PS-Radar: A High-Precision Geoparsing Solution for Real-Time
Location Analysis

Anonymous ACL submission

Abstract

PS-Radar is an advanced geoparsing solu-
tion utilizing OSM Nominatim to analyze
text messages and generate a curated list
of potential locations mentioned within.
These results are then disambiguated
and ranked based on their likelihood of
accurately representing the target loca-
tions. Our system integrates data from
OSM and other sources, enabling real-
time map visualization, geofencing, area-
based filtering, and alerting for monitor-
ing social media message streams. Fur-
thermore, we introduce the SonarChal-
lenge dataset, comprising 1489 anno-
tated messages containing location refer-
ences. In our evaluation using the Sonar-
Challenge dataset, our solution achieves
an 88.49% recall rate for identifying men-
tioned locations and a 92.51% precision
rate for accurately pinpointing the output
locations.

1 Introduction

In the era of big data, much information ex-
ists as unstructured text, notably on plat-
forms like X (formerly Twitter), where users
post an average of 6,000 tweets per second
(liv). Some tweets are crucial for identify-
ing and reporting events such as terrorist
attacks, accidents, infrastructure issues, or
natural disasters, where the location of the
event is critical.

For safety responders, who operate within
specific geographical areas, sifting through
numerous messages is challenging. Con-
verting unstructured text that includes lo-
cations into geographical coordinates can
significantly aid in event detection and re-
sponse. In information retrieval, the finding

of location strings is known as location entity
recognition or location extraction.

The initial step involves identifying the
substring that denotes the location within
the message. Various methods exist for this,
including co-occurrence or n-gram match-
ing against databases or gazetteers like
OpenStreetMaps or GeoNames, Named En-
tity Recognition (NER) techniques, and the
Question-Answering (QA) models used by
our AnonymousSubmission Key Insights en-
gine. These methods output a string rep-
resenting the location, such as “in the mu-
seum” from “A fire started in the museum.”,
which may not always contain a proper noun
toponym.

The next step is toponym resolution or
place name disambiguation, where the ge-
ographical coordinates of the identified to-
ponyms are determined, aligning with the
definition of geoparsing as described in The
GIS Encyclopedia (gis).

Geoparsing handles ambiguous ref-
erences in unstructured discourse,
such as “Al Hamra”, which is the
name of several places, including
towns in both Syria and Yemen.

Geoparsing is complex, particularly with
repeated place names. For instance, “I love
Paris” could refer to Paris, France, or Paris,
Ontario, Canada, based on context. An effec-
tive geoparser must discern the most likely
geographical coordinates using surrounding
contextual information.

This paper introduces PS-Radar, a light
and accurate geoparsing algorithm, and the
SonarChallenge, a benchmark dataset for

https://AnonymousSubmission.com/

evaluating unsupervised geoparsers. PS-
Radar utilizes Nominatim as its primary
OpenStreetMap (OSM) search engine, with
Geonames as a secondary parser. The algo-
rithm operates unsupervised and is compat-
ible with English and Dutch, with potential
for adaptation to other languages supported
by Nominatim. PS-Radar processes up to
50 messages per second on a single process
setup, achieving a top score of 80.90% in the
SonarChallenge, with precision of 92.51%
and recall of 88.49%.

The paper is structured as follows: Sec-
tion 2 reviews related work in geoparsing.
Section 3 details the data types used and
introduces the SonarChallenge benchmark.
Section 4 describes our algorithmic solution,
PS-Radar. Section 5 discusses the perfor-
mance of PS-Radar and its results on the
SonarChallenge dataset, comparing it with
other tools and analyzing its commercial ap-
plicability. Section 6 concludes the paper.
Finally, Section 7 outlines limitations and
future research avenues.

2 Related Work

2.1 Location Disambiguation

Toponym extraction is well-explored in NLP,
with Named Entity Recognition (NER) being
prominent for location extraction.

There are various approaches to derive
final coordinates from raw location strings.
Most of the final solutions are integrations
with a blend of rule-based, ranking, and ML
techniques.

Rule-based algorithms, as delineated in
foundational works such as Smith (2001),
employ heuristics to verify the accuracy
of candidates identified by search engines.
These methodologies have undergone sig-
nificant refinement over time and continue
to hold relevance in contemporary applica-
tions. A notable advancement in this domain
is the incorporation of context-based heuris-
tics, further developed by Wang (2010). This
approach advocates for the analysis of poten-
tial contextual overlaps with other location
mentions within a text to resolve ambigui-
ties. For instance, in the sentence “Oxford

Street, my favourite street in London”, the
mention of “London” serves to disambiguate
the otherwise common street name “Oxford
Street”.

Ranking algorithms prioritize candidates
based on various factors such as population
density (Karimzadeh et al., 2019), adminis-
trative level (Shahi, 2016), co-occurrences,
and proximity to an anchor coordinate.
These factors help in determining the most
likely location among the identified candi-
dates.

Machine learning algorithms utilize model
training to perform candidate selection.
These methods integrate confidence fil-
tering and have been implemented using
various techniques such as Expectation-
Maximization (Manning and Schutze, 1999),
Neural Networks (Halterman, 2019), and
Support Vector Machines (Avvenuti et al.,
2018). Recent advancements include the in-
tegration of external databases like DBpedia
(Nizzoli et al., 2020) and Wikidata (Laparra
and Bethard, 2020), which enhance the ac-
curacy of location identification.

The literature distinguishes methods
based on the desired granularity. Gelern-
ter and Balaji (2013) describe techniques
tailored for local geoparsing, such as identi-
fying streets and buildings. However, highly
localized methods may risk overfitting, as
noted by Karimzadeh et al. (2019). The
concept of spatial minimality or proximity,
suggested by Lieberman et al. (2010), posits
that toponyms within a document are likely
to form spatial clusters. This leads to meth-
ods that favor candidates in close spatial
proximity. While these methodologies prior-
itize minimizing spatial distance, they may
do so at the expense of generalization.

2.2 Corpora

Key datasets for testing algorithms include
GeoCorpora, a dataset of 6711 tweets, with
2122 containing at least one place name
(Wallgrin et al., 2018). Other datasets focus
on specific events, such as natural disasters
(Middleton et al., 2014; Gelernter and Balaji,
2013).

Dataset curation for geospatial analysis
faces challenges like geographical distribu-
tion bias, ambiguity in place names, anno-
tation disagreements, and source text qual-
ity. Geographical distribution often skews
towards North America and Europe (Leetaru
et al., 2013; Wallgrin et al., 2018). Ambigu-
ity in place names can lead to non-valid data
points or default values based on criteria
like population density. Annotation disagree-
ments stem from interpretative variations,
and source text quality, particularly from so-
cial media, impacts the location accuracy
due to errors like typos and misspellings
(e.g., Colosseum vs. Coliseum, Hawaii vs.
Hawaai) .

3 SonarChallenge data

The SonarChallenge dataset is open-source
and available for academic research!. It
includes 1489 tweets, each containing at
least one location verified as ground truth,
covering various topics. Expert annotators
have disambiguated each location, convert-
ing them into OSM JSON format. The dataset
provides the following structured informa-
tion?:

* "Message": The original tweet text con-
taining the location(s).

e "whereEvent": The specific text seg-
ment for geoparsing analysis.

¢« "NER": Named Entity Recognition re-
sults, following IOB format, including
the original token string, text span, en-
tity type, and confidence score.

e "Language": The ISO language code of
the tweet.

The dataset features tweets mentioning lo-
cations in 60 countries, primarily the Nether-
lands (46.5%), the USA (17.1%), and the
UK (7.1%). It includes 101 distinct location
types, such as administrative, residential,
and suburb, along with natural elements like
water areas, national parks, and peaks.

!For participation and evaluation details, contact

AnonymousSubmission@AnonymousSubmission.com
2Schema shown in Appendix A

3.1 Scoring System

The scoring system rewards precision and
penalizes false positives, with the maximum
score achieved by perfect alignment with the
ground truth. Accurate predictions receive
full scores, while partial overlaps (e.g., pre-
dicting a town instead of a street) result in
proportional score reductions. Predictions
more specific than the ground truth (e.qg.,
predicting a street when the actual location
is a town) are similarly adjusted. A deviation
of up to 500 meters is allowed for roads to
account for discrepancies in OSM’s lower
administrative levels. False positives result
in complete score deductions.

The highest attainable score is 9236.5
points3. In addition to the primary scoring
system, the dataset provides precision, re-
call, Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE) metrics. Error
calculations for MSE and RMSE are based
on the shortest Haversine distance between
false positive coordinates and their actual
locations.

4 PS-Radar

PS-Radar combines optimized heuristics
with machine learning (ML) to map event
locations, using distance and naming simi-
larities. It leverages external curated knowl-
edge and contextual information. The ML
model measures the confidence of the algo-
rithm’s output, allowing for precision tuning
through confidence thresholds.

4.1 Input data processing

The PS-Radar algorithm processes the fol-
lowing inputs:

* Search String: Primary text for loca-
tion extraction, ideally a focused con-
catenation of words pinpointing the lo-
cation.

* NER: Named Entities of type person
(PER) and location (LOC) found in the
message.

3Perfect algorithmic scores are impossible due to in-

herent location placement challenges on OSM objects,
such as segmented streets.

AnonymousSubmission@AnonymousSubmission.com

 Language: Language of the message,
used to tailor queries to Nominatim.

The preprocessing phase involves several
key steps. Initially, stopwords are removed,
except those in proper nouns (e.g., “Gulf
of Biscay”). Acronyms are then mapped to
their full location names using a curated
list (e.g., UvA — Universiteit van Amster-
dam). Demonyms are substituted with place
nouns (e.g., “The Canadian town of Paris” —
“Canada Paris”). Additionally, NER person
(PER) entities are excluded from the search
query to avoid incorrect results.

4.2 Contextual knowledge

Disambiguation in geoparsing is enhanced
by analyzing the full textual context of a
message. This process includes extract-
ing and analyzing all NER-identified loca-
tions, excluding NER person names, apply-
ing demonym substitutions, and performing
a country-level scan. Using the extracted
location strings, a contextual framework is
constructed for each message. This frame-
work employs OpenStreetMap (OSM) ob-
jects to assess location affinity and rank
candidates for geolocating the whereEvent
string.

4.3 Candidates dynamic ranking

This stage uses the whereEvent string as
the primary geocoding objective.* The al-
gorithm initially correlates the whereEvent
with contextual NER locations or scanned
countries, aiming for overlap at the lowest
administrative level. For instance, if the hy-
pothesis suggests a street, the lowest level
of affinity would be its neighborhood; for
a city, it would be the province, region, or
state. The algorithm assigns an internal im-
portance score to rank against other OSM
objects retrieved in queries.

Part-of-Speech (POS) tagging helps to de-
tect proper nouns indicative of locations.
The whereEvent then undergoes cleaning
while preserving linking stopwords.

Example 4.1. Examples of the cleaning
phase:

*Formalization in Appendix H.

e in a bar in Rotterdam — Rotterdam

e around the Tower of London —
Tower of London

» somewhere close to road A5067,
in the Trafford Park suburbs of
Manchester — A5067 Trafford Park
Manchester

This cleaning phase is crucial as the Nom-
inatim engine does not parse the input text,
it requires clear toponyms. Indiscriminate
deletion of stopwords can negatively impact
the results.

Example 4.2. Examples of naive deletion of
stopwords:

* Query: outside the Stade de France

* Indiscriminate deletion of stop-
words: Stade France = Stade, B,
Dreux, Eure-y-Loir, Centre-Val de
Loire, 28410, France <

* Conservation of linking stop-
words: Stade de France = Stade
de France, Avenue du Stade de
France, Franc-Moisin - Bel-Air
- Stade de France, Saint-Denis,
Sena-Saint Denis, Ile-de-France,
93200, France

After cleaning, if the whereEvent result
is too long®, the algorithm defers to NER-
identified locations. Otherwise, dynamic
iteration disambiguates potential locations
within the whereEvent. The algorithm uses
max n-gram logic, favoring the longest n-
gram possible.

Example 4.3. Long match preference:

e New York — New York, USA -» York,
UK

e Santiago Bernabeu — Santiago
Bernabeu, Madrid, Spain —
Santiago, Chile

* New Mexico — New Mexico, USA —=
Mexico

>Optimal value: 6 words

The approach starts with an n-gram itera-
tion process, merging tokens forming nat-
ural locations into a singular gram (e.g.,
“Mediterranean Sea”, “Lake Michigan”).
This reduces false positives from querying to-
kens separately. Identified natural elements
are sent to Nominatim for geolocation. Sub-
sequently, a coordinate parser extracts coor-
dinate strings for reverse geocoding to de-
rive corresponding OSM objects.

The n-gram iterator first processes NER-
identified locations, focusing solely on the
NER output. In its second pass, it incor-
porates both the whereEvent string and
the NER locations. The algorithm iterates
through results from the longest combined
length to individual tokens, evaluating each
for potential matches with previously disam-
biguated locations or earlier results. This dy-
namic function transforms both the n-gram
iterator buffer and the temporary output
as matches or affinities are found between
queries.

Matches are defined as overlaps that prior-
itize specific, detailed locations over broader
areas. Affinities, in contrast, are continuous
ranges rather than binary. These include
fuzzy matching scores, sequential anchoring,
static anchoring, OSM importance, and in-
ternal importance. As matches and affinities
evolve, they influence the ranking of Nomina-
tim outputs and the trajectory of iterations.
The process excludes n-grams correspond-
ing to already disambiguated locations and
removes contextual information used in dis-
ambiguation for a final output candidate.

4.4 Final cleaning and filtering score

The final step involves thorough output
cleaning to eliminate redundancies and as-
sign a filtering score for noise reduction.
This includes sanity checks to remove stop-
words, incomplete strings, or parsing inac-
curacies. It verifies whether entries are su-
persets of others, removing redundant data.

The filtering score is designed to mitigate
noise, particularly when dealing with highly
ambiguous entities. For example, the loca-
tion name Zaragoza appears in seven dif-

ferent countries. This scenario presents a
dilemma: whether to prioritize recall by pre-
senting all possible matches, or to focus
on precision by selecting the most probable
match based on the initial ranking. The filter-
ing score balances this trade-off by assign-
ing a value based on a confluence of factors,
including the place class, place type from
OpenStreetMap (OSM), and importance met-
rics. This approach enables effective noise
filtration, particularly when deploying the
geocoding solution in end-user applications,
as demonstrated in the confidence and sen-
sitivity section application.

4.5 Fine tuning

PS-Radar uses static variables as thresholds
in heuristic and rule-based decisions. We
employ a grid-search methodology to op-
timize performance, systematically explor-
ing a predefined multidimensional param-
eter space and assessing algorithmic per-
formance against precision, recall, and the
SonarChallenge score. This exercise en-
hances the algorithm’s generalization and
robustness through optimal static parameter
values.

In Figure 1, the impact of fine-tuning these
variables on precision and SonarChallenge
scores is illustrated.® The figure presents
three pairwise iteration examples. The first
graph demonstrates that stricter thresholds
for fuzzy matching correlate with increased
precision. The second graph plots the im-
portance difference for a fuzzy match to
be ranked in the temporary output on the
x-axis, the importance difference allowed
for a NER country location candidate com-
pared to the top-ranked candidate for in-
clusion in the temporary output on the y-
axis, and the SonarChallenge score on the
z-axis. The third graph reveals an improve-
ment in precision when the distance thresh-
old for low administrative level reinforced
candidates—those with overlaps from higher
administrative levels—is tightened when in
comparison to another higher-ranked rein-

SFor full pairwise comparisons and metric analyses,
refer to Appendix J.

2
&

WP
o 30
ks Thres,

Figure 1: Example Pairwise Comparison: SonarChallenge score results

forced output. This implies that a candidate
is disregarded if it lies beyond this threshold.
Additionally, it becomes evident that the Lev-
enshtein distance applied to ElasticSearch
Geonames does not significantly impact our
algorithm, given the fuzzy-search feature in
ElasticSearch that is triggered if the search
query yields no initial findings.

5 Results

We conduct a comparative analysis of our al-
gorithm against two notable open-source so-
lutions: Geoparsepy (Middleton et al., 2018)
and Mordecai (Halterman, 2017). To en-
sure a fair comparison, we modify our Sonar-
Challenge dataset to include only city loca-
tions, aligning with the precomputed dataset
type in Geoparsepy. Mordecai’s reliance
on the Geonames format prevents direct
comparison with the SonarChallenge’s Open-
StreetMap (OSM) input specifications. We
evaluate also the performance of PS-Radar,
Geoparsepy, and Mordecai using Mean Ab-
solute Error (MAE) and Root Mean Squared
Error (RMSE), calculated based on the Eu-
clidean distance between the actual and pre-
dicted locations.

Table 1: Performance Metrics (Part 1)

Max. Score Score (%) TP/FP/Total
Geoparsepy 1343 709 (52.79) 251/93/354
PS-Radar 1343 1086.5 (80.90) 316/21/354
Mordecai NA NA NA/NA/NA

Our solution demonstrates superior perfor-
mance in overlap completion as measured

Table 2: Performance Metrics (Part 2)

Precision Recall MAE RMSE
Geoparsepy 72.97% 70.90% 83.08 391.98
PS-Radar 93.77% 89.27% 97.85 572.92
Mordecai NA NA 598.25 2389.68

by the SonarChallenge’. PS-Radar excels
in recalling true locations, achieving a rate
of 89.3%, and in precision when predicting
locations, with a rate of 93.8%. The algo-
rithm maintains a reliable balance between
recall and precision, evidenced by a 91.5%
F1-Score.

However, in terms of average distance er-
ror, Geoparsepy surpasses our solution. PS-
Radar occasionally produces false positives
at significantly distant locations, adversely
affecting distance error metrics. Our integra-
tion with a full-planet OpenStreetMap (OSM)
database allows our engine to retrieve a
broader range of candidates, increasing the
risk of distant false positives. In contrast,
Geoparsepy’s restriction to city-level output
mitigates this risk. Consequently, while PS-
Radar is highly precise, with a Type I error
of only 6.2% compared to Geoparsepy’s 27%,
it deviates, on average, 14.8 km more from
the true coordinates in instances of false pos-
itives than Geoparsepy.

5.1 Ablation tests

In our ablation study, we dissect the algo-
rithm into distinct blocks to determine the

"For result metrics, we consistently utilize the
highest-ranked entry (best-guess approach).

contribution of each component. Starting
with version zero (v0), we incrementally add
blocks, enabling the atomization of each
component’s impact.

Scores

92.5 | —— Recall
Precision
—e— SonarChallenge

90.0

a5 _.’4.—4"__'-—”‘
¢ 85.0
£
<
g
g 825

80.0

71.5

75.0

vo vl v2 vz va Vs V6 vT ve vo vio vil
Cumulative Delta
10.0 | mmm Recall
251 Precision
mmm SonarChallenge

5.0
a

1] p i bbi

oo 1 B s B B

-2.5 I I

vl

V2 V3 v4 V5 V6 vl V8 Vo V10 vil

Figure 2: Results: Ablation Tests

The most significant improvements occur
in versions v3, v4, and v6.

Version 3 (v3) incorporates an early stop-
ping mechanism, enhancing recall by 2.97%
compared to version 2 (v2), with a cumu-
lative improvement of 2.42%. This mecha-
nism directs the parsing of long whereEvent
strings to rely solely on NER-identified lo-
cations, with an optimal cut-off length of 6
tokens, simplifying input to the parser.

Version 4 (v4) introduces a “distrust condi-
tion” to demote street-level entries coincid-
ing with nucleus-level locations more than
10 km away from the nucleus’ centroid. This
targets cases where street names match city
names (e.g., “Oxford Street”, “Calle Madrid”,
or “Rue de Bordeaux”). This enhancement
increases precision by 4.51% over v3, with a
cumulative delta of 3.63%.

Version 6 (v6) adds a reinforcement pro-
cess to the temporary output, strengthening
entries with administrative affinity and dy-
namically reranking them. Entries without
overlaps are removed if distant from the re-
inforced coordinate, significantly reducing
false positives. This yields a 5.09% preci-
sion improvement over version 5 (v5) and a

cumulative delta of 9.11% from vO0.

In summary, the incorporation of refine-
ment blocks into the core algorithm (v0) re-
sults in a recall gain of 0.39% and a notable
precision improvement of 10.39%. Detailed
descriptions and metrics of the ablation tests
can be found in Appendix I.

5.2 Confidence and Sensitivity

The PS-Radar algorithm integrates a voting
regressor (Wolpert, 1992) to assign a prob-
ability score to each output candidate in-
dependently and employs a rank-dependent
sensitivity level.

This voting regressor includes a Gradient
Boosting regressor, a Random Forest, and
a Linear Regression. The input vector com-
prises variables such as the entry’s OSM
type, fuzzy matching score, location rank,
importance, and correlations with other enti-
ties in the message. The outcomes are sum-
marized in Table 3.

Table 3: Voting Regressor results

Precision Recall F1-Score
False Output 86.83 82.24 84.47
True Output 83.92 87.11 85.49
Accuracy 85.65
Samples 167,750

A sensitivity level, ranging from 1 to 8, is
introduced based on the importance score
and OSM location types. Level 1 signifies
the highest-ranked entry, while level 8 rep-
resents the lowest.

The sensitivity level categorizes output en-
tries, indicating the preferred options for a
specific whereEvent and facilitating output
reduction. For instance, with a whereEvent
like “London” without additional context, all
potential matches are outputted. A more
conservative sensitivity level filters these lo-
cations to higher-ranked ones. Opting for
level 1 would focus on the highest probabil-
ity match, in this case "London, UK". This
represents a sliding recall/precision trade-
off, as illustrated in Figure 3.

On the other hand, the confidence score

Figure 3: Sensitivity slider: 8 -4 — 1

within the PS-Radar algorithm is designed to
evaluate the likelihood of each entry being
a true positive. This metric assesses entries
independently, irrespective of their order in
the output. To illustrate this, consider the
previous scenario involving the whereEvent
of “London”. We analyze the first entry in
the output (London, UK for both) but with
different contexts in the whereEvent:

whereEvent London London, UK

Sensitivity Level 1 1
Confidence Score 75.84 98.68

From this analysis, it is evident that the
specificity of the “UK” context in the second
option significantly enhances the confidence
level, logically suggesting a higher likelihood
of it being a true positive.

In summary, PS-Radar uses a standard-
ized procedure to assign sensitivity levels,
enabling consistent visualization and filtra-
tion of output locations for specific preci-
sion/recall balances or map pollution levels.
Additionally, a confidence score gauges the
probability of each entry being a true posi-
tive.

6 Conclusion

The PS-Radar geoparser is a real-time pro-
cessing tool designed to extract locations
from messages by employing Named Entity
Recognition (NER) and Question-Answering
(QA) techniques. It parses text strings,
geocodes potential matches using Open-
StreetMap (OSM) Nominatim, and disam-
biguates the final location based on con-
textual information. Our analysis demon-
strates how PS-Radar surpasses major open-

source alternatives, while being able to pro-
cess large datasets in real-time through
the AnonymousSubmission platform. The
service provides various information keys
for each result, including a sensitivity level
that allows end-users to balance between
noise/recall and precision enhancement.

PS-Radar boasts a broad spectrum of ap-
plications. It enables real-time visualization
of locations mentioned in message streams,
which can be pivotal in tracking the geo-
graphical progression of events like natural
disasters. Geocoding messages enhances
filtering capabilities for monitoring specific
cases. The implementation of geofencing in
social media contexts allows for the exclu-
sion of irrelevant messages, thereby reduc-
ing noise and increasing efficiency for both
intelligence services and end-users. This is
especially crucial when tracking ambiguous
locations such as London or Main Street,
where results can span a wide geographi-
cal range due to their common occurrence.
Effective toponym disambiguation ensures
focus on relevant hits within the area of inter-
est. Additionally, PS-Radar augments alert
systems by incorporating geographical di-
mensions that are critical for report trigger-
ing.

7 Limitations

The algorithm remains open to modifica-
tions and could derive significant benefits
from the integration of additional informa-
tion and sources. One pertinent factor is
the incorporation of enhanced contextual
data. When an individual posts content on
social media, they often presuppose that
their immediate network is aware of their
background, leading to the omission of de-

tailed and explicit addresses. This forces
algorithmic approaches to take assumptions
on inferences and educated guesses. A sub-
stantial enhancement would entail analyzing
historical data to ascertain the user’s pri-
mary geographical sphere of activity, which
could then be utilized during the disambigua-
tion stage. This approach could amelio-
rate instances where a user references a
street name that could correspond to mul-
tiple cities. If it were established that the
user’s main sphere of influence is in a spe-
cific city, this could significantly improve dis-
ambiguation efforts.

Furthermore, another avenue for improve-
ment is the utilization of external Knowledge
Graphs to exploit additional identifiers, such
as the locations of festivals, concerts, or
sports events, the whereabouts of notable
individuals, or the names and affected areas
of natural disasters.

A limitation of the PS-Radar algorithm
arises when dealing with the disambigua-
tion of numerous entities in a message. We
adapted the model to also work with only
NER locations. removing the dependency
of a whereEvent extraction. If the model is
required to analyze all NER locations and
there are many, the strong disambiguation
logic aimed at precision can become a bottle-
neck. The algorithm attempts to form com-
binations of these locations to find overlaps
or matching OSM entries, which can be com-
putationally intensive and may affect quality
performance in such scenarios.

The final area of development for the
PS-Radar concerns its capability to inte-
grate with geocoding services beyond Open-
StreetMap (OSM). The inclusion of alterna-
tive providers—primarily commercial, paid
services—could enhance and strengthen the
algorithm’s output.

References
Geoparsing - gis wiki | the gis encyclopedia.
Twitter usage statistics - internet live stats.

Marco Avvenuti, Stefano Cresci, Leonardo Niz-
zoli, and Maurizio Tesconi. 2018. Gsp (geo-

semantic-parsing): geoparsing and geotagging
with machine learning on top of linked data.
In European Semantic Web Conference, pages
17-32. Springer.

Judith Gelernter and Shilpa Balaji. 2013. An
algorithm for local geoparsing of microtext.
Geolnformatica, 17:635-667.

Andrew Halterman. 2017. Mordecai: Full text
geoparsing and event geocoding. The Journal
of Open Source Software, 2(9).

Andrew Halterman. 2019.
litical events in text.
arXiv:1905.12713.

Geolocating po-
arXiv preprint

Morteza Karimzadeh, Scott Pezanowski, Alan M
MacEachren, and Jan O Wallgrin. 2019.
Geotxt: A scalable geoparsing system for un-
structured text geolocation. Transactions in
GIS, 23(1):118-136.

Egoitz Laparra and Steven Bethard. 2020. A
dataset and evaluation framework for complex
geographical description parsing. In Proceed-
ings of the 28th International Conference on
Computational Linguistics, pages 936-948.

Kalev Leetaru, Shaowen Wang, Guofeng Cao,
Anand Padmanabhan, and Eric Shook. 2013.
Mapping the global twitter heartbeat: The ge-
ography of twitter. First Monday.

Michael D Lieberman, Hanan Samet, and Jagan
Sankaranayananan. 2010. Geotagging: Using
proximity, sibling, and prominence clues to
understand comma groups. In proceedings of
the 6th workshop on geographic information
retrieval, pages 1-8.

Christopher Manning and Hinrich Schutze. 1999.
Foundations of statistical natural language
processing. MIT press.

Stuart E Middleton, Giorgos Kordopatis-Zilos,
Symeon Papadopoulos, and Yiannis Kompat-
siaris. 2018. Location extraction from social
media: Geoparsing, location disambiguation,
and geotagging. ACM Transactions on Infor-
mation Systems (TOIS), 36(4):1-27.

Stuart E Middleton, Andrea Zielinski, Ocal
Necmioglu, and Martin Hammitzsch. 2014.
Spatio-temporal decision support system for
natural crisis management with tweetcompl.
In Decision Support Systems III-Impact of De-
cision Support Systems for Global Environ-
ments: Euro Working Group Workshops, EWG-
DSS 2013, Thessaloniki, Greece, May 29-31,
2013, and Rome, Italy, July 1-4, 2013, Revised
Selected and Extended Papers, pages 11-21.
Springer.

https://wiki.gis.com/wiki/index.php/Geoparsing
https://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.21105/joss.00091
https://doi.org/10.21105/joss.00091
https://doi.org/10.21105/joss.00091

Leonardo Nizzoli, Marco Avvenuti, Maurizio
Tesconi, and Stefano Cresci. 2020. Geo-
semantic-parsing: Ai-powered geoparsing by
traversing semantic knowledge graphs. Deci-
sion Support Systems, 136:113346.

Dikshant Shahi. 2016. Apache solr. Springer.

David A Smith and Gregory Crane. 2001. Dis-
ambiguating geographic names in a historical
digital library. In International Conference on
Theory and Practice of Digital Libraries, pages
127-136. Springer.

Jan Oliver Wallgriun, Morteza Karimzadeh,
Alan M MacEachren, and Scott Pezanowski.
2018. Geocorpora: building a corpus to test
and train microblog geoparsers. International
Journal of Geographical Information Science,
32(1):1-29.

Xingguang Wang, Yi Zhang, Min Chen, Xing Lin,
Hao Yu, and Yu Liu. 2010. An evidence-based
approach for toponym disambiguation. In
2010 18th International Conference on Geoin-
formatics, pages 1-7. IEEE.

David H Wolpert. 1992. Stacked generalization.
Neural networks, 5(2):241-259.

A SonarChallenge data structure

"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {

"Message": { "type": "string" },

"whereEvent": { "type": "string" },

"NER": {
"type": "array",
"items": [
{ "type": "string" },
{

"type": "array",
"items": [
{ "type": "integer" },
{ "type": "integer" }
1
I
{ "type": "string" },
{ "type": "number" }
1
1
"Language": { "type": "string" }
}

10

B

SonarChallenge sample

}

"Message":"A #CobbCounty man has been named as the
suspect in Tuesday's fatal stabbing of a #
Pentagon officer in #Arlington, #Virginia, the #
FBI confirmed to the MDJ.",

"whereEvent":"in # Arlington , # Virginia",

"NER": [

["A", [0, 1], "0", 0.9999631618908261]

["#CobbCounty", [2, 13], "0", 0.5230842600430057],

["man", [14, 17], "0", 0.9999011493900142],

["has", [18, 21], "0", 0.9999778098743163],

["been", [22, 26], "O", 0.999987045345547],

["named", [27, 32], "0", 0.9999845801362041]

["as", [33, 35], "O", 0.9999840281632058],

["the", [36, 39], "0", 0.99998463656571791],

["suspect", [40, 47], "0", 0.9999774981836242],

["in", [48, 50], "0", 0.9999894255242104],

["Tuesday's", [51, 60], "B-TIM", 0.9987443381939265
I

["fatal", [61, 66], "0", 0.9999532689098133],

["stabbing", [67, 751, "0", 0.9999621381247745],

["of", [76, 78], "0", 0.9999887037609607],

["a", [79, 80], "0", 0.999963093788084],

["#Pentagon", [81, 90], "O0", 0.5760812053361055],

["officer", [91, 98], "O", 0.9997355455505741],

["in", [99, 101], "O", 0.9998647856427583],

["#Arlington", [102, 112], "B-LOC", 0.9656087453283
584],

r,", [112, 113], "O0", 0.9224836796891772],

["#Virginia", [114, 123], "B-LOC", 0.78543622657498
691,

[*,", [123, 124], "0", 0.9996642582381823],

["the", [125, 128], "0", 0.9996824898159645],

["#FBI", [129, 133], "B-ORG", 0.9072086458363313],

["confirmed", [134, 143], "0", 0.9999827591593275],

["to", [144, 146], "0", 0.9999885614584061]

["the", [147, 150], "0", 0.9999753055869518],

["MDJ", [151, 154], "B-ORG", 0.861251877685755],

[*.", [154, 155], "0", 0.9999499362226958]1],

"Language":"EN"

C

N-gram iterator

Algorithm 1 n gram iterator

Require: sentence: the input sentence

1:
2:

words < split(sentence)
n < min(4,len(words)) > Starting
n-gram size
while n > 0 do

for i < 0 to len(words) — n do

yield join(words|i : i + n)) >

Generate an n-gram

end for

n <— n — 1 > Decrement n for the next
iteration
end while

D Fuzzy matching

Algorithm 2 fuzzy max

Require: string: The target string for which
you want to find the best fuzzy match.
Require: osm names: The full naming list
from the OpenStreetMap (OSM) candi-

date.

1: max len «+ length(osm names) >
Calculating the maximun length of the
split OSM full address string and OSM
naming lists.

2: fuzzy rates < empty list

3: for L <~ 0 to max len do

4 for all subset €
combinations(osm names, L) do
5: fuzzy score —

int: fuzz.ratio(string, subset)
append(fuzzy rates, fuzzy score)
end for
end for
return max(fuzzy rates) >
Returning the maximum fuzzy matching
score achieved.

© ® 3

Algorithm 3 fuzz ratio

Require: strl: the first string, str2: the sec-
ond string
1: T < len(strl) + len(str2) > Total number
of characters in both strings

2: M <+ computeMatches(strl, str2) >
Number of matches in the two strings

3: fuzzy score —
int(round((2.0 * M / T) * 100)) >

Compute fuzzy score
4: return fuzzy score

11

E Sequential & Static anchoring

Sequential anchoring delivers an anchor
which is an average of the last one hundred
previous locations disambiguated and it is
thought for a real-time or sequential applica-
tion to leverage location correlation through
time in a message flow from a related topic.
Static anchors can be set if we know the ori-
gin of the source, e.g. we have a message
flow from a local news provider from Trin-
ity County, and it helps skew preference to-
wards of ambiguous locations that are closer
to those coordinates.

Algorithm 4 skew importance anchor

Require: results: a list of results with
'fuzzy’, 'importance’ and OSM tags

Require: anchor value: the anchor value in
coordinates for distance calculation

Require: results sorted: a sorted list of re-
sults

1: distance2avg < empty list > Initial list
for storing distance to average values

2: for each output in results do
distance —

distance calculus(anchor value,

output['lat Lon'])
distance2avg.append(distance)

end for

if length(distance2avg) > 0 then
distance2avg norm rank —

normalize(1/normalize(distance2avg))
for each output,

zip(results, distance2avg norm rank)

do

9: output['importance’] —
(5/6) * output['importance’] + (1/6) x*
distance_rank

10: end for

11: end if

N g

@

distance_rank in

F OSM importance

The primary determinant of importance in
OpenStreetMap (OSM) is predominantly de-
rived from the count of Wikipedia links as-
sociated with a particular object. In cases
where no corresponding Wikipedia article
exists, the fundamental importance score is
established based on the object’s hierarchi-

cal rank (e.g., country, county, city). Addi-
tionally, there are nuanced adjustments to
the Wikipedia-derived importance metric, no-
tably involving the re-ranking process based
on the precision of the match with the query.
Specifically, the re-ranking considers the ex-
actness of the match between the query and
the display name, encompassing the address
details of the result. The significance of a
result is positively correlated with the extent
to which the words from the query appear
verbatim in the display name. Hence, the
mentioned significance of a correct parsing
and cleaning process of the query string.

G Internal importance

The internal importance metric is the modi-
fied original OSM importance of the output
candidate depending on the matches with
other entities, the distance from its centroid
to those of the other candidates and the an-
choring distance values.

H Dynamic Ranking Algorithm
Formalization

Detailed formalization of the dynamic rank-
ing algorithm used in the geocoding process.
The algorithm’s core objective is to accu-
rately identify and rank geographical loca-
tions based on the whereEvent string input,
leveraging contextual Named Entity Recog-
nition (NER) locations.

H.1 Identification of Location Affinity

The algorithm initiates by mapping each lo-
cation [to a set of potential location matches
from a predefined set of known locations
L, which includes both NER-identified loca-
tions and scanned countries. The mapping
function f(L) identifies locations with a sig-
nificant affinity to each [element of L:

f(L) ={l € L | LocationAffinity(l, L)}

This creates a temporary output for NER
locations to be leveraged in the dynamic
ranking phase. LocationAffinity is a rule-
based gate with a compound input format.

12

H.2 Hypothesizing Geographical
Location with Affinity and Overlap

Considering the whereEvent as W, the algo-
rithm hypothesizes the most likely geograph-
ical location h, focusing on identifying the
lowest possible administrative level of over-
lap while simultaneously seeking the highest
affinity. This dual objective is encapsulated
in the determination of both the adminis-
trative level A(!) and a measure of affinity
M (L, W) for each potential location [/ in L:

LowestAffinityLevelAndOverlap(h) =
min (A(h, 1), ~M(h, 1)) V)
leL

Here, A(h,l) represents the administrative
level overlap achieved of location A with
leverage context [, and M (h,) quantifies the
affinity of [to L, with the goal of maximizing
affinity while minimizing the administrative
level match.

H.3 Internal Importance Score

An internal importance score S is then as-
signed to each location based on the degree
of overlap and affinity with the hypothesized
location. The score S(I, h) reflects the rele-
vance and specificity of location [in relation
to h:

S(l,h) = ScoreFunction(l, h)

H.4 Ranking Against Other OSM
Objects

Finally, the algorithm ranks the identified
locations against other OSM objects o re-
trieved in the process. The ranking is based
on the internal importance scores, generat-
ing a sorted list of locations:

RankedList = sort ({(o0, S(o,h)) | 0 € O})

H.5 Dynamic Iteration and N-Gram
Processing

The dynamic ranking mechanism incorpo-
rates a max n-gram logic to enhance accu-
racy by favoring matches with the longest
n-gram possible.

Let n; denote the length of the n-gram be-
ing considered during iteration i. Let h be
the hypothesis candidate. Given an overlap
match, the algorithm prioritizes n-grams ac-
cording to their length. Specifically, for any
two n-grams n; and ny, if ny < ng, then the
priority enhancement E satisfies:

Vni,ne € Nyny < no = E(TLl) < E(ng)

This prioritization process can be expressed
as:

max;(FE(n;))

where max; represents the selection of the
n-gram with the maximum length at each
iteration +.

Additionally, the algorithm introduces a
buffer B to store potential contextual ref-
erences. This buffer helps in refining the
hypothesis candidate h by discarding itera-
tions corresponding to already accepted hy-
potheses in the whereEvent W. Thus, the dy-
namic ranking mechanism iterates through
n-grams, leveraging the buffer and discard
mechanism to clean iterations and refine
the hypothesis candidate h based on over-
lap matches and contextual references.

I Ablation tests

vl

Inclusion of NER person entities to
avoid false positives when parsing
through people’s names.

v2

Inclusion of longer n-grams in the algo-
rithm.

v3

Early stopping mechanism when parsing
long strings.

13

v4

Distrust check for street level entries if
matched nucleus found and this is fur-
ther than 10 km.

v)

Remove road and highway formatted
output if no reference or reinforcement
present. This avoids weak candidates
for locations such as A-62, CV-203, N89,
etc.

vO

Removal of overlapping entities of
higher level from the output. Surviv-
ing candidates are reinforced with the
deleted ones, if applicable.

v7

Country control in order to tackle am-
biguous references as London, Canada
and London, UK in the same message.

v8

Nominatim engine update to more re-
cent version (start of 2023).

v9

Fine-tuning of static parameters. These
parameters are location distance, fuzzy
matching, anchor distances or impor-
tance ranking thresholds.

v10

Enrichment of alternative naming from
OSM.

vll

Full-distance matching. The overlap
match rule continues to check for better
and more precise matches through NER
locations and the whereEvent. The pre-
vious version stopped iterating when it
found the first match.

Table 4: Ablation Tests: Analysis of Algorithm Performance

Algo. Recall | Recall | Recall | Precision | Precision | Precision Sonar Sonar Sonar
Version A Cum. A Cum. A Challenge Challenge Challenge
A A Cum. A
v0 88.15% 83.80% 77.94%
vl 85.69% | -2.79% | -2.79% 84.17% 0.44% 0.44% 75.11% -3.63% -3.63%
v2 87.68% | 2.32% -0.53% 84.59% 0.50% 0.94% 77.63% 3.36% -0.39%
v3 90.28% | 2.97% 2.42% 83.09% -1.77% -0.85% 79.71% 2.68% 2.28%
v4 89.15% | -1.25% 1.13% 86.84% 4.51% 3.63% 79.34% -0.46% 1.80%
v5 89.15% | 0.00% 1.13% 87.00% 0.18% 3.82% 79.37% 0.04% 1.84%
v6 87.71% | -1.62% | -0.50% 91.43% 5.09% 9.11% 79.94% 0.72% 2.57%
v7 87.71% | 0.00% -0.50% 91.43% 0.00% 9.11% 80.06% 0.15% 2.73%
v8 87.90% | 0.22% -0.28% 91.64% 0.23% 9.36% 80.25% 0.24% 2.97%
v9 88.03% | 0.15% -0.14% 92.03% 0.43% 9.82% 80.71% 0.57% 3.56%
v10 88.23% | 0.23% 0.09% 92.23% 0.22% 10.06% 80.80% 0.11% 3.68%
vl1 88.49% | 0.29% 0.39% 92.51% 0.30% 10.39% 80.90% 0.12% 3.80%

Fine-tuning results

cision

2
®
Pre

g
3
n

8
3
Precisior

a0 a0
w 30 R w 30 <
ES Thres 20 <@ ES Thras 20 <&

Figure 4: Pairwise comparison results

14

	Introduction
	Related Work
	Location Disambiguation
	Corpora

	SonarChallenge data
	Scoring System

	PS-Radar
	Input data processing
	Contextual knowledge
	Candidates dynamic ranking
	Final cleaning and filtering score
	Fine tuning

	Results
	Ablation tests
	Confidence and Sensitivity

	Conclusion
	Limitations
	SonarChallenge data structure
	SonarChallenge sample
	N-gram iterator
	Fuzzy matching
	Sequential & Static anchoring
	OSM importance
	Internal importance
	Dynamic Ranking Algorithm Formalization
	Identification of Location Affinity
	Hypothesizing Geographical Location with Affinity and Overlap
	Internal Importance Score
	Ranking Against Other OSM Objects
	Dynamic Iteration and N-Gram Processing

	Ablation tests
	Fine-tuning results

