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Abstract

Prostate cancer (PCa) remains a leading cause of cancer-related morbidity, emphasiz-
ing the need for accurate and non-invasive diagnostic tools. While deep learning models
have advanced PCa detection in magnetic resonance imaging (MRI), they often fail to
integrate anatomical knowledge. This study evaluates U-Mamba, a deep learning archi-
tecture designed to enhance long-range dependency modeling with linear time complex-
ity, for PCa detection. Furthermore, a multi-task learning (MTL) extension, U-Mamba
MTL, is introduced to incorporate prostate zonal anatomy, aligning with clinical diag-
nostic workflows. The models were assessed using diverse datasets, including the PI-
CAT hidden tuning cohort (N=100) and an in-house collected out-of-distribution cohort
(N=200). Results demonstrate that U-Mamba achieves state-of-the-art detection perfor-
mance, while U-Mamba MTL further improves PCa detection through the auxiliary zonal
segmentation task. These findings highlight the potential of integrating U-Mamba with
anatomical context to improve PCa detection. The code and model weights are available
at https://github. com/mokkalokka/U-MambaMTL.

Keywords: Deep Learning, Medical Image Analysis, Prostate Cancer, Mamba, Multi-Task
Learning

1. Introduction

Prostate cancer (PCa) is the fourth most prevalent cancer worldwide, despite exclusively
affecting the male population (Bray et al., 2024). Prostate biopsies remain the gold stan-
dard for classifying cancer aggressiveness; however, the procedure is associated with health
risks (Borghesi et al., 2017). To minimize unnecessary biopsies, magnetic resonance imaging
(MRI) is increasingly used alongside prostate-specific antigen (PSA) blood tests as an effec-
tive, non-invasive tool for detection of clinically significant PCa (csPCa) using the prostate
imaging-reporting and data system (PI-RADS) v2.1 protocol (Park et al., 2021). However,
the diagnostic accuracy of MRI assessment can vary significantly depending on the reader’s
level of expertise (Wei et al., 2021).
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A promising solution to mitigate this inter-reader variability in prostate MRI assessment
is the application of artificial intelligence (AI) for automatic PCa detection. Training and
validating AT models, however, requires large amounts of labeled data. In response to this
need, the organizers of the PI-CAI challenge provided a large-scale multi-center dataset
comprising 10,207 bi-parametric MRI (bpMRI) cases to advance research in PCa detection
(Saha et al., 2024). While only a small subset of this dataset (N=1,500) is publicly available
for training and validation, it still surpasses the size of previously available labeled prostate
bpMRI datasets (Adams et al., 2022; Litjens et al., 2017).

The top-performing submissions to the PI-CAI challenge utilized either convolutional
neural network (CNN)-based architectures (Debs et al., 2022; Li et al., 2022; Karagoz et al.,
2023) or hybrid CNN-transformer architectures (Yuan et al., 2022; Kan et al., 2022). The
challenge organizers also introduced three strong baseline methods, leveraging three widely
used CNN-based architectures. The first, nnU-Net, is a self-configuring network for medical
segmentation that optimizes pre- and post-processing as well as architectural parameters
based on the dataset and available computing resources (Isensee et al., 2021). The second,
nnDetection, is similarly self-configuring but focuses on object detection using the Retina
U-Net architecture (Baumgartner et al., 2021; Jaeger et al., 2020). The final baseline is a
standard CNN-based U-Net (Ronneberger et al., 2015).

While CNN-based architectures dominate the field, they are inherently limited in captur-
ing long-range dependencies due to the localized nature of convolutional filters. Transformer-
based architectures, on the other hand, offer greater potential for modeling long-range
dependencies but face challenges such as computational complexity, particularly in dense
prediction tasks like segmentation, where small patch sizes and windowed self-attention are
often required (Liu et al., 2021). These constraints reduce their ability to fully leverage
long-range information.

A recent alternative to CNNs and transformers called Mamba (Gu and Dao, 2023),
claims to excel at leveraging long range dependencies for sequence to sequence tasks while
maintaining a linear time complexity. U-Mamba (Ma et al., 2024), is one of the most
popular mamba adaptations for medical image segmentation tasks, which is reported to
achieve state of the art segmentation performance. However, efficacy on PCa detection in
bpMRI remains unknown.

The prostate comprises two main zones: the transitional zone (TZ) and the peripheral
zone (PZ), with the PZ accounting for most PCa cases. In PI-RADS v2.1, the dominant
MRI sequence is determined by the lesion’s zone. While zonal segmentation in MRI using
deep learning has been extensively studied (Adams et al., 2022; Kou et al., 2024; Cuocolo
et al., 2021; Aldoj et al., 2020), most PCa detection methods overlook anatomical knowledge
like prostate zones. Some PCa detection studies use zonal masks as inputs (Yuan et al.,
2022; Karagoz et al., 2023), while (Zheng et al., 2024) included zones as output classes using
mpMRI. While DCE (included in mpMRI) has been reported to improve PCa detection in
certain populations, particularly in men of African descent (Zabihollahy et al., 2023), recent
studies have demonstrated that bpMRI is non-inferior to mpMRI for general PCa diagnosis
and is now commonly used as a more cost-effective and less time-consuming alternative
(Twilt et al., 2024). The increasing adoption of bpMRI in clinical workflows supports its
relevance for deep learning-based PCa detection.
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We propose a zonal anatomy-guided multi-task learning (MTL) approach using U-
Mamba (Ma et al., 2024), marking its first application to PCa detection in bpMRI. While
MTL has been explored before, our work is the first to use zonal anatomy as auxiliary
segmentation targets, leveraging U-Mamba’s long-range dependency modeling and linear
time complexity to improve lesion detection in bpMRI. We introduce two MTL strategies
(Single-Decoder and Dual-Decoder) to incorporate anatomical priors, significantly improv-
ing lesion detection. While achieving zonal segmentation performance on par with inter-
reader variability, our results show that integrating zonal masks enhances PCa detection,
with U-Mamba MTL-Single ranking 23rd out of 424 on the PI-CAI leaderboard, under-
scoring its competitiveness. The strong performance on both tasks suggests that U-Mamba
MTL could serve as a promising clinical decision support tool for PCa assessment.

2. Methodology
2.1. Datasets

The datasets utilized in this study include the training cohort (N=1500) (which incorporates
the ProstateX dataset (Litjens et al., 2017)), and the hidden tuning cohort (N=100) of the
PI-CAI dataset (Saha et al., 2022). 425 cases in the PI-CAI training cohort are confirmed
histologically to have clinically significant PCa (csPCa), defined as grade group > 2. Of the
csPCa cases in the PI-CAI training cohort, 220 cases include human expert annotations,
while the remaining csPCa cases are derived from the approach outlined in (Bosma et al.,
2023). Transition zone (TZ) and peripheral zone (PZ) masks for the training subset were
Al-generated using a standard nnUNet (Isensee et al., 2021), trained on the ProstateX
subset of the PI-CAI training data (Yuan et al., 2022).

The study further incorporated an in-house dataset (N=200) from NTNU/St. Olavs
hospital, Trondheim, Norway (Kriiger-Stokke et al., 2021), along with the Prostatel58
dataset (N=158) (Adams et al., 2022). Both datasets provide expert annotations for PCa
and zonal anatomy. PCa annotations for the in-house cohort are defined in the same
manner as those in the PI-CAI datasets, but Prostatel58 includes grade group 1, and is
thus excluded from the csPCa detection assessment in this study. A resident radiologist
with at least two years of experience at St. Olav’s Hospital, Trondheim, delineated the
in-house dataset using ITK-SNAP software in collaboration with a senior radiologist with
over ten years of experience in prostate MRI. Annotations encompassed all MRI-visible
lesions classified by PI-RADS, histopathologically confirmed lesions from biopsy or radical
prostatectomy, and zonal anatomy.

An overview of all datasets utilized in this study is provided in Table 1 and the clinical
variables for each cohort can be seen in Appendix A. All datasets in this study include T2-
weighted (T2W), apparent diffusion coefficient (ADC), and high b-value (HBV) diffusion-
weighted images, collectively referred to as bpMRI.

2.2. Network Architecture

We implemented the U-Mamba architecture (Ma et al., 2024) to investigate the hypothesis
that the enhanced long-range dependency capabilities of Mamba (Gu and Dao, 2023) will
be beneficial for PCa detection. As the performance of the Enc and Bot variant is reported
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Dataset Cases Type Annotations
In-House' 200 3T mpMRI PCa, Zonal
PI-CAI Training cohort 1500 1.5T, 3T bpMRI PCa?, Zonal®
PI-CAI Hidden tuning cohort 100 1.5T, 3T bpMRI PCa
Prostate158 158 3T bpMRI PCa, Zonal

Table 1: Prostate cancer dataset information. ! denotes that the dataset is contained within
the PI-CAI hidden test set cohort, 2 denotes that a subsection of the labels are Al
generated (N=200) and ? denotes that all the masks are Al generated

to be similar, we opted for the Bot variant due to it’s reduced computational complexity
(Isensee et al., 2024).

The particular configuration of the U-Mamba architecture used in this paper consists
of 7 convolution stages in the encoder and decoder, where each stage in encoder consists
of 2 (3 x 3) convolutions. The decoder consists of the upsampling blocks in addition to
a residual block. The bottleneck consists of the mamba-based block called the U-Mamba
block in addition to a residual block.

2.3. U-Mamba MTL

To investigate whether incorporating zonal masks (TZ and PZ) improves PCa prediction,
we explored two multitask learning (MTL) strategies using U-Mamba as the base archi-
tecture. Since zonal and PCa masks are not mutually exclusive, they can be treated as
separate tasks. When tasks are highly related, a shared-parameter strategy is typically
more effective. Conversely, if they are less related, allocating more task-specific parameters
may be beneficial. Determining the optimal balance, however, requires experimentation.
We define the two tasks as Ty = PCa and 71 = Peripheral Zone (PZ) and Transitional
Zone (TZ) zonal masks. Our U-Mamba MTL architectures can then be formulated as:

VAR fenc(X; eenc), (1)
Yi = fdeci(z;edeci), Vi € {1, .. ,N}

The first strategy, U-Mamba MTL-Dual, uses N = 2, meaning two decoder branches
separately predict yz, (PCa) and y7, (zonal masks). The encoder is shared, learning a
common representation, while each decoder branch captures task-specific features.

The second strategy, U-Mamba MTL-Single, uses N = 1, meaning a single decoder
predicts both y7, and yr,, sharing all parameters across tasks.

Aside from the additional decoder in U-Mamba MTL-Dual, both models maintain the
same overall structure as the base U-Mamba network. A complete architectural overview
is provided in Figure 1.

2.4. Loss Functions

The two different tasks we aim to predict with our U-Mamba MTL architectures observe
very different characteristics, which can cause issues with convergence if not handled care-
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Figure 1: Architectural overview of U-Mamba MTL-Single and U-Mamba MTL-Dual

fully. The PCa task observes a severe class imbalance compared to the background, and
is not present in all cases. These observations fits well with the selection criteria for the
Focal loss function. The zonal mask prediction task on the other hand observes a moder-
ate class imbalance compared to the background, and is present in all cases. Therefore, a
combination of Dice and CE loss is deemed more suited for this task.

Due to the scale difference between the two task losses and the difference in relative
difficulty of the tasks, a balancing factor g is introduced. If we formulate the two targets
in our MTL variants of U-Mamba as Ty = PCa and T3 = PZ and TZ zonal masks, the full
formulation of the multi-task loss can be defined as:

L7, = L¥ocal, L1, = AMlpice + (1 —XN)Lcr, L= Lg, + BLT,. (2)

The weight balancing parameter A = 0.5 which gives equal weight to the Dice and Cross
Entropy component of £7,. The weight balancing parameter /5 is set to 0.2 to balance
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both loss range and the relative difficulties of the tasks. Please note that the un-altered
U-Mamba network uses Lpoca as its only loss function.

2.5. Model Training

Each model was trained using the PI-CAI challenge training dataset (N=1500) split into a
training and a validation set by using 5-fold cross validation. Each split contains approxi-
mately 80% for training and 20% for validation.

All models were trained using 5-fold cross-validation for 200 epochs, a choice driven by
observed early convergence during development, typically around 100 epochs. In contrast,
the baseline models from the PI-CAI challenge organizers were trained for 1000 epochs.
Training was conducted on a single A100 GPU (80GB VRAM) using a cosine annealing
learning rate scheduler and the AdamW optimizer, producing five model weights per model.
Final predictions for each model were generated using a mean ensemble across all model
fold predictions.

To enhance the dataset diversity for model training, a set of data augmentations was
used to augment the training data each epoch randomly. To ensure equal size of each image,
we resample all images to the common spacing and perform crop or pad using the prostate
as the center. Specific settings for each augmentation can be seen in Appendix B.

2.6. Baseline Models

To assess the performance of our model in relation to current state-of-the-art (SOTA)
we opted to use the three baseline methods provided by the PI-CAI Challenge organizers
which includes: nnUNet (Isensee et al., 2021), nnDetection (Baumgartner et al., 2021) and
a standard U-Net (Ronneberger et al., 2015). In addition to the PI-CAI baselines we trained
a SOTA transformer model called Swin UNETR (Hatamizadeh et al., 2022) using the same
setup as the U-Mamba and our U-Mamba MTL model, except for the input size in the
Z-dimension which was set to 32 due to model requirements.

2.7. Metrics

We assess PCa segmentations masks using average precision (AP) and area under the re-
ceiver operating curve (AUC), following PI-CAI guidelines (Saha et al., 2024). In order to
compute the metrics, non-overlapping lesion candidates are extracted from the PCa prob-
ability map. The lesion candidates are iteratively extracted by selecting the voxel with the
maximum probability and selecting all connected voxels with a minimum of 40% of its peak
probability (Bosma et al., 2023). A PCa detection map is defined as the collection of all
lesion candidates for a given case, where each lesion candidate have a single probability
defined by its maximum probability.

A lesion is considered true positive in the AP calculation if its intersect over union
exceeds 10%. AUC is computed per patient using the highest probability in the PCa
detection map. The combined performance metric averages AP and AUC to evaluate lesion
detection and patient-level PCa classification. The metrics are calculated with the picai_eval
script provided by the PI-CAI challenge (Saha et al., 2024).
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3. Results

In this section, two datasets from four separate institutions, the PI-CAI hidden tuning
cohort (N=100) and our out-of-distribution in-house cohort (N=200), are used to evaluate
the performance of our trained model against all baseline models. As each model was trained
using 5-fold cross validation, a simple mean ensemble is employed on the softmax output of
each model fold before extracting lesion candidates using the post processing steps described
in Section 2.7. The lesion candidates are then reverted to original size before evaluating the
metrics. Results for zonal segmentation can be seen in Appendix D.

3.1. Qualitative Results

Figure 2 shows a selection of qualitative results on the in-house dataset (N=200). The
selected samples highlights cases where some or all models fails to produce correct predic-
tions.

MTL-Single MTL-Dual Umamba Swin UNETR U-Net nnDet nnUNet
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Figure 2: Qualitative comparison on the in-house dataset (N=200) of the PCa detection
maps among all models compared to ground truth (GT), overlayed on ADC chan-
nel. Green arrow highlights an area where hypointensity is lacking. Red arrows
highlights areas with hypointensity.

2. Quantitative results

The evaluation of the models on the PI-CAI hidden development set (N=100) was acquired
by submitting a docker container for each trained model to the challenge website (Saha,
2025). Table 2 shows the quantitative results on the PI-CAI hidden development set, where
our U-Mamba MTL-Dual achieved the highest aggregated score.

Table 3 shows the quantitative results on our in-house, out-of-distribution dataset
(N=200). U-Mamba MTL achieves the highest score across all performance metrics.
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Model Score AUC AP Ranking Parameters
U-Mamba MTL Single (ours) 0.781 0.867 0.696 23rd 73.6M
U-Mamba MTL Dual (ours) 0.735 0.843 0.622  134th 114M
nnDetection 0.734 0.885 0.582 139th 24.7TM
U-Net 0.731 0.829 0.633 144th 31.8M
U-Mamba 0.727 0.820 0.635 157th 73.6M
nnU-Net 0.714 0.818 0.610 188th 44.8M
Swin UNETR 0.665 0.792  0.537 241st 72.8M

Table 2: Results on PI-CAI hidden development set (N=100)

Model Score AUC AP

U-Mamba MTL Single (ours) 0.818+£0.062 0.932 + 0.041 0.705 + 0.101
U-Mamba MTL Dual (ours) 0.805 £ 0.063 0.925 £ 0.043 0.685 £ 0.097

U-Mamba 0.799 £ 0.060 0.923 £ 0.044 0.674 = 0.089
Swin UNETR 0.773 £ 0.063 0.902 £ 0.054 0.643 £+ 0.094
nnDetection 0.765 £ 0.064 0.920 £ 0.045 0.610 £ 0.099
U-Net 0.759 £ 0.061 0.913 £+ 0.043 0.605 £+ 0.095
nnUNet 0.731 £ 0.070 0.910 £ 0.045 0.555 £ 0.113

Table 3: Results from our in-house dataset N=200, where + refers to the largest difference
from mean to the 95% confidence interval bounds, derived from 10.000 bootstrap
samples (Jurdi et al., 2023).

4. Discussion and Conclusion

This work shows that our U-Mamba MTL-Single model outperformed baseline state-of-
the-art models for PCa detection in bpMRI and achieved zonal segmentation performance
comparable to inter-reader variability, as demonstrated on the Prostatel58 dataset (Ap-
pendix D). Notably, it ranked 23rd out of 450 on the PI-CAI leaderboard, underscoring
its competitiveness. Its strong AP and AUC scores indicate precise lesion localization and
reliable patient-level classification, which are critical for guided prostate biopsy, improving
targeting accuracy and reducing unnecessary procedures. Although the 95th confidence
intervals are overlapping, both U-Mamba MTL variants achieved the highest scores on
our out-of-distribution in-house dataset and the PI-CAI development dataset, demonstrat-
ing promising generalizability. These results highlight the importance of integrating zonal
anatomy, which enhances PCa detection compared to using U-Mamba alone.

Analyzing the experimental results reveals that the single-decoder MTL approach sig-
nificantly outperforms the dual-decoder MTL method. However, since PCa detection and
zonal segmentation are fundamentally different tasks, an optimal balance of shared param-
eters may be achieved by partially splitting the decoder between the bottleneck and the
prediction heads. Identifying this optimal point remains an avenue for future research.
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All U-Mamba variants outperformed the baseline methods in terms of the combined
score, except for the base U-Mamba on the PI-CAI hidden development dataset. This
superior performance may be attributed to U-Mamba’s enhanced ability to capture long-
range dependencies, facilitated by the relatively large input size used in this study and
the absence of patch-based learning. Additionally, its relatively high parameter count,
comparable only to Swin UNETR, may have contributed to its effectiveness. However,
further research is needed to confirm these factors’ impact on performance.

Swin UNETR has architectural limitations, requiring a minimum input size of 32 for each
dimension. Since the average Z-dimension size for the bpMRI data used in this study is 20,
padding was necessary, which may have contributed to Swin UNETR’s poor performance.
While nnDetection demonstrated strong patient-level classification performance (AUC), its
ability to localize PCa (AP) was among the lowest. This poor AP score is partly due to
the nature of the nnDetection architecture, which only produces bounding boxes, unlike the
other architectures in this study that generate segmentation masks. As AP is calculated by
defining a lesion candidate as a true positive given a 10% overlap, the bounding-box-based
approach may have been a limiting factor.

The qualitative results highlights challenges in PCa detection. Some false positives were
caused by hypointense areas in the ADC channel, often indicative of PCa (rows 2 and 3,
Figure 2). Conversely, a false negative occurred in a region lacking ADC hypointensity
despite a ground truth annotation (row 3, Figure 2). Additionally, rows 1 and 3 illustrate
improved PCa delineation in U-Mamba MTL-Single and Dual compared to the base U-
Mamba, emphasizing the benefits of incorporating zonal anatomy context.

In conclusion, the U-Mamba architecture, with its enhanced long-range dependency
modeling, improved PCa detection in bpMRI. Additionally, we demonstrated that integrat-
ing zonal masks via multi-task learning further enhanced PCa detection performance.
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Appendix A. Clinical Information

Tables 4, 5 and 6 contains the clinical information for the datasets used in this study and
their origin.

PI-CAI Training cohort

RUMC ZGT PCNN
Sites 2 1 8
Patients 792 346 338
Median age, years 65 (60-69) 67 (62-72) 68 (63-72)
Median prostate-specific antigen, ng/mL 9 (6-14) 7 (5-11) 9 (6-12)
Median prostate volume, mL 63 (45-88) 49 (36-70) 50 (35-70)
Field strength, Tesla 1.5, 3 3 1.5, 3
Cases 800 350 350
Clinically significant prostate
cancer (Gleason grade group > 2) 236 (30%) 80 (23%) 109 (31%)
Positive MRI lesions 614 186 287
PLRADS 3 149 (24%) 32 (17%) 65 (23%)
PL-RADS 4 226 (37%) 71 (38%) 141 (49%)
PLI-RADS 5 239 (39%) 83 (45%) 81 (28%)
Gleason grade group 1 150 (36%) 74 (45%) 87 (43%)
Gleason grade group 2 136 (33%) 46 (28%) 78 (39%)
Gleason grade group 3 64 (16%) 21 (13%) 24 (12%)
Gleason grade group 4 28 (7%) 6 (4%) 7 (3%)
Gleason grade group 5 33 (8%) 16 (10%) 6 (3%)

Table 4: Clinical variables and statistics for the PI-CAI Training cohort. Data presented as
n, n (%), or median (IQR). Abbreviations: PCNN - Prostaat Centrum Noord-
Nederland, PI-RADS - Prostate Imaging Reporting and Data System, PSA -
prostate-specific antigen, RUMC - Radboud University Medical Center, ZGT -
Ziekenhuisgroep Twente.
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PI-CAI Hidden tuning cohort

RUMC ZGT PCNN
Sites 2 1 3
Patients 40 30 30
Median age, years 64 (58-70) 66 (61-71) 66 (60-74)
Median prostate-specific antigen, ng/mL 8 (5-11) 8 (6-11) 9 (6-14)
Median prostate volume, mL 64 (46-91) 46 (35-54) 42 (30-65)
Field strength, Tesla 3 3 1.5, 3
Cases 40 30 30
Clinically significant prostate
cancer (Gleason grade group > 2) 16 (40%) 12 (40%) 13 (43%)
Positive MRI lesions 21 25 33
PLRADS 3 4(19%)  3(12%) 7 (21%)
PLRADS 4 10 (48%) 7 (28%) 17 (52%)
PLI-RADS 5 7(33%) 15 (60%) 9 (27%)
Gleason grade group 1 6 (24%) 13 (52%) 8 (35%)
Gleason grade group 2 8 (32%) 7 (28%) 8 (35%)
Gleason grade group 3 5 (20%) 1 (4%) 4 (17%)
Gleason grade group 4 2 (8%) 1 (4%) 2 (8%)
Gleason grade group 5 4 (16%) 3 (12%) 1 (4%)

Table 5: Clinical variables and statistics for the PI-CAI Hidden tuning cohort. Data pre-
sented as n, n (%), or median (IQR). Abbreviations: PCNN - Prostaat Centrum
Noord-Nederland, PI-RADS - Prostate Imaging Reporting and Data System, PSA
- prostate-specific antigen, RUMC - Radboud University Medical Center, ZGT -
Ziekenhuisgroep Twente.
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In-House cohort

STOH
Sites 1
Patients 200
Median age, years 66 (60-69)
Median prostate-specific antigen, ng/mL 7 (5-12)
Median prostate volume, mL 50 (36-71)
Field strength, Tesla 3
Cases 200
Clinically significant prostate
cancer (Gleason grade group > 2) 80 (40%)
Positive MRI lesions 131
PLRADS 3 29 (23%)
PL-RADS 4 34 (25%)
PLRADS 5 68 (52%)
Gleason grade group 1 23 (18%)
Gleason grade group 2 40 (30%)
Gleason grade group 3 39 (30%)
Gleason grade group 4 14 (10%)
Gleason grade group 5 15 (12%)

Table 6: Clinical variables and statistics for the In-House cohort. Data presented as n, n
(%), or median (IQR). Abbreviations: PI-RADS - Prostate Imaging Reporting
and Data System, PSA - prostate-specific antigen, STOH - St. Olav’s Hospital,
Trondheim University Hospital.
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Appendix B. Data Augmentation

Table 7 contains the augmentations used for training and validation of the models used in
this study. All augmentations were implemented using MONAI (Consortium, 2024).

Augmentation

Parameter

Spacing*

Crop or Pad*

Z-score normalization™®
Random flip

Random Gaussian Smoothing
Random Scale Intensity
Random Shift Intensity
Random Gaussian Noise
Random Affine

(0.5mm, 0.5mm, 3.0mm)

(256, 256, 207)
Channel wise
Along each axis
sigma=(0.5, 1.0)

10%
10%

mean=0, std=0.1

rotate=(0.15, 0.15, 0)

Table 7: Dataset augmentations. * denotes that the augmentation is used for all splits, the
rest is used only for the training split. t denotes that the Z dimension was changed
to 32 for Swin UNETR as this is the lowest size for the architecture.

Appendix C. Model Efficiency

Table 8 shows an efficiency analysis of each model used in this study.

Model Params

Training time

Inference time

U-Mamba MTL Single (ours) 73.6M
U-Mamba MTL Dual (ours)  114M

U-Mamba 73.6M
Swin UNETR 72.8M
U-Net 31.8M
nnUNet 44.8M
nnDet 24.7TM

15H
16.5H
12.5H
34H
N/A
N/A
N/A

1.1s
0.9s
1.0s
1.3s
1.3s
31s

105s

Table 8: Training time refers to each fold trained for 200 epochs on a A100 80GB VRAM
GPU. The training time is not available for the PI-CAI baselines, as these models
were trained by the PI-CAI organizers. Inference time includes the full inference

pipeline (5 fold predictions, test time augmentations etc).

Appendix D. Zonal Segmentation

Although the zonal segmentation task for our U-Mamba MTL models is deemed as an
auxiliary task, these masks might be useful for downstream tasks given sufficient quality.
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In order to assess the accuracy of the zonal masks, inference was performed on the 200
patients from the in-house dataset and the 158 patients from the Prostatel58 dataset. The
predicted segmentation masks are then compared to the ground truth using the Dice Score
(DSC) metric (Figure 3). Please note that the DSC is compared to reader 1 in the P158

dataset.
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Figure 3: Dice score distributions for prostate zones for the U-Mamba MTL model

The auxiliary task of zonal segmentation within the both U-Mamba MTL architectures
yielded strong results on both our in-house dataset and the Prostate158 dataset. Specifically,
both our models achieved DSC scores of 0.76 and 0.87 for the peripheral zone (PZ) and
transition zone (TZ), respectively, aligning closely with reported inter-reader variability
(DSCpyz = 0.75, DSCrz = 0.87). Notably, except for the ProstateX subset (N=346) of
the PI-CAI Training set ( N=1500), all zonal masks were Al-generated, indicating that the
model’s zonal segmentation performance is largely a product of weak supervision.
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