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Abstract

Prostate cancer (PCa) remains a leading cause of cancer-related morbidity, emphasiz-
ing the need for accurate and non-invasive diagnostic tools. While deep learning models
have advanced PCa detection in magnetic resonance imaging (MRI), they often fail to
integrate anatomical knowledge. This study evaluates U-Mamba, a deep learning archi-
tecture designed to enhance long-range dependency modeling with linear time complex-
ity, for PCa detection. Furthermore, a multi-task learning (MTL) extension, U-Mamba
MTL, is introduced to incorporate prostate zonal anatomy, aligning with clinical diag-
nostic workflows. The models were assessed using diverse datasets, including the PI-
CAI hidden tuning cohort (N=100) and an in-house collected out-of-distribution cohort
(N=200). Results demonstrate that U-Mamba achieves state-of-the-art detection perfor-
mance, while U-Mamba MTL further improves PCa detection through the auxiliary zonal
segmentation task. These findings highlight the potential of integrating U-Mamba with
anatomical context to improve PCa detection. The code and model weights are available
at https://github.com/mokkalokka/U-MambaMTL.

Keywords: Deep Learning, Medical Image Analysis, Prostate Cancer, Mamba, Multi-Task
Learning

1. Introduction

Prostate cancer (PCa) is the fourth most prevalent cancer worldwide, despite exclusively
affecting the male population (Bray et al., 2024). Prostate biopsies remain the gold stan-
dard for classifying cancer aggressiveness; however, the procedure is associated with health
risks (Borghesi et al., 2017). To minimize unnecessary biopsies, magnetic resonance imaging
(MRI) is increasingly used alongside prostate-specific antigen (PSA) blood tests as an effec-
tive, non-invasive tool for detection of clinically significant PCa (csPCa) using the prostate
imaging–reporting and data system (PI-RADS) v2.1 protocol (Park et al., 2021). However,
the diagnostic accuracy of MRI assessment can vary significantly depending on the reader’s
level of expertise (Wei et al., 2021).
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A promising solution to mitigate this inter-reader variability in prostate MRI assessment
is the application of artificial intelligence (AI) for automatic PCa detection. Training and
validating AI models, however, requires large amounts of labeled data. In response to this
need, the organizers of the PI-CAI challenge provided a large-scale multi-center dataset
comprising 10,207 bi-parametric MRI (bpMRI) cases to advance research in PCa detection
(Saha et al., 2024). While only a small subset of this dataset (N=1,500) is publicly available
for training and validation, it still surpasses the size of previously available labeled prostate
bpMRI datasets (Adams et al., 2022; Litjens et al., 2017).

The top-performing submissions to the PI-CAI challenge utilized either convolutional
neural network (CNN)-based architectures (Debs et al., 2022; Li et al., 2022; Karagoz et al.,
2023) or hybrid CNN-transformer architectures (Yuan et al., 2022; Kan et al.). The chal-
lenge organizers also introduced three strong baseline methods, leveraging three widely used
CNN-based architectures. The first, nnU-Net, is a self-configuring network for medical seg-
mentation that optimizes pre- and post-processing as well as architectural parameters based
on the dataset and available computing resources (Isensee et al., 2021). The second, nnDe-
tection, is similarly self-configuring but focuses on object detection using the Retina U-Net
architecture (Baumgartner et al., 2021; Jaeger et al., 2020). The final baseline is a standard
CNN-based U-Net (Ronneberger et al., 2015).

While CNN-based architectures dominate the field, they are inherently limited in captur-
ing long-range dependencies due to the localized nature of convolutional filters. Transformer-
based architectures, on the other hand, offer greater potential for modeling long-range
dependencies but face challenges such as computational complexity, particularly in dense
prediction tasks like segmentation, where small patch sizes and windowed self-attention are
often required (Liu et al., 2021). These constraints reduce their ability to fully leverage
long-range information.

A recent alternative to CNNs and transformers called Mamba (Gu and Dao, 2023),
claims to excel at leveraging long range dependencies for sequence to sequence tasks while
maintaining a linear time complexity. U-Mamba (Ma et al., 2024), is one of the most
popular mamba adaptations for medical image segmentation tasks, which is reported to
achieve state of the art segmentation performance. However, efficacy on PCa detection in
bpMRI remains unknown.

The prostate comprises two main zones: the transitional zone (TZ) and the peripheral
zone (PZ), with the PZ accounting for most PCa cases. In PI-RADS v2.1, the dominant
MRI sequence is determined by the lesion’s zone. While zonal segmentation in MRI using
deep learning has been extensively studied (Adams et al., 2022; Kou et al., 2024; Cuocolo
et al., 2021; Aldoj et al., 2020), most PCa detection methods overlook anatomical knowledge
like prostate zones. Some PCa detection studies use zonal masks as inputs (Yuan et al.,
2022; Karagoz et al., 2023), while (Zheng et al., 2024) included zones as output classes using
mpMRI. However, bpMRI has been shown to be non-inferior to mpMRI for diagnosing PCa,
and is now commonly used as a more cost-effective and less time-consuming alternative.
(Twilt et al., 2024).

This paper advances deep learning-based PCa detection in bpMRI by evaluating the
previously unknown efficacy of U-Mamba (Ma et al., 2024), a Mamba-based architecture
designed to efficiently model long-range dependencies with linear time complexity. A novel
parallel multi-task extension of U-Mamba is proposed, integrating prostate zonal segmenta-
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tion masks to incorporate anatomical context and enhance performance for PCa detection.
The methodology is validated on an out-of-distribution in-house dataset (N=200) and an
external dataset (N=100), demonstrating superior detection performance compared to a
selection of state-of-the-art models.

2. Methodology

2.1. Datasets

The datasets utilized in this study include the training cohort (N=1500) (which incorporates
the ProstateX dataset (Litjens et al., 2017)), and the hidden tuning cohort (N=100) of the
PI-CAI dataset (Saha et al., 2022). 425 cases in the PI-CAI training cohort are confirmed
histologically to have clinically significant PCa (csPCa), defined as grade group ≥ 2. Of the
csPCa cases in the PI-CAI training cohort, 220 cases include human expert annotations,
while the remaining csPCa cases are derived from the approach outlined in (Bosma et al.,
2023). Transition zone (TZ) and peripheral zone (PZ) masks for the training subset were
AI-generated using a standard nnUNet (Isensee et al., 2021), trained on the ProstateX
subset of the PI-CAI training data (Yuan et al., 2022).

The study further incorporated an in-house dataset (N=200) from NTNU/St. Olavs
hospital, Trondheim, Norway (Krüger-Stokke et al., 2021), along with the Prostate158
dataset (N=158) (Adams et al., 2022). Both datasets provide expert annotations for PCa
and zonal anatomy. PCa annotations for the in-house cohort is defined similarly to the
PI-CAI datasets, but Prostate158 includes grade group 1, and is thus excluded from the
csPCa detection assessment in this study. An overview of all datasets utilized in this study
is provided in Table 1 and the clinical variables for each cohort can be seen in Appendix A.

All datasets in this study include T2-weighted (T2W), apparent diffusion coefficient
(ADC), and high b-value (HBV) diffusion-weighted images, collectively referred to as bpMRI.

Dataset Cases Type Annotations

In-House1 200 3T mpMRI PCa, Zonal
PI-CAI Training cohort 1500 1.5T, 3T bpMRI PCa2, Zonal3

PI-CAI Hidden tuning cohort 100 1.5T, 3T bpMRI PCa
Prostate158 158 3T bpMRI PCa, Zonal

Table 1: Prostate cancer dataset information. 1 denotes that the dataset is contained within
the PI-CAI hidden test set cohort, 2 denotes that a subsection of the labels are AI
generated (N=200) and 3 denotes that all the masks are AI generated

2.2. Network Architecture

We implemented the U-Mamba architecture (Ma et al., 2024) to investigate the hypothesis
that the enhanced long-range dependency capabilities of Mamba (Gu and Dao, 2023) will
be beneficial for PCa detection. As the performance of the Enc and Bot variant is reported
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to be similar, we opted for the Bot variant due to it’s reduced computational complexity
(Isensee et al., 2024).

The particular configuration of the U-Mamba architecture used in this paper consists
of 7 convolution stages in the encoder and decoder, where each stage in encoder consists
of 2 (3 × 3) convolutions. The decoder consists of the upsampling blocks in addition to
a residual block. The bottleneck consists of the mamba-based block called the U-Mamba
block in addition to a residual block. The full U-Mamba architecture overview can be seen
in Figure 1.

Figure 1: General overview of the U-Mamba (Bot) architecture

2.3. U-Mamba MTL

To explore the hypothesis that the inclusion of zonal masks (TZ and PZ) is beneficial for
PCa prediction, we extended the original U-Mamba architecture using a parallel multi-task
learning strategy. As zonal masks (TZ and PZ) are considered an auxiliary task and the
difficulty of predicting zonal masks is comparably easier than the PCa prediction, we opted
to consider the zonal masks as a single task. We would expect these two classes to work
well within a shared decoder, as the two classes are closely related, and by limiting our
architecture to two decoders, additional computational complexity is avoided in terms of
trainable parameters.

We define the two tasks as T0 = PCa and T1 = Peripheral Zone (PZ) and Transitional
Zone (TZ) zonal masks. Our U-Mamba MTL architecture can then be formulated as:

z = fenc(x; θenc),

yi = fdeci(z; θdeci), ∀i ∈ {1, . . . , N}
(1)

Where N = 2 such that the two decoder branches predict yT0 and yT1 . The encoder is
then shared between the two tasks such that a shared representation can be learned in the
shared parameters θenc, and task specific representation is represented in the corresponding
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decoder parameters θdeci . Except for the additional decoder branch, the network follows the
same exact structure as the U-Mamba network described above, and the full architecture
overview of our U-MambaMTL can be seen in Figure 2.

Figure 2: General overview of our U-Mamba MTL Architecture (see Figure 1 for block
descriptions)

2.4. Loss Functions

The two different tasks we aim to predict with our U-Mamba MTL architecture observe very
different characteristics, which can cause issues with convergence if not handled carefully.
The PCa task observes a severe class imbalance compared to the background, and is not
present in all cases. These observations fits well with the selection criteria for the Focal
loss function. The zonal mask prediction task on the other hand observes a moderate class
imbalance compared to the background, and is present in all cases. Therefore, a combination
of Dice and CE loss is deemed more suited for this task.

Due to the scale difference between the two task losses and the difference in relative
difficulty of the tasks, a balancing factor β is introduced. If we formulate the two targets
in our MTL variant of U-Mamba as T0 = PCa and T1 = PZ and TZ zonal masks, the full
formulation of the multi-task loss can be defined as:

LT0 = LFocal, LT1 = λLDice + (1− λ)LCE, L = LT0 + βLT1 . (2)

The weight balancing parameter λ = 0.5 which gives equal weight to the Dice and Cross
Entropy component of LT1 . The weight balancing parameter β is set to 0.2 to balance
both loss range and the relative difficulties of the tasks. Please note that the un-altered
U-Mamba network uses LFocal as its only loss function.

2.5. Model Training

Each model was trained using the PI-CAI challenge training dataset (N=1500) split into a
training and a validation set by using 5-fold cross validation. Each split contains approxi-
mately 80% for training and 20% for validation.
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All the models were trained using 5-fold cross validation for 200 epochs, while the
baseline models from the PI-CAI challenge organizers were trained for 1000 epochs. The
model training was conducted using a single A100 (80GB VRAM) GPU with a cosine
annealing learning rate scheduler and AdamW optimizer, which resulted in 5 model weights
for each model.

To enhance the dataset diversity for model training, a set of data augmentations was
used to augment the training data each epoch randomly. To ensure equal size of each image,
we resample all images to the common spacing and perform crop or pad using the prostate
as the center. Specific settings for each augmentation can be seen in Appendix B.

2.6. Baseline Models

To assess the performance of our model in relation to current state-of-the-art (SOTA)
we opted to use the three baseline methods provided by the PI-CAI Challenge organizers
which includes: nnUNet (Isensee et al., 2021), nnDetection (Baumgartner et al., 2021) and
a standard U-Net (Ronneberger et al., 2015). In addition to the PI-CAI baselines we trained
a SOTA transformer model called Swin UNETR (Hatamizadeh et al., 2022) using the same
setup as the U-Mamba and our U-Mamba MTL model, except for the input size in the
Z-dimension which was set to 32 due to model requirements.

2.7. Metrics

We assess PCa segmentations masks using average precision (AP) and area under the re-
ceiver operating curve (AUC), following PI-CAI guidelines (Saha et al., 2024). In order to
compute the metrics, non-overlapping lesion candidates are extracted from the PCa prob-
ability map. The lesion candidates are iteratively extracted by selecting the voxel with the
maximum probability and selecting all connected voxels with a minimum of 40% of its peak
probability (Bosma et al., 2023). A PCa detection map is defined as the collection of all
lesion candidates for a given case, where each lesion candidate have a single probability
defined by its maximum probability.

A lesion is considered true positive in the AP calculation if its intersect over union
exceeds 10%. AUC is computed per patient using the highest probability in the PCa
detection map. The combined performance metric averages AP and AUC to evaluate lesion
detection and patient-level PCa classification. The metrics are calculated with the picai eval
script provided by the PI-CAI challenge (Saha et al., 2024).

3. Results

In this section, two datasets from four separate institutions, the PI-CAI hidden tuning
cohort (N=100) and our out-of-distribution in-house cohort (N=200), are used to evaluate
the performance of our trained model against all baseline models. As each model was trained
using 5-fold cross validation, a simple mean ensemble is employed on the softmax output of
each model fold before extracting lesion candidates using the post processing steps described
in Section 2.7. The lesion candidates are then reverted to original size before evaluating the
metrics. Results for zonal segmentation can be seen in Appendix C.
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3.1. Qualitative Results

Figure 3 shows qualitative results on the in-house dataset (N=200), where all models are able
to produce lesion detection maps that match most of the ground truth lesions. nnDetection
does display the highest probabilities, but fails to deliniate the lesions due to its object
detection architecture.

Figure 3: Qualitative comparison on the in-house dataset (N=200) of the PCa detection
maps among all models compared to ground truth (GT).

3.2. Quantitative results

Model Score AUC AP Type

U-Mamba MTL (ours) 0.735 0.843 0.622 Mamba
nnDetection 0.734 0.885 0.582 CNN
U-Net 0.731 0.829 0.633 CNN
U-Mamba 0.727 0.820 0.635 Mamba
nnU-Net 0.714 0.818 0.610 CNN
Swin UNETR 0.665 0.792 0.537 Transformer

Table 2: Results on PI-CAI hidden development set (N=100)

The evaluation of the models on the PI-CAI hidden development set (N=100) was
acquired by submitting a docker container for each trained model to the challenge website
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(Saha, 2025). Table 2 shows the quantitative results on the PI-CAI hidden development set
where our U-Mamba MTL achieved the highest aggregated score.

Model Score AUC AP Type

U-Mamba MTL (ours) 0.805±0.063 0.925±0.043 0.685±0.097 Mamba
U-Mamba 0.799±0.060 0.923±0.044 0.674±0.089 Mamba
Swin UNETR 0.773±0.063 0.902±0.054 0.643±0.094 Transformer
nnDetection 0.765±0.064 0.920±0.045 0.610±0.099 CNN
U-Net 0.759±0.061 0.913±0.043 0.605±0.095 CNN
nnUNet 0.731±0.070 0.910±0.045 0.555±0.113 CNN

Table 3: Results from our in-house dataset N=200, where ± refers to the largest difference
from mean to the 95% confidence interval bounds, derived from 10.000 bootstrap
samples (Jurdi et al., 2023).

Table 3 Shows the quantitative results on the out-of-distribution in-house dataset (N=200),
where U-Mamba MTL achieves the highest score in all performance metrics.

4. Discussion and Conclusion

This work shows that our U-Mamba MTL model outperformed the baseline state-of-the-art
models for PCa detection in bpMRI. Additionally, our U-Mamba MTL model attains zonal
segmentation performance on par with inter-reader variability, as evidenced by the results
on the Prostate158 dataset (Appendix C).

Integrating zonal masks into the U-Mamba architecture using multi-task learning (MTL)
demonstrated improvements over the unaltered U-Mamba in both our out-of-distribution
in-house dataset (N=200) and the PI-CAI hidden development set (N=100), as measured
by the aggregated score. Notably, the improvement on the in-house dataset was primarily
attributed to the model’s enhanced ability to detect tumor regions, as reflected in the AP
metric. However, quantitative results on the PI-CAI hidden tuning cohort indicated that
the unaltered U-Mamba outperformed its MTL variant in terms of AP, while nnDetection
achieved the highest AUC. While a multi-task loss weight balancing factor β of 0.2 yielded
the best performance among the tested values (0.2 and 0.5), this hyperparameter warrants
further investigation in future work.

Although our U-Mamba MTL model does outperform all introduced baselines in terms
of the aggregated score on the PI-CAI hidden tuning cohort, it is important to note that
other submissions to the PI-CAI leaderboard displayed superior performance, leaving our
submission at 127th place out of 448 submissions at the time of writing. Testing on the
PI-CAI hidden test set (N=1000), which is of higher quality than the hidden development
cohort, is subject to further research.

In conclusion, the U-Mamba architecture’s enhanced long-range dependency modeling
improved PCa detection in bpMRI. Additionally, we demonstrated that integrating zonal
masks via multi-task learning further enhanced PCa detection performance.
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Alexandre Bône, and Marc-Michel Rohé. Deep learning for detection and diagnosis of

9

https://www.nature.com/articles/s41598-020-71080-0
https://pubs.rsna.org/doi/10.1148/ryai.230031
https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21834
https://doi.org/10.5281/zenodo.7245505
https://doi.org/10.5281/zenodo.7245505


Larsen Abbas Bathen Elschot Kiss Lindseth

prostate cancer from bpMRI and PSA: Guerbet’s contribution to the PI-CAI 2022 Grand
Challenge. 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger Roth, and Daguang
Xu. Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in
MRI Images, 2022. eprint: 2201.01266.

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein.
nnU-Net: a self-configuring method for deep learning-based biomedical image segmenta-
tion. Nature methods, 18(2):203–211, 2021. Publisher: Nature Publishing Group.

Fabian Isensee, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus
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Rūta Grigienė, Samuel Gitau, Samuel Withey, Sangeet Ghai, Tobias Penzkofer, Tristan
Barrett, Varaha S. Tammisetti, Vibeke B. Løgager, Vladimı́r Černý, Wulphert Venderink,
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Appendix A. Clinical Information

Table 4 contains the clinical information for the datasets used in this study and their origin.
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PCa Detection in bpMRI using Zonal Anatomy-Guided U-Mamba with MTL

PI-CAI Training cohort PI-CAI Hidden tuning cohort In-House cohort
RUMC ZGT PCNN RUMC ZGT PCNN STOH

Sites 2 1 8 2 1 3 1
Patients 792 346 338 40 30 30 200
Median age, years 65 (60–69) 67 (62–72) 68 (63–72) 64 (58–70) 66 (61–71) 66 (60–74) 66 (60–69)
Median prostate-specific antigen, ng/mL 9 (6–14) 7 (5–11) 9 (6–12) 8 (5–11) 8 (6–11) 9 (6–14) 7 (5–12)
Median prostate volume, mL 63 (45–88) 49 (36–70) 50 (35–70) 64 (46–91) 46 (35–54) 42 (30–65) 50 (36–71)
Field strength, Tesla 1.5, 3 3 1.5, 3 3 3 1.5, 3 3
Cases 800 350 350 40 30 30 200
Clinically significant prostate
cancer (Gleason grade group ≥ 2) 236 (30%) 80 (23%) 109 (31%) 16 (40%) 12 (40%) 13 (43%) 80 (40%)
Positive MRI lesions 614 186 287 21 25 33 131
PI-RADS 3 149 (24%) 32 (17%) 65 (23%) 4 (19%) 3 (12%) 7 (21%) 29 (23%)
PI-RADS 4 226 (37%) 71 (38%) 141 (49%) 10 (48%) 7 (28%) 17 (52%) 34 (25%)
PI-RADS 5 239 (39%) 83 (45%) 81 (28%) 7 (33%) 15 (60%) 9 (27%) 68 (52%)
Gleason grade group 1 150 (36%) 74 (45%) 87 (43%) 6 (24%) 13 (52%) 8 (35%) 23 (18%)
Gleason grade group 2 136 (33%) 46 (28%) 78 (39%) 8 (32%) 7 (28%) 8 (35%) 40 (30%)
Gleason grade group 3 64 (16%) 21 (13%) 24 (12%) 5 (20%) 1 (4%) 4 (17%) 39 (30%)
Gleason grade group 4 28 (7%) 6 (4%) 7 (3%) 2 (8%) 1 (4%) 2 (8%) 14 (10%)
Gleason grade group 5 33 (8%) 16 (10%) 6 (3%) 4 (16%) 3 (12%) 1 (4%) 15 (12%)

Table 4: Clinical variables and statistics for the PI-CAI hidden tuning and in-house cohorts
are presented as n, n (%), or median (IQR), unless otherwise specified. Abbrevia-
tions: PCNN – Prostaat Centrum Noord-Nederland, PI-RADS – Prostate Imaging
Reporting and Data System, PSA – prostate-specific antigen, RUMC – Radboud
University Medical Center, STOH – St. Olav’s Hospital, Trondheim University
Hospital, ZGT – Ziekenhuisgroep Twente (Saha et al., 2024).

Appendix B. Data Augmentation

Table 5 contains the augmentations used for training and validation of the models used in
this study. All augmentations were implemented using MONAI (Consortium, 2024).

Augmentation Parameter

Spacing* (0.5mm, 0.5mm, 3.0mm)
Crop or Pad* (256, 256, 20†)
Z-score normalization* Channel wise
Random flip Along each axis
Random Gaussian Smoothing sigma=(0.5, 1.0)
Random Scale Intensity 10%
Random Shift Intensity 10%
Random Gaussian Noise mean=0, std=0.1
Random Affine rotate=(0.15, 0.15, 0)

Table 5: Dataset augmentations. * denotes that the augmentation is used for all splits, the
rest is used only for the training split. † denotes that the Z dimension was changed
to 32 for Swin UNETR as this is the lowest size for the architecture.
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Appendix C. Zonal Segmentation

Although the zonal segmentation task for our U-MambaMTL model is deemed as an aux-
iliary task, these masks might be useful for downstream tasks given sufficient quality. In
order to assess the accuracy of the zonal masks, inference was performed on the 200 patients
from the in-house dataset and the 158 patients from the Prostate158 dataset. The predicted
segmentation masks are then compared to the ground truth using the Dice Score (DSC)
metric (Table 4). Please note that the DSC is compared to reader 1 in the P158 dataset.

(a) In-House Dataset (b) Prostate 158 Dataset

Figure 4: Dice score distributions for prostate zones for the U-Mamba MTL model

The auxiliary task of zonal segmentation within the U-Mamba MTL architecture yielded
strong results on both our in-house dataset and the Prostate158 dataset. Specifically, our
model achieved DSC scores of 0.76 and 0.87 for the peripheral zone (PZ) and transition
zone (TZ), respectively, aligning closely with reported inter-reader variability (DSCPZ =
0.75, DSCTZ = 0.87). Notably, except for the ProstateX subset (N=346) of the PI-CAI
Training set ( N=1500), all zonal masks were AI-generated, indicating that the model’s
zonal segmentation performance is largely a product of weak supervision.
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