1KX,xy = Kx,X(KX,X + σ2I)−1y .
(21)

Where the characterization of KX,X and KX,x as elements of RN×N and RN is used, simi-
larly to Equations (7) and (8). Furthermore, using Woodbury matrix identity,

σ2(ΦXΦT
X + σ2I)−1 = I − ΦX(KX,X + σ2I)−1ΦT

X , (22)

where again, correspondence between operators and matrices is used. This leads to the
covariance function:

K(x,x′) = ⟨ϕx, σ
2(ΦXΦT

X + σ2I)−1(ϕx′)⟩ = ⟨ϕx, I − ΦX(KX,X + σ2I)−1ΦT
X(ϕx′)⟩

= Kx,x′ −Kx,X(KX,X + σ2I)−1KX,x′ .
(23)

This mean and covariance function are exactly the ones obtained from the original GP
formulation (Titsias, 2009). Using the ELBO is equivalent to the KL divergence between
the true posterior and the variational approximation, we got

KL(q(f) | p(f |y)) ∝ 1

2
tr
(
B−1(I +ΦZβ

ÂΦT
Zβ

)
)
− 1

2
ln
(∣∣∣I +ΦZβ

ÂΦT
Zβ

∣∣∣) , (24)

where
B = σ2(ΦXΦT

X + σ2I)−1 . (25)
Naming M = I+ΦZβ

ÂΦT
Zβ

, it is important to notice that given ΦZβ
ÂΦT

Zβ
=
∑M

i=1

∑M
j=1 ϕzi âi,jϕ

T
zj ,

despite being an operator, M can be seen as a matrix whose entries are the application of
I+ΦZβ

(·)ΦT
Zβ

to the usual basis of matrices. In short

M = I+

 ϕz1 â1,1ϕ
T
z1 · · · ϕz1 â1,MϕT

zM...
...

ϕzM âM,1ϕ
T
z1 · · · ϕzM âM,MϕT

zM

 ∈ RMβ×Mβ . (26)

The partial derivative of M w.r.t. a single position in the matrix Â is ∂M
∂âij

= (ΦZβ
δi)(ΦZβ

δj)
T ,

where δj denotes a zero-vector with a single 1 at position j. Then, using the chain rule for
matrices,

∂g(U)

∂Xij
= tr

(
∂g(U)

∂U

T ∂U

∂Xij

)
, (27)

we can compute the optimum in the two terms in the KL. The optimum for the logarithm
term can be computed as

∂ ln(|M |)
∂âij

= tr
(
∂ ln(|M |)

∂M

T ∂M

∂âij

)
= tr(M−1T (ΦZβ

δi)(ΦZβ
δj)

T )

= tr((ΦZβ
δj)

TM−1(ΦZβ
δi))

= (ΦT
Zβ

M−1ΦZβ
)δji ,

(28)

13
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leading to
∂ ln(|M |)

∂Â
= ΦT

Zβ
M−1ΦZβ

= ΦT
Zβ

(I +ΦZβ
ÂΦT

Zβ
)−1ΦZβ

. (29)

On the other hand, the optimum for the trace term is

∂tr(B−1M)

∂âij
= tr

(
∂tr(B−1M)

∂M

T
∂M

∂âij

)
= tr

(
B−1(ΦZβ

δi)(ΦZβ
δj)

T
)

= tr((ΦZβ
δj)

TB−1T (ΦZβ
δi))

= (ΦT
Zβ

B−1ΦZβ
)δji ,

(30)

where we used that B = BT . As a result,
∂tr(B−1M)

∂Â
= ΦT

Zβ
B−1ΦZβ

(31)

= σ2ΦT
Zβ

(ΦXΦT
X + σ2I)−1 ΦZβ

.

Using all the derivations
∂KL(q(f) | p(f |y))

∂Â
= 0 ⇐⇒ ΦT

Zβ
(B−1 − (I +ΦZβ

ÂΦT
Zβ

)−1)ΦZβ
= 0 (32)

Using the Woodbury matrix identity

0 = ΦT
Zβ

(B−1 − (I +ΦZβ
ÂΦT

Zβ
)−1)ΦZβ

= ΦT
Zβ

(B−1 − I +ΦZβ
(Â−1 +Kβ)

−1ΦT
Zβ

)ΦZβ

= ΦT
Zβ

B−1ΦZβ
−Kβ +Kβ(Â

−1 +Kβ)
−1Kβ .

(33)

Thus, the value of Â where ∂KL/∂Â = 0 verifies

Â = ((K−1
β −K−1

β ΦT
Zβ

B−1ΦZβ
K−1

β )−1 −Kβ)
−1 . (34)

Using that B−1 = σ−2(ΦXΦT
X + σ2I), we can take further derivations on the expression of

Â as
Â = ((K−1

β −K−1
β ΦT

Zβ
B−1ΦZβ

K−1
β )−1 −Kβ)

−1

= ((K−1
β −K−1

β ΦT
Zβ

σ−2(ΦXΦT
X + σ2I)ΦZβ

K−1
β )−1 −Kβ)

−1

= ((K−1
β − σ−2K−1

β KZβ ,XKX,Zβ
K−1

β −K−1
β )−1 −Kβ)

−1

= ((−σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 −Kβ)

−1

= −((σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 +Kβ)

−1 .

(35)

Applying again Woodbury matrix identity:

Â = −((σ−2K−1
β KZβ ,XKX,Zβ

K−1
β )−1 +Kβ)

−1

= −(K−1
β −K−1

β (σ−2K−1
β KZβ ,XKX,Zβ

K−1
β +K−1

β )−1K−1
β )

= −(K−1
β − (σ−2KZβ ,XKX,Zβ

+Kβ)
−1)

= −K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1 .

(36)
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If we substitute this value on the predictive distribution

K⋆(x,x′) = ⟨ϕx,M(ϕx′)⟩ = K(x,x′) +Kx,Zβ
ÂKZβ ,x′

= K(x,x′) +Kx,Z(−K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1)KZβ ,x′

= K(x,x′)−Kx,Zβ
K−1

β KZβ ,x′ +Kx,Zβ
(σ−2KZβ ,XKX,Zβ

+Kβ)
−1)KZβ ,x′

= K(x,x′)−Kx,Zβ
K−1

β KZβ ,x′

+Kx,Zβ
K−1

β (Kβ(σ
−2KZβ ,XKX,Zβ

+Kβ)
−1Kβ)K

−1
β KZβ ,x′ .

(37)
This expression coincides with the optimal sparse GP solution described by Titsias (2009),
with optimal variational covariance (Kβ(σ

−2KZβ ,XKX,Zβ
+Kβ)

−1Kβ). As a result, the
optimal solution for VaLLA coincides with the optimal solution for standard sparse GPs.
Let us now compute the optimal value of A given the optimal value of Â. First, notice that
using Woodbury Matrix identity

(I +ΦZβ
AΦT

Zβ
)−1 = I − ΦZβ

(A+Kβ)
−1ΦT

Zβ
. (38)

Therefore, the relation between A and Â is Â = −(A+Kβ)
−1. Meaning that

Â = −K−1
β + (σ−2KZβ ,XKX,Zβ

+Kβ)
−1 =⇒ A =

1

σ2
K−1

β KZβ ,XKX,Zβ
K−1

β . (39)

Global optimum To complete the proof of the solution in (39) being not only optimal
but also a maximum of the ELBO, we must test the behavior of the second derivative w.r.t.
A. Let us reuse the previous results, where we found that

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2
δTj (Φ

T
Zβ

B−1ΦZβ
− ΦT

Zβ
M−1ΦZβ

)δi (40)

Taking a second derivative w.r.t. another location âu,v yields

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2

∂

∂âu,v
δTj (Φ

T
Zβ

B−1ΦZβ
− ΦT

Zβ
M−1ΦZβ

)δi (41)

Considering that B does not depend on Â, the first term drops from the derivative. Thus

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

= −1

2

∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi (42)

Here we aim to use the chain rule for matrices,

∂g(U)

∂Xij
= tr

(
∂g(U)

∂U

T ∂U

∂Xij

)
, (43)

Then, consider that

∂ δTj (Φ
T
Zβ

M−1ΦZβ
)δi

∂M
= −M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1 (44)
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Then,

∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi = tr

((
−M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu(ΦZβ

δv)
T

)
(45)

We can work on this trace to simplify the expression as

∂

∂âu,v
δTj (Φ

T
Zβ

M−1ΦZβ
)δi = tr

((
−M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu(ΦZβ

δv)
T

)

= −tr
(
δTv Φ

T
Zβ

(
M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu

)

= −δTv ΦT
Zβ

(
M−1ΦZβ

δjδ
T
i Φ

T
Zβ

M−1
)T

ΦZβ
δu

= −δTv ΦT
Zβ

M−1ΦZβ
δjδ

T
i Φ

T
Zβ

M−1ΦZβ
δu

(46)

Naming Q = ΦT
Zβ

M−1ΦZβ
, we got

∂

∂âu,v

∂KL(q(f) | p(f |y))
∂âi,j

=
1

2
Qv,j ·Qi,u =

1

2
Qj,v ·Qi,u (47)

where in the last equality we used that Q is symmetric. Using the definition of M we know
that

M−1 = I − ΦZβ
(A+Kβ)

−1ΦT
Zβ

=⇒ Q = Kβ −Kβ(A+Kβ)
−1Kβ (48)

This shows that Q is the posterior covariance of a GP with prior covariances Kβ and noise
covariances A.

∂

∂Â

∂KL(q(f) | p(f |y))
∂Â

=
1

2
Q⊗Q (49)

with ⊗ denoting the Kronecker product and Q a definite positive matrix. As the Kronecker
product of two definite positive matrices is definite positive, the optimal is a minimum of
the KL. Given that this second derivative is positive-definite, the value found is the global
minimum of the ELBO objective.
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Appendix B. Related Work

LA for DNNs was originally introduced by Mackay (1992), applying it to small networks
using the full Hessian. MacKay (1992) also proposed an approximation similar to the
generalized Gauss-Newton (GGN). The combination of scalable factorizations or diagonal
Hessian approximations (Martens and Grosse, 2015; Botev et al., 2017) with the GGN
approximation (Martens, 2020) played a crucial role in the resurgence of LA for modern
DNNs (Ritter et al., 2018; Khan et al., 2019). Recent works aim to relax the Gaussian
assumption of LLA adopting a Riemannian-Laplace approximation, where samples naturally
fall into weight regions with low negative log-posterior (Bergamin et al., 2023).

To address the underfitting issue associated with LA (Lawrence, 2001), particularly
when combined with the GGN approximation, Ritter et al. (2018) proposed a Kronecker
factored (KFAC) LLA approximation. This approach outperforms LA with a diagonal
Hessian matrix.

The GP interpretation of LLA (Khan et al., 2019) allows using GP approximate methods
to speed up the computations. Immer et al. (2021) propose to use a subset of the training
dataset as a scalable alternative to the true GP. Lee et al. (2022) propose a Mixture of
Experts approach where each expert is trained on a different soft-margin cluster. However,
the proposed clustering algorithm, although more efficient than Kernel-K-means, has linear
cost w.r.t. the training set size. VaLLA, on the other hand, has sub-linear training time
w.r.t. training set size due to mini-batch training. Moreover, it is not clear how to consider
neighboring clusters in high dimensional input spaces. The authors only provide code for a
1-dimensional problem. Third, fitting a local GP using the data of the corresponding cluster
and its neighbors is expected to overestimate the predictive variance since the model has
been trained with a smaller number of training instances. This is particularly the case in
datasets with millions of training instances such as Taxi. This problem is also described by
Immer et al. (2021).

Deng et al. (2022) proposed a Nyström approximation of the true GP covariance matrix
by using M ≪ N points chosen at random from the training set. The method, called ELLA,
has cost O(NM3). ELLA also requires computing the costly Jacobian vectors required in
VaLLA, but does not need their gradients. Unlike VaLLA, the Nyström approximation
needs to visit each instance in the training set. However, as stated by Deng et al. (2022),
ELLA suffers from over-fitting. An early-stopping strategy, using a validation set, is pro-
posed to alleviate it. In this case, ELLA only considers a subset of the training data. ELLA
does not allow for hyper-parameter optimization, unlike VaLLA. The prior variance σ2

0 must
be tuned using grid search and a validation set, which increases training time significantly.

The recent work of Scannell et al. (2024) proposes a similar approach to VaLLA, where an
inducing point sparse approach is used to construct a GP from a pre-trained DNN. However,
two main points differentiate this work from our approach: (i) the pre-trained DNN is not
kept as the posterior mean of the model, potentially losing prediction performance and
also departing from LLA’s post-hoc nature and goal; (ii) instead of using mini-batches to
optimize variational parameters, they perform a full iteration over the training data to
find optimal variational parameters. Thus, this results in a potentially slower method than
VaLLA, which due to early-stopping and stochastic optimization, can avoid iterating over
the full dataset.
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Samples from a GP posterior can be efficiently computed using stochastic optimization,
eluding the explicit inversion of the kernel matrix (Lin et al., 2024). This approach can
be extended to LLA to generate samples from the GP posterior, avoiding the O(N3) cost
(Antorán et al., 2023). However, this method cannot provide an estimate of the log-marginal
likelihood for hyper-parameter optimization. To address this limitation, Antorán et al.
(2023) propose using the EM-algorithm, where samples are generated (E-step) and hyper-
parameters are optimized afterwards (M-step) iteratively. The EM algorithm significantly
increases computational cost, as generating a single sample is as expensive as training the
original DNN on the full data. Finally, the method of Antorán et al. (2023) only considers
classification problems.

Appendix C. MAP solution in Hilbert Space

Proposition 2 assumes that g(·, θ̂) ∈ H. In practice, this need not be the case. Covariance
functions such as squared exponential or Matérn are recognized for encompassing the entire
space of continuous functions. However, whether g(·, θ̂) ∈ H holds in general remains
unknown. We assume that if g(·, θ̂) /∈ H, then H is sufficiently expressive to include a
close approximation to g(·, θ̂). Consequently, g(·, θ̂) can be used as the sparse GP posterior
mean.

Whether the map solution is in the Hilbert space might be difficult (if not impossible)
to know. However, there are cases where it can be theoretically shown; for example in a
linear model. Let the map solution be a linear model as

g(x, (w, b)) = wTx+ b .

Then, the features (Jacobians) are

ϕ(x) = (xT , 1)T .

With a single inducing point z and scalar value a ∈ R, the mean function would be

m(x) = aϕ(x)Tϕ(z) = a(xT z+ 1) .

This recovers the MAP solution if a = b and z = w/a. However, if the model is not linear
but has a linear last layer as

g(x, (w, b, θ)) = wThθ(x) + b ,

where hθ is a non-linear function that depends on parameters θ. Then, the features (Jaco-
bians) are

ϕ(x) =
(
hθ(x)

T , 1, (∇θhθ(x))
Tw
)T

.

Here it might be difficult to check if there exists a combination that yields the map solution
as the mean function.
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VaLLA Val M = 5 VaLLA No-Val M = 5 LLA

VaLLA Val M = 10 VaLLA No-Val M = 10 ELLA M = 10

Figure 2: Predictive distribution (mean and two times the standard deviation) on a toy
1D regression dataset with a 2 hidden layer MLP with 50 units. Training points
are shown in black and the validation set is shown in orange. The first column
shows the obtained predictive distribution using early-stopping and a validation
set, with 5 and 10 inducing points. The second column shows the results obtained
without early-stopping. LLA and ELLA are shown in the last column.

Appendix D. Over-fitting and Early Stopping
In Section 3 we mentioned the fact that the standard maximization of the ELBO leads to
null predictive variances. The optimal value for the prior variance is infinite as a result of
the mean being fixed to the optimal MAP solution. In a regression scenario with Gaussian
noise with variance σ2 the first term in the r.h.s. of (5) becomes:∑N

i=1−
log(2πσ2)

2 − (yi−g(xi,θ̂))
2

2σ2 − K⋆(xi,xi)
2σ2 (50)

where (yi−g(xi, θ̂))
2 is constant. Maximizing (50) w.r.t. σ2

0 results in the prior covariances,
σ2
0Jθ̂(x)

TJθ̂(x
′), tending to 0. This makes posterior covariances K⋆(xi,xi) also tend to 0,

effectively cancelling the last term in (50). The KL term in (5) is also optimal and 0 if
σ2
0 → 0.

We circumvent this by applying α-divergences, which are not ill-defined in this learning
setup; allowing the optimization of the prior. However, the use of this optimization objective
is not perfect and we faced the fact that it tends to over-fit the prior variance to the training
data. The middle column of Figure 2 (middle) shows the obtained predictive distribution
(two times standard deviation) learned from VaLLA using the black points as training data.
The MAP solution is obtained using a 2 hidden layer MLP with 50 hidden units and tanh
activation, optimized to minimize the RMSE of the training data for 10000 iterations with
Adam and learning rate 10−3. VaLLA on the other hand is trained for 20000 iterations. As
one may see in the image, the prior variance is fitted to the data to the point where the
uncertainty does not increase in the middle gap of the data.

In this experiment, VaLLA optimizes hyper-parameters along with the variational objec-
tive. LLA optimizes the prior variance and likelihood variance by maximizing the marginal
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M = 5 M = 10 M = 20
Initial Inducing Points
Optimized Inducing Points

Initial Inducing Points
Optimized Inducing Points

Initial Inducing Points
Optimized Inducing Points

Figure 3: Predictive distribution (two times the standard deviation) on a toy 1D regression
dataset with a 2 hidden layer MLP with 50 units. The obtained results for 5, 10
and 20 inducing points for VaLLA are shown in the first row. ELLA’s predictive
distribution with the same amount of samples from the training data is shown in
the second row. LLA’s predictive distribution is shown in dotted orange.

log likelihood and ELLA uses LLA’s optimal hyper-parameters. In this situation there
are two simple courses of action: use the ELBO and choose the prior variance by cross-
validation; or perform early-stopping with the α-divergences objective, using a validation
set to stop training before over-fitting. The latter may not work as it assumes that there is
a point during training where the prior variance truly explains the underlying data without
over-fitting. However, as the prior variance is set to a relatively large value compared to the
optimal one (which is small and leads to over-fitting), this method resulted in great perfor-
mance for VaLLA. The left column of Figure 2 shows the obtained predictive distribution
(two times standard deviation) learned from VaLLA, in this case, using the black points as
training data and the orange points as the validation set. In the experiments, we computed
the NLL of the validation set every 100 training iterations and stopped training when it
worsens. This also allowed us to save computational time.

Appendix E. Increasing Inducing Points

Using the optimal covariance in Proposition 3, if the set of inducing points equals the
training points Z = X, the posterior distribution of VaLLA equals that of the exact LLA
Gaussian Process. This suggest that increasing the number of inducing points would lead to
better uncertainty estimations. In this section, we aim to show how close is the predictive
distribution of VaLLA to that of LLA when we increase the number of inducing points.

Figure 3 shows the obtained predictive distribution of VaLLA (first row) and ELLA
(second row) for M = 5, M = 10 and M = 20 inducing points/samples. The initial and
final locations of the inducing points are also shown for VaLLA. The posterior distribution
obtained by LLA is shown in dotted orange. The MAP solution is obtained using a 2 hidden
layer MLP with 50 hidden units and tanh activation, optimized to minimize the RMSE of
the training data for 12000 iterations with Adam and learning rate 10−3. VaLLA on the
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Algorithm 1: VaLLA’s training loop with α = 1

Require: Pre-trained MAP solution f , input batch X,y, m number of inducing points and
T iterations.
Z← kmeans(X,m) {Initialize inducing points}
L← I {Initialize Cholesky decomposition of A}
for i ∈ {0, . . . , T − 1} do

(Xb,yb)← get_batch() {Get mini-batch of data}

Jx ← compute_jacobian(Xb) {Compute Jacobians}
Jz ← compute_jacobian(Z)

Kx ← σ2
0JxJ

T
x {Compute Kernels}

Kxz ← σ2
0JxJ

T
z

Kz ← σ2
0JzJ

T
z

A← LLT {Compute Variational Matrix}

Q_mean← f(Xb) {Compute posterior mean}
Q_var ←Kx −Kxz(A

−1 +Kz)
−1KT

xz {Compute posterior covariance matrix}

KL← compute_KL(A,Kz) {Compute Kullback-Leibler divergence}
NLL← compute_NLL(yn, Q_mean,Q_var) {Compute Negative Log-likelihood}
loss← − len(X)

len(Xb)
NLL+KL

Optimize parameters by minimizing loss.
end for

other hand is trained for 30000 iterations. For this experiment, VaLLA and ELLA use the
optimal prior variance and likelihood variance obtained by optimizing LLA’s marginal log
likelihood. As one may see in the image, it is clear that one of the main differences between
the two methods is that VaLLA tends to over-estimate the variance whereas ELLA tends
to infra-estimate it, compared to LLA. Furthermore, the value of M for which the model is
closer to the LLA posterior is lower for VaLLA than for ELLA. As we increase M , VaLLA’s
predictive distribution becomes closer and closer to that of LLA.

The initial and final position of the inducing locations is also shown in the figure. For
this experiments, the initial values are computed using K-Means. It can be seen how VaLLA
is capable of tuning the inducing locations and move them from one cluster of points to
another as needed. This is one of the main advantages of this method compared to ELLA.

Appendix F. Pseudocode

Algorithm 1 shows the structure of VaLLA’s training loop, where no Early-Stopping is
considered. Using the kernels and A it is easy to compute the KL in Eq. 5. As a result,
the training loop is easy to implement, since q(f), given by Q_mean and Q_var are easily
computable as detailed in the algorithm.
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Appendix G. Further Experiments

We compare VaLLA with other methods using the LLA implementation by Daxberger
et al. (2021a). VaLLA utilizes a batch size of 100. For regression, MNIST and FMNIST
problems, we train our own DNN (standard multi-layer perceptron), which is stored for
reproducibility. In the CIFAR10 experiments with ResNet, we extract the results for other
methods from Deng et al. (2022) and use the same DNN for VaLLA. Hyper-parameters in
all LLA variants (diagonal, KFAC, last-layer LLA) are optimized based on the marginal
log-likelihood estimate. Additional experimental details are given in Appendix H.

G.1. Synthetic Regression

We compare the predictive distribution of VaLLA with that of LLA (which is considered
the optimal method), other LLA variants and ELLA, on the 1-D regression problem of
Izmailov et al. (2020). In ELLA and VaLLA, we use the optimal hyper-parameters from
LLA. The results in Figure 1 illustrate that VaLLA’s predictive distribution closely aligns
with that of LLA. Figure 3 (see Appendix E) depicts the predictive distributions of VaLLA
and ELLA for varying numbers of inducing points and points in the Nyström approximation,
respectively. It shows that VaLLA converges to the true posterior faster than ELLA, with
VaLLA tending to over-estimate the predictive variance while ELLA under-estimates it. In
Figure 2 (see Appendix E) we observe the effect of tuning the prior variance in VaLLA in
another toy 1-D problem, with and without early-stopping. Notably, early stopping, using
a validation set, prevents overly small predictive variances in VaLLA. Finally, we observe
that when VaLLA estimates the prior variance by maximizing the α-divergence, it tends to
underestimate LLA’s predictive variance.

G.2. Airline, Year and Taxi Regression Problems

We carry out experiments on large regression datasets. (i) The Year dataset (UCI) with
515, 345 instances and 90 features. We use the original train/test splits. (ii) The US flight
delay (Airline) dataset (Dutordoir et al., 2020). Following Ortega et al. (2023) we use
the first 700, 000 instances for training and the next 100, 000 for testing. 8 features are
considered: month, day of month, day of week, plane age, air time, distance, arrival time
and departure time. (iii) The Taxi dataset, with data recorded on January, 2023 (Salimbeni
and Deisenroth, 2017). 9 attributes are considered: time of day, day of week, day of month,
month, PULocationID, DOLocationID, distance and duration. We filter trips shorter than
10 seconds and larger than 5 hours, resulting in 3 million instances. The first 80% is
used as train data, the next 10% as validation data, and the last (10%) as test data. In
all experiments, a 3-layer DNN with 200 units, tanh activations and L2 regularization is
considered. VaLLA and ELLA use 100 inducing points and 100 random points, respectively.

The table displayed on the l.h.s. of Figure 4 presents the averaged results over 5 random
seeds. LLA is not considered here due to intractability. Negative log likelihood (NLL),
continuous ranked probability score (CRPS) (Gneiting and Raftery, 2007) and a centered
quantile metric (CQM), described below, are reported. We observe that VaLLA performs
best according to NLL and CQM, while it gives worse results in terms of CRPS compared
to the other methods.
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Airline Year Taxi

Model NLL CRPS CQM NLL CRPS CQM NLL CRPS CQM
MAP 5.087 18.436 0.158 3.674 5.056 0.164 3.763 3.753 0.227
LLA Diag 5.096 18.317 0.144 3.650 4.957 0.122 3.714 3.979 0.270
LLA KFAC 5.097 18.317 0.144 3.650 4.955 0.121 3.705 3.977 0.270
LLA∗ 5.097 18.319 0.144 3.650 4.954 0.120 3.718 3.975 0.270
LLA∗ KFAC 5.097 18.317 0.144 3.650 4.954 0.120 3.718 3.976 0.270
ELLA 5.086 18.437 0.158 3.674 5.056 0.164 3.753 3.754 0.227
VaLLA 100 4.923 18.610 0.109 3.527 5.071 0.084 3.287 3.968 0.188
VaLLA 200 4.918 18.615 0.107 3.493 5.026 0.076 3.280 3.993 0.188 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4: (left) Results on regression datasets. (right) Illustration of CQM on Taxi. Average
results across 5 different random seeds (standard deviations always < 10−4 and
omitted). Best value highlighted in purple and second to best in teal. ∗ for Last
Layer LLA.

Centered Quantile Metric (CQM). In regression, CQM assesses the calibration of
the predictions, extending the Expected Calibration Error (ECE) to regression problems
with Gaussian predictions with the same mean but different variance. CQM calculates the
centered interval around the mean with probability mass α ∈ (0, 1). For Gaussian predictions
N (µ(x), σ2(x)), the open interval is defined as I(x, α) = (λ(−α), λ(α)), where λ(α) =
Φ−1
µ(x),σ2(x)

(1+α
2 ) with Φµ(x),σ2(x) the CDF of a Gaussian with mean µ(x) and variance σ2(x).

The fraction γ of test points falling inside the interval is then computed. If the predictive
distribution is well calibrated, γ ≈ α. Formally,

CQM =

∫ 1

0

∣∣∣P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)]− α

∣∣∣ dα . (51)

All methods utilize the pre-trained DNN solution as predictive mean. Thus, the differences
in I(x, α) stem from the predictive variance. Evaluating the integrand in (51) on a grid of α
values allows us to visually interpret the uncertainty estimation of each method. The r.h.s.
of Figure 4 shows P(x,y) [y ∈ I(x, α)] for several models on the Taxi dataset. In general, all
methods tend to over-estimate the actual predictive variance, as evidenced by the values
above the diagonal. The l.h.s. of Figure 4 shows CQM estimated using trapezoid integration
with 11 points. We refer to Appendix I for more details on the CQM metric.

G.3. Image Classification Problems

MNIST and FMNIST. We employ a 2-layer fully connected DNN with 200 units in
each layer and tanh activations. In VaLLA we considered 100 and 200 inducing points, while
in ELLA, 2000 random points are used. The Out-of-distribution (OOD) detection ability
of each method is evaluated using the entropy of the predictive distribution as a score. We
compute the area under the ROC curve (AUC) of the binary problem that distinguishes
between instances from pairs of datasets MNIST/FMNIST and FMNIST/MNIST (Immer
et al., 2021). Moreover, in FMNIST we also assess the robustness of the predictive distri-
bution by rotating the test images up to 180 degrees and computing the ECE and NLL on
rotated images (Ovadia et al., 2019).
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Model ACC NLL ECE BRIER OOD-AUC
MAP 97.6 0.076 0.008 0.036 0.905
LLA Diag 97.4 0.143 0.072 0.053 0.922
LLA KFAC 97.5 0.094 0.029 0.041 0.949
LLA∗ 97.6 0.081 0.015 0.037 0.909
LLA∗ KFAC 97.6 0.081 0.015 0.037 0.909
ELLA 97.6 0.076 0.008 0.036 0.905
Sampled LLA 97.6 0.087 0.026 0.040 0.954
VaLLA 100 97.7 0.076 0.010 0.036 0.916
VaLLA 200 97.7 0.075 0.010 0.035 0.921

102 103 104

Seconds

VaLLA 200

VaLLA 100

Sampled LLA

ELLA

LLA? KFAC

LLA?

LLA KFAC

LLA Diag

Figure 5: (left) MNIST experiments. Results averaged over 5 different random seeds (stan-
dard deviations < 10−4 in all cases and omitted). (right) Box-plots of training
times in seconds. ELLA considers 10 prior values chosen using a validation set.
Sampled-LLA uses 8 EM steps and 32 samples. Best value is highlighted in pur-
ple and second to best in teal. ∗ for Last Layer LLA.

Model ACC NLL ECE BRIER OOD-AUC
MAP 86.6 0.373 0.009 0.193 0.874
LLA Diag 86.2 0.397 0.043 0.201 0.914
LLA KFAC 86.5 0.377 0.014 0.194 0.932
LLA∗ 86.6 0.373 0.008 0.193 0.882
LLA∗ KFAC 86.6 0.373 0.008 0.193 0.880
ELLA 86.6 0.373 0.008 0.193 0.874
VaLLA 100 87.4 0.335 0.011 0.182 0.923
VaLLA 200 87.6 0.332 0.013 0.181 0.933
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Figure 6: (left) Results on FMNIST. Results are averaged over 5 different random seeds
(standard deviations are lower than 10−4 and omitted). Best value is highlighted
in purple and second to best in teal. ∗ for Last Layer LLA. (right) ECE and
NLL for rotated FMNIST.

The left table in Figure 5 shows the results on MNIST. VaLLA gives better uncertainty
estimates in terms of NLL and the Brier score, but performs less effectively in terms of
ECE. Remarkably, VaLLA improves prediction accuracy (ACC) due to the approximation
of Daxberger et al. (2021b) to compute class probabilities in multi-class problems. In
terms of OOD-AUC VaLLA outperforms the MAP solution but lags behind other methods
s.a. Sampled-LLA or LLA with Kronecker approximations. Figure 5 (right) illustrates the
training times for each method, with VaLLA being faster than ELLA, Sampled-LLA or
Last-Layer LLA.

Finally, the left table in Figure 6 displays the results on FMNIST. Here, VaLLA excels
in prediction accuracy and provides the best uncertainty estimates in terms of NLL and
the Brier score. Although it does not perform as well in terms of ECE, the differences are
small. VaLLA also achieves the best results in OOD-AUC. Figure 6 (right) shows VaLLA
holds better performance in terms of ECE and NLL as the test images’ corruption increases
(rotation level), indicating the greater robustness of VaLLA’s predictive distribution.

CIFAR10 and ResNet. Among with Table 1 that shows ACC, NLL and ECE in the
ResNet-Cifar10 experiment, Figure 7 shows the NLL on the perturbed test set with 5
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Sampled

Figure 7: Results on corrupted CIFAR10 with ResNet56. Sampled LLA uses 64 samples
and ELLA uses M = 2000 and K = 20.

increasing levels of 19 image corruptions (Deng et al., 2022). Each box-plot summarizes
the test NLL for each intensity level across all 19 corruptions. The results again highlight
VaLLA’s robust predictive distribution, achieving also lower NLL compared to the other
methods.

Appendix H. Experimental Details

Source code for the conducted experiments can be accessed in the following anonymous
repository: https://github.com/Ludvins/Variational-LLA/tree/main.

H.1. MAP solutions

For regression problems (Year, Airline and Taxi datasets), a 3-layer fully connected NN
was used with 200 units in each layer. The optimal weights are obtained by minimizing
the RMSE using 20000 iterations of batch size 100 and Adam optimizer (Kingma and Ba,
2015) with learning rate 10−2 and weight decay 10−2.

For MNIST and FMNIST experiments, a 2-layer fully connected NN was used with 200
units in each layer. The optimal weights are obtained by minimizing the NLL using 20000
iterations of batch size 100 and Adam optimizer (Kingma and Ba, 2015) with learning rate
10−3 and weight decay 10−3.

H.2. Laplace Library

The Laplace library (Daxberger et al., 2021a) was used to perform last-layer, KFAC and
diagonal approximations of the LLA method and optimize the prior variance on each case.
The latter is done by optimizing the log marginal likelihood of the data using the library’s
log_marginal_likelihood method for 40.000 iterations with the Adam optimizer and
learning rate 10−3.

H.3. Efficient Kernel Computation for MLP

In this section we discuss an efficient implementation for computing the Neural Tangent
Kernel κ(x,x′). First of all, take into account that the computation of the kernel can be
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reduced to a summation on the number of parameters of the model:

κ(x,x′) = σ2
0Jθ̂(x)

TJθ̂(x
′) = σ2

0

∑
θs∈θ̂

∂

∂θs
g(x, θ̂)

∂

∂θs
g(x′, θ̂). (52)

One of the limitations of computing the kernel is storing Jθ̂(x) in memory, which is a 3
dimensional tensor of (batch size, number of classes, number of parameters). Computing
the kernel as a sum allows to simplify the required computations significantly (we no longer
have to store in memory the Jacobians). Consider now a MLP as

g(x, θ̂) = hL ◦ a ◦HL−1 ◦ · · · ◦ a ◦ h1(x) , (53)

where each function a is a non-linear activation function and each function h is a linear
function of the form

hl(x) = W T
l x+ bl . (54)

With this, g is supposed to be a fully-connected neural network of L layers. Each of the
partial derivatives of the neural network are

∂

∂Wl,j,i
g(x, θ̂) and ∂

∂bl,j
g(x, θ̂) ∀l = 1, . . . , L , (55)

and the kernel is computed simply by adding the product of these derivatives. Here, i is a
sub-index denoting input i-th to layer l. Similarly, j is a sub-index denoting each component
of the bias vector parameter at layer l, or similarly, each output of that layer.

In fact, using the structure of the model and the chain rule, the derivative of the oth

output of the network w.r.t. the jth, ith weight parameter of the lth layer is:

∂

∂Wl,j,i
go(x, θ̂) =

(
∂

∂hl
go(x, θ̂)

)T ( ∂

∂Wl,j,i
hl

)
, (56)

where each of the two vectors in the r.h.s. has length equal to the number of units in the
layer l. In fact

∂

∂Wl,j,i
hl = 1l · a(hl−1)i , (57)

where a(hl−1)i corresponds to the inputs of the lth layer. Moreover, ∂
∂hl

go(x, θ̂) can also be
computed using the chain rule:

∂

∂hl
go(x, θ̂) =

∂

∂hl+1
go(x, θ̂)

∂

∂hl
hl+1 =

∂

∂hl+1
go(x, θ̂)Wl

Tdiag(a′(hl)) , (58)

which can be easily computed by back-propagating the derivatives. The same derivations
can be easily done for the biases of each layer bl,j . As a result, the derivatives only depend
on a back-propagating term ∂

∂hl
go(x, θ̂) for each layer, the value of the parameters Wl, bl

and the propagated outputs at each layer h1, . . . , hL−1 evaluated at the non-linear activation
a(·) and its derivative a′(·). This means that, if we store the intermediate outputs of each
layer (h1, . . . , hL−1) on the forward pass of the model, by using a single backward pass, we
can compute ∂

∂hl
go(x, θ̂) for each layer.
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Year Airline Taxi
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Figure 8: Illustration of CQM, for each method, on the regression datasets Year (left),
Airline (middle) and Taxi (right). The MAP solution is given by a fully connected
network with 3 hidden layers of 200 units and tanh activations.

Critically, given each ∂
∂hl

go(x, θ̂), we can add the contribution of each layer to the
kernel, using (56). In this process, we can sped-up the computations by using structure in
the derivatives. For example, in (57) we observe that the derivative has a simple form which
is a vector of ones times a scalar. Furthermore, there is no dependence on j, the output
unit corresponding to the weight Wl,j,i. Therefore, for two instances x and x′, the kernel
contribution (ignoring the prior variance parameter) corresponding to outputs o and o′ is:

∂

∂Wl,j,i
go(x, θ̂)

∂

∂Wl,j,i
g′o(x

′, θ̂) =

(
∂

∂hl
go(x, θ̂)

)T ( ∂

∂Wl,j,i
hl

)(
∂

∂hl
go(x

′, θ̂)

)T ( ∂

∂Wl,j,i
hl

)
=

(
∂

∂hl
go(x, θ̂)

)T ( ∂

∂Wl,j,i
hl

)(
∂

∂Wl,j,i
hl

)T ( ∂

∂hl
g′o(x

′, θ̂)

)
=

(
∂

∂hl
go(x, θ̂)

)T

1l · a(hl−1(x))i · a(hl−1(x
′))i1

T
l

(
∂

∂hl
g′o(x

′, θ̂)

)
= slo,xa(hl−1(x))i · a(hl−1(x

′))is
l
o′,x′ ,

= slo,xs
l
o′,x′a(hl−1(x))ia(hl−1(x

′))i , (59)

with slo,x =
(

∂
∂hl

go(x, θ̂)
)T

1l a scalar. Similar simplifications occur in the case of, e.g., a
convolutional layer.

Summing up, by using this method, all the required kernel matrices can be easily and
efficiently computed, for a mini-batch of data points and a set of inducing points, with a
similar cost as that of letting the mini-batch or the inducing points go through the DNN. A
disadvantage is, however, that the described computations will have to be manually coded
for each different DNN architecture. This becomes tedious in the case of very big DNN
with complicated layers, as described in Section 3.2.

Appendix I. Further Analysis of the Quantile Metric
As stated in Section 4, we proposed a new metric for regression problems that, in a way,
extends ECE to regression problems with Gaussian predictive distributions with the same
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mean. This kind of metric is desirable for LLA methods as all of them rely on keeping
the optimal MAP solution as the predictive mean of the model. They only differ in the
predictive variance. Formally, CQM computes for each α ∈ (0, 1) the probability that points
fall into the predictive centered interval of probability α. The underlying reasoning is that,
if the model explains the data well enough, α ·100% of the points will fall inside the α ·100%
centered quantile interval. Thus, the metric defined as

CQM =

∫ 1

0

∣∣∣P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)]− α

∣∣∣ dα , (60)

should be roughly 0 when the model predictive distribution is similar to the actual one,
given by the observed data.

Figure 8 shows the evolution of P(x⋆,y⋆) [y
⋆ ∈ I(x⋆, α)] w.r.t. α for the best performing

models in the regression problems. CQM corresponds to the area between the shown curve
and y = x (black line). This figure allows to argue that (in general) all methods are over-
estimating the predictive variance as they are giving values above the diagonal. That is, for
a specific value of α ∈ (0, 1), the reported probabilities are higher than α, meaning that, on
average, there are more points in I(x, α) than they should. That is, the predicted interval
is larger than it should, which can only mean that the variance is over-estimated. From a
geometrical perspective, it is clear that CQM is always greater than 0 and lower than 0.5;
independently of the model and dataset used.

In fact, this figure allow to visually study the level of over/infra-estimation of the pre-
diction uncertainty, for each degree of confidence α. For example, in the Year dataset
(Figure 8) we see that VaLLA slightly over-estimates the uncertainty for α ∈ (0, 0.7) while
it infra-estimates it for larger values of α.
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