
PS-Radar: A High-Precision Geoparsing Solution for Real-Time
Location Analysis

Anonymous ACL submission

Abstract001

PS-Radar is an advanced geoparsing solu-002

tion utilizing OSM Nominatim to analyze003

text messages and generate a curated list004

of potential locations mentioned within.005

These results are then disambiguated006

and ranked based on their likelihood of007

accurately representing the target loca-008

tions. Our system integrates data from009

OSM and other sources, enabling real-010

time map visualization, geofencing, area-011

based filtering, and alerting for monitor-012

ing social media message streams. Fur-013

thermore, we introduce the SonarChal-014

lenge dataset, comprising 1489 anno-015

tated messages containing location refer-016

ences. In our evaluation using the Sonar-017

Challenge dataset, our solution achieves018

an 88.49% recall rate for identifying men-019

tioned locations and a 92.51% precision020

rate for accurately pinpointing the output021

locations.022

1 Introduction023

In the era of big data, much information ex-024

ists as unstructured text, notably on plat-025

forms like X (formerly Twitter), where users026

post an average of 6,000 tweets per second027

(liv). Some tweets are crucial for identify-028

ing and reporting events such as terrorist029

attacks, accidents, infrastructure issues, or030

natural disasters, where the location of the031

event is critical.032

For safety responders, who operate within033

specific geographical areas, sifting through034

numerous messages is challenging. Con-035

verting unstructured text that includes lo-036

cations into geographical coordinates can037

significantly aid in event detection and re-038

sponse. In information retrieval, the finding039

of location strings is known as location entity 040

recognition or location extraction. 041

The initial step involves identifying the 042

substring that denotes the location within 043

the message. Various methods exist for this, 044

including co-occurrence or n-gram match- 045

ing against databases or gazetteers like 046

OpenStreetMaps or GeoNames, Named En- 047

tity Recognition (NER) techniques, and the 048

Question-Answering (QA) models used by 049

our AnonymousSubmission Key Insights en- 050

gine. These methods output a string rep- 051

resenting the location, such as “in the mu- 052

seum” from “A fire started in the museum.”, 053

which may not always contain a proper noun 054

toponym. 055

The next step is toponym resolution or 056

place name disambiguation, where the ge- 057

ographical coordinates of the identified to- 058

ponyms are determined, aligning with the 059

definition of geoparsing as described in The 060

GIS Encyclopedia (gis). 061

Geoparsing handles ambiguous ref- 062

erences in unstructured discourse, 063

such as “Al Hamra”, which is the 064

name of several places, including 065

towns in both Syria and Yemen. 066

Geoparsing is complex, particularly with 067

repeated place names. For instance, “I love 068

Paris” could refer to Paris, France, or Paris, 069

Ontario, Canada, based on context. An effec- 070

tive geoparser must discern the most likely 071

geographical coordinates using surrounding 072

contextual information. 073

This paper introduces PS-Radar, a light 074

and accurate geoparsing algorithm, and the 075

SonarChallenge, a benchmark dataset for 076

1

https://AnonymousSubmission.com/

evaluating unsupervised geoparsers. PS-077

Radar utilizes Nominatim as its primary078

OpenStreetMap (OSM) search engine, with079

Geonames as a secondary parser. The algo-080

rithm operates unsupervised and is compat-081

ible with English and Dutch, with potential082

for adaptation to other languages supported083

by Nominatim. PS-Radar processes up to084

50 messages per second on a single process085

setup, achieving a top score of 80.90% in the086

SonarChallenge, with precision of 92.51%087

and recall of 88.49%.088

The paper is structured as follows: Sec-089

tion 2 reviews related work in geoparsing.090

Section 3 details the data types used and091

introduces the SonarChallenge benchmark.092

Section 4 describes our algorithmic solution,093

PS-Radar. Section 5 discusses the perfor-094

mance of PS-Radar and its results on the095

SonarChallenge dataset, comparing it with096

other tools and analyzing its commercial ap-097

plicability. Section 6 concludes the paper.098

Finally, Section 7 outlines limitations and099

future research avenues.100

2 Related Work101

2.1 Location Disambiguation102

Toponym extraction is well-explored in NLP,103

with Named Entity Recognition (NER) being104

prominent for location extraction.105

There are various approaches to derive106

final coordinates from raw location strings.107

Most of the final solutions are integrations108

with a blend of rule-based, ranking, and ML109

techniques.110

Rule-based algorithms, as delineated in111

foundational works such as Smith (2001),112

employ heuristics to verify the accuracy113

of candidates identified by search engines.114

These methodologies have undergone sig-115

nificant refinement over time and continue116

to hold relevance in contemporary applica-117

tions. A notable advancement in this domain118

is the incorporation of context-based heuris-119

tics, further developed by Wang (2010). This120

approach advocates for the analysis of poten-121

tial contextual overlaps with other location122

mentions within a text to resolve ambigui-123

ties. For instance, in the sentence “Oxford124

Street, my favourite street in London”, the 125

mention of “London” serves to disambiguate 126

the otherwise common street name “Oxford 127

Street”. 128

Ranking algorithms prioritize candidates 129

based on various factors such as population 130

density (Karimzadeh et al., 2019), adminis- 131

trative level (Shahi, 2016), co-occurrences, 132

and proximity to an anchor coordinate. 133

These factors help in determining the most 134

likely location among the identified candi- 135

dates. 136

Machine learning algorithms utilize model 137

training to perform candidate selection. 138

These methods integrate confidence fil- 139

tering and have been implemented using 140

various techniques such as Expectation- 141

Maximization (Manning and Schutze, 1999), 142

Neural Networks (Halterman, 2019), and 143

Support Vector Machines (Avvenuti et al., 144

2018). Recent advancements include the in- 145

tegration of external databases like DBpedia 146

(Nizzoli et al., 2020) and Wikidata (Laparra 147

and Bethard, 2020), which enhance the ac- 148

curacy of location identification. 149

The literature distinguishes methods 150

based on the desired granularity. Gelern- 151

ter and Balaji (2013) describe techniques 152

tailored for local geoparsing, such as identi- 153

fying streets and buildings. However, highly 154

localized methods may risk overfitting, as 155

noted by Karimzadeh et al. (2019). The 156

concept of spatial minimality or proximity, 157

suggested by Lieberman et al. (2010), posits 158

that toponyms within a document are likely 159

to form spatial clusters. This leads to meth- 160

ods that favor candidates in close spatial 161

proximity. While these methodologies prior- 162

itize minimizing spatial distance, they may 163

do so at the expense of generalization. 164

2.2 Corpora 165

Key datasets for testing algorithms include 166

GeoCorpora, a dataset of 6711 tweets, with 167

2122 containing at least one place name 168

(Wallgrün et al., 2018). Other datasets focus 169

on specific events, such as natural disasters 170

(Middleton et al., 2014; Gelernter and Balaji, 171

2013). 172

2

Dataset curation for geospatial analysis173

faces challenges like geographical distribu-174

tion bias, ambiguity in place names, anno-175

tation disagreements, and source text qual-176

ity. Geographical distribution often skews177

towards North America and Europe (Leetaru178

et al., 2013; Wallgrün et al., 2018). Ambigu-179

ity in place names can lead to non-valid data180

points or default values based on criteria181

like population density. Annotation disagree-182

ments stem from interpretative variations,183

and source text quality, particularly from so-184

cial media, impacts the location accuracy185

due to errors like typos and misspellings186

(e.g., Colosseum vs. Coliseum, Hawaii vs.187

Hawaai) .188

3 SonarChallenge data189

The SonarChallenge dataset is open-source190

and available for academic research1. It191

includes 1489 tweets, each containing at192

least one location verified as ground truth,193

covering various topics. Expert annotators194

have disambiguated each location, convert-195

ing them into OSM JSON format. The dataset196

provides the following structured informa-197

tion2:198

• "Message": The original tweet text con-199

taining the location(s).200

• "whereEvent": The specific text seg-201

ment for geoparsing analysis.202

• "NER": Named Entity Recognition re-203

sults, following IOB format, including204

the original token string, text span, en-205

tity type, and confidence score.206

• "Language": The ISO language code of207

the tweet.208

The dataset features tweets mentioning lo-209

cations in 60 countries, primarily the Nether-210

lands (46.5%), the USA (17.1%), and the211

UK (7.1%). It includes 101 distinct location212

types, such as administrative, residential,213

and suburb, along with natural elements like214

water areas, national parks, and peaks.215

1For participation and evaluation details, contact
AnonymousSubmission@AnonymousSubmission.com

2Schema shown in Appendix A

3.1 Scoring System 216

The scoring system rewards precision and 217

penalizes false positives, with the maximum 218

score achieved by perfect alignment with the 219

ground truth. Accurate predictions receive 220

full scores, while partial overlaps (e.g., pre- 221

dicting a town instead of a street) result in 222

proportional score reductions. Predictions 223

more specific than the ground truth (e.g., 224

predicting a street when the actual location 225

is a town) are similarly adjusted. A deviation 226

of up to 500 meters is allowed for roads to 227

account for discrepancies in OSM’s lower 228

administrative levels. False positives result 229

in complete score deductions. 230

The highest attainable score is 9236.5 231

points3. In addition to the primary scoring 232

system, the dataset provides precision, re- 233

call, Mean Squared Error (MSE), and Root 234

Mean Squared Error (RMSE) metrics. Error 235

calculations for MSE and RMSE are based 236

on the shortest Haversine distance between 237

false positive coordinates and their actual 238

locations. 239

4 PS-Radar 240

PS-Radar combines optimized heuristics 241

with machine learning (ML) to map event 242

locations, using distance and naming simi- 243

larities. It leverages external curated knowl- 244

edge and contextual information. The ML 245

model measures the confidence of the algo- 246

rithm’s output, allowing for precision tuning 247

through confidence thresholds. 248

4.1 Input data processing 249

The PS-Radar algorithm processes the fol- 250

lowing inputs: 251

• Search String: Primary text for loca- 252

tion extraction, ideally a focused con- 253

catenation of words pinpointing the lo- 254

cation. 255

• NER: Named Entities of type person 256

(PER) and location (LOC) found in the 257

message. 258

3Perfect algorithmic scores are impossible due to in-
herent location placement challenges on OSM objects,
such as segmented streets.

3

AnonymousSubmission@AnonymousSubmission.com

• Language: Language of the message,259

used to tailor queries to Nominatim.260

The preprocessing phase involves several261

key steps. Initially, stopwords are removed,262

except those in proper nouns (e.g., “Gulf263

of Biscay”). Acronyms are then mapped to264

their full location names using a curated265

list (e.g., UvA → Universiteit van Amster-266

dam). Demonyms are substituted with place267

nouns (e.g., “The Canadian town of Paris”→268

“Canada Paris”). Additionally, NER person269

(PER) entities are excluded from the search270

query to avoid incorrect results.271

4.2 Contextual knowledge272

Disambiguation in geoparsing is enhanced273

by analyzing the full textual context of a274

message. This process includes extract-275

ing and analyzing all NER-identified loca-276

tions, excluding NER person names, apply-277

ing demonym substitutions, and performing278

a country-level scan. Using the extracted279

location strings, a contextual framework is280

constructed for each message. This frame-281

work employs OpenStreetMap (OSM) ob-282

jects to assess location affinity and rank283

candidates for geolocating the whereEvent284

string.285

4.3 Candidates dynamic ranking286

This stage uses the whereEvent string as287

the primary geocoding objective.4 The al-288

gorithm initially correlates the whereEvent289

with contextual NER locations or scanned290

countries, aiming for overlap at the lowest291

administrative level. For instance, if the hy-292

pothesis suggests a street, the lowest level293

of affinity would be its neighborhood; for294

a city, it would be the province, region, or295

state. The algorithm assigns an internal im-296

portance score to rank against other OSM297

objects retrieved in queries.298

Part-of-Speech (POS) tagging helps to de-299

tect proper nouns indicative of locations.300

The whereEvent then undergoes cleaning301

while preserving linking stopwords.302

Example 4.1. Examples of the cleaning303

phase:304

4Formalization in Appendix H.

• in a bar in Rotterdam→ Rotterdam 305

• around the Tower of London → 306

Tower of London 307

• somewhere close to road A5067, 308

in the Trafford Park suburbs of 309

Manchester → A5067 Trafford Park 310

Manchester 311

This cleaning phase is crucial as the Nom- 312

inatim engine does not parse the input text, 313

it requires clear toponyms. Indiscriminate 314

deletion of stopwords can negatively impact 315

the results. 316

Example 4.2. Examples of naive deletion of 317

stopwords: 318

• Query: outside the Stade de France 319

• Indiscriminate deletion of stop- 320

words: Stade France ⇒ Stade, Bû, 321

Dreux, Eure-y-Loir, Centre-Val de 322

Loire, 28410, France 323

• Conservation of linking stop- 324

words: Stade de France ⇒ Stade 325

de France, Avenue du Stade de 326

France, Franc-Moisin - Bel-Air 327

- Stade de France, Saint-Denis, 328

Sena-Saint Denis, Ile-de-France, 329

93200, France 330

After cleaning, if the whereEvent result 331

is too long5, the algorithm defers to NER- 332

identified locations. Otherwise, dynamic 333

iteration disambiguates potential locations 334

within the whereEvent. The algorithm uses 335

max n-gram logic, favoring the longest n- 336

gram possible. 337

Example 4.3. Long match preference: 338

• New York → New York, USA ↛ York, 339

UK 340

• Santiago Bernabeu → Santiago 341

Bernabeu, Madrid, Spain ↛ 342

Santiago, Chile 343

• New Mexico → New Mexico, USA ↛ 344

Mexico 345

5Optimal value: 6 words

4

The approach starts with an n-gram itera-346

tion process, merging tokens forming nat-347

ural locations into a singular gram (e.g.,348

“Mediterranean Sea”, “Lake Michigan”).349

This reduces false positives from querying to-350

kens separately. Identified natural elements351

are sent to Nominatim for geolocation. Sub-352

sequently, a coordinate parser extracts coor-353

dinate strings for reverse geocoding to de-354

rive corresponding OSM objects.355

The n-gram iterator first processes NER-356

identified locations, focusing solely on the357

NER output. In its second pass, it incor-358

porates both the whereEvent string and359

the NER locations. The algorithm iterates360

through results from the longest combined361

length to individual tokens, evaluating each362

for potential matches with previously disam-363

biguated locations or earlier results. This dy-364

namic function transforms both the n-gram365

iterator buffer and the temporary output366

as matches or affinities are found between367

queries.368

Matches are defined as overlaps that prior-369

itize specific, detailed locations over broader370

areas. Affinities, in contrast, are continuous371

ranges rather than binary. These include372

fuzzy matching scores, sequential anchoring,373

static anchoring, OSM importance, and in-374

ternal importance. As matches and affinities375

evolve, they influence the ranking of Nomina-376

tim outputs and the trajectory of iterations.377

The process excludes n-grams correspond-378

ing to already disambiguated locations and379

removes contextual information used in dis-380

ambiguation for a final output candidate.381

4.4 Final cleaning and filtering score382

The final step involves thorough output383

cleaning to eliminate redundancies and as-384

sign a filtering score for noise reduction.385

This includes sanity checks to remove stop-386

words, incomplete strings, or parsing inac-387

curacies. It verifies whether entries are su-388

persets of others, removing redundant data.389

The filtering score is designed to mitigate390

noise, particularly when dealing with highly391

ambiguous entities. For example, the loca-392

tion name Zaragoza appears in seven dif-393

ferent countries. This scenario presents a 394

dilemma: whether to prioritize recall by pre- 395

senting all possible matches, or to focus 396

on precision by selecting the most probable 397

match based on the initial ranking. The filter- 398

ing score balances this trade-off by assign- 399

ing a value based on a confluence of factors, 400

including the place class, place type from 401

OpenStreetMap (OSM), and importance met- 402

rics. This approach enables effective noise 403

filtration, particularly when deploying the 404

geocoding solution in end-user applications, 405

as demonstrated in the confidence and sen- 406

sitivity section application. 407

4.5 Fine tuning 408

PS-Radar uses static variables as thresholds 409

in heuristic and rule-based decisions. We 410

employ a grid-search methodology to op- 411

timize performance, systematically explor- 412

ing a predefined multidimensional param- 413

eter space and assessing algorithmic per- 414

formance against precision, recall, and the 415

SonarChallenge score. This exercise en- 416

hances the algorithm’s generalization and 417

robustness through optimal static parameter 418

values. 419

In Figure 1, the impact of fine-tuning these 420

variables on precision and SonarChallenge 421

scores is illustrated.6 The figure presents 422

three pairwise iteration examples. The first 423

graph demonstrates that stricter thresholds 424

for fuzzy matching correlate with increased 425

precision. The second graph plots the im- 426

portance difference for a fuzzy match to 427

be ranked in the temporary output on the 428

x-axis, the importance difference allowed 429

for a NER country location candidate com- 430

pared to the top-ranked candidate for in- 431

clusion in the temporary output on the y- 432

axis, and the SonarChallenge score on the 433

z-axis. The third graph reveals an improve- 434

ment in precision when the distance thresh- 435

old for low administrative level reinforced 436

candidates—those with overlaps from higher 437

administrative levels—is tightened when in 438

comparison to another higher-ranked rein- 439

6For full pairwise comparisons and metric analyses,
refer to Appendix J.

5

Figure 1: Example Pairwise Comparison: SonarChallenge score results

forced output. This implies that a candidate440

is disregarded if it lies beyond this threshold.441

Additionally, it becomes evident that the Lev-442

enshtein distance applied to ElasticSearch443

Geonames does not significantly impact our444

algorithm, given the fuzzy-search feature in445

ElasticSearch that is triggered if the search446

query yields no initial findings.447

5 Results448

We conduct a comparative analysis of our al-449

gorithm against two notable open-source so-450

lutions: Geoparsepy (Middleton et al., 2018)451

and Mordecai (Halterman, 2017). To en-452

sure a fair comparison, we modify our Sonar-453

Challenge dataset to include only city loca-454

tions, aligning with the precomputed dataset455

type in Geoparsepy. Mordecai’s reliance456

on the Geonames format prevents direct457

comparison with the SonarChallenge’s Open-458

StreetMap (OSM) input specifications. We459

evaluate also the performance of PS-Radar,460

Geoparsepy, and Mordecai using Mean Ab-461

solute Error (MAE) and Root Mean Squared462

Error (RMSE), calculated based on the Eu-463

clidean distance between the actual and pre-464

dicted locations.465

Table 1: Performance Metrics (Part 1)

Max. Score Score (%) TP/FP/Total

Geoparsepy 1343 709 (52.79) 251/93/354
PS-Radar 1343 1086.5 (80.90) 316/21/354
Mordecai NA NA NA/NA/NA

Our solution demonstrates superior perfor-466

mance in overlap completion as measured467

Table 2: Performance Metrics (Part 2)

Precision Recall MAE RMSE

Geoparsepy 72.97% 70.90% 83.08 391.98
PS-Radar 93.77% 89.27% 97.85 572.92
Mordecai NA NA 598.25 2389.68

by the SonarChallenge7. PS-Radar excels 468

in recalling true locations, achieving a rate 469

of 89.3%, and in precision when predicting 470

locations, with a rate of 93.8%. The algo- 471

rithm maintains a reliable balance between 472

recall and precision, evidenced by a 91.5% 473

F1-Score. 474

However, in terms of average distance er- 475

ror, Geoparsepy surpasses our solution. PS- 476

Radar occasionally produces false positives 477

at significantly distant locations, adversely 478

affecting distance error metrics. Our integra- 479

tion with a full-planet OpenStreetMap (OSM) 480

database allows our engine to retrieve a 481

broader range of candidates, increasing the 482

risk of distant false positives. In contrast, 483

Geoparsepy’s restriction to city-level output 484

mitigates this risk. Consequently, while PS- 485

Radar is highly precise, with a Type I error 486

of only 6.2% compared to Geoparsepy’s 27%, 487

it deviates, on average, 14.8 km more from 488

the true coordinates in instances of false pos- 489

itives than Geoparsepy. 490

5.1 Ablation tests 491

In our ablation study, we dissect the algo- 492

rithm into distinct blocks to determine the 493

7For result metrics, we consistently utilize the
highest-ranked entry (best-guess approach).

6

contribution of each component. Starting494

with version zero (v0), we incrementally add495

blocks, enabling the atomization of each496

component’s impact.497

Figure 2: Results: Ablation Tests

The most significant improvements occur498

in versions v3, v4, and v6.499

Version 3 (v3) incorporates an early stop-500

ping mechanism, enhancing recall by 2.97%501

compared to version 2 (v2), with a cumu-502

lative improvement of 2.42%. This mecha-503

nism directs the parsing of long whereEvent504

strings to rely solely on NER-identified lo-505

cations, with an optimal cut-off length of 6506

tokens, simplifying input to the parser.507

Version 4 (v4) introduces a “distrust condi-508

tion” to demote street-level entries coincid-509

ing with nucleus-level locations more than510

10 km away from the nucleus’ centroid. This511

targets cases where street names match city512

names (e.g., “Oxford Street”, “Calle Madrid”,513

or “Rue de Bordeaux”). This enhancement514

increases precision by 4.51% over v3, with a515

cumulative delta of 3.63%.516

Version 6 (v6) adds a reinforcement pro-517

cess to the temporary output, strengthening518

entries with administrative affinity and dy-519

namically reranking them. Entries without520

overlaps are removed if distant from the re-521

inforced coordinate, significantly reducing522

false positives. This yields a 5.09% preci-523

sion improvement over version 5 (v5) and a524

cumulative delta of 9.11% from v0. 525

In summary, the incorporation of refine- 526

ment blocks into the core algorithm (v0) re- 527

sults in a recall gain of 0.39% and a notable 528

precision improvement of 10.39%. Detailed 529

descriptions and metrics of the ablation tests 530

can be found in Appendix I. 531

5.2 Confidence and Sensitivity 532

The PS-Radar algorithm integrates a voting 533

regressor (Wolpert, 1992) to assign a prob- 534

ability score to each output candidate in- 535

dependently and employs a rank-dependent 536

sensitivity level. 537

This voting regressor includes a Gradient 538

Boosting regressor, a Random Forest, and 539

a Linear Regression. The input vector com- 540

prises variables such as the entry’s OSM 541

type, fuzzy matching score, location rank, 542

importance, and correlations with other enti- 543

ties in the message. The outcomes are sum- 544

marized in Table 3. 545

Table 3: Voting Regressor results

Precision Recall F1-Score

False Output 86.83 82.24 84.47
True Output 83.92 87.11 85.49

Accuracy 85.65
Samples 167,750

A sensitivity level, ranging from 1 to 8, is 546

introduced based on the importance score 547

and OSM location types. Level 1 signifies 548

the highest-ranked entry, while level 8 rep- 549

resents the lowest. 550

The sensitivity level categorizes output en- 551

tries, indicating the preferred options for a 552

specific whereEvent and facilitating output 553

reduction. For instance, with a whereEvent 554

like “London” without additional context, all 555

potential matches are outputted. A more 556

conservative sensitivity level filters these lo- 557

cations to higher-ranked ones. Opting for 558

level 1 would focus on the highest probabil- 559

ity match, in this case "London, UK". This 560

represents a sliding recall/precision trade- 561

off, as illustrated in Figure 3. 562

On the other hand, the confidence score 563

7

Figure 3: Sensitivity slider: 8→ 4→ 1

within the PS-Radar algorithm is designed to564

evaluate the likelihood of each entry being565

a true positive. This metric assesses entries566

independently, irrespective of their order in567

the output. To illustrate this, consider the568

previous scenario involving the whereEvent569

of “London”. We analyze the first entry in570

the output (London, UK for both) but with571

different contexts in the whereEvent:572

whereEvent London London, UK

Sensitivity Level 1 1
Confidence Score 75.84 98.68

From this analysis, it is evident that the573

specificity of the “UK” context in the second574

option significantly enhances the confidence575

level, logically suggesting a higher likelihood576

of it being a true positive.577

In summary, PS-Radar uses a standard-578

ized procedure to assign sensitivity levels,579

enabling consistent visualization and filtra-580

tion of output locations for specific preci-581

sion/recall balances or map pollution levels.582

Additionally, a confidence score gauges the583

probability of each entry being a true posi-584

tive.585

6 Conclusion586

The PS-Radar geoparser is a real-time pro-587

cessing tool designed to extract locations588

from messages by employing Named Entity589

Recognition (NER) and Question-Answering590

(QA) techniques. It parses text strings,591

geocodes potential matches using Open-592

StreetMap (OSM) Nominatim, and disam-593

biguates the final location based on con-594

textual information. Our analysis demon-595

strates how PS-Radar surpasses major open-596

source alternatives, while being able to pro- 597

cess large datasets in real-time through 598

the AnonymousSubmission platform. The 599

service provides various information keys 600

for each result, including a sensitivity level 601

that allows end-users to balance between 602

noise/recall and precision enhancement. 603

PS-Radar boasts a broad spectrum of ap- 604

plications. It enables real-time visualization 605

of locations mentioned in message streams, 606

which can be pivotal in tracking the geo- 607

graphical progression of events like natural 608

disasters. Geocoding messages enhances 609

filtering capabilities for monitoring specific 610

cases. The implementation of geofencing in 611

social media contexts allows for the exclu- 612

sion of irrelevant messages, thereby reduc- 613

ing noise and increasing efficiency for both 614

intelligence services and end-users. This is 615

especially crucial when tracking ambiguous 616

locations such as London or Main Street, 617

where results can span a wide geographi- 618

cal range due to their common occurrence. 619

Effective toponym disambiguation ensures 620

focus on relevant hits within the area of inter- 621

est. Additionally, PS-Radar augments alert 622

systems by incorporating geographical di- 623

mensions that are critical for report trigger- 624

ing. 625

7 Limitations 626

The algorithm remains open to modifica- 627

tions and could derive significant benefits 628

from the integration of additional informa- 629

tion and sources. One pertinent factor is 630

the incorporation of enhanced contextual 631

data. When an individual posts content on 632

social media, they often presuppose that 633

their immediate network is aware of their 634

background, leading to the omission of de- 635

8

tailed and explicit addresses. This forces636

algorithmic approaches to take assumptions637

on inferences and educated guesses. A sub-638

stantial enhancement would entail analyzing639

historical data to ascertain the user’s pri-640

mary geographical sphere of activity, which641

could then be utilized during the disambigua-642

tion stage. This approach could amelio-643

rate instances where a user references a644

street name that could correspond to mul-645

tiple cities. If it were established that the646

user’s main sphere of influence is in a spe-647

cific city, this could significantly improve dis-648

ambiguation efforts.649

Furthermore, another avenue for improve-650

ment is the utilization of external Knowledge651

Graphs to exploit additional identifiers, such652

as the locations of festivals, concerts, or653

sports events, the whereabouts of notable654

individuals, or the names and affected areas655

of natural disasters.656

A limitation of the PS-Radar algorithm657

arises when dealing with the disambigua-658

tion of numerous entities in a message. We659

adapted the model to also work with only660

NER locations. removing the dependency661

of a whereEvent extraction. If the model is662

required to analyze all NER locations and663

there are many, the strong disambiguation664

logic aimed at precision can become a bottle-665

neck. The algorithm attempts to form com-666

binations of these locations to find overlaps667

or matching OSM entries, which can be com-668

putationally intensive and may affect quality669

performance in such scenarios.670

The final area of development for the671

PS-Radar concerns its capability to inte-672

grate with geocoding services beyond Open-673

StreetMap (OSM). The inclusion of alterna-674

tive providers—primarily commercial, paid675

services—could enhance and strengthen the676

algorithm’s output.677

References678

Geoparsing - gis wiki | the gis encyclopedia.679

Twitter usage statistics - internet live stats.680

Marco Avvenuti, Stefano Cresci, Leonardo Niz-681
zoli, and Maurizio Tesconi. 2018. Gsp (geo-682

semantic-parsing): geoparsing and geotagging 683
with machine learning on top of linked data. 684
In European Semantic Web Conference, pages 685
17–32. Springer. 686

Judith Gelernter and Shilpa Balaji. 2013. An 687
algorithm for local geoparsing of microtext. 688
GeoInformatica, 17:635–667. 689

Andrew Halterman. 2017. Mordecai: Full text 690
geoparsing and event geocoding. The Journal 691
of Open Source Software, 2(9). 692

Andrew Halterman. 2019. Geolocating po- 693
litical events in text. arXiv preprint 694
arXiv:1905.12713. 695

Morteza Karimzadeh, Scott Pezanowski, Alan M 696
MacEachren, and Jan O Wallgrün. 2019. 697
Geotxt: A scalable geoparsing system for un- 698
structured text geolocation. Transactions in 699
GIS, 23(1):118–136. 700

Egoitz Laparra and Steven Bethard. 2020. A 701
dataset and evaluation framework for complex 702
geographical description parsing. In Proceed- 703
ings of the 28th International Conference on 704
Computational Linguistics, pages 936–948. 705

Kalev Leetaru, Shaowen Wang, Guofeng Cao, 706
Anand Padmanabhan, and Eric Shook. 2013. 707
Mapping the global twitter heartbeat: The ge- 708
ography of twitter. First Monday. 709

Michael D Lieberman, Hanan Samet, and Jagan 710
Sankaranayananan. 2010. Geotagging: Using 711
proximity, sibling, and prominence clues to 712
understand comma groups. In proceedings of 713
the 6th workshop on geographic information 714
retrieval, pages 1–8. 715

Christopher Manning and Hinrich Schutze. 1999. 716
Foundations of statistical natural language 717
processing. MIT press. 718

Stuart E Middleton, Giorgos Kordopatis-Zilos, 719
Symeon Papadopoulos, and Yiannis Kompat- 720
siaris. 2018. Location extraction from social 721
media: Geoparsing, location disambiguation, 722
and geotagging. ACM Transactions on Infor- 723
mation Systems (TOIS), 36(4):1–27. 724

Stuart E Middleton, Andrea Zielinski, Öcal 725
Necmioğlu, and Martin Hammitzsch. 2014. 726
Spatio-temporal decision support system for 727
natural crisis management with tweetcomp1. 728
In Decision Support Systems III-Impact of De- 729
cision Support Systems for Global Environ- 730
ments: Euro Working Group Workshops, EWG- 731
DSS 2013, Thessaloniki, Greece, May 29-31, 732
2013, and Rome, Italy, July 1-4, 2013, Revised 733
Selected and Extended Papers, pages 11–21. 734
Springer. 735

9

https://wiki.gis.com/wiki/index.php/Geoparsing
https://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.21105/joss.00091
https://doi.org/10.21105/joss.00091
https://doi.org/10.21105/joss.00091

Leonardo Nizzoli, Marco Avvenuti, Maurizio736
Tesconi, and Stefano Cresci. 2020. Geo-737
semantic-parsing: Ai-powered geoparsing by738
traversing semantic knowledge graphs. Deci-739
sion Support Systems, 136:113346.740

Dikshant Shahi. 2016. Apache solr. Springer.741

David A Smith and Gregory Crane. 2001. Dis-742
ambiguating geographic names in a historical743
digital library. In International Conference on744
Theory and Practice of Digital Libraries, pages745
127–136. Springer.746

Jan Oliver Wallgrün, Morteza Karimzadeh,747
Alan M MacEachren, and Scott Pezanowski.748
2018. Geocorpora: building a corpus to test749
and train microblog geoparsers. International750
Journal of Geographical Information Science,751
32(1):1–29.752

Xingguang Wang, Yi Zhang, Min Chen, Xing Lin,753
Hao Yu, and Yu Liu. 2010. An evidence-based754
approach for toponym disambiguation. In755
2010 18th International Conference on Geoin-756
formatics, pages 1–7. IEEE.757

David H Wolpert. 1992. Stacked generalization.758
Neural networks, 5(2):241–259.759

A SonarChallenge data structure

{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"Message": { "type": "string" },
"whereEvent": { "type": "string" },
"NER": {
"type": "array",
"items": [
{ "type": "string" },
{
"type": "array",
"items": [
{ "type": "integer" },
{ "type": "integer" }

]
},
{ "type": "string" },
{ "type": "number" }

]
},
"Language": { "type": "string" }

}
}

760

B SonarChallenge sample

{
"Message":"A #CobbCounty man has been named as the

suspect in Tuesday's fatal stabbing of a #
Pentagon officer in #Arlington, #Virginia, the #
FBI confirmed to the MDJ.",

"whereEvent":"in # Arlington , # Virginia",
"NER":[

["A", [0, 1], "O", 0.9999631618908261],
["#CobbCounty", [2, 13], "O", 0.5230842600430057],
["man", [14, 17], "O", 0.9999011493900142],
["has", [18, 21], "O", 0.9999778098743163],
["been", [22, 26], "O", 0.999987045345547],
["named", [27, 32], "O", 0.9999845801362041],
["as", [33, 35], "O", 0.9999840281632058],
["the", [36, 39], "O", 0.9999846365657179],
["suspect", [40, 47], "O", 0.9999774981836242],
["in", [48, 50], "O", 0.9999894255242104],
["Tuesday's", [51, 60], "B-TIM", 0.9987443381939265

],
["fatal", [61, 66], "O", 0.9999532689098133],
["stabbing", [67, 75], "O", 0.9999621381247745],
["of", [76, 78], "O", 0.9999887037609607],
["a", [79, 80], "O", 0.999963093788084],
["#Pentagon", [81, 90], "O", 0.5760812053361055],
["officer", [91, 98], "O", 0.9997355455505741],
["in", [99, 101], "O", 0.9998647856427583],
["#Arlington", [102, 112], "B-LOC", 0.9656087453283

584],
[",", [112, 113], "O", 0.9224836796891772],
["#Virginia", [114, 123], "B-LOC", 0.78543622657498

69],
[",", [123, 124], "O", 0.9996642582381823],
["the", [125, 128], "O", 0.9996824898159645],
["#FBI", [129, 133], "B-ORG", 0.9072086458363313],
["confirmed", [134, 143], "O", 0.9999827591593275],
["to", [144, 146], "O", 0.9999885614584061],
["the", [147, 150], "O", 0.9999753055869518],
["MDJ", [151, 154], "B-ORG", 0.861251877685755],
[".", [154, 155], "O", 0.9999499362226958]],

"Language":"EN"
}

761

C N-gram iterator

Algorithm 1 n_gram_iterator

Require: sentence: the input sentence
1: words← split(sentence)
2: n← min(4, len(words)) ▷ Starting

n-gram size
3: while n > 0 do
4: for i← 0 to len(words)− n do
5: yield join(words[i : i+ n]) ▷

Generate an n-gram
6: end for
7: n← n− 1 ▷ Decrement n for the next

iteration
8: end while

762

10

D Fuzzy matching

Algorithm 2 fuzzy_max

Require: string: The target string for which
you want to find the best fuzzy match.

Require: osm_names: The full naming list
from the OpenStreetMap (OSM) candi-
date.

1: max_len← length(osm_names) ▷

Calculating the maximun length of the
split OSM full address string and OSM
naming lists.

2: fuzzy_rates← empty list
3: for L← 0 to max_len do
4: for all subset ∈

combinations(osm_names,L) do
5: fuzzy_score ←

int: fuzz.ratio(string, subset)
6: append(fuzzy_rates, fuzzy_score)
7: end for
8: end for
9: return max(fuzzy_rates) ▷

Returning the maximum fuzzy matching
score achieved.

Algorithm 3 fuzz_ratio

Require: str1: the first string, str2: the sec-
ond string

1: T ← len(str1) + len(str2) ▷ Total number
of characters in both strings

2: M ← computeMatches(str1, str2) ▷

Number of matches in the two strings
3: fuzzy_score ←

int(round((2.0 * M / T) * 100)) ▷

Compute fuzzy score
4: return fuzzy_score

763

E Sequential & Static anchoring

Sequential anchoring delivers an anchor
which is an average of the last one hundred
previous locations disambiguated and it is
thought for a real-time or sequential applica-
tion to leverage location correlation through
time in a message flow from a related topic.
Static anchors can be set if we know the ori-
gin of the source, e.g. we have a message
flow from a local news provider from Trin-
ity County, and it helps skew preference to-
wards of ambiguous locations that are closer
to those coordinates.

Algorithm 4 skew_importance_anchor

Require: results: a list of results with
’fuzzy’, ’importance’ and OSM tags

Require: anchor_value: the anchor value in
coordinates for distance calculation

Require: results_sorted: a sorted list of re-
sults

1: distance2avg← empty list ▷ Initial list
for storing distance to average values

2: for each output in results do
3: distance ←

distance_calculus(anchor_value,
output[′latLon′])

4: distance2avg.append(distance)
5: end for
6: if length(distance2avg) > 0 then
7: distance2avg_norm_rank ←

normalize(1/normalize(distance2avg))
8: for each output, distance_rank in

zip(results,distance2avg_norm_rank)
do

9: output[′importance′] ←
(5/6) ∗ output[′importance′] + (1/6) ∗
distance_rank

10: end for
11: end if

764

F OSM importance 765

The primary determinant of importance in 766

OpenStreetMap (OSM) is predominantly de- 767

rived from the count of Wikipedia links as- 768

sociated with a particular object. In cases 769

where no corresponding Wikipedia article 770

exists, the fundamental importance score is 771

established based on the object’s hierarchi- 772

11

cal rank (e.g., country, county, city). Addi-773

tionally, there are nuanced adjustments to774

the Wikipedia-derived importance metric, no-775

tably involving the re-ranking process based776

on the precision of the match with the query.777

Specifically, the re-ranking considers the ex-778

actness of the match between the query and779

the display name, encompassing the address780

details of the result. The significance of a781

result is positively correlated with the extent782

to which the words from the query appear783

verbatim in the display name. Hence, the784

mentioned significance of a correct parsing785

and cleaning process of the query string.786

G Internal importance787

The internal importance metric is the modi-788

fied original OSM importance of the output789

candidate depending on the matches with790

other entities, the distance from its centroid791

to those of the other candidates and the an-792

choring distance values.793

H Dynamic Ranking Algorithm794

Formalization795

Detailed formalization of the dynamic rank-796

ing algorithm used in the geocoding process.797

The algorithm’s core objective is to accu-798

rately identify and rank geographical loca-799

tions based on the whereEvent string input,800

leveraging contextual Named Entity Recog-801

nition (NER) locations.802

H.1 Identification of Location Affinity803

The algorithm initiates by mapping each lo-804

cation l to a set of potential location matches805

from a predefined set of known locations806

L, which includes both NER-identified loca-807

tions and scanned countries. The mapping808

function f(L) identifies locations with a sig-809

nificant affinity to each l element of L:810

f(L) = {l ∈ L | LocationAffinity(l, L)}811

This creates a temporary output for NER812

locations to be leveraged in the dynamic813

ranking phase. LocationAffinity is a rule-814

based gate with a compound input format.815

H.2 Hypothesizing Geographical
Location with Affinity and Overlap

Considering the whereEvent as W , the algo-
rithm hypothesizes the most likely geograph-
ical location h, focusing on identifying the
lowest possible administrative level of over-
lap while simultaneously seeking the highest
affinity. This dual objective is encapsulated
in the determination of both the adminis-
trative level A(l) and a measure of affinity
M(L,W) for each potential location l in L:

LowestAffinityLevelAndOverlap(h) =

min
l∈L

(A(h, l),−M(h, l))
(1)

Here, A(h, l) represents the administrative
level overlap achieved of location h with
leverage context l, and M(h, l) quantifies the
affinity of l to L, with the goal of maximizing
affinity while minimizing the administrative
level match.

816

H.3 Internal Importance Score 817

An internal importance score S is then as- 818

signed to each location based on the degree 819

of overlap and affinity with the hypothesized 820

location. The score S(l, h) reflects the rele- 821

vance and specificity of location l in relation 822

to h: 823

S(l, h) = ScoreFunction(l, h) 824

H.4 Ranking Against Other OSM 825

Objects 826

Finally, the algorithm ranks the identified 827

locations against other OSM objects o re- 828

trieved in the process. The ranking is based 829

on the internal importance scores, generat- 830

ing a sorted list of locations: 831

RankedList = sort ({(o, S(o, h)) | o ∈ O}) 832

12

H.5 Dynamic Iteration and N-Gram
Processing

The dynamic ranking mechanism incorpo-
rates a max n-gram logic to enhance accu-
racy by favoring matches with the longest
n-gram possible.
Let ni denote the length of the n-gram be-
ing considered during iteration i. Let h be
the hypothesis candidate. Given an overlap
match, the algorithm prioritizes n-grams ac-
cording to their length. Specifically, for any
two n-grams n1 and n2, if n1 < n2, then the
priority enhancement E satisfies:

∀n1, n2 ∈ N, n1 < n2 ⇒ E(n1) < E(n2)

This prioritization process can be expressed
as:

maxi(E(ni))

where maxi represents the selection of the
n-gram with the maximum length at each
iteration i.
Additionally, the algorithm introduces a
buffer B to store potential contextual ref-
erences. This buffer helps in refining the
hypothesis candidate h by discarding itera-
tions corresponding to already accepted hy-
potheses in the whereEvent W . Thus, the dy-
namic ranking mechanism iterates through
n-grams, leveraging the buffer and discard
mechanism to clean iterations and refine
the hypothesis candidate h based on over-
lap matches and contextual references.

833

I Ablation tests834

v1835

Inclusion of NER person entities to836

avoid false positives when parsing837

through people’s names.838

v2839

Inclusion of longer n-grams in the algo-840

rithm.841

v3842

Early stopping mechanism when parsing843

long strings.844

v4 845

Distrust check for street level entries if 846

matched nucleus found and this is fur- 847

ther than 10 km. 848

v5 849

Remove road and highway formatted 850

output if no reference or reinforcement 851

present. This avoids weak candidates 852

for locations such as A-62, CV-203, N89, 853

etc. 854

v6 855

Removal of overlapping entities of 856

higher level from the output. Surviv- 857

ing candidates are reinforced with the 858

deleted ones, if applicable. 859

v7 860

Country control in order to tackle am- 861

biguous references as London, Canada 862

and London, UK in the same message. 863

v8 864

Nominatim engine update to more re- 865

cent version (start of 2023). 866

v9 867

Fine-tuning of static parameters. These 868

parameters are location distance, fuzzy 869

matching, anchor distances or impor- 870

tance ranking thresholds. 871

v10 872

Enrichment of alternative naming from 873

OSM. 874

v11 875

Full-distance matching. The overlap 876

match rule continues to check for better 877

and more precise matches through NER 878

locations and the whereEvent. The pre- 879

vious version stopped iterating when it 880

found the first match. 881

13

Table 4: Ablation Tests: Analysis of Algorithm Performance

Algo.
Version

Recall Recall
∆

Recall
Cum.
∆

Precision Precision
∆

Precision
Cum. ∆

Sonar
Challenge

Sonar
Challenge

∆

Sonar
Challenge
Cum. ∆

v0 88.15% 83.80% 77.94%
v1 85.69% -2.79% -2.79% 84.17% 0.44% 0.44% 75.11% -3.63% -3.63%
v2 87.68% 2.32% -0.53% 84.59% 0.50% 0.94% 77.63% 3.36% -0.39%
v3 90.28% 2.97% 2.42% 83.09% -1.77% -0.85% 79.71% 2.68% 2.28%
v4 89.15% -1.25% 1.13% 86.84% 4.51% 3.63% 79.34% -0.46% 1.80%
v5 89.15% 0.00% 1.13% 87.00% 0.18% 3.82% 79.37% 0.04% 1.84%
v6 87.71% -1.62% -0.50% 91.43% 5.09% 9.11% 79.94% 0.72% 2.57%
v7 87.71% 0.00% -0.50% 91.43% 0.00% 9.11% 80.06% 0.15% 2.73%
v8 87.90% 0.22% -0.28% 91.64% 0.23% 9.36% 80.25% 0.24% 2.97%
v9 88.03% 0.15% -0.14% 92.03% 0.43% 9.82% 80.71% 0.57% 3.56%
v10 88.23% 0.23% 0.09% 92.23% 0.22% 10.06% 80.80% 0.11% 3.68%
v11 88.49% 0.29% 0.39% 92.51% 0.30% 10.39% 80.90% 0.12% 3.80%

J Fine-tuning results882

Figure 4: Pairwise comparison results

14

	Introduction
	Related Work
	Location Disambiguation
	Corpora

	SonarChallenge data
	Scoring System

	PS-Radar
	Input data processing
	Contextual knowledge
	Candidates dynamic ranking
	Final cleaning and filtering score
	Fine tuning

	Results
	Ablation tests
	Confidence and Sensitivity

	Conclusion
	Limitations
	SonarChallenge data structure
	SonarChallenge sample
	N-gram iterator
	Fuzzy matching
	Sequential & Static anchoring
	OSM importance
	Internal importance
	Dynamic Ranking Algorithm Formalization
	Identification of Location Affinity
	Hypothesizing Geographical Location with Affinity and Overlap
	Internal Importance Score
	Ranking Against Other OSM Objects
	Dynamic Iteration and N-Gram Processing

	Ablation tests
	Fine-tuning results

