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ABSTRACT

Can soft prompts in vision Transformers be made explainable? Prompt-
based models have achieved remarkable success in image restoration, yet they
remain largely opaque: the underlying Transformer operations and the mecha-
nism by which prompts modulate attention are poorly understood. This work
revisits guided image restoration, where an auxiliary modality A assists in restor-
ing a target modality B. We interpret A as a prompt and formulate a tailored
structure-tensor total variation (S7V) model, whose gradient suggests a white-
box correspondence to prompt—attention interactions. This provides a principled
bridge between prompts and attention. In scenarios where A is unavailable, we
abstract its role into learnable soft prompts, enabling end-to-end training within
standard Transformer pipelines. By unrolling the gradient flow of the STV vari-
ational problem, we derive the White-Box Prompt Transformer (WBPT), a cas-
caded architecture that embeds interpretability directly into attention operations.
Extensive experiments on multiple benchmarks demonstrate that WBPT achieves
state-of-the-art restoration performance while offering interpretable, controllable,
and robust prompt—attention dynamics.

1 INTRODUCTION

Prompt-based Transformers have recently reshaped unified image restoration, enabling a single
model to tackle diverse degradations through learnable soft prompts (Potlapalli et al., 2023). These
prompts condition the restoration process by modulating attention mechanisms and consistently de-
liver strong empirical results (e.g., Jia et al., 2022; Kong et al., 2025). However, despite their success,
prompt-based designs remain fundamentally opaque: the inner workings of the Transformer and the
interaction between prompts and attention lack interpretability, limiting both theoretical understand-
ing and practical controllability (Chefer et al., 2021; Jain & Wallace, 2019). This opacity impedes
reliable deployment in trust-sensitive applications (Rudin, 2019).

This motivates our central question:

Can prompt-driven attention be explained from first principles, providing a theoretically grounded
interpretation of the black box?

We draw inspiration from guided image restoration, where an auxiliary modality A (e.g., T}-
weighted MRI) provides structural guidance for restoring a target modality B (He et al., 2012;
Li et al., 2016; Ehrhardt & Betcke, 2016a). In this setting, A acts as a prior, naturally analogous to
a prompt guiding the restoration of B (Jia et al., 2022; Potlapalli et al., 2023). Since explicit aux-
iliary data are often unavailable (Havaei et al., 2016), we abstract the role of A into learnable soft
prompts—trainable tokens that emulate auxiliary guidance through end-to-end optimization. This
perspective reinterprets prompts not as heuristic inputs but as principled surrogates for classical
guidance (Li & Liang, 2021; Zhou et al., 2022).

Building on this analogy, we introduce a variational perspective on prompt-based restoration.
Specifically, we cast guided restoration as a structure-tensor total variation (STV) problem (Cham-
bolle & Pock, 2011; Lefkimmiatis et al., 2015). Through gradient analysis, we show that the opti-
mization dynamics naturally align with a white-box attention mechanism, suggesting a formal link
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Figure 1: Overview of the White-box Prompt Transformer (WBPT). Image restoration is achieved
by unrolling K gradient-flow steps. At iteration k (Eq. 8), the update combines a Multi-Prompted
Structure Attention (MPSA) block with a learnable gradient-modulation (LGM) data-consistency
term. MPSA consists of Single-Prompted Structure Attention (SPSA) heads: tokenized features
interact with prompt tokens &; and learnable projectors W, are aggregated, and mapped back to
image domain. Across stages, prompts interact with features at multiple levels, enriching structural
context while preserving fidelity to the measurements.

between guidance priors (or their prompt surrogates) and Transformer attention (Yu et al., 2023;
Wang et al., 2018; Meng et al., 2024). While the derivation involves approximations, it provides a
principled foundation for understanding and designing interpretable prompt-driven restoration.

Crucially, this formulation not only offers interpretability but also suggests a concrete architectural
design. By unrolling the gradient flow of the STV variational problem, we obtain the White-Box
Prompt Transformer (WBPT) (Chen et al., 2015; Monga et al., 2021). Each Transformer layer cor-
responds to an optimization step, with every attention operation tied intuitively to terms in the un-
derlying energy functional. WBPT thus unifies variational analysis with deep learning, embedding
interpretability into the model without compromising performance.

Contributions.

* Variational Perspective on Prompt-based Restoration: Guided restoration is formulated as a tai-
lored STV problem. Its optimization dynamics reveal a white-box attention mechanism, offering
a principled explanation of how prompts influence Transformer attention.

* White-Box Prompt Transformer: A cascaded Transformer derived by unrolling the STV gradient
flow, where each layer corresponds to an optimization step and attention operations align with
terms in the underlying energy functional.

* Bridging Classical and Modern Al: The framework connects variational principles with deep
prompt-based models, providing a foundation for interpretable image restoration and controllable
attention mechanisms with clear theoretical grounding.

* Empirical Validation: WBPT achieves state-of-the-art results on multiple image restoration
benchmarks while enabling transparent analysis of prompt—attention dynamics via rigorous, com-
prehensive visualization and controlled perturbation studies.

2 METHODS

In this section, we introduce WBPT, a variationally inspired framework for guided image restora-
tion that interprets the guidance modality as soft prompts in a principled manner. WBPT integrates a
tailored STV prior with learnable transformations W and soft prompt tokens &;, achieving restora-
tion by unrolling K gradient-flow steps. The overall pipeline and information flow across the K
cascaded stages are illustrated in Fig. 1, as depicted schematically.
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2.1 STRUCTURED MODELING FRAMEWORK FOR GUIDED IMAGE RESTORATION

In guided image restoration, structural consistency across image modalities—where one modality
(e.g., modality A) provides complementary information to enhance the restoration of another modal-
ity (e.g., modality B)—can be effectively exploited in practice. Rapidly acquired or higher-quality
modality A images can serve as informative priors to guide the restoration of modality B (Ehrhardt
& Betcke, 2016b). To systematically and rigorously model this guidance, we treat the modality A
image as a prompt, explicitly encoding its anatomical information through dedicated operators to
assist in restoring modality B (Potlapalli et al., 2023; Jia et al., 2022).

Formally, guided image restoration can be expressed as the following optimization problem:
min R(x; §) := Ri(x) = pRa(x; €), (D)

where x : Q — R? denotes the target image (modality B) to be restored, and £ represents the feature
embedding of the guidance image (modality A). The function space X is chosen appropriately (e.g.,
Sobolev space H'(;R?) or L?(2;RY)) to ensure well-definedness of the optimization and its
variational derivatives (Evans, 2022). The functional R;(x) encodes intrinsic priors of x, while
minimizing —R2(x; &) enforces consistency between x and £ in the transformed domain. The
parameter £ > 0 balances this trade-off.

Specifically, we redesign an enhanced STV prior to represent R, which not only characterizes the
structural priors of the target image but also enforces consistency with guidance features &; in the
domain defined by W;. This motivates our proposed weighted prompt formulation:

N
R s (Wi, {60) =5 3 [ (0 (Wix(s)(Wix() 7)) ds
. 2
i Y [ Tl (Wax(s) 7)) ds.

Classical STV instantiates W; as gradient operators capturing local structures, whereas nonlocal
STV incorporates global interactions for superior performance. Motivated by this, we parameterize
W, as learnable global transformations via fully connected layers rather than local convolutional
kernels (Wang et al., 2018). In parallel, {&;}}¥, serve as prompts in the transformed domain. When
explicit guidance images are unavailable, these prompts are relaxed into learnable soft tokens (Jia
etal., 2022; Potlapalli et al., 2023). Finally, ¢(+) is a sparsity-inducing penalty, for which nonconvex
forms such as 1 (u) = In(1 + u) are effective.

2.2  WHITE-BOX PROMPT TRANSFORMER VIA VARIATIONAL DERIVATION

The gradient of the energy functional (2) is derived via variational calculus, resulting in an inter-
pretable form:

. ~AWiW,;x + YW W;x - softmax((Wix)TWix)

3)
— u W& — yu WiE; - softmax((Wx) T&;).

Here, R(x; W;, &;) denotes the i-th component of

N
R(x; {W L, (&) = ZR(X;Wi,&)-
i—1

This gradient inspires the Single-Prompted Structure Attention (SPSA) module:
SPSA(x | Wi, &, 7, 1) :== W;x - softmax ((W,;x) " W;x) — yu&; - softmax((W,;x) " &) + gi.
“)
For multiple prompts, we define the Multi- Prompted Structure Attention (MPSA) module:
SPSA(x | W1, &1,7, 1)
MPSA(x [{W}, {&} v ) == [Wi - Wi : (5)
SPSA(x [ Wn, &N, 7 1)
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This formulation provides an explicitly controllable, prompt-driven white-box attention mechanism
with three functional components:

s Self-Reconstruction Term: W ;x - softmax((W;x) T W,x), enhancing intrinsic feature coherence
via self-expression.

s Prompt-Alignment Term: —\,&; - softmax((W;x) " §;), introducing a repulsive force to prevent
trivial imitation while enabling structural adaptation.

* Prompt-Bias Term: +)\2&;, injecting prior knowledge as a static inductive bias to ensure faithful
restoration.

2.3 CASCADED TRANSFORMER ARCHITECTURE VIA GRADIENT FLOW UNROLLING

To optimize (2) while enforcing consistency with measurements y, we consider the continuous-time

gradient flow:
0 _ (‘Zf(x(t)) +AX(), y)) : ©

where A(x(t),y) denotes the gradient of the data fidelity term.

Discretizing via explicit Euler with step size 7 gives:

R
Xl = X — 1) ((Sx(xk) + A(M;Y)) ; (7

where k indexes the iteration. Substituting the MPSA module (5), the update becomes:

N
Xpp1 = (I - UZWfWi> x — IMPSA (xi [ {Wi}, {&i}, 7, 1) = nlg(xk,y).  (8)

i=1

In practice, the forward degradation model is often unknown, so A cannot be computed explicitly.
We replace it with a learnable data-consistency term Ag(Xg,y), parameterized by ¢. This module
captures the discrepancy between x;, and y while interacting with {;} and {W}.

Unrolling K iterations of this process yields a deep cascaded network alternating between prompt-
driven attention blocks and learnable data-consistency modules.

3 EXPERIMENTS

We evaluate our WBPT against both general-purpose restoration methods and specialized All-in-
One approaches (Table 1). Averaged across tasks, WBPT raises the mean PSNR from 30.16 to
31.02,dB, narrowing the gap to PromptIR while maintaining transparency and controllability.

To address the lack of multi-scale processing in WBPT—an element shown to be critical in models
such as Restormer—we introduce WBPT'. This variant augments WBPT’s interpretable attention
blocks with a pyramid pathway that provides multi-scale feature aggregation. Although the aggre-
gator is currently implemented as a learned, black-box component, the core attention mechanism
remains fully white-box. A complete white-box formulation of multi-scale processing is under de-
velopment. Empirically, WBPT matches PromptIR on average and exceeds it on selected tasks.

Task-level results further highlight the advantages of the proposed framework. On Rain100L (de-
raining), WBPT' surpasses PromptIR, and Fig. 2 confirms removal of rain streaks with diverse
orientations more thoroughly than WBPT, producing cleaner outputs. On SOTS (dehazing), while
WBPT! falls short of PromptIR in PSNR, it demonstrates the benefit of multi-scale modeling; as
shown in Fig. 3, haze removal is clearer and scene details are better preserved. On BSD68 (denois-
ing), WBPT' achieves PSNR comparable to PromptIR and yields consistently higher SSIM.

Datasets. For denoising, training is conducted on BSD400 (Arbelaez et al., 2010) and WED (Ma
et al., 2016) with Gaussian noise levels o € {15,25, 50}, and evaluation is performed on BSD68
(Martin et al., 2001) and Urban100 (Huang et al., 2015). For deraining, we use Rain100L (200
training / 100 test images) (Yang et al., 2020). For dehazing, training is on SOTS (72,135 images)



Under review as a conference paper at ICLR 2026

Table 1: Comparison in the All-in-One restoration setting. Results are reported as PSNR/SSIM.
Results are reported as PSNR/SSIM. Within each block (single-scale vs. multi-scale), the best and
second-best are boldfaced and underlined, and gray shading indicates white-box models. Overall,
WBPF yields a marked improvement over WBP, while WBPFT achieves performance comparable
to PromptIR and surpasses it on several tasks.

Dehazing Deraining Denoising (BSD68)

Method SOTS Rain100L o=15 =25 =50

‘ Avg.

Single-scale methods

BRDNet 23.23/0.895 27.42/0.895 32.26/0.898  29.76/0.836  26.34/0.836 | 27.80/0.843
FDGAN 24.71/0.924  29.89/0.933  30.25/0.910 28.81/0.868 26.43/0.776 | 28.02/0.883
AirNet 27.94/0.962  34.90/0.967 33.92/0.933 31.26/0.888 28.00/0.797 | 31.20/0.910
WBT 27.40/0.958 32.13/0.940 33.17/0.923 30.68/0.875 27.41/0.770 | 30.16/0.893
WBPT 29.31/0.972 35.93/0.971 33.66/0.929 31.01/0.881 27.72/0.781 | 31.02/0.907

Multi-scale methods
LPNet 20.84/0.828 24.88/0.784  26.47/0.778 24.77/0.748  21.26/0.552 | 23.64/0.738
MPRNet 25.28/0.954  33.57/0.954 33.54/0.927 30.89/0.880 27.56/0.779 | 30.17/0.899
DL 26.92/0.391 32.62/0.931 33.05/0.914 30.41/0.861 26.90/0.740 | 29.98/ 0.875
PromptIR | 30.58/0.974 36.37/0.972 33.98/0.933 31.31/0.888  28.06/0.799 | 32.06/0.913
WBPT! 29.94/0.970 37.08/0.974 33.86/0.934 31.28/0.890 28.08/0.801 | 32.05/0.914

Table 2: Deraining results on Rain100L in the single-task setting. Within each scale group (Single or
Multi), best results are boldfaced and second-best are underlined; Gray indicates white-box models.

Scale | Single-scale methods | Multi-scale methods

Method | SIRR  AirNet ~WBT  WBPT | MSPEN LPNet Restormer PromptIR ~WBPT'
PSNR | 3237 3490 3677  38.70 3350  33.61 36.74 37.04 38.54
SSIM | 0926 0977 0977  0.983 0.948  0.958 0.978 0.979 0.984

and evaluation on SOTS (500 images) (Li et al., 2018). In the All-in-One setting, these datasets are
combined to train a unified model, following the protocol of (Potlapalli et al., 2023).

Model and Training. WBPT is trained end-to-end using a 10-iteration white-box framework,
where each iteration integrates a learnable gradient update with a Transformer-based prompt branch.
Prompts are injected specifically at the sixth Transformer block in each iteration. Training is per-
formed with the standard Adam optimizer (5;=0.9, 82=0.999) at a fixed learning rate of 1x10~*
for 120 epochs in total. We use random 128 x 128 crops with rotations and flips, optimizing with L2
(MSE) loss. The best checkpoint is selected based on validation performance.

3.1 MULTIPLE DEGRADATION ALL-IN-ONE RESULTS

We compare our white-box models with general-purpose restoration approaches and specialized
All-in-One methods (Table 1). Averaged across tasks, WBPT raises the mean PSNR from 30.16 to
31.02 dB, narrowing the gap to PromptIR while preserving transparency and controllability. More-
over, our multi-scale white-box variant, WBPT', performs on par with PromptIR and even surpasses
it on certain tasks. On Rain100L for deraining, WBPT outperforms PromptIR; visual comparisons
in Fig. 2 show that, relative to WBT, WBPT more effectively removes rain streaks of diverse orien-
tations, yielding cleaner rain-free results. On SOTS for dehazing, although WBPT' does not surpass
PromptlR, it confirms the benefits of the multi-scale design; examples in Fig. 3 indicate clearer
haze removal and more faithful scene restoration. On BSD68 for denoising, WBPT' attains PSNR
comparable to PromptIR while overall delivering higher SSIM.

3.2 SINGLE DEGRADATION ONE-BY-ONE RESULTS

We evaluate PromptIR under the single-task setting, where a separate model is trained for each
restoration task. This setting is intended to empirically verify that content-adaptive prompting via
the prompt block is also effective for single-task networks. Table 2 reports the deraining results on
standard datasets: our single-scale white-box WBPT consistently achieves the best performance,
surpassing PromptIR and the multi-scale white-box variant WBPT'; relative to WBT (without
prompts), WBPT delivers a 1.93 dB gain in PSNR. For dehazing and denoising, although WBPT'
does not surpass PromptIR, it achieves comparable performance; see Tables 3 and 4.
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Figure 2: Deraining results under the All-in-One setting. Compared with WBT, our WBPT re-
moves numerous residual rain streaks that WBT fails to eliminate, yielding cleaner backgrounds
and sharper details (see red zoom-in boxes).

sky regions and sharper building edges, suppresses veiling glare and color cast, and yields more
natural contrast and details across diverse urban scenes.

3.3 ATTENTION VISUALIZATION

To examine differences in model focus, we visualize the last-layer multi-head attention of the white-
box reconstruction model (WBPT) and the black-box method PromptIR. For each model, we extract
the last-layer attention tensor A € R XN*N ‘average across heads, and further aggregate along the
query dimension to obtain a single-channel response for each window. The window-wise responses
are then reassembled into a full-image heatmap via reverse window stitching. To ensure a fair
comparison, both models use identical inputs and visualization settings. As shown in Fig. 5, WBPT
exhibits strong responses on object boundaries and structural regions, indicating a preference for
image geometry and semantic content rather than directly following degradation textures; notably,
this boundary-centric attention aligns with our STV objective (Sec. 2.1). In contrast, PromptIR’s
responses align with rain streaks and are more tightly coupled to the degradation pattern, suggesting
a greater reliance on degradation-pattern detection.

6
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Table 3: Dehazing results on SOTS dataset in the single-task setting. Within each block (single-scale
vs. multi-scale), the best and second-best are boldfaced and underlined, and gray shading indicates
white-box models. PSNR/SSIM reported; higher is better.

Scale | Single-scale methods | Multi-scale methods
Method | AODNet FDGAN ~AirNet ~ WBT ~ WBPT | EPDN Restormer PromptIR WBPT!

PSNR 20.29 23.15 23.18 28.72 28.33 22.57 30.87 31.31 30.47
SSIM 0.877 0.921 0.900 0.961 0.967 0.863 0.969 0.973 0.972

3.4 T-SNE ANALYSIS OF INTERMEDIATE REPRESENTATIONS

To analyze the intermediate representations of an all-in-one model across different degradations, we
tap the input to the final convolution layer of the Transformer backbone during the forward pass.
For each image, we apply global average pooling over the spatial dimensions to obtain a channel-
wise embedding vector. We collect embeddings from three standard test sets—BSD68 denoising
(0 = 25), Rain100L deraining, and SOTS-Outdoor dehazing—and project them to 2D using t-SNE.

Figure 6 compares the black-box PromptIR with our white-box WBPT under identical preprocessing
and t-SNE settings: PromptIR (left) yields highly entangled embeddings with substantial cross-
task overlap, whereas WBPT (right) forms well-separated clusters for the Noisy, Hazy, and Rainy
samples, exhibiting tighter intra-cluster compactness and clearer inter-cluster margins. These results
indicate that WBPT learns more discriminative, task-aware representations in the all-in-one setting.

3.5 STABILITY UNDER PROMPT-PARAMETER PERTURBATIONS

To verify the stability of WBPT under prompt-parameter perturbations, we conduct a perturbation-
sensitivity study in a controlled experimental setting and compare it with PromptIR. The test datasets
are BSD68 (denoising), Rain100L (deraining), and SOTS-Outdoor (dehazing). We inject additive
Gaussian noise only into the prompt parameters (o € [0.001, 0.1]), while keeping all other settings
(e.g., the prompt insertion layer) identical to the previous configuration. The evaluation metric is the
average performance drop percentage (lower indicates higher stability), averaged over multiple per-
turbation severities and the three datasets. The corresponding averages are summarized in Table 5;
a representative qualitative comparison at ¢ = 0.1 is shown in Fig. 7.

From the visual results, PromptIR consistently exhibits systematic contrast and color shifts after
perturbing the prompt, suggesting an undesirable coupling between the prompt representation and
global imaging attributes. Under prompt-only perturbations, such global tone/contrast changes are
not what degradation awareness is expected to primarily induce. In contrast, WBPT with ¢ = 0.1
still removes rain effectively while maintaining remarkably stable contrast and colors, indicating
stronger robustness and better degradation—prompt decoupling.
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Table 4: Denoising comparisons in the single-task setting on BSD68 and Urban100. Results are
reported as PSNR/SSIM. Within each block (single-scale vs. multi-scale), the best and second-
best are boldfaced and underlined, respectively. gray shading indicates white-box models. At the
challenging noise level of o = 50 on Urban100, our WBPT achieves a 0.39 dB improvement over

WBT. Meanwhile, WBPT attains performance comparable to PromptIR.

BSD68 Urban100
Method o=15 =25 o=50 | o=15 =25 =50
Single-scale methods
CBM3D 33.50/0.922  30.69/0.868  27.36/0.763 | 33.93/0.941 31.36/0.909  27.93/0.840
DnCNN 33.89/0.930  31.23/0.883  27.92/0.789 | 32.98/0.931 30.81/0.902  27.59/0.833
IRCNN 33.87/0.929 31.18/0.882  27.88/0.790 | 27.59/0.833 31.20/0.909  27.70/0.840
FFDNet 33.87/0.929 31.21/0.882 27.96/0.789 | 33.83/0.942 31.40/0.912  28.05/0.848
BRDNet 34.10/0.929  31.43/0.885 28.16/0.794 | 34.42/0.946 31.99/0.919 28.56/0.858
AirNet 34.14/0.936  31.48/0.893  28.23/0.806 | 34.40/0.949  32.10/0.924  28.88/0.871
WBT 33.59/0.930  30.92/0.882  27.85/0.793 | 33.43/0.956 30.42/0.924 27.18/0.858
WBPT 34.02/0.935 31.35/0.891 28.03/0.797 | 34.15/0.963 31.38/0.937 27.57/0.870
Multi-scale methods
Restormer | 34.29/0.937 31.64/0.895 28.41/0.810 | 34.67/0.969 32.41/0.927 29.31/0.878
PromptIR | 34.34/0.938 31.71/0.897 28.49/0.813 | 34.77/0.952 32.49/0.929 29.39/0.881
WBPT' 34.31/0.938 31.60/0.895 28.36/0.811 | 34.76/0.952 32.27/0.927 29.08/0.877

PromptIR

)
| ...

Figure 5: Attention-map visualizations for WBPT and PromptIR. Odd-numbered columns show
input images; even-numbered columns show the corresponding attention maps. Top row: PromptIR;
bottom row: WBPT. Attention heads and queries from the final layer are aggregated, and full-image
heatmaps are reconstructed via reverse window stitching. WBPT focuses on object boundaries and
main structures, whereas PromptIR emphasizes rain streaks.

— >

Table 5: Evaluation of stability under prompt-parameter perturbations, reported as relative drops in
PSNR and SSIM (lower is better). Gaussian noise with o € [0.001, 0.1] is injected exclusively into
the prompt parameters. Results are averaged over multiple severity levels on BSD68, Rain100L,
and SOTS-Outdoor. WBPT exhibits smaller drops than PromptIR, indicating greater stability.

Model Denoising Deraining Dehazing Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR  SSIM

PromptIR  -102% -13.0% -13.8% -124% -13.0% -122% -123% -12.5%

WBPT -3.05% -035% -1.02% -0.64% -2.18% -0.05% -2.08% -0.31%

3.6 GUIDANCE MODALITY VALIDATION: SOFT PROMPT VS REAL GUIDANCE

We compare a learnable soft prompt with a proxy of real guidance (hard: image gradients — edge
map plus Gaussian noise, o € {0.01,0.02}). To control compute and isolate the modality effect, the
backbone is frozen and only the prompt and fusion parameters are finetuned. For each test image,
we report the paired difference A = metricsof — metricy,g; Our goal is to assess the relative gap be-
tween soft and hard rather than absolute gains. Equivalence margins are pre-registered as +0.02 dB
(PSNR) and +0.002 (SSIM), within which soft and hard are deemed practically equivalent.

Under the finetune-only setting (backbone frozen), soft and hard guidance behave nearly identically
across denoising, deraining, and dehazing in our controlled evaluations. The paired differences
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H Hory Figure 6: t-SNE visualization of degradation

Erany|  embeddings from PromptIR and WBPT. Col-

BNy ors denote degradation types. With identi-
cal inputs and t-SNE settings, WBPT yields
clearly separable clusters by degradation
type, whereas PromptIR is more entangled.

Figure 7: Qualitative comparison under Gaussian perturbation of prompt parameters (¢ = 0.1).
Odd-numbered columns show input images; even-numbered columns show restored results. Top
row: PromptIR; bottom row: WBPT. WBPT preserves deraining quality, contrast, and colors,
whereas PromptIR exhibits noticeable shifts, indicating lower robustness.

PromntIR WRPT

A = soft — hard are consistently tiny and remain within the pre-registered equivalence margins
(£0.02,dB PSNR / +0.002 SSIM) for both ¢ = 0.01 and o0 = 0.02. While dehazing yields lower
absolute scores—reflecting its higher difficulty—the relative gap between soft and hard stays stable,
which is precisely the comparison this experiment aims to isolate.

Table 6: Soft vs. hard guidance under the finetune-only setting (backbone frozen). Metrics are
PSNR and SSIM in separate columns; parentheses denote the change relative to the baseline in the
same column. Gray denote the paired difference A = soft — hard; values within the pre-registered
equivalence margins (+0.10dB PSNR, +0.002 SSIM) indicate practical equivalence. Results are
reported for o € {0.01,0.02}. While absolute scores for dehazing are lower due to its higher
difficulty, the soft—hard gap remains small and stable across o.

Denoise Derain Dehaze
o Task PSNR SSIM PSNR SSIM PSNR SSIM

WBT 33.59 0.930 36.77 0.977 28.72 0.961
WBT+soft 33.61 (+0.02) 0.929 (—=0.1%) 36.90 (+0.13) 0.978 (+0.1%) 27.83 (—0.89) 0.956 (—0.5%)

0.01 WBT+-hard 33.63 (+0.04) 0.929 (—0.1%) 36.89 (4-0.12) 0.978 (4+0.1%) 27.87 (—0.85) 0.958 (—0.3%)
A (soft—hard) —0.02 0.000 +0.01 0.000 —0.04 —0.002
WBT 33.59 0.930 36.77 0.977 28.72 0.961

0.02 WBT-+soft 33.62 (+0.03) 0.930 (+0.0%) 36.89 (4+0.12) 0.978 (+0.1%) 27.83 (—0.89) 0.956 (—0.5%)

WBT+hard 33.60 (+0.01) 0.929 (—0.1%) 36.89 (4+0.12) 0.978 (+0.1%) 27.86 (—0.86) 0.958 (—0.3%)
A (soft—hard) +0.02 0.000 +0.00 0.000 —0.03 —0.002

4 CONCLUSION

In this work, we revisited prompt-based Transformers from a variational perspective and established
a principled connection between prompts and attention. By casting guided image restoration as a
STV problem, we derived a white-box attention mechanism that offers an interpretable foundation
for prompt—attention coupling. Building on this formulation, we unrolled the gradient flow into
WBPT, a cascaded architecture that integrates variational principles with modern prompt learning.
Extensive experiments across diverse restoration tasks demonstrate that WBPT delivers competitive
performance while maintaining transparent and robust prompt—attention dynamics. These findings
point to a new direction for designing interpretable and controllable prompt-based models, with
implications extending beyond image restoration to broader areas of vision and multimodal learning.
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A RELATED WORK

Transformer-based image restoration. Transformer architectures have advanced image restora-
tion by modeling long-range dependencies, with strong single-task systems such as SwinlR,
Restormer, and successors (Chen et al., 2021; Liang et al., 2021; Zamir et al., 2022; Chen et al., 2022;
Wang et al., 2022). To curb task specialization, all-in-one models handle multiple degradations with
aunified backbone (e.g., AirNet (Li et al., 2022)). We likewise pursue unified restoration but differ in
how conditioning is defined and used within the network. Parallel to Transformer priors, diffusion-
based restoration has recently shown competitive performance and broad applicability(Kawar et al.,
2022; Chung et al., 2023; Saharia et al., 2022), and our formulation is complementary: it can inject
structure-aware conditioning regardless of the underlying prior family.

Prompt-based conditioning for restoration. Prompt-based Transformers inject task or condition
cues (e.g., degradation type, maps, or control signals) into a shared backbone to enable multi-task
adaptation (Potlapalli et al., 2023; Li et al., 2022; Tian et al., 2024; Kong et al., 2025). Prevailing
designs treat prompts as black-box tokens or channel-wise modulations (e.g., visual prompt tun-
ing/adapters) that are concatenated to features and learned end-to-end, which limits interpretability
and spatial control(Jia et al., 2022). In contrast, we treat prompts as structural priors and derive
structure-aware prompt attention from a variational formulation via learnable regularization gra-
dients (LRG), providing mechanistic interpretability and spatial controllability (Yu et al., 2023).
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Model-based deep learning and unrolled networks. Model-based approaches explicitly couple
data fidelity with learned priors through algorithm unrolling (e.g., ADMM-Net, MoDL, VarNet)
(Sun et al., 2016; Aggarwal et al., 2019; Hammernik et al., 2018; Adler & Oktem, 2018). Plug-
and-play and RED families further connect optimization with learned denoisers (Venkatakrishnan
et al., 2013; Yang et al., 2022; Ulyanov et al., 2018; Kamilov et al., 2023). Our design follows this
lineage: we unfold a variational objective, keep a physics-consistency step, and introduce a learn-
able data-consistency (LDC) module that complements the physics-consistency step to suppress
residual artifacts. A key difference is that our conditioning instead arises from a regularizer-driven
decomposition and directly parameterizes attention via LRG.

Structure-guided and cross-modal reconstruction (MRI). Guided reconstruction leverages side
information to align the target with structures visible in a guide modality; in MRI, T1 can guide T2
reconstruction under multi-contrast or cross-modal priors (Ehrhardt & Betcke, 2016b; Feng et al.,
2021; Yang et al., 2022; Zhou et al., 2024). This line builds upon classical physics-consistent MRI,
including parallel imaging and compressed sensing(Pruessmann et al., 1999; Lustig et al., 2007),
and deep cascades that interleave learned priors with data consistency(Schlemper et al., 2018). We
reinterpret guidance as prompting within a white-box formulation: the prompt enters the variational
gradient as a structure-aligned term that controls attention, linking classical guided reconstruction
with modern prompt-based Transformers.

Summary. Compared to black-box prompt injection, our White-Box Prompt Transformer
(WBPT) provides a variationally grounded route to structure-aware attention (via LRG) while main-
taining faithful reconstruction through an LDC-augmented fidelity step, unifying multi-task restora-
tion and guided MRI within the same unfolded architecture.

B ABLATION EXPERIMENT

B.1 SPSA COMPONENT ABLATIONS

We ablate the SPSA operator defined in Eq. 4 by removing its last two terms: A (—ypé&; -
softmax((W;x)T¢;)) and B (+u&;). All other implementation details, training protocol, and hy-
perparameters (including -, 1) follow the main setup. On BSD68 at o = 50, removing either com-
ponent degrades performance, while the full model (Eq. 4) attains the best average results, indicating
that the two terms play complementary roles.

B.2 POSITION OF PROMPT BLOCKS.

In the hierarchical decoder, we ablate where to inject the prompt blocks. Table 8 compares placing
prompts at blocks 1&2, at block 6, and at all decoder blocks on the denoising task with o = 15.
While placing prompts at all blocks yields only marginal gains over block 6 (up to 0.04 dB in PSNR
and 0.001 in SSIM), it introduces nontrivial computational and latency overhead. We therefore adopt
the single-block design at block 6 as the default, which closely matches the all-block variant while
reducing wall-clock time and memory footprint.

B.3 COMPLEMENTARITY BETWEEN PROMPT AND DATA-CONSISTENCY MODULES.

To avoid attributing the overall improvement to a single component, we conduct a systematic ab-
lation on the deraining task, comparing four configurations: removing the Prompt (w/o Prompt),
removing the data-consistency module (w/o DC), removing both components as the cascaded base-
line (w/o Prompt & DC), and enabling both components (Prompt+DC). To ensure fairness, all
other settings—the number of unrolled steps K, step size 7, training schedule, and parameter bud-
get—are kept identical across variants. As summarized in Table 9, relative to the baseline with-
out both modules (w/o Prompt DC), introducing either module alone yields consistent gains in
PSNR/SSIM; enabling both simultaneously (Prompt+DC) produces the largest improvement, con-
firming the strong complementarity between the structural prior provided by the Prompt and the
observation-consistency constraint enforced by the DC module.
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Table 7: Ablation study of SPSA compo-
nents in Eq. 4 on BSD68 with ¢ = 50.
The complete formulation (Eq. 4) achieves
the best overall performance. Here, A corre-
sponds to —ypu &;-softmax((W;x) T€;), and

Table 8: Ablation of prompt-injection po-
sitions on BSD68 at ¢ = 15. Injecting
at block 6 matches all-block injection while
substantially reducing computation. Results
are shown for blocks 1&2, block 6, and all

B corresponds to +p &;. blocks.
Variant PSNR SSIM Placement PSNR SSIM
w/o A 27.57 0.753 block 6 34.02  0.963
w/o B 2797 0.798 blocks 1&2  33.97 0.962
Full 28.33  0.967 all blocks 34.06 0.964

Table 9: Ablation study of Prompt and Data-Consistency (DC) components within the cascaded
Transformer unrolled from Eq. 8, evaluated on the Rain100L dataset.

Variant PSNR SSIM
w/o DC&prompt  36.77  0.977
w/o DC 37.07 0.978
w/o prompt 37.46 0.979
Prompt&DC 38.70  0.983

C VARIATIONAL DERIVATION OF THE ENERGY FUNCTIONAL

For notational simplicity, the subscript ¢ is omitted throughout this section. To develop the opti-
mization algorithm for the proposed model, we consider the variational derivative of the energy
functional R(x), defined as:

R(x) = % /QTI‘ (In (I+ (Wx(s))(Wx(s)) ")) ds
©))

— ,u/QTr (In (IT+ (Wx(s))(&(s) ")) ds

where x(s) is the optimization variable, £(s) denotes the structural prompt, W is a linear transfor-
mation operator, and p is a regularization weight.

Let us define y(s) = Wx(s) and y(s) = &(s).

C.1 VARIATION OF THE FIRST TERM

Consider the first term:

1
Ri(x) = 3 / Tr (In (I+y(s)y(s)"))ds (10)
Q
Using the matrix differential identity:
aTe (I (T+yy")) = Tr (T+yy") " dyy")) (11)
Sinced(yy') =dy -y +y-dy', we have:
dTr (ln (I + ny)) =Tr ((I + ny)_l (dy -y +y- dyT))
= 2Tr ((I—l—yy—r)_lydy—r) (12)

-9 ((I+ny)7IY>Tdy

where the last equality follows from the identity Tr(A") = Tr(A) and Tr(A" B) = (4, B) 5.
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Thus, the variation is:

dTr(In(I+yy")) = <2 (I+ ny)71 v, dy>F
Substituting y(s) = Wx(s) and dy(s) = Wdx(s), we obtain:
dRy = % /Q <2 (I+ y(s)y(s)—'—)_1 v(s), de(s)>F ds

-1
= / <(I +y(s)y(s)T)  y(s), de(s)> ds
Q F
Using the definition of the adjoint operator W*:

AR, = /Q <W* ((I +y(s)y(s)")

-1

y(s)) , dx(s)> ds

F

Therefore, the variational derivative is:

) =W (@4 vy () y(s)

C.2 VARIATION OF THE SECOND TERM

Now consider the second term:

Ra(x) = ., Tr (In(I+y(s)y(s)"))ds

Using the matrix differential identity:
dTr (n(I+yy")) =Tr ((I +yyT) d(ny))
=Tr ((I + ny)fl dny)

where the second equality holds because y is independent of x.

Using the cyclic property of the trace:

Te ((T+yyT)  dyy") =T (37 (T+y57) " dy)
This can be written as an inner product:

dTr ((T+y5") dyyT) = ((@+y57) ' yidy)
Substituting y(s) = Wx(s) and dy(s) = Wdx(s), we obtain:

ARy = /Q <(1 +y ()3T $(s), de(s)>F ds

Using the adjoint operator W*:

ARy = /Q (W (T+y()3()7)

-T

y(s)> ,dx(s)> ds

F

Therefore, the variational derivative is:

20 = w (T y(9397) " 909)

16

13)

(14)

5)

(16)

a7

(18)

19)
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C.3 COMBINING BOTH TERMS

Combining both components with their respective coefficients and regularization weight i, we de-

rive the complete variational derivative:
5R 5R1 5722
8 = e (8) 5 (8)

(25
=W (T+3(9)y()7)  y(5) - W (T+y()5()7)

y(S))

This gradient form supports the structure-aware optimization in the main algorithm and highlights
the explicit interaction between the target variable x and the structural prompt £ within the proposed
framework.

C.4 VARIATIONAL DERIVATIVE APPROXIMATION

Consider the variational derivative of the energy functional R[x] with respect to x(s):

() = W (0 y(6)y () y(9) — W (M4 y(0)3(0)T) T5), @20

where
y(s) = Wx(s), y(s) =&(s). 27
Using the Neumann series expansion,
I+A) P =T-A+A% ... ~I- A, (28)
which holds for matrices with small spectral norm. Therefore,
T+yy") ' =I-yy', I+yy) "=~I-yy' (29)

Substituting the above approximation into the variational derivative:

0R . . - -

5 S WHT=yyy) = W (- 3y ")y). (30)
Expanding the matrix products gives

oR . wim o~ -

s Wy ') - W -3 '), (31)

This derivation is rigorous and relies solely on the first-order Neumann expansion and standard
matrix algebra.

To obtain a more intuitive subspace membership interpretation, one can heuristically replace the
inner product terms y ' y and y | ¥ with a softmax-normalized form:
0R

N W (v — v - s T . (o oo To
< =W (y vy - softmax(y Y)) W (y 7y - softmax(y y)), (32)

where 7 is a scaling factor. This softmax replacement is heuristic and provides an interpretation
of the inner product terms as subspace membership weights, rather than being a mathematically
rigorous derivation.

D LIMITATION

Despite achieving competitive results across restoration tasks and affording transparent prompt—
attention dynamics, one aspect merits further investigation: computational efficiency. Specifically,
unrolling the gradient flow and stacking Transformer blocks increase the backpropagation mem-
ory footprint and wall-clock training time; at inference, the near-quadratic complexity of attention
with respect to sequence length (or spatial resolution) can exacerbate latency. We view this as an
engineering trade-off rather than a fundamental limitation, and it does not compromise our core
conclusion of a variationally anchored, interpretable prompt—attention coupling; nevertheless, fur-
ther optimization is warranted for resource- and latency-constrained deployments.
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Ground Truth

Figure 8: Deraining results for all-in-one methods.
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Figure 9: Dehazing results for all-in-one methods.

E QUALITATIVE RESULTS

We present additional qualitative results under the single-task setting to further demonstrate the ef-
fectiveness of prompt-block. The presented examples correspond one-to-one with the three quantita-
tive single-task tables in the main text (Tables 2, 3, 4), serving to complement and visually illustrate
the trends reported in the main paper.

F ALGORITHM

This part provides PyTorch-style pseudocode for the WBPT. Alg. 1 outlines the overall training loop
with T'-stage learnable gradient updates; Alg. 2 details one iteration stage with the SwinIR backbone
and prompt injection; Alg. 3 specifies the prompted window attention and feedforward modules.
Unless otherwise noted, we use the following defaults in the pseudocode: epochs = 120, stages

18
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Ground Truth

WBPT

Figure 10: Denoising results for all-in-one methods.

Algorithm 1: PyTorch-style pseudocode for WBPT training (overall)

Input: Dataset D; epochs E (default 120); stages K (default 10); hyperparameters and prompt
config P
Qutput: Trained parameters 6*; best validation metrics (PSNR/SSIM)
1 Optimizer & Loss: Adam(3;=0.9, 32=0.999), Ir 1 x 10~*; reconstruction loss £ = MSE
2 for epoch < 1to E do

3 foreach (Xnoisy, Xclean) € DataLoader(D) do

4 Xp Xnoisy; Whist — []s shist — H

5 for k + 1to K do

6 {WIN {8, + SwinlR(xx_1; P, k) # with optional prompt
injection

7 Append {W,; }| to Wh;st and {&;}1¥; to &pise; drop oldest if length > 5

8 X <= MPSA(Xk—1, y=Xclean; {Wi}, {&}, k)

9 L+ MSE(XK, Xclean)

10 | optimizer.zero_grad(); £.backward(); optimizer.step|()

1 | ValidateAndSavelfBest(6) # compute PSNR/SSIM on val, save best

12 Complexity: O(E-N-K- (stin—l—Fmpsa)) # Here N denotes the number of
batches per epoch.

T = 10, embed-dim = 96, num_heads = [6,6,6], window = 8, prompt_len = 5, Adam
with (81=0.9, 3,=0.999), learning rate 1 x 10~*, MSE reconstruction loss, and 128 x 128 random
crops with rotation/flip augmentations. The pseudocode focuses on core computations; engineering
aspects (I/0, multi-GPU, logging, checkpointing) are omitted for brevity. Complexity expressions
report the dominant terms (attention and MLP). Notation: Zpjsy /Tclean denote inputs/targets, z the
current state, U}, the backbone output/prompt at stage k, and ¢ the iteration index. Prompt injection
is fixed at block indices {2, 4, 6} within the SwinIR backbone.

G TRANSFORMER AND PROMPT BLOCKS IN WBPT

As stated in Section 2.2 of the main manuscript, we present in Fig. 11 the block diagram of the
Prompt block corresponding to &;, and further elaborate on the implementation details of the Trans-
former block used within this Prompt block in Fig. 12. The Prompt block and the Transformer block
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Algorithm 2: One WBPT iteration stage (SwinIR with prompt injection)

Input: Current state x;_1; prompt config P; SwinlR depths [2, 2, 2], channels C'=96, window

M=8
Output: {W,;}X . {& Y, (transformations and prompts for MPSA)
f + Conv3x3(xx—1) # shallow feature

for / < 1to 3 do
(f,size) < PatchEmbed(f)
for b < 1to2do
if ShouldUsePrompt (¢, b, P) then
{& Y| « PromptGenBlock(f); f « f + Inject({&;}) # e.g., at
fixed block indices {2,4,6}

f «+ SwinTransformerBlock(f, size)

if £ < 3 then
| f « PatchMerging(f, size)

{W N, {&Y, « ExtractTransformationsAndPrompts(f)
return {W,}},, {&}Y,
Complexity: >7_, S0 (Fw-msa + Faep) ~ O(nw - B - M2C + LC?)

Algorithm 3: Multi-Prompted Structure Attention (MPSA) with Learnable Data Consistency

Input: x;, € REXHXWXC: yransforms {W,; } X, ; prompts {&; }¥,; measurements/targets y
Output: x;, € REXHXWxC
Multi-Prompted Structure Attention:

for i < 1to N do

B spsa; < SPSA(xy | Wy, &, v, 1) # Eq. 4
spsa,

mpsa_out < [Wi - W4] : # Eq. 5
spsap

Learnable Data Consistency:
Ay (xp,y) < LearntGradient(xy,y)
Gradient Flow Update:
Xpt1 (I -7 Zf\il W;‘Wl) Xp — nmpsaout — nAg(Xk,y)
# Egq. 8
return x4
Complexity: MPSA O(N - HW (C?); data consistency O(HW C?)

follow the design and hyper-parameter settings outlined in Potlapalli et al. (2023) and Zamir et al.

(2022), respectively.

G.1 PrRoOMPT BLOCK IN WBPT FRAMEWORK

G.1.1 PROMPT BLOCK OVERVIEW

Given prompt components P, € RV*XHXWXC and input features F; € RE*XWXC the prompt

block refines the input via:

F) = PIM(PGM(P,, F)), F)) (33)

The block contains two modules: the Prompt Generation Module (PGM) and the Prompt Interaction

Module (PIM), detailed below.
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Figure 11: Overview of the Prompt block used in the WBPT framework. The Prompt block is
composed of two sub modules,the Prompt Generation Module (PGM) and the Prompt Interaction
Module (PIM).

G.1.2 PROMPT GENERATION MODULE (PGM)

PGM dynamically generates input-conditioned prompts. First, global average pooling (GAP) is

applied on F to produce a channel-wise descriptor v € R¢. A 1 x 1 convolution and softmax yield
prompt weights w € RYV:

w; = Softmax(Convyx1(GAP(FY}))) (34)

These weights modulate the learned prompt components to form the final prompt P:

N
P = Convsys <Z wiPc> (35)
c=1

To support variable-resolution inputs, prompt components are upsampled to match the spatial size
of F via bilinear interpolation.

G.1.3 PROMPT INTERACTION MODULE (PIM)

PIM fuses the generated prompt P with features F; via channel-wise concatenation, followed by a
Transformer block:

F| = Convsys(GDFN(MDTA([Fy; P]))) (36)

G.2 TRANSFORMER BLOCK IN WBPT FRAMEWORK

MDTA Module. Let the input feature map be X € RH:xWixCi MDTA first applies Layer Nor-
malization, then projects the input to query (Q), key (K), and value (V) tensors using a sequence
of 1 x 1 pointwise convolution followed by 3 x 3 depth-wise convolution, all bias-free. To enable
channel-wise attention, Q and K are reshaped to R7tW1xCt and RE*HiWi respectively, resulting
in a transposed attention map of shape C; x Cj via dot-product interaction. Multi-head computation
is performed in parallel.

GDFN Module. The GDFN submodule begins with a channel expansion using a 1 x 1 convolution
by a factor . The expanded features are split into two parallel branches, each followed by a 3 x 3
depth-wise convolution. One branch passes through a GeLU activation while the other remains
linear. The outputs are combined via element-wise multiplication, and finally projected back to
the original channel dimension through a 1 X 1 convolution. Residual connections are maintained
throughout the block.

21



Under review as a conference paper at ICLR 2026

Multi-Deonv head
el AT oafion
Gated Dconv Feed-
GDEN Forward Network
Layer Normalization
3x3 depth-wise
Deonv ) convolution(W,;)

1x1 convolution (W},)

H x W, xyC,

Hy xW; x C;

Softmax operation

Transposed

Element-wise addition Attention Map(A)

Element-wise

mlioication Transformer Block

Matrix Multiplication

Reshape Hx Wi x G

e §

Gelu Activation

3x3 3x3 3x3
Dconv | | Dconv || Dconv

Figure 12: Overview of the Transformer block used in the Prompt block. The Transformer block is
composed of two sub modules,the Multi Dconv head transposed attention module(MDTA) and the
Gated Dconv feed-forward network(GDFN).

MDTA performs self-attention along channels:

Y =W,V softmax(K-Q/a)+X

GDFN transforms the result as:
Z =W, (p(WiW, (LN(Y))) @ WiWZ(LN(Y))) + Y
Here, LN is layer normalization, ¢ denotes GELU activation, and ® is element-wise multiplication.

H REPRODUCIBILITY STATEMENT

We provide all necessary details to support reproducibility. All experiments are conducted on pub-
licly available datasets, and the model architectures, hyperparameters, training protocols, and evalu-
ation metrics are specified in the paper. We will release our codebase, training scripts, and pretrained
checkpoints on GitHub upon acceptance.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models only for light editorial assistance during manuscript preparation
(grammar and wording refinement, minor style/formatting suggestions). No LLMs were used for
research ideation, dataset curation, modeling, experiment design, analysis, or drafting substantive
sections.
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