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Abstract
Stochastic gradient descent samples uniformly the training set to build an unbiased gradient esti-
mate with a limited number of samples. However, at a given step of the training process, some data
are more helpful than others to continue learning. Importance sampling for training deep neural
networks has been widely studied to propose sampling schemes yielding better performance than
the uniform sampling scheme. After recalling the theory of importance sampling for deep learn-
ing, this paper focuses on the interplay between the sampling scheme and the optimizer used. We
show that the sampling proportional to the per-sample gradient norms is not optimal for adaptive
optimizers, although it is the case for stochastic gradient descent in its standard form. This implies
that new sampling schemes have to be designed with respect to the optimizer used. Thus, using
approximations of the per-sample gradient norms scheme with adaptive optimizers is likely to yield
unsatisfying results.
Keywords: Importance Sampling, Stochastic Gradient Descent, Deep Learning, Optimizers

1. Introduction

Deep neural networks tend to become very large, with a high number of weights to optimize.
Training deep neural networks is usually done with Stochastic Gradient Descent based algorithms
[17, SGD], such as RMSProp or ADAM [10]. With such large architectures, training deep neu-
ral networks is computationally costly, since the cost of computing gradients is proportional to the
number of weights. To alleviate this computational cost, one possibility is to take better SGD steps,
so that the optimum is reached in fewer SGD iterations.

SGD builds at each iteration an unbiased estimate of the empirical gradient by sampling uni-
formly the training set. However, at a given step of the learning process, some parts of the training
set might be well handled by the neural network, whereas the error it makes on other parts is large.
Some training data are more useful than others for training the neural network. Hence, sampling
uniformly the training set at each step of the learning process to perform SGD might be sub-optimal.

Importance sampling [18] applied to SGD has already been explored and applied to a wide
range of datasets in supervised learning [14, 23], as well as in reinforcement learning [19]. It gives
sampling schemes for SGD which speed up convergence to the optimum in theory, by selecting the
most helpful training data for the learning process. However, the optimal sampling scheme, yielding
the highest convergence speed, is intractable in practice.

To the best of our knowledge, all the works taking the best of importance sampling for SGD
steps use approximations of the optimal sampling scheme [9, 19]. Moreover, these approximated
sampling schemes are interchangeably used with all common deep learning optimizers, such as
RMSProp or ADAM [10]. We show that the optimal sampling scheme for RMSProp and ADAM
is different from the one for standard SGD. This implies that new sampling schemes aiming at
accelerating the learning process have to be designed with respect to the optimizer used. To the
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best of our knowledge, this point has not yet been studied in the literature, and it has implications
described in this work.

2. Background

2.1. Importance sampling in deep learning

Let Ψ(θ, ·) be any deep neural network parameterized by θ and ℓ be the loss to minimize dur-
ing training. Over a training set of N items (xi, yi)1≤i≤N , the goal of training is to find: θ∗ ∈
argminθ

1
N

∑N
i=1 ℓ(Ψ(θ, xi), yi).

Writing u the uniform probability distribution over the N items of the training set, i.e. ∀i ∈
[1;N ], ui = 1/N , the empirical gradient of the loss function defined above can be written as an
expectation: 1

N

∑N
i=1∇θℓ(Ψ(θ, xi), yi) =

∑N
i=1 ui∇θℓ(Ψ(θ, xi), yi) = Ei∼u[∇θℓ(Ψ(θ, xi), yi)].

Writing p any probability distribution over the training set, importance sampling can be used:
Ei∼u[∇θℓ(Ψ(θ, xi), yi)] = Ei∼p

[
∇θℓ(Ψ(θ, xi), yi)

ui
pi

]
= 1

NEi∼p

[
1
pi
∇θℓ(Ψ(θ, xi), yi)

]
.

All these expectations can be approximated with mean estimators. With B the mini-batch size,
B ≪ N , it yields: Ei∼p

[
1
pi
∇θℓ(Ψ(θ, xi), yi)

]
≈ 1

B

∑B
i=1

1
pi
∇θℓ(Ψ(θ, xi), yi) , i ∼ p. We in-

troduce G
(t)
i = wi∇θℓ(Ψ(θt, xi), yi) with wi = 1/(Npi) for any sampling scheme p such that

∀i ∈ [1;N ], pi > 0. This quantity will be useful to study SGD based algorithms using sampling
p, possibly non uniform. Note that, when p = u, wi = 1.

Setting η as a constant learning rate, a standard (full) gradient descent update has the form:
θt+1 = θt − ηEi∼p[G

(t)
i ]. This can be surprising at first sight since it seems to depend on the sam-

pling scheme p used, whereas there is no sampling for the standard (full) gradient descent. It is
indeed the case: Ei∼p[G

(t)
i ] =

∑N
i=1 piG

(t)
i = 1

N

∑N
i=1∇θℓ(Ψ(θt, xi), yi), and this notation gives

consistency when writing the stochastic gradient descent update under sampling scheme p:

θt+1 = θt − η
1

B

B∑
i=1

G
(t)
i = θt − η

1

B

B∑
i=1

1

Npi
∇θℓ(Ψ(θt, xi), yi). (1)

Following the notations of Katharopoulos and Fleuret [9], let us define the convergence speed S
of SGD under a sampling scheme p as S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
. We recall that

a stochastic gradient descent update with B = 1 has the form θt+1 = θt − ηG
(t)
i , where G

(t)
i is the

gradient estimate built from sampling element i with probability p. [9, 23] rewrite the convergence

speed: S(p) = 2η(θt − θ∗)TEi∼p[G
(t)
i ] − η2Ei∼p[G

(t)
i

T
G

(t)
i ]. This derivation can be found in

Appendix A. Our goal is to find p that maximizes the convergence speed, which is equivalent to

minimizing Ei∼p[G
(t)
i

T
G

(t)
i ]. This minimization is a constrained optimization problem:

min
p

Ei∼p[G
(t)
i

T
G

(t)
i ] = min

p

N∑
i=1

pi∥G(t)
i ∥22 such that

N∑
i=1

pi = 1 and ∀i ∈ [1, N ], pi > 0.

The optimal sampling is pGN
i = ∥∇θℓ(Ψ(θ, xi), yi)∥2/

∑N
j=1 ∥∇θℓ(Ψ(θ, xj), yj)∥2, it is the

sampling scheme proportional to the per-sample gradient norms. The proof is in Appendix A.
The optimal sampling scheme requires computing ∇θℓ(Ψ(θ, xi), yi) for all items in the training
set, which is too costly to be used in practice. Indeed, computing per-sample gradients requires a
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forward and a backward pass on the whole training data before performing each gradient step. For
this reason, all the works cited in what follows use approximations of the optimal sampling scheme
to keep computations tractable.

2.2. Related work

In this section, we review existing sampling schemes, both in the supervised learning literature and
the reinforcement learning one. We start by reviewing the supervised learning literature, where
works on importance sampling can be divided into two categories: methods applied to convex
problems and methods designed for deep neural networks.

Importance sampling [18] has been a widely studied topic in the context of convex optimization
problems in recent years. Bordes et al. [3] introduced LASVM, an online algorithm that leverages
importance sampling to train kernelized support vector machines. Richtárik and Takáč [16] sub-
sequently proposed a generalized coordinate descent algorithm that uses importance sampling to
optimize the convergence rate of the algorithm. In the context of simple linear classification, the op-
timal sampling distribution is proportional to the Lipschitz constant of the per-sample loss function
[14, 25]. A class of algorithms known as SVRG (Stochastic Variance Reduced Gradient) algorithms
[8] has been developed to accelerate the convergence of SGD through variance reduction. While
these algorithms offer asymptotic improvements, they have been observed to perform worse than
SGD with momentum in the multi-modal setting commonly encountered in Deep Learning.

Importance sampling has previously been utilized in the context of deep learning, often in the
form of manually tuned sampling schemes. For example, Bengio et al. [2] manually design a sam-
pling scheme inspired by the way human children learn, while Simo-Serra et al. [21] and Schroff
et al. [20] prioritize the sampling of hard examples due to the abundance of easy, non-informative
ones. Loshchilov and Hutter [13] use the loss to create the sampling distribution, both keeping a
history of losses for previously seen samples and sampling proportionally to a loss ranking. It is
worth noting the work of Wu et al. [24], who design a distribution specifically for distance-based
losses that maximizes the diversity of losses within a single batch. Fan et al. [5] use reinforce-
ment learning to train a neural network that selects samples for another neural network in order to
optimize convergence speed. Importance sampling is also used to accelerate convergence of deep
reinforcement learning algorithms [22] using a replay buffer (which acts as a training set). A semi-
nal work introducing a non uniform sampling of the replay buffer is Prioritized Experience Replay
[19]; it has been improved in different ways, notably in [7], [11], and [12].

The beginning of this section introducing the convergence speed of SGD, and showing that the
optimal sampling scheme is proportional to the per-sample gradient norms, is a result of the works
done by Needell et al. [14] and Wang et al. [23]. All cited works of the previous paragraph uses
approximations of the optimal sampling scheme, since it can not be used in practice due to a pro-
hibitive computational cost. Instead of studying approximations, Alain et al. [1] use clusters of
GPU workers to compute the optimal sampling distribution exactly, rendering the computational
time acceptable provided high computing resources.

3. Optimizers and sampling schemes

The derivations of Katharopoulos and Fleuret [9] to obtain the optimal sampling scheme in Sub-
section 2.1 used the most general form of an SGD step with a mini-batch of one sample, namely
θt+1 = θt − ηG

(t)
i , i being the selected index in the training set. This yields the optimal sampling
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scheme being proportional to the per-sample gradient norms. This subsection takes into account that
the standard SGD is no longer used as optimizer. Improved versions are now used, such as SGD
with momentum, RMSProp or ADAM. Our contribution is to highlight the differences between
these optimizers in terms of analytical expression of the optimal sampling scheme. pGN remains
the optimal sampling scheme for SGD with momentum, but it is not the case for RMSProp and
ADAM. The derivations for these three optimizers can be found in Appendices B, C and D. In what
follows, we give the general idea of these derivations in the case of RMSProp.

The update equation for RMSProp is: θt+1 = θt−
η

ϵ+
√
vt
G

(t)
i with vt = αvt−1+(1−α)∥G(t)

i ∥22,

where ϵ is a small positive constant to avoid the division by 0, η is the learning rate and α is the
moving average parameter, generally set to 0.99. For initialization, v−1 = 0 is classically chosen.
The derivations for the convergence speed S given the update equations of RMSProp yield:

S(p) = −Ei∼p

 η2G
(t)
i

T
G

(t)
i(

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
)2 −

2ηG
(t)
i

T
(θt − θ∗)

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22

 .

Details of these derivations are given in Appendix C. Contrarily to the derivations done for SGD
without momentum, the two terms have to be optimized since they both depend on p (through G

(t)
i ).

Given the form of the function to optimize, the solution of the optimization will depend on θ∗. A
sampling scheme depending on θ∗ is impractical since we (obviously) do not have access to this
quantity.

The special case where α = 1 deserves our attention, since α is in practice often close to 1. With
the initialization v−1 = 0 and α = 1, note that ∀t, vt = vt−1 = 0. We end up with the equation:

S(p) = −Ei∼p

[
η2

ϵ2
G

(t)
i

T
G

(t)
i − 2η

ϵ
G

(t)
i

T
(θt − θ∗)

]
,

which is the same equation than the one obtained with SGD, the only difference being the learning

rate. Once again, the optimization of Ei∼p

[
G

(t)
i

T
G

(t)
i

]
has to be done. In this special case, the

optimal sampling scheme is the one proportional to the per-sample gradient norms. However, note
that using RMSProp with α = 1 is useless since it stripes RMSProp of what does its specificity,
namely the moving average of past gradients.

The conclusion of this section is the following. The sampling scheme proportional to the per-
sample gradient norms is not the optimal sampling scheme for RMSProp and ADAM. Applying this
sampling scheme with RMSProp and ADAM as optimizer is not theoretically grounded. There is
no theoretical evidence that it will bring improvements over the uniform sampling scheme in terms
of convergence speed.

4. Experimental results

In this section, we verify experimentally that using the sampling scheme proportional to the per-
sample gradient norms with RMSProp and ADAM does not necessarily yield improvements over
the uniform sampling scheme.
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Figure 1: Loss decrease for different optimizers used with different sampling schemes. The x-axis
is the number of gradient steps, the y-axis is the value of the loss in log scale.

As explained before, the optimal sampling scheme for SGD, proportional to the per-sample
gradient norms, cannot be used in practice since it requires computing the individual gradients of
all items in the training set. Since it is not possible to evaluate this sampling scheme on well-known
data sets that contain too many items, we restrict ourselves to toy data sets, namely the iris data set
[6] and the wines data set [4].

We choose a simple multi-layer perceptron neural network to limit computational burden. Its
characteristics are described in Appendix E. The results were obtained thanks to an Apple Macbook
Air 2017: 1,8 GHz Intel Core i5 double. With a learning rate of 0.01 and a mini-batch size of 5,
we test the optimizers SGD, RMSProp and ADAM of pytorch [15] with default hyper-parameters.
The results reported on Fig. 1 are an average on 50 runs. The time taken for each run is reported in
Table 1.

Fig. 1 left and right illustrate experimentally that the sampling scheme proportional to the per-
sample gradient norms is indeed faster (in terms of iteration) than the uniform sampling scheme for
the SGD optimizer. They also show it is not the case for RMSProp and ADAM, which corroborates
our conclusion of Section 3: the sampling scheme proportional to the per-sample gradient norms is
not optimal for RMSProp and ADAM. On the contrary, it does not bring any improvement compared
to the uniform sampling scheme.

Fig. 1 cannot be fully appreciated without Table 1, where the computational time of each sam-
pling scheme used in this work is reported. Whatever the optimizer, the computational time is
approximately the same for a given sampling scheme. This table highlights the computational bur-
den of pGN compared to u, knowing that the training sets are made of few items compared to real
world datasets. Noting that the cost of pGN grows linearly with the size of the training set, this
illustrates the fact that pGN is impractical for common deep learning data sets. If the x-axis of
Fig. 1 was the time instead of the number of iterations, the advantage of pGN over u for SGD would
disappear.

These preliminary experimental results on toy datasets suggest that the sampling scheme cannot
be designed independently from the optimizer it is used with. In particular, it can reasonably be
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Table 1: Wall-clock time (in seconds) for each optimizer, for one run (1000 SGD steps)

Dataset Sampling SGD RMSProp ADAM

Iris u 0.85 ± 0.14 0.82 ± 0.16 0.83 ± 0.11
Iris pGN 2.52 ± 0.43 2.58 ± 0.53 2.51 ± 0.49
Wine u 0.84 ± 0.15 0.82 ± 0.13 0.84 ± 0.11
Wine pGN 2.49 ± 0.45 2.48 ± 0.51 2.55 ± 0.45

inferred that a sampling scheme that approximates pGN used with an adaptive optimizer is likely to
give unsatisfying results. We think this finding is worth sharing, since it has the potential to promote
better future research in the field of importance sampling for deep neural network training.

5. Conclusion and future works

This paper is a work in progress, and aims at studying the interplay between the sampling scheme
and the optimizer used. To the best of our knowledge, this connection has not already been tackled
in the literature.

From a theoretical viewpoint, we highlight that the sampling scheme proportional to the per-
sample gradient norms is not optimal for adaptive optimizers (such as RMSProp and ADAM). Pre-
liminary experimental results on toy datasets show that this appears as an issue, since this sampling
scheme does not outperform uniform sampling when used with RMSProp and ADAM, besides be-
ing more computationally costly. This is all the more important that the cited related works make
extensive use of adaptive optimizers, and try to derive new sampling schemes by approximating
pGN . The goal of our paper is to highlight this crucial point, so that better research on new sam-
pling schemes will be conducted in the future.

In future works, we will fill in this contribution with more experiments, especially experiments
on realistic datasets. We will also try to find computationally efficient sampling schemes specifically
designed for adaptive optimizers.
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Appendix A. Derivation of the optimal sampling scheme for SGD

In this appendix, we proove that the sampling scheme proportional to the per-sample gradient norms
is the optimal sampling scheme for SGD in its most standard form. Following the notations of Wang
et al. [23], let us recall the convergence speed S of SGD under a sampling scheme p as

S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
.

We recall that a stochastic gradient descent update has the form θt+1 = θt − ηG
(t)
i , where G

(t)
i

is the gradient estimate built from sampling element i with probability p. The following derivations
from [23] yield:

S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
= −Ei∼p

[
θTt+1θt+1 − 2θTt+1θ

∗ − θTt θt + 2θTt θ
∗]

= −Ei∼p

[
(θt − ηG

(t)
i )T (θt − ηG

(t)
i ) + 2ηG

(t)
i

T
θ∗ − θTt θt

]
= −Ei∼p

[
−2η(θt − θ∗)TG

(t)
i + η2G

(t)
i

T
G

(t)
i

]
= 2η(θt − θ∗)TEi∼p[G

(t)
i ]− η2Ei∼p[G

(t)
i

T
G

(t)
i ].

Recall also that Ei∼p[G
(t)
i ] is a constant with respect to p. Hence, it is possible to gain a speed-up

by sampling from the distribution that minimizes Ei∼p[G
(t)
i

T
G

(t)
i ].

The minimization of Ei∼p[G
(t)
i

T
G

(t)
i ] is a constrained optimization problem:

min
p

Ei∼p[G
(t)
i

T
G

(t)
i ] = min

p

N∑
i=1

pi∥G(t)
i ∥22 such that

N∑
i=1

pi = 1 and ∀i ∈ [1, N ], pi > 0.

Recall that G(t)
i = wi∇θℓ(Ψ(θt, xi), yi) and wi = 1/(Npi). Let gi = ∥∇θℓ(Ψ(θt, xi), yi)∥2. The

problem boils down to:

min
p

1

N2

N∑
i=1

1

pi
g2i , such that

N∑
i=1

pi = 1 and ∀i ∈ [1, N ], pi > 0.

The optimal distribution is pGN
i = ∥∇θℓ(Ψ(θ, xi), yi)∥2/

N∑
j=1

∥∇θℓ(Ψ(θ, xj), yj)∥2,

it is the sampling scheme proportional to the per-sample gradient norms.
Proof We note µ ∈ R the Lagrange multiplier associated to the equality constraint, ν ∈ RN

+ the
Lagrange multipliers associated to the inequality constraints. Hence:

Lag(p, µ, ν) =
N∑
i=1

1

pi
g2i + µ

(
N∑
i=1

pi − 1

)
−

N∑
i=1

νipi
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Setting the derivatives of the Lagrangian with respect to the primal variables yields:

∀ i ∈ [1, N ], −g2i
p2i

+ µ− νi = 0

Multiplying the above equation by pi and using ∀ i, piνi = 0 (complementary slackness), we have:
pi = gi/

√
µ, which yields the result.

Appendix B. Convergence speed for SGD with momentum

The update equation for SGD with momentum with B = 1 is θt+1 = θt − ηvt with vt = µvt−1 +

G
(t)
i , where η is the learning rate and µ is the momentum coefficient. For initialization, v−1 = 0 is

classically chosen.
We write the derivations for the convergence speed S given the update equations of SGD with

momentum. It yields:

S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
= −Ei∼p

[
θTt+1θt+1 − 2θTt+1θ

∗ − θTt θt + 2θTt θ
∗]

= −Ei∼p

[
(θt − ηvt)

T (θt − ηvt)− 2(θt − ηvt)
T θ∗ − θTt θt + 2θTt θ

∗]
= −Ei∼p

[
η2vTt vt − 2η(θt − θ∗)T vt

]
= −Ei∼p

[
η2
(
µvt−1 +G

(t)
i

)T (
µvt−1 +G

(t)
i

)
− 2η(θt − θ∗)T

(
µvt−1 +G

(t)
i

)]
= −Ei∼p

[
η2µ2vTt−1vt−1 + 2η2µvTt−1G

(t)
i + η2G

(t)
i

T
G

(t)
i − 2η(θt − θ∗)T

(
µvt−1 +G

(t)
i

)]
= −η2µ2vTt−1vt−1 − 2η2µvTt−1Ei∼p

[
G

(t)
i

]
− η2Ei∼p

[
G

(t)
i

T
G

(t)
i

]
+ 2ηµ(θt − θ∗)T vt−1 + 2η(θt − θ∗)TEi∼p

[
G

(t)
i

]
.

Recall that vt−1 = µvt−2 + G
(t−1)
i and G

(t−1)
i depends on the sampling scheme at time step

t − 1, which is in the past. This means that vt does not depend on the current sampling scheme
p at time step t that has to be optimized. Hence, vt is a constant with respect to the expectation.
Recall also that Ei∼p[G

(t)
i ] does not depend on p. The optimization problem boils down to opti-

mizing Ei∼p[G
(t)
i

T
G

(t)
i ], which yields the same result as for SGD without momentum. The optimal

sampling scheme is the sampling scheme proportional to the per-sample gradient norms when the
optimizer is SGD with momentum.

Appendix C. Convergence speed for RMSProp

The update equation for RMSProp is: θt+1 = θt−
η

ϵ+
√
vt
G

(t)
i with vt = αvt−1+(1−α)∥G(t)

i ∥22

where ϵ is a small positive constant to avoid the division by 0, η is the learning rate and α is the
moving average parameter, generally set to 0.99. For initialization, v−1 = 0 is classically chosen.
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We write the derivations for the convergence speed S given the update equations of RMSProp.
It yields:

S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
= −Ei∼p

[
θTt+1θt+1 − 2θTt+1θ

∗ − θTt θt + 2θTt θ
∗]

= −Ei∼p


θt −

η

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
G

(t)
i

T

×

θt −
η

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
G

(t)
i


−2

θt −
η

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
G

(t)
i

T

θ∗ − θTt θt + 2θTt θ
∗



= −Ei∼p

 η2(
ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
)2G

(t)
i

T
G

(t)
i

− 2η

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
G

(t)
i

T
θt +

2η

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
G

(t)
i

T
θ∗



= −Ei∼p

 η2G
(t)
i

T
G

(t)
i(

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22
)2 −

2ηG
(t)
i

T
(θt − θ∗)

ϵ+

√
αvt−1 + (1− α)∥G(t)

i ∥22

 .

Appendix D. Convergence speed for ADAM

The update equation for ADAM is θt+1 = θt−η m̂t

ϵ+
√
v̂t

with m̂t = mt/(1−βt
1) and v̂t = vt/(1−βt

2)

with mt = β1mt−1 + (1− β1)G
(t)
i and vt = β2vt−1 + (1− β2)∥G(t)

i ∥22. β1 is generally set to 0.9
and β2 to 0.999. For initialization, v−1 = 0 and m−1 = 0 are classically chosen.

We write the derivations for the convergence speed S given the update equations of ADAM. It
yields:
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S(p) = −Ei∼p

[
∥θt+1 − θ∗∥22 − ∥θt − θ∗∥22

]
= −Ei∼p

[
θTt+1θt+1 − 2θTt+1θ

∗ − θTt θt + 2θTt θ
∗]

= −Ei∼p

[(
θt − η

m̂t

ϵ+
√
v̂t

)T (
θt − η

m̂t

ϵ+
√
v̂t

)
− 2

(
θt − η

m̂t

ϵ+
√
v̂t

)T

θ∗

−θTt θt + 2θTt θ
∗]

= −Ei∼p

[
η2

m̂t
T m̂t

(ϵ+
√
v̂t)2

− 2η
m̂t

T θt
ϵ+

√
vt

+ 2η
m̂t

T θ∗

ϵ+
√
vt

]
= −Ei∼p

[
η2

m̂t
T m̂t

(ϵ+
√
v̂t)2

− 2η(θt − θ∗)T
m̂t

ϵ+
√
vt

]

= −Ei∼p

 η2(
ϵ+

√
vt

1−βt
2

)2

mT
t mt

(1− βt
1)

2 − 2η
(θt − θ∗)T

ϵ+
√

vt
1−βt

2

mt

1− βt
1



= −Ei∼p


η2(

ϵ+

√
β2vt−1+(1−β2)∥G(t)

i ∥22
1−βt

2

)2

1

(1− βt
1)

2

×
(
β1mt−1 + (1− β1)G

(t)
i

)T (
β1mt−1 + (1− β1)G

(t)
i

)

−2η
(θt − θ∗)T

ϵ+

√
β2vt−1+(1−β2)∥G(t)

i ∥22
1−βt

2

(
β1mt−1 + (1− β1)G

(t)
i

)
(1− βt

1)
2

 .

The derivations lead us to conclusions similar to the ones done for RMSProp. The two terms
have to be optimized and the solution of the optimization will depend on θ∗, which makes the
optimal sampling scheme impractical.

Appendix E. Neural network architecture

Ours tasks are a classification on simple datasets, which do not require complex architectures to
obtain an acceptable classifier. For this reason, and to limit the computational cost, we choose a
simple muti-layer perceptron neural network. The first layer is layer with 10 neurons, followed by a
ReLU Rectified Linear Unit) activation. The second layer also has 10 neurons. The neural network
computes a cross-entropy loss at the output of the last layer.
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