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1. Introduction
Phase transitions represent fundamental changes

in the behavior of physical systems under small
modifications to external parameters. Examples
range from metal–insulator [1], gas–liquid [2], and
topological transitions [3] to transitions in quantum
many-body (QMB) systems[4]. Deciphering the con-
ditions of such transitions, i.e., finding the specific
regimes under which a transition occurs, is impor-
tant both to basic science and to technology, as dif-
ferent phases introduce different characteristics that
can be exploited as a resource.
Generally, phase transitions occur not only in the

classical regime, driven by classical (or semiclassi-
cal) interactions between the physical constituents
of the system, but also in QMB systems, where the
task of identifying the phase transition is especially
hard and challenging due to the exponential growth
of the Hilbert space with the number of particles.
Namely, in amany-body system of 100 quantum par-
ticles, even if each particle is a two-level system,
the number of observables is 22N , which renders
their measurement impractical. Moreover, identify-
ing QMB phase transitions from experimental data
is also extremely hard: the available measurements
tend to always be incomplete, and indicators of a
phase transition are not always clear [5, 6].
Over the years, various theoretical measures for

detecting phase transitions have been proposed [7,
8, 9]. However, experimental constraints often limit
the number of accessible observables, making the
direct application of these theoretical metrics chal-
lenging. For instance, in many quantum gas micro-
scope experiments used to study QMB systems, the
primary measurable quantity is atoms per site [10,
11]. This restriction hinders the full characterization
of the high-dimensional density matrix and, conse-
quently, the computation of these theoretical mea-
sures. Due to these measurement limitations, alter-
native approaches are often employed. For exam-
ple, in many-body localization (MBL) experiments,
the persistence of an initially engineered state’s im-
balance serves as a heuristic for detecting behavioral
changes. However, this method depends on specific
initial state choices (e.g., a sharp edge in the density
of atoms) [12, 13] and lacks universality. Thus, there
is a clear need for a robust, measurement-agnostic
framework capable of detecting phase transitions di-

rectly from raw experimental data.
Here, we present a novel, unsupervised data-

driven approach that leverages manifold learning,
Ourmethod is derived from theDiffusionMaps (DM)
algorithm [14], adjusted specifically to detect phase
transitions from raw experimental snapshots with-
out any prior knowledge of labels or physical observ-
able (e.g., entanglement or density matrices). The
key aspect of our methodology lies in tailoring DM
to quantum data:
• Repeated Quantum Measurements: Operating
on ensemble of raw snapshots from each experi-
mental setting, handling the probabilistic nature
of quantummeasurements.

• State-Agnostic and Measurement-Agnostic
Framework. Our method does not hinge on a
specific initial state configuration or a certain
subset of observables. This is especially useful in
cases where the experiment only provides partial
information, such as site parity.

• Experimental validation: We validate our algo-
rithm on experimental data from quantum simu-
lators of Bose-Hubbard models and quantum gas
microscope experiments, detecting phase transi-
tions in real experimental settings.

2. Background and related work
Recent years have witnessed a surge in machine

learning (ML) methods for phase transition detec-
tion in both classical and quantum systems [15, 16,
17, 18, 19]. In practice, supervised ML approaches
are of limited use for experimental data lacking clear
labels (i.e., known phase identities), and such labels
simply do not exist for QMB system. Moreover, even
hybrid solutions— where simulated data labels are
used to guide experimental classification—generally
fail because simulations diverge for large quantum
systems (which is exactly the reason why quantum
simulators have been proposed). Consequently, the
most promising approaches rely on unsupervised
ML [20, 21, 22], that can be applied to experimental
measurements directly.
Another prominent avenue relies on traditional

machine learning techniques such as manifold
learning and kernel methods. These approaches as-
sume that high-dimensional data lie on a lower di-
mensional manifold that can be uncovered by an-
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alyzing intrinsic geometry. Although these meth-
ods can be less expressive compared to deep neu-
ral networks, they often require fewer training sam-
ples and are more straightforward to utilize, mak-
ing them attractive for a wide range of experimental
scenarios[23, 24].

3. Methods and Results
Diffusion Maps for Quantum Experiments Our

technique for identifying phase transitions in quan-
tum many-body systems is inspired by the DM
algorithm [14]. In DM, one constructs a kernel
(similarity matrix) based on pairwise distances be-
tween data points. By normalizing this kernel to
be row-stochastic and then performing an eigen-
decomposition, one obtains a new embedding of
the data in a low dimensional space spanned by
the leading eigenvectors. Distances in this diffusion
space reflect the intrinsic geometry of the original
data. However, unlike in the classical settings, quan-
tumexperiments introduce additional complexity as
each parameter setting Si (e.g., a particular value
of interaction strength) is represented by multiple
measurement snapshots due to the probabilistic na-
ture of quantum measurements. Formally, we have
S = {S1, S2, . . . , Sn}, Si = {p(i)1 , p

(i)
2 , . . . , p

(i)
m },

where each snapshot p(i)j ∈ X lies in some measure-
ment space (e.g., single-site occupations).
Kernel ConstructionDirectly averaging snapshots

in the original measurement space fails to cap-
ture the true geometry. Inspired by our previous
work [25], we instead adopt a Mahalanobis-like dis-
tance [26] between the distributions of snapshots:
d2(zi, zj) = 1

2 (zi− zj)
T
(
Ci+Cj

)−1
(zi− zj)Where

zi =
1
m

∑m
j=1 p

(i)
j and Ci is the empirical covariance

of Si. A similarity function f(·) then gives the ker-
nel K(Si, Sj) = f

(
d2(zi, zj)

)
The resulting kernel

is used to construct the DM embedding. This proce-
dure embeds each multi-snapshot data set Si into a
single point in latent space.

DetectionMetric To identify phase transitions, we
embed each set Si into the low-dimensional space
and look for sharp changes or clustering in the em-
bedding. Concretely :
• Spectral Gap & Cluster Separation: Large spectral
gaps eigenvalues and abrupt changes in distances
between clusters of points in latent space may in-
dicate natural partitions corresponding to differ-
ent phases.

• Order Parameters in Embedding: We empirically
observe that in some cases, a single latent coor-
dinate may serve as an emergent order parame-
ter, like in the case of simulated Ising model ( Ap-
pendix A).

Results For brevity, we present here results on two
cases and elaborate in more detail in Appendix. To
demonstrate the performance and utility of our ap-
proach, we first test it on a classical 2D Ising sys-
tem with 1282 spin sites that can be simulated on a

classical computer for 100 > particles. Here, each
initial configuration of the system is considered a
snapshot to match the probabilistic quantum case,
and the varying parameter is the temperature. We
find excellent agreement with the simulated results
placing the transition at Tc = 2.33 ± 0.05[ J

kB
]. We

then apply our methodology to data from an exper-
iment probing a 2D disordered Bose-Hubbard sys-
tem undergoing an MBL transition [27]. The ex-
periment consists of 250 particles, hence it can-
not be simulated on a classical computer. Here is
where our method comes into play: our embedding
and transition-detection method identifies the pres-
ence of a phase transition, with critical disorder,W ,
closely matching the heuristic estimate reported in
the original experiment where we see an imbalance
trend change at W ≈ 5[J ] with complete transition
to MBL atW ≈ 15[J ]. For more details, Appendix B

Fig. 1: Ising system, plot of magnetism versus the leading
embedding coordinate.

Fig. 2: Many-Body Localization, plot of imbalance heuris-
tic versus the leading embedding coordinate.

4. Conclusion & Outlook
Our diffusion-maps-based method provides an

unsupervised, measurement-agnostic, and state ag-
nostic framework to detect quantum phase tran-
sitions directly from raw experimental data. Its
computational efficiency and minimal assumptions
make it ideally suited for rapid, exploratory analy-
sis in quantum experiments, where establishing a
clear phase metric is challenging. Going forward,
since our methodology is universal – not restricted
to a specific platform - we anticipate broader appli-
cations across different QMB platforms. Finally, we
envision integrating our method with active exper-
imental feedback loops to guide the measurements
and eventually use the combined method to extract
the physical features of the phase transition, beyond
what we did here – identifying the presence of the
phase transition and the parameters at which the
transition occurs.
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Appendix A. Ising

We simulate an 2D Ising model on a square lattice
with nearest neighbour interactions. The system
consists of L× L spins, Si = ±1 arranged in a plane
where we take L = 128. The Hamiltonian is given
by:

H = −J
∑
⟨i,j⟩

SiSj

Where Si is the spin at site i, and J is the nearest
neighbour interaction strength. The system is ini-
tialized in a random spin configuration and evolves
at a finite temperature. We utilized the Metropolis
algorithm to sample the system at different temper-
atures. After a sufficient number of steps, we com-
pute the magnetization for that specific configura-
tion given by:

⟨M⟩ = 1

L2

∑
i

Si

Toalignwith theprobabilistic setting of theQMBsys-
tems, for each temperature we repeat the above for
many initial lattice configurations. This allows us to
form a set of snapshots per temperature for the algo-
rithm. Themagnetization order parameterwas aver-
aged over all snapshots to produce a final value per
temperature point. Empirically, we observe good
agreement between the order parameter of the sys-
tem and the first latent coordinate of the algorithm.
To detect the transition point we fit the latent coor-
dinate to

a · tanh(T − b

d
) + c

where b identifies the crossing point and the other
parameters are used for fit scaling and shifting. In
our settings, we obtain critical temperature of Tc =
2.33 ± 0.05[J/kB ]. In good agreement with known
value given by Tc ≈ 2.269[J/kB ]. Of course, the fit-
ting criteria is a physicsmotivated design choice, but
other criteria can be selected to cluster the different
phases in the latent space.

Appendix B. Bose-Hubbard results

Our experimental system is a 2D lattice of cold
bosonic atoms in a single plane under a harmonic
trap, with radius roughly given by 9 lattice sites. A
disorder pattern is projected on the system with a
random potential in each site. The system starts in
a unit filled Mott insulator state and undergoes a
quench, the lattice depth is lowered to allow evolu-
tion and interaction between the atoms in each site.
During the evolution the dynamics can be described

by the 2D BH Hamiltonian with onsite disorder de-
scribed by the following equation:

H = −J
∑
⟨i,j⟩

â†i âj +
U

2

∑
i

n̂i(n̂i − 1) +W
∑
i

δin̂i.

where â†i (âj) is the bosonic creation(annihilation)
operator, ni is the local density operator of site i, δi is
random disorder potential of site i, andW is its am-
plitude. Here J represents the hopping strength be-
tween nearest neighbor sites, and U gives the onsite
interaction strength. After the quench, the atoms
are allowed to evolve freely, followed by a site re-
solvedparitymeasurement. In the experimental sys-
tem, the systemwas initializedwith an artificial edge
by removing half of the atoms from one side of the
trap, creating an imbalanced state. The imbalance
per disorder point was measured by:

Imbalance =
NL −NR

Ntotal

Computing the difference between the total atoms
on the right and left of the artificial edge.

Fig. B1: Mean measurements for two different disorder
strengths.

Fig. B2: Single snapshot measurements for two different
disorder strengths.
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