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ABSTRACT

We introduce NOVOBENCH-100K, a large-scale protein dataset for the in silico
evolution of TadA, an enzyme critical for base editing. This dataset originates from
the sequencing data collected during two rounds of our in vitro TadA evolution,
encompassing 101,687 unique DNA variants with an average of 11.1 amino acid
mutations. Rather than employing classes or scores as labels, our dataset consists
of 77,900 ranking lists, each involving 2, 10, or 100 sequences ranked by their
base editing efficiency. These rankings are generated using our SEQ2RANK, a
novel algorithm that accounts for biological experiment credibility and ranking
consistency. For evaluation, we provide two train-test splits, designated as in-
domain ranking and out-of-domain ranking, based on a standard 7:3 random split
and the actual in-vitro evolution rounds, respectively. We benchmark 80 biological
language models (BLMs) across 24 papers, spanning protein, DNA, RNA, and
multimodal domains. Comprehensive experiments reveal that BLMs perform well
on in-domain ranking, with a detailed analysis by modality, model size, and K-mer.
However, for out-of-domain ranking, BLMs exhibit poor performance in both
linear probing and fine-tuning, resembling random guessing. This underscores
the necessity for highly generalizable models to address domain shifts between
experimental rounds. Finally, our wet experiments are ongoing to generate more
data to expand our benchmark. In a few months, we expect to add additional rounds
of in vitro evolution and include a broader variety of proteins. We will release the
code, dataset, and embeddings of our evaluated 80 BLMs soon. Code and @100
dataset are provided in the supplementary.

1 INTRODUCTION

The remarkable progress in protein structure prediction in recent years (Jumper et al., 2021; Baek
et al., 2021; Lin et al., 2023; Abramson et al., 2024; Chai Discovery team, 2024) has been largely
driven by the availability of test datasets such as CASP (Moult et al., 2020), CAMEO (Haas et al.,
2018), and PoseBusters (Buttenschoen et al., 2024). These datasets are essential for evaluating
model performance and improving the predictive accuracy of protein structure models. While
understanding protein structure offers key insights, the next critical step is designing proteins with
specific functions (Chu et al., 2024; Notin et al., 2024b), an emerging and increasingly complex area
of research (Ingraham et al., 2023; Watson et al., 2023; Hayes et al., 2024; DeepMind, 2024).

Gene editing has transformed biomedical science, paving the way for applications in treating genetic
disorders, cancer, and viral infections. One emerging area within this domain is the base editing (Ko-
mor et al., 2016; Gaudelli et al., 2017), a more precise and safer alternative to traditional gene editing
techniques (Cox et al., 2015). Base editing which converts A-T to G-C relies on tRNA-specific
adenosine deaminase (TadA), an enzyme that catalyzes targeted nucleotide conversions essential for
precise gene correction. Despite advances in TadA design (Ruffolo et al., 2024; Jiang et al., 2024),
evaluating highly-variant TadA designs through wet lab experiments remains resource-intensive
and time-consuming. This highlights the need for high-quality datasets for in silico evaluation to
accelerate the functional protein design of TadA.

In this paper, we present NOVOBENCH-100K, a large-scale protein dataset for the in silico evolution
of de novo TadA. It includes 101,687 unique DNA variants derived from biological sequencing data
in our Phage-Assisted Non-Continuous Evolution (PANCE) experiments, as illustrated in Figure 1.
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Figure 1: We construct a large-scale protein dataset, NOVOBENCH-100K, based on our multiple
rounds of wet experiments. We employ a standardized experimental procedure of Phage-Assisted
Non-Continuous Evolution (PANCE). For evaluation, two train-test splits are offered, in-domain
ranking split by a standard 7:3 ratio, and out-of-domain ranking split by actual evolution rounds.

Unlike deep mutation scanning methods (Sumi et al., 2024) with limited mutations, our benchmark
introduces an average of 11.1 amino acid mutations compared to the initial sequence used for
evolution. Rather than taking classes or scores as labels, we propose using rankings in biological
datasets for less experimental noise and better dataset extension. Our dataset consists of 77,900
ranking lists sorted by their base editing efficiency, divided into three tracks featuring ranking lists of
varying lengths—2, 10, and 100—to accommodate different levels of ranking difficulty.

Our dataset is constructed using our novel algorithm, SEQ2RANK, which efficiently transforms
large-scale biological sequencing data into consistent ranking lists. Firstly, this algorithm ensures
experimental-level consistency by sorting sequencing data based on their credibility. Such credibility
is informed by biological knowledge (e.g., the decreasing influence of initial randomness over time)
and experimental indicators (e.g., gel electrophoresis). Moreover, we employ a directed acyclic graph
to maintain strict sequence-level consistency across ranking lists. This structure provides an essential
foundation for machine learning models to identify meaningful patterns within datasets.

NOVOBENCH-100K evaluates model performance through a ranking task in which models are
required to rank sequences based on their editing efficiency within each sequence list. We offer two
train-test splits on the same dataset, referred to as in-domain ranking and out-of-domain ranking. The
in-domain ranking takes a standard 7:3 random split on all our ranking lists for each track, while
out-of-domain ranking is based on actual in-vitro evolution rounds. The data distribution across
different rounds of evolution may vary significantly. The latter split is significantly more challenging
as it captures the real dynamics of biological evolution, partitioning the train-test sets according to
actual experimental rounds. Training a model on the training set simulates the practical scenarios in
protein evolution, where the outcomes of future rounds, corresponding to our test set, are unknown.

We benchmark 80 biological language models (BLMs) across 24 papers on our NOVOBENCH-100K
using linear probing and fine-tuning under in-silico evolution scenarios, shown in Figure 2. A
3-layer fully connected layer is taken for the ranking task using the ListNet loss (Cao et al., 2007).
Considering that DNA, RNA, and proteins function as an integrated unit, it is reasonable to transcribe
or translate the original DNA sequencing data in NOVOBENCH-100K to other biological “languages.”
Therefore, our experiments span BLMs among multiple modalities, including proteins, DNA, RNA,
and multimodalities. Specifically, we extract features of the last trunk for folding models such as
Chai1 (Chai Discovery team, 2024) and RoseTTAFold-All-Atom Krishna et al. (2024).

Our results indicate that current BLMs perform well on in-domain ranking, achieving high scores on
metrics such as normalized discounted cumulative gain (nDCG) and Spearman’s rank correlation (SP).
We conduct a comprehensive analysis to explore how modality, model size, and K-mer, influence the
performance on NOVOBENCH-100K. However, in out-of-domain ranking, all BLMs perform poorly
using linear probing and fine-tuning, with results comparable to random guessing. We attribute this
to the significant domain gap between in-vitro evolution rounds, as evidenced by decreasing training
loss while test metrics remain unchanged. This highlights the need for highly generalizable models
to handle “out-of-domain” tasks prevalent in real-world applications, such as protein evolution.
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Figure 2: NOVOBENCH-100K is constructed using our SEQ2RANK algorithm based on
biological sequencing data collected from our in vitro TadA evolution. We evaluate 80 biological
language models across 24 papers, covering protein, DNA, RNA, and multimodal domains.

Our contributions:

• We propose NOVOBENCH-100K, a large-scale protein dataset derived from our wet lab
experiments, for the in silico evolution of de novo TadA. Our dataset encompasses 101,687
unique DNA variants collected from in vitro evolution experiments.

• We propose a novel algorithm, SEQ2RANK, to transform biological sequencing data into
consistent rankings. It effectively integrates the credibility of various experiments and
ensures strict ranking data consistency.

• We benchmark 80 BLMs in 24 papers on our dataset. Results show that while BLMs
perform well on in-domain ranking, they universally fail on out-of-domain ranking using
linear probing and fine-tuning, highlighting the need for highly generalizable models.

2 RELATED WORK

2.1 BASE EDITING DATASET

Current datasets focusing on deaminase enzyme optimization in base editing are limited. Most exist-
ing datasets (Dixit et al., 2024; Yan et al., 2020; Marquart et al., 2021; Sánchez-Rivera et al., 2022;
Xiang et al., 2021; Leenay et al., 2019) concentrate on refining the interactions between deaminases
and ancillary elements like Cas proteins and sgRNAs. While numerous labs often publish their
improved deaminase protein sequence (Richter et al., 2020; Li et al., 2020; Tu et al., 2022; Perrotta
et al., 2024; Cheng et al., 2024), there are not enough experimental settings public, thus hampering
the independence and identically distributed assumption in machine learning applications. Addition-
ally, CRISPRbase (Fan et al., 2023) aggregates existing datasets from various labs and introduces
significant batch effects due to diverse experimental protocols (Notin et al., 2024a), compromising
the accuracy of models under real experimental conditions. We introduce NOVOBENCH-100K,
designed to simulate real-world laboratory conditions more accurately and consistently, thereby
enhancing the precision in deaminase evolution and leaving space for more NGS data in the future.

2.2 PROTEIN FUNCTION BENCHMARK

While structural benchmarks in protein research have achieved notable success (Ye et al., 2024;
Moult et al., 2020; Haas et al., 2018; Buttenschoen et al., 2024), functional benchmarks are still
in nascent stages. These benchmarks are primarily categorized into two groups (West-Roberts
et al., 2024), biophysical properties and deep mutational scanning (DMS) data. The benchmarks
for biological properties (Bairoch, 2000; Xu et al., 2022; Zhou et al., 2019; Nikam et al., 2021;
Rao et al., 2019; Vander Meersche et al., 2024) include metrics like enzymatic activity, fluorescence,
thermodynamics, and solubility; however, their broad focus limits their utility in precise evaluations.
DMS benchmarks (Fowler & Fields, 2014; Jiang et al., 2024; Gray et al., 2018), which utilize large-
scale mutagenesis and high-throughput sequencing, offer detailed insights into fitness landscapes for
protein mutations. Researchers (Notin et al., 2024a; Dallago et al., 2021; Riesselman et al., 2018)
also leverage diverse DMS datasets to construct the comprehensive benchmark but may introduce

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

General Purpose

Strong Practicality

1~5+ Mutations

~11.1 Mutations

Protein Evolution

Consistent Data

Heterogeneous Sources

CAMEO, ATLAS
SAbDab, PDB, …

ProteinBench ProteinGym CRISPRbase
Figure 3: Our NOVOBENCH-100K dataset offers three key advantages over related bench-
marks. It is specifically collected for practical application of TadA evolution. It involves 101,687
unique deaminase variants with an average of 11.1 amino acid mutations. Our standardized wet
experiments and novel algorithm SEQ2RANK ensure general and strict data consistency.

inconsistency since the way data is treated varies widely within the community (Notin et al., 2024a).
In conclusion, the above benchmarks are for general purposes without specific application. In contrast,
NOVOBENCH-100K is designed especially for the TadA protein evolution. Besides, it guarantees
strict consistency among data with average mutation of 11.1 amino acids, as illustrated in Figure 3.

3 NOVOBENCH-100K

This section presents the construction and attributes of our dataset, NOVOBENCH-100K. Initially,
we provide essential biological context to enhance understanding in Section 3.1. We then detail
the procedures for gathering and processing raw sequencing data in Section 3.2. Additionally, we
introduce our novel algorithm, SEQ2RANK, which converts biological sequencing data into rankings
in Section 3.3. This algorithm ensures consistency and diversification, accounting for the varying
reliability of wet lab experiments. Finally, we provide characteristics of NOVOBENCH-100K in
Section 3.4, illustrating the dataset’s basic statistics and comprehensive utility.

3.1 BIOLOGICAL BACKGROUND

Gene editing is a groundbreaking biotechnological approach that allows for precise DNA alterations,
offering transformative potential in treating genetic disorders, enhancing agricultural practices, and
advancing personalized medicine. A key challenge in gene editing involves precise base-level
modifications, a task for which base editing is specifically designed. Unlike traditional CRISPR
methods that cut DNA (Cox et al., 2015; Hilton & Gersbach, 2015), base editors modify single
DNA bases without inducing double-strand breaks, providing a safer and more precise alternative
(Komor et al., 2016; Gaudelli et al., 2017). Base editors are categorized into cytosine base editors,
which convert C-G to T-A, and adenine base editors (ABEs), which convert A-T to G-C. ABEs
utilize the tRNA-specific adenosine deaminase (TadA), an enzyme that catalyzes targeted nucleotide
conversions crucial for accurate gene correction. TadA8e (Richter et al., 2020) represents an evolved
form of TadA, capable of converting adenine to inosine 1, facilitating precise A-to-G edits.

Evolving TadA for enhanced editing efficiency is crucial as it directly influences the therapeutic
potential and specificity of gene editing tools, potentially revolutionizing treatments for genetic
diseases by ensuring more accurate and efficient genomic interventions. In this context, AI-driven
models can significantly expedite the discovery of effective evolutions, optimizing the enzyme
design process across extensive search spaces. Hence, we build NOVOBENCH-100K by collecting

1Inosine is interpreted as guanine in DNA.
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Figure 4: We propose a novel algorithm SEQ2RANK to transform large-scale biological
sequencing data into ranking lists. It offers experiment-level consistency by prioritizing experiments
based on their credibility, such as biological knowledge and experimental indicators. Additionally, it
adopts a directed acyclic graph to ensure strict sequence-level consistency among ranking lists.

sequencing data in our Phage-Assisted Non-Continuous Evolution (PANCE) experiments, details of
which can be found in Appendix A.1.

3.2 SEQUENCING DATA TACKLING

All data in NOVOBENCH-100K originate from the PANCE of a well-known TadA enzyme,
TadA8e (Richter et al., 2020). In our experiments, the base editing system is engineered to link the
activity of various deaminase mutants to their amplification efficiency directly: higher deaminase
activity leads to faster proliferation of bacteria, thereby enriching variants with elevated activity.
During these experiments, we gather raw next-generation sequencing (NGS) data of the extracted
DNA from lysed bacteria, which provides an exhaustive snapshot of genetic sequences, facilitating
the high-throughput analysis of DNA. This raw NGS data quantifies the prevalence of different DNA
sequences, reflecting the editing efficiencies of specific TadA proteins. We process the raw NGS
data using CRISPResso2 (Clement et al., 2019), which includes standard procedures such as quality
filtering, adapter trimming, read merging, and alignment. Ultimately, we generate “sequence-read”
pairs, where the “read” of each sequence denotes the count of sequences detected during NGS,
indicative of the editing efficiency of particular TadA variants.

3.3 SEQ2RANK

Typically, after processing sequencing data to obtain “sequence-read” pairs, these pairs are directly
used to build a regression dataset (Zhao et al., 2021; Mortazavi et al., 2008). However, using absolute
read counts as labels introduces several risks. First, these values are highly susceptible to experi-
mental noise, including measurement sensitivity, instrumental variability, operator variability, and
environmental conditions. Second, it limits the dataset’s scalability and complicates the integration of
data across different studies due to batch effects in biological experiments.

Instead, we propose using rankings as a more robust and scalable label format, similar to those used
in recommendation systems (Qin et al., 2010). Our data unit consists of sequences ordered by read
number, indicating editing efficiency in base editing as higher-ranked sequences demonstrate greater
protein activity, as discussed in Section 3.2. This approach shifts the task to predicting the correct
sequence rankings rather than individual efficiency scores.

However, constructing a ranking dataset from NGS data presents new challenges. Firstly, it is
challenging to handle the vast amount of NGS data with the sensitivity issues inherent to biological
sequencing. Additionally, conflicting rankings frequently arise across different experimental rounds
due to variations in biological procedures, with these experiment-level conflicts often depending on
the credibility of the evolution rounds. Finally, as a form of partial ordering, ranking can introduce
potential conflicts among sequences across ranking lists due to transitivity. These hidden sequence-
level conflicts within datasets can adversely affect the effectiveness of machine learning models.

To address these issues, we propose SEQ2RANK to transform NGS lists to ranking lists, as illustrated
in Figure 4. We employ a greedy sampling strategy to manage the tens of thousands of sequences
within each NGS list. During the sampling, we construct a “read-sequence” dictionary and ensure
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one unique read key can be sampled only once within each ranking list. Such a “strict” partial order
can relieve measurement sensitivity issues.

Furthermore, our algorithm mitigates experiment-level conflicts by prioritizing experiments based on
their credibility, which can be informed by biological knowledge. For example, later experimental
rounds are considered more reliable, as the effects of initial randomness decrease over time. Credibil-
ity can also be assessed through validation techniques such as gel electrophoresis, qPCR, and Sanger
sequencing, providing references for the success and stability of a specific biological experiment.
Leveraging such credibility, we sort sequencing data by credibility, reducing round-level conflicts.

Finally, we adopt a directed acyclic graph (DAG) to ensure strict sequence-level consistency in the
rankings. In the DAG, we take each sequence as a node and the partial order relationship as a directed
edge. A new sequence to sample is considered “safe” when it will not introduce a circle in our DAG.
When generating a ranking list, we will iteratively sample unselected keys, i.e., the read numbers, of
the “read-sequence” dictionary. For each read number, all corresponding sequences will be checked
until a “safe” sequence is found.

SEQ2RANK effectively integrates prior biological knowledge and guarantees data consistency,
making it suitable for handling large-scale biological sequencing data. This integration significantly
enhances the quality of genomic interpretations, leading to more reliable and actionable biological
insights. The detailed pseudocode algorithm can be found in Appendix A.2.

3.4 CHARACTERISTICS

Utilizing SEQ2RANK, we have effectively constructed NOVOBENCH-100K, which includes
101,687 unique TadA variants derived from NGS data in base editing evolution experiments. The
in-vitro evolution starts with TadA8e where the system is designed to correlate the activity of
TadA mutants directly with their amplification efficiency—higher deaminase activity results in
quicker bacteria proliferation, enriching for more active variants. Unlike deep mutation scanning
approaches (Sumi et al., 2024), NOVOBENCH-100K incorporates an average of 11.1 amino acid
changes compared with the original sequences used for evolution.

NOVOBENCH-100K assesses model performance through a ranking task that challenges models to
order sequences based on their editing efficiency. Considering TadA functions across the biological
spectrum from DNA to RNA, and then to protein, it is beneficial to include corresponding protein
and RNA sequences for a comprehensive evaluation of protein and RNA models. This “sequence-to-
function” approach is ideally suited for biological language models (BLMs) that are pre-trained on a
variety of biological languages, including protein, DNA, and RNA sequences, enhancing their ability
to generalize across different biological tasks.

Distinct from traditional protein function datasets, NOVOBENCH-100K emphasizes ranking se-
quences based on relative performance instead of absolute metrics, which are frequently distorted
by batch effects and experimental inconsistencies. This ranking approach mitigates the impact of
variable experimental conditions and ensures that the dataset more accurately represents genuine
biological phenomena. Focusing on relative performance also reduces the influence of experimental
noise, such as variations in instrument calibration, reagent quality, and operator handling. Moreover,
this strategy boosts the dataset’s scalability across different experimental setups and enhances its
adaptability for integration with data from various sources.

3.5 TRAIN-TEST SPLIT

NOVOBENCH-100K supports three distinct evaluation tracks with ranking lists of varying lengths—2,
10, and 100—to suit different analytical depths required by various BLMs. Each track offers two
train-test splits on the same dataset, referred to as in-domain ranking and out-of-domain ranking.
The in-domain ranking takes a standard 7:3 random split on all sequence data, while out-of-domain
ranking is based on actual in-vitro evolution rounds. The latter split, shown in Appendix Table 7, is
significantly more challenging as it captures the real dynamics of biological evolution, partitioning
the train-test sets according to actual experimental rounds. Training a model with this dataset mirrors
real-world scenarios of protein evolution, where the outcomes of subsequent experimental rounds,
akin to the test set in NOVOBENCH-100K, are unknown.
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4 EXPERIMENTS

First, we outline our experimental settings in Section 4.1, detailing the biological language models
(BLMs) and evaluation metrics used. Next, we present the performance of BLMs on in-domain
ranking, analyzing the impact of modality, model size, and K-mer in Section 4.2. Finally, we
demonstrate the limitations of BLMs on out-of-domain ranking, exploring their performance under
both linear probing and fine-tuning in Section 4.3.

4.1 SETTINGS

4.1.1 BIOLOGY LANGUAGE MODEL

The evaluation is based on protein, DNA, and RNA modalities, since these 3 forms play important
roles in the natural transcription and translation process, and all contain important information. In
NOVOBENCH-100K, DNA sequences obtained from biological sequencing data are translated into
RNA and protein sequences according to biological principles. These transformed sequences are
inputs for the corresponding biological language models (BLMs).

As for protein modality, we test the ESM2 (Lin et al., 2023), ESM3 (Hayes et al., 2024), Prot-
Trans (Elnaggar et al., 2021), SaProt (Su et al., 2023), and RFAA (Krishna et al., 2024). Our DNA
modality evaluation involves the EVO (Nguyen et al., 2024a), NucleotideTansformer (NT) (Dalla-
Torre et al., 2023), AgroNT (Mendoza-Revilla et al., 2024), GenSLMs (Zvyagin et al., 2023), Hye-
naDNA (Nguyen et al., 2024b), DNABERT-1 (Ji et al., 2021), DNABERT-2 (Zhou et al., 2023), and
DNABERT-S (Zhou et al., 2024). For RNA modality, NOVOBENCH-100K tests the RNA-FM (Chen
et al., 2022), SpliceBERT (Chen et al., 2023), 3UTRBERT (Yang et al., 2023), OmniGenome (Yang
& Li, 2024), CaLM (Outeiral & Deane, 2024), ERNIE-RNA (Yin et al., 2024), RNAErnie (Wang
et al., 2024), RNA-MSM (Zhang et al., 2024), and RiNALMo (Penić et al., 2024). We also include
LucaOne (He et al., 2024) and Chai1 (Chai Discovery team, 2024) as representatives of multimodal
BLMs, reflecting the popular concept of multimodality in the foundation models domain.

Overall, we test 80 models across 24 papers 2. For linear probing, we use multimodal BLMs such as
LucaOne and Chai1 to tackle three modalities of input sequence input independently, referred to as
three BLMs for convenience. We extract features of the last trunk for folding models such as Chai1
and RoseTTAFold-All-Atom. Owing to space limitations, we only report one model for each paper
in Table 1. The complete evaluation of 80 models can be found in the Appendix Tables 3 to 5.

4.1.2 RANKING EVALUATION METRICS

We offer three tracks, @2, @10, and @100 for different ranking lists with corresponding lengths.
Two train-test splits, designated as in-domain ranking and out-of-domain ranking, are provided based
on a standard 7:3 random split and the actual in-vitro evolution rounds, respectively. We take a
3-layer fully connected network with a hidden size of 128 as the head module, using a cross-entropy
ListNet loss (Cao et al., 2007). We adopt linear probing and fine-tuning to evaluate the performance
of various BLMs without introducing complex structures in the head module.

We adopt three common ranking evaluation metrics to assess the effectiveness of the predicted
rankings within a population of size x, normalized discounted cumulative gain (nDCG@x) (Järvelin
& Kekäläinen, 2000), mean Reciprocal Rank (mRR@x) (Wu et al., 2011), and Spearman’s Rank
Correlation (SP@x) (Sedgwick, 2014). The nDCG measures the accuracy of ranking results, with
greater emphasis placed on higher-ranked items. The mRR focuses exclusively on the accuracy
of predictions for the top-ranked sample, aligning closely with objectives in protein evolution. SP
evaluates the predicted rankings’ overall distribution. Details can be found in Appendix A.3.

4.2 IN-DOMAIN RANKING

For the in-domain ranking task, we primarily take the linear probing with a batch size of 64,
freezing the parameters of BLMs, and using the output embeddings to train head modules. The

2There are some other BLMs that we do not include, such as Atom-1 (Boyd et al., 2023), UNI-RNA (Wang
et al., 2023), and RFamGen (Sumi et al., 2024), since their codebases or model weights have not been released.
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Table 1: Diverse BLMs are evaluated on three tracks using linear probing under in-domain
ranking. The top, middle, and bottom groups are protein, DNA, and RNA BLMs. We report the
result of one model from each model family of 24 papers. We take using one-hot vectors of sequences
as baselines. ∗ indicates that a smaller batch size is employed due to the large size of the embeddings.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

One-hot 0.826 0.764 0.058 0.820 0.322 0.079 0.854 0.057 -0.009
Chai1 0.847 0.792 0.169 0.857 0.322 0.194 0.900 0.095 0.138
ESM2 0.831 0.771 0.082 0.844 0.322 0.175 0.907 0.050 0.252
ESM3 0.840 0.783 0.133 0.860 0.335 0.214 0.892 0.100 0.103
RFAA 0.838 0.780 0.120 0.858 0.323 0.205 0.890 0.050 0.158
SaProt 0.831 0.771 0.083 0.839 0.322 0.144 0.864 0.042 0.085
LucaOne 0.830 0.770 0.078 0.839 0.313 0.146 0.901 0.029 0.218
ProtTrans 0.831 0.771 0.085 0.844 0.325 0.172 0.886 0.038 0.185

One-hot 0.819 0.754 0.017 0.822 0.281 0.072 0.854 0.052 0.027
NT 0.836 0.777 0.109 0.845 0.307 0.180 0.884 0.030 0.182
EVO∗ 0.830 0.770 0.080 0.850 0.317 0.190 0.895 0.007 0.153
Chai1 0.848 0.794 0.175 0.868 0.322 0.224 0.901 0.086 0.222
AgroNT 0.831 0.772 0.086 0.839 0.304 0.156 0.868 0.096 0.123
GenSLM∗ 0.836 0.777 0.109 0.857 0.327 0.204 0.904 0.043 0.233
LucaOne∗ 0.835 0.776 0.106 0.843 0.303 0.165 0.888 0.037 0.165
HyenaDNA 0.831 0.771 0.085 0.848 0.314 0.178 0.883 0.029 0.132
DNABERT-2 0.816 0.750 0.001 0.814 0.295 0.038 0.861 0.026 0.018
DNABERT-S 0.817 0.752 0.007 0.812 0.301 0.028 0.853 0.040 0.017
DNABERT-1 0.835 0.776 0.105 0.845 0.299 0.163 0.893 0.075 0.236

One-hot 0.819 0.754 0.017 0.822 0.281 0.072 0.854 0.052 0.027
Chai1 0.845 0.790 0.161 0.867 0.316 0.225 0.897 0.124 0.217
CaLM 0.834 0.775 0.099 0.847 0.309 0.178 0.882 0.062 0.146
RNA-FM 0.830 0.770 0.079 0.846 0.315 0.187 0.880 0.026 0.117
RiNALMo∗ 0.843 0.787 0.148 0.870 0.326 0.235 0.904 0.049 0.198
RNAErnie∗ 0.837 0.780 0.119 0.867 0.326 0.230 0.906 0.056 0.237
RNA-MSM 0.832 0.773 0.090 0.850 0.317 0.197 0.902 0.045 0.253
SpliceBERT 0.833 0.774 0.095 0.844 0.308 0.167 0.890 0.051 0.203
3UTRBERT∗ 0.840 0.784 0.135 0.870 0.324 0.244 0.908 0.044 0.256
ERNIE-RNA∗ 0.836 0.778 0.113 0.860 0.327 0.230 0.909 0.041 0.213
OmniGenome∗ 0.838 0.781 0.122 0.868 0.320 0.239 0.910 0.059 0.207

fine-tuning experiments for selected models can be found in Appendix Table 6. We have examined
the hyperparameters such as batch size, number of training epochs, and head model architecture 3.
Given the influence of different embedding lengths on the learning rate, we specify 3 learning rates
for each experiment, 1e-5, 1e-4, and 1e-3, and choose the optimal result as its reported result. We
report the performance of each BLM family on in-domain ranking task in Table 1 for ranking lists
with different lengths of 2, 10, and 100. We use one-hot vectors of the sequences as the baseline to
compare with embeddings of BLMs.

Compared to training classification heads directly using sequence one-hot vectors, using embeddings
extracted from pre-trained BLMs significantly enhances the test performance. This demonstrates
that BLMs are well-suited for in-domain ranking tasks on NOVOBENCH-100K, aligning with
experiences in the language model field. The complete evaluation of 80 models can be found in the
Appendix Tables 3 to 5. We have also fine-tuned the BLMs (as shown in Appendix Table 6), which
further improves performance. This aligns well with a general understanding of language models,
while it is not the main focus of this paper.

3It is worth noting that a smaller batch size will be employed due to the large size of some embeddings. We
have reported the hyperparameters examination results in Appendix Table 2, and we have also included the
analysis of data precision in that section.
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Figure 5: BLMs using different modalities perform comparably using linear probing on the
@100 track. The performance gap between the 3 modalities of BLMs is not obvious, which means
the knowledge of DNA and RNA BLMs is also important in the protein evolution task.

4.2.1 MODALITY

NOVOBENCH-100K primarily challenges BLMs in predicting TadA function, making it a protein
evolution task. Interestingly, DNA and RNA BLMs demonstrate performance comparable to protein
BLMs on nDCG@100, as shown in Figure 5. It demonstrates that the nucleotide BLMs also gain
knowledge about protein functionality on DNA or RNA sequences. Since proteins, DNA, and RNA
fundamentally form an integrated within organisms and each plays a crucial role in protein expression,
models across all three modalities significantly outperform those trained on one-hot vectors of the
sequences.

Furthermore, it is insightful to explore the performance differences across modalities within a single
multimodal BLM, given their emergence as powerful tools in recent years. We evaluate LucaOne (He
et al., 2024) and Chai1 (Chai Discovery team, 2024) on NOVOBENCH-100K. LucaOne achieves
nDCG@100 scores of 0.901 for protein and 0.888 for nucleotide 4, whereas Chai1 attains scores of
0.900 and 0.897, respectively. These results indicate that Chai1 achieves better modality unification,
as its performance across modalities is more consistent, while LucaOne shows a notable advantage in
protein performance over nucleotide.

4.2.2 MODEL SIZE

The prevalent view that larger models yield deeper understanding, termed the “scaling law” (Kaplan
et al., 2020), has been widely accepted. However, whether such phenomena exist for biological
language models in protein, DNA, and RNA modalities remains unknown. Therefore, we investigate
whether BLMs exhibit similar characteristics on NOVOBENCH-100K. Most BLM model families in
Figure 6 demonstrate the scaling law. More results can be found in the Appendix Tables 3 to 5.

4.2.3 K-MER

K-mer in BLMs sequence of k consecutive nucleotides used to capture local sequence patterns and
the context in biological modeling analysis. 3UTRBERT is an RNA BLM model family composed of
different k-mer models. Considering the test nDCG@10 in in-domain ranking, the results for 6-mer,
5-mer, 4-mer, and 3-mer are respectively 0.870, 0.860, 0.869, and 0.870. We observe that the results
for 3-mer and 6-mer are higher than those for 4-mer and 5-mer. In biological terms, a protein is
encoded by three nucleotides, demonstrating that NOVOBENCH-100K aligns well with the actual
biological k-mer patterns. It also indicates that RNA BLMs are significant in protein-related tasks,
provided that an appropriate k-mer is selected.

4.3 OUT-OF-DOMAIN RANKING

The in-domain ranking indeed conforms to the rules in machine learning, but such approaches may
not align with practical scenarios in protein evolution. In the process of protein evolution, results

4LucaOne treats DNA and RNA equivalently by mapping “T” and “U” to the same token.
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Figure 7: Biological language models perform poorly on out-of-domain ranking using linear
probing and fine-tuning. We fine-tune the top models in in-domain ranking across each modality,
testing a range of learning rates. However, even at the optimal learning rate, the performance remains
comparable to that of a randomly initialized ranking head without any training.

from different rounds might fall into distinct domain distributions. Typically, the goal is to predict
outcomes of the subsequent round based on results from previous rounds, presenting a classic domain
shift problem. Therefore, after exhaustive hyperparameter evolution (as shown in Appendix Table 8),
we evaluate the performance of various BLMs on the out-of-domain ranking train-test split based on
actual in-vitro evolution rounds, displayed in Figure 7.

We also fine-tune BLMs to ensure that performance limitations are not solely due to the weakness
of linear probing. Top models from in-domain ranking across each modality are selected to test
at different learning rates. The Table 12 presents the fine-tuning results at the best learning rate.
Although fine-tuning improvements a little, most BLMs do not show substantial performance gains.
Details of out-of-domain ranking on 80 models across 24 papers are shown in the Appendix Tables 9
to 11. For more analysis such as data precision, please refer to the Appendix A.4.

5 CONCLUSION

We present NOVOBENCH-100K, a comprehensive dataset designed to facilitate the in silico evo-
lution of TadA, providing unique insights into base editing. Through extensive benchmarking, we
demonstrate that while current biological language models perform well on in-domain ranking, they
struggle to generalize effectively on out-of-domain ranking, revealing a significant gap in practical
model robustness. These findings highlight the need for developing models capable of handling
diverse real-world protein evolution scenarios. Currently, only TadA protein and two rounds of
in-vitro evolution are involved in NOVOBENCH-100K. However, we plan to expand the dataset
significantly as our wet experiments continue. In a few months, we expect to conduct additional
rounds of in vitro evolution and include a broader variety of proteins.
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A APPENDIX

A.1 IN-VITRO EVOLUTION

Phage-Assisted Non-Continuous Evolution (PANCE) represents a sophisticated platform for the
directed evolution of biomolecules. This methodology builds upon the principles of Darwinian
evolution and leverages the powerful selection capabilities of bacteriophages. The strength of this
approach lies in its high-throughput ability to identify the highest-activity protein variants from
vast AI-generated starting sequences. In our study, we employed PANCE to evolve TadA, a critical
enzyme used in CRISPR base editing, by systematically selecting variants with enhanced activity
from vast AI-generated libraries. The convergence of advanced artificial intelligence for library
design and PANCE for evolutionary selection represents a frontier in protein engineering, offering a
high-throughput and scalable approach to optimize enzymatic functions.

The core of this method is selecting protein variants with improved activity by coupling their
function to the replication of bacteriophages. Phages lacking a key gene required for propagation are
engineered to rely on the activity of the target protein within host cells to trigger their replication.
Through iterative rounds of serial dilution, phages linked to protein variants with higher activity
maintain their population, while low-activity counterparts are washed out, allowing for the gradual
enrichment of high-performance variants.

We engineered the M13 phage, a filamentous virus that propagates within Escherichia coli (E. coli),
to lack the essential gene gIII, which encodes the phage protein pIII, responsible for facilitating the
release of new virions from the host. The expression of gIII was made contingent on the activity of
TadA within E. coli, such that TadA variants with sufficient activity would trigger gIII expression,
enabling phage replication. Each round of PANCE involved the serial dilution of bacterial cultures.
Over multiple cycles, variants with superior activity outcompeted their lower-performing counterparts,
resulting in a highly refined population of phage-encoded TadA variants. This iterative process ensures
that even minimal gains in activity are captured and amplified across generations, gradually evolving
TadA to a high-performance state.

A key innovation in our approach is the integration of artificial intelligence to generate a large library
of TadA variants before selection. Conventional-directed evolution methods rely heavily on random
mutagenesis, which often lacks targeted control and may miss key functional sites, limiting the
evolutionary trajectories toward optimal protein variants. In contrast, AI enables the exploration of
a much broader sequence space by predicting which mutations are likely to enhance TadA activity
based on previously available data and sophisticated machine learning models. This computationally
generated library was introduced into the PANCE system, where the selective power of phage was
used to identify the highest-performing TadA variants. By coupling AI-driven design with PANCE,
we were able to streamline the evolution of TadA toward enhanced activity.

A.2 SEQ2RANK

Here, we introduce the SEQ2RANK, a novel methodology for processing Next Generation Se-
quencing (NGS) data by converting sequence-read pairs into a ranking format rather than relying on
absolute read counts, which are fraught with risks due to susceptibility to experimental noise and
limitations on scalability. We detail the algorithm of SEQ2RANK in Algorithm 1. Our proposed
strategy employs an ordering of sequences based on read numbers to represent editing efficiencies,
thus pivoting the analytical focus from quantifying individual efficiencies to predicting accurate
sequence rankings. This ranking paradigm mitigates challenges inherent in handling vast amounts
of NGS data, which include sensitivity issues and the frequent emergence of conflicts arising from
biological variability and experimental discrepancies. We utilize a greedy sampling strategy along
with a directed acyclic graph (DAG) to maintain a stringent partial order among sequences, thereby
ensuring robust data consistency.

A.3 EVALUATION METHODOLOGY

Normalized Discounted Cumulative Gain (nDCG) is a commonly used metric to evaluate the ranking
quality of algorithms, particularly in information retrieval and recommendation systems (Järvelin
& Kekäläinen, 2000). It focuses on both the relevance of the ranked items and the position of these
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Algorithm 1 Sample Ranking Lists from NGS Data

1: Parameters: Array of NGS data lists ngs_lists, length of ranking list K
2: function SEQ2RANK(ngs_lists, K)
3: Sort ngs_lists by the reliability of biological experiments
4: Initialize directed acyclic graph G, sampled ranking lists results
5: for ngs in ngs_lists do
6: Build the dictionary of NGS {read: sequences}, dict_read
7: while True do
8: listK ← GREEDY_SAMPLE(dict_read, G, K, [])
9: if listK is None then

10: Break
11: end if
12: Update listK to G and results
13: Remove listK from dict_read
14: end while
15: end for
16: return results
17: end function
18:
19: function GREEDY_SAMPLE(dict_read, G, K, selected)
20: if len(selected) == K then
21: return selected
22: end if
23: seq← Find seq from dict_read which will not introduce cycles in G
24: if seq is None (cannot find a safe seq) then
25: return None
26: end if
27: Append seq to selected
28: return GREEDY_SAMPLE(dict_read, G, K, selected)
29: end function

items in the ranking list. The relevance score of each item is assigned based on its importance or
utility to the user. The gain is discounted logarithmically as the rank increases, meaning that highly
relevant items appearing earlier in the ranking list contribute more to the overall score.

The nDCG is normalized by dividing the DCG of the actual ranking by the DCG of the ideal ranking
(IDCG), ensuring the score falls within the range of 0 to 1. The DCG (Discounted Cumulative Gain)
is calculated as:

DCGp =
p

∑
i=1

2reli −1
log2(i+1)

(1)

where p represents the position in the ranking (typically the top p items are evaluated) and i is
the rank of the item in the list. The reli is the relevance score of the item at position i, which is
the reverse ranking in our setting, i.e., the ranking list 1,2,3, . . . with a length of N has the reli as
N,N−1,N−2, . . . . The log2(i+1) is A logarithmic discounting factor that reduces the contribution
of lower-ranked items.

The normalized version, nDCG, is calculated as:

nDCGp =
DCGp

IDCGp
(2)

where IDCGp is the ideal DCG for a perfect ranking.

The nDCG is especially valuable for evaluating ranked retrieval systems because it accounts for the
importance of the placement of relevant items within the list. This metric assigns greater weight to
items at higher-ranked positions, ensuring that the ranking system’s effectiveness is measured more
accurately by prioritizing top results, which are typically more relevant to the user. It is particularly
suitable for our task of ranking protein activities because we focus more on the top-ranked proteins.
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Table 2: Hyper parameters examinations for in-domain ranking NOVOBENCH-100K @10
task using ESM3 model. “Random Init” means randomly initializing the model for predictions,
essentially guessing the ranking. In the “Base” setting, the learning rate is 0.00001, the batch size
is 256, the optimizer is SGD, the hidden size of the linear head module is 256, the training data is
shuffled each time, and the loss function used is based on cross-entropy (Cao et al., 2007).

Hyper Parameter nDCG↑ mRR↑ SP↑

Random Init 0.801 0.289 -0.005
Base 0.856 0.333 0.202

learning rate = 0.000001 0.843 0.312 0.149
learning rate = 0.0001 0.852 0.323 0.186
learning rate = 0.001 0.854 0.330 0.188
learning rate = 0.01 0.811 0.292 0.029
batch size = 128 0.855 0.321 0.190
batch size = 64 0.855 0.323 0.205
optimizer = Adam 0.855 0.328 0.202
optimizer = Adagrad 0.853 0.319 0.190
hidden size = 128 0.860 0.335 0.214
hidden size = 512 0.858 0.326 0.207
shuffle = False 0.857 0.329 0.205
shuffle = weak shuffle 0.857 0.321 0.210
head module = RNN 0.807 0.291 0.004
head module = CNN 0.855 0.336 0.203
loss func = cosine similarity 0.812 0.285 0.019
loss func = kl divergence 0.798 0.292 -0.017

A.4 IN-DOMAIN PERFORMANCE

For in-domain ranking, we systematically evaluate the hyperparameters in Table 2. We evaluate
different learning rates, batch sizes, optimizer types, hidden sizes for the linear head module, whether
to keep training data unshuffled, perform a weak shuffle (shuffling only once), shuffle at each training
iteration, use different types of head modules, and employ various loss functions.

Begin with the “Base” setting (the learning rate is 0.00001, the batch size is 256, the optimizer is
SGD, the hidden size of the linear head module is 256, training data is shuffled each time, and the
loss function used is based on cross-entropy (Cao et al., 2007)), we evaluate the impact of various
hyperparameter settings on model performance on the NOVOBENCH-100K, including learning rate,
batch size, optimizer type, hidden size of the linear head module, data shuffling, head module type,
and the loss function.

According to these results, in subsequent benchmarking of various BLMs, we continue with the
setting: the hidden size of the linear head module is 128, the optimizer is SGD, and the loss function
is cross-entropy based. As for learning rate, considering the varying lengths of embeddings from
different BLMs, which result in different sizes for the linear head module, the appropriate learning
rate may differ. Therefore, we prepare 3 alternative learning rates for each experiment: 0.001, 0.0001,
and 0.00001, selecting the optimal result among the 3 for our analysis. As for batch size, we generally
use 64, but for experiments with longer embeddings, we must use smaller batch sizes, such as 16 or 8.

We have also explored the impact of data precision on BLMs in our benchmark by forcibly adjusting
the output of the embedding by BLMs to half-precision (i.e., float 16). The resulting nDCG@10,
mRR@10, and SP@10 are 0.855, 0.328, and 0.202, respectively. It indicates that using half-precision
floating point operations continues to support reasonable performance.
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Table 3: Evaluation on diverse protein BLMs using the linear probing for in-domain ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

ESM2-8M 0.828 0.767 0.069 0.836 0.321 0.136 0.874 0.053 0.176
ESM2-35M 0.829 0.769 0.074 0.833 0.314 0.133 0.855 0.048 0.012
ESM2-150M 0.828 0.768 0.070 0.839 0.322 0.154 0.866 0.084 0.075
ESM2-650M 0.830 0.770 0.080 0.840 0.324 0.162 0.875 0.075 0.138
ESM2-3B 0.832 0.772 0.090 0.842 0.318 0.163 0.902 0.046 0.222
ESM2-15B 0.831 0.771 0.082 0.844 0.322 0.175 0.907 0.050 0.252
ESM3 0.840 0.783 0.133 0.860 0.335 0.214 0.892 0.100 0.103
SaProt-650M-AF2 0.828 0.766 0.066 0.837 0.307 0.137 0.862 0.034 0.067
SaProt-650M-PDB 0.831 0.771 0.083 0.839 0.322 0.144 0.864 0.042 0.085
SaProt-35M-AF2 0.832 0.773 0.091 0.835 0.311 0.134 0.877 0.069 0.144
SaProt-35M-AF2-Seq 0.830 0.769 0.077 0.837 0.323 0.143 0.870 0.058 0.066
LucaOne 0.830 0.770 0.078 0.839 0.313 0.146 0.901 0.029 0.218
RosettaFold-STATE 0.823 0.760 0.040 0.817 0.299 0.058 0.851 0.078 0.010
RosettaFold-MSA 0.838 0.780 0.120 0.858 0.323 0.205 0.890 0.050 0.158
ProstT5 0.827 0.766 0.064 0.842 0.320 0.156 0.865 0.087 0.081
ProstT5-fp16 0.827 0.765 0.060 0.840 0.329 0.166 0.872 0.052 0.147
Prot-T5-XL-U50 0.832 0.773 0.090 0.835 0.320 0.144 0.880 0.053 0.160
Prot-T5-XL-Half 0.834 0.775 0.102 0.835 0.309 0.143 0.868 0.048 0.098
Chai1 0.844 0.788 0.152 0.858 0.322 0.203 0.896 0.035 0.140
Chai1-ESM 0.847 0.792 0.169 0.857 0.322 0.194 0.900 0.095 0.138
Prot-Bert 0.824 0.761 0.046 0.828 0.303 0.098 0.871 0.068 0.134
Prot-ss3 0.823 0.760 0.039 0.825 0.301 0.084 0.867 0.030 0.050
Prot-Membrane 0.830 0.770 0.079 0.829 0.316 0.119 0.862 0.062 0.028
Prot-Localization 0.826 0.765 0.060 0.829 0.314 0.114 0.858 0.021 0.055
Prot-T5-XXL-U50 0.832 0.773 0.090 0.842 0.320 0.177 0.882 0.045 0.154
Prot-Generator 0.830 0.770 0.079 0.842 0.322 0.169 0.882 0.062 0.148
Prot-Discriminator 0.831 0.771 0.084 0.844 0.322 0.174 0.881 0.137 0.140
Prot-T5-XL-BFD 0.831 0.772 0.086 0.839 0.319 0.162 0.882 0.102 0.170
Prot-Bert-BFD 0.827 0.766 0.065 0.839 0.308 0.141 0.869 0.086 0.141
Prot-T5-XXL-BFD 0.831 0.771 0.085 0.844 0.325 0.172 0.886 0.038 0.185
Prot-Xlnet 0.830 0.769 0.077 0.833 0.314 0.141 0.880 0.060 0.110
Prot-Albert 0.831 0.771 0.086 0.836 0.311 0.132 0.883 0.049 0.105

Then we benchmark 80 models across 24 papers using linear probing, where protein, DNA, and RNA
BLMs are shown in Tables 3 to 5 respectively.

When we train the linear head module directly using one-hot vectors of protein sequences, the
nDCG@2, nDCG@10, and nDCG@100 results are respectively 0.826, 0.820, and 0.854. Training
with one-hot vectors of DNA sequences yields results of 0.819, 0.822, and 0.854; and using one-hot
vectors of RNA sequences, the results are 0.819, 0.822, and 0.854. Using embeddings generated
by BLMs results in significant improvements. This demonstrates the important value of pre-trained
BLMs in downstream applications. We extract the nDCG@100 results from one model in each
BLM model family and plot them in the bar chart as shown in the paper main body Figure 5. This
visually illustrates that all BLMs outperform results trained solely on sequence one-hot vectors. The
performance gap between the 3 modalities of BLMs is not obvious, which means the knowledge of
DNA and RNA BLMs is also important in the protein evolution task.

In in-domain ranking experiments, we also observe some certain patterns. First, the scaling law
behavior of BLMs is evident. As shown in the paper main body Figure 6, within several classic
BLM model families (ESM2, ProtTrans, HyenaDNA, GenSLM, and OmniGenome), as the model
parameter scale increases, their performance on our benchmark shows an upward trend, demonstrating
a favorable scaling law pattern. Second, we observe that in the 3UTRBERT model family, the
performance of the 3-mer model and 6-mer model are better than that of the 4-mer model and 5-mer
model. In biological terms, a protein is encoded by exactly three nucleotides, which demonstrates
that NOVOBENCH-100K aligns well with the actual biological k-mer patterns.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Evaluation on diverse DNA BLMs using the linear probing for in-domain ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

EVO-8k 0.829 0.769 0.075 0.851 0.308 0.183 0.891 0.045 0.153
EVO-131k 0.830 0.770 0.080 0.850 0.317 0.190 0.895 0.007 0.153
LucaOne 0.835 0.776 0.106 0.843 0.303 0.165 0.888 0.037 0.165
Chai1 0.848 0.794 0.175 0.868 0.322 0.224 0.901 0.086 0.222
NT-2-50M 0.833 0.774 0.097 0.845 0.305 0.179 0.879 0.057 0.137
NT-2-100M 0.836 0.777 0.109 0.843 0.306 0.171 0.872 0.068 0.118
NT-2-250M 0.830 0.770 0.078 0.845 0.312 0.171 0.866 0.081 0.088
NT-2-500M 0.834 0.776 0.102 0.849 0.313 0.202 0.880 0.027 0.176
NT-500M-human-ref 0.836 0.777 0.109 0.840 0.292 0.154 0.892 0.098 0.195
NT-500M-1000G 0.833 0.774 0.097 0.847 0.314 0.191 0.864 0.034 0.107
NT-2B5-1000G 0.836 0.777 0.109 0.845 0.307 0.180 0.884 0.030 0.182
NT-2B5-multi-species 0.828 0.767 0.069 0.838 0.291 0.145 0.872 0.035 0.110
AgroNT 0.831 0.772 0.086 0.839 0.304 0.156 0.868 0.096 0.123
GenSLMs 2.5B 0.836 0.777 0.109 0.857 0.327 0.204 0.904 0.043 0.233
GenSLMs 250M 0.836 0.777 0.109 0.856 0.326 0.204 0.907 0.040 0.249
GenSLMs 25M 0.831 0.771 0.084 0.837 0.322 0.160 0.892 0.072 0.178
DNABERT-2-117M 0.816 0.750 0.001 0.814 0.295 0.038 0.861 0.026 0.018
DNABERT-S 0.817 0.752 0.007 0.812 0.301 0.028 0.853 0.040 0.017
DNABERT-1-3mer 0.830 0.770 0.081 0.841 0.303 0.163 0.879 0.144 0.085
DNABERT-1-4mer 0.830 0.770 0.080 0.836 0.299 0.138 0.872 0.043 0.089
DNABERT-1-5mer 0.837 0.779 0.114 0.849 0.313 0.179 0.874 0.043 0.142
DNABERT-1-6mer 0.835 0.776 0.105 0.845 0.299 0.163 0.893 0.075 0.236
HyenaDNA-T 0.832 0.773 0.092 0.844 0.314 0.178 0.864 0.032 0.037
HyenaDNA-T-d256 0.835 0.776 0.104 0.848 0.325 0.195 0.886 0.043 0.200
HyenaDNA-T-d128 0.830 0.770 0.079 0.843 0.313 0.166 0.864 0.025 0.112
HyenaDNA-S 0.830 0.770 0.081 0.842 0.306 0.177 0.870 0.069 0.098
HyenaDNA-M-160k 0.831 0.771 0.083 0.848 0.314 0.186 0.884 0.037 0.115
HyenaDNA-M-450k 0.832 0.772 0.089 0.845 0.309 0.172 0.873 0.064 0.113
HyenaDNA-L 0.831 0.771 0.085 0.848 0.314 0.178 0.883 0.029 0.132

Table 5: Evaluation on diverse RNA BLMs using the linear probing for in-domain ranking.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

mRNA-FM 0.830 0.770 0.079 0.846 0.315 0.187 0.880 0.026 0.117
RNA-FM 0.831 0.771 0.084 0.838 0.293 0.146 0.879 0.026 0.161
RNA-MSM 0.832 0.773 0.090 0.850 0.317 0.197 0.902 0.045 0.253
RNA-Ernie 0.837 0.780 0.119 0.867 0.326 0.230 0.906 0.056 0.237
RiNaLMo 0.843 0.787 0.148 0.870 0.326 0.235 0.904 0.049 0.198
ERNIERNA 0.836 0.778 0.113 0.860 0.327 0.230 0.909 0.041 0.213
ERNIERNA.ss 0.837 0.779 0.115 0.860 0.323 0.226 0.906 0.031 0.234
Chai1 0.845 0.790 0.161 0.867 0.316 0.225 0.897 0.124 0.217
OmniGenome-418M 0.838 0.781 0.122 0.868 0.320 0.239 0.910 0.059 0.207
OmniGenome-186M 0.839 0.782 0.127 0.861 0.313 0.210 0.896 0.061 0.213
OmniGenome-52M 0.831 0.771 0.083 0.846 0.327 0.184 0.886 0.041 0.207
3UTRBERT-6mer 0.840 0.784 0.135 0.870 0.324 0.244 0.908 0.044 0.256
3UTRBERT-5mer 0.834 0.775 0.102 0.861 0.323 0.231 0.906 0.046 0.232
3UTRBERT-4mer 0.840 0.784 0.134 0.869 0.326 0.243 0.906 0.047 0.234
3UTRBERT-3mer 0.841 0.785 0.138 0.870 0.323 0.246 0.906 0.041 0.226
SpliceBERT 0.829 0.768 0.072 0.836 0.307 0.140 0.872 0.058 0.114
SpliceBERT-H.510nt 0.833 0.774 0.095 0.844 0.308 0.167 0.890 0.051 0.203
SpliceBERT.510nt 0.830 0.770 0.080 0.838 0.310 0.152 0.874 0.036 0.121
CaLM 0.834 0.775 0.099 0.847 0.309 0.178 0.882 0.062 0.146

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: BLMs perform well on in-domain ranking using linear probing and fine-tuning. The
table shows the result of @100 track with a batch size of 1×100 sequences. For most selected models
except 3UTRBERT-6mer, fine-tuning provides better results than linear probing.

Modality Model
Random Initialization Linear Probing Fine-tuning
nDCG↑ SP↑ nDCG↑ SP↑ nDCG↑ SP↑

Protein
ESM2-650M 0.844 -0.050 0.875 0.138 0.902 0.208
ESM2-150M 0.856 0.050 0.866 0.075 0.898 0.187

DNA
DNABERT-1-6mer 0.856 0.017 0.893 0.236 0.908 0.226
HyenaDNA-T-d256 0.865 0.053 0.886 0.200 0.908 0.205

RNA
RNA-Ernie 0.855 0.003 0.906 0.237 0.907 0.239
3UTRBERT-6mer 0.836 -0.015 0.908 0.256 0.902 0.210

Also, we report fine-tuning performance on in-domain ranking, shown in Table 6. Firstly, linear
probing and fine-tuning effectively surpass the random init in nDCG@100 and SP. Secondly, fine-
tuning provides better results than linear probing for most selected models except 3UTRBERT-6mer.
Thirdly, SP and n@DCG can provide different tendencies, demonstrating the different concentrations
for distinct metrics, shown in Section 4.1.2. For example, the nDCG of linear probing in 3UTRBERT-
6mer is higher than fine-tuning, while the SP is the opposite. The linear probing performs better at
the top sequences, while the fine-tuning shows better rankings on 100 sequences.

A.5 OUT-OF-DOMAIN PERFORMANCE

The train-test splitting of out-of-domain ranking is shown in Table 7. We emphasize that although the
out-of-domain ranking is a challenging task, it aligns with the logic of the actual process of protein
evolution.

Table 7: The out-of-domain ranking is highly challenging as it is based on actual in-vitro
evolution rounds. We provide three tracks, @2, @10, and @100, where the lengths of ranking lists
are 2, 10, and 100 respectively.

Track #List #DNA #Protein
Train Test Train Test Train Test

@100 7 99 682 9822 661 9159
@10 1155 4563 8745 41264 5398 24906
@2 27754 44322 38114 63445 16461 28800

For out-of-domain ranking, we conduct a comprehensive evaluation of various hyperparameters, as
detailed in Table 8. We assess the impact of different learning rates, batch sizes, and optimizer types
to understand their influence on model performance. Additionally, we explore various configurations
for the linear head module, including different hidden sizes, to determine how these settings affect
the results.

Another important aspect of our evaluation is the data shuffling strategy. We experiment with three
approaches: leaving the training data unshuffled, performing a weak shuffle by shuffling only once
before training, and shuffling the data at each training iteration. The goal is to identify whether data
presented during training influences model generalization and performance.

Furthermore, we test different head module types to find the most effective architecture for the task.
Alongside this, we explore a variety of loss functions to optimize the model for ranking. Despite the
thorough tuning of these hyperparameters and the exploration of different settings, all configurations
result in disappointing evaluation outcomes.
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Table 8: Hyper parameters examinations for out-of-domain ranking NOVOBENCH-100K @10
task using ESM3 model. “Random Init” means randomly initializing the model for predictions,
essentially guessing the ranking. In the “Base” setting, the learning rate is 0.00001, the batch size
is 256, the optimizer is SGD, the hidden size of the linear head module is 256, the training data is
shuffled each time, and the loss function used is based on cross-entropy (Cao et al., 2007). No matter
how we tune the hyperparameters, the linear probe performs poorly.

Hyper Parameter nDCG↑ mRR↑ SP↑

Random Init 0.803 0.301 -0.007
Base 0.806 0.294 0.014

learning rate = 0.000001 0.801 0.297 -0.010
learning rate = 0.0001 0.807 0.290 0.011
learning rate = 0.001 0.813 0.301 0.033
learning rate = 0.01 0.803 0.293 -0.012
batch size = 128 0.811 0.301 0.030
batch size = 64 0.810 0.298 0.030
optimizer = Adam 0.810 0.301 0.024
optimizer = Adagrad 0.812 0.293 0.032
hidden size = 128 0.809 0.289 0.018
hidden size = 512 0.810 0.300 0.027
shuffle = False 0.806 0.290 0.007
shuffle = weak shuffle 0.808 0.301 0.022
head module = RNN 0.809 0.309 0.028
head module = CNN 0.805 0.294 0.008
loss func = cosine similarity 0.796 0.288 -0.041
loss func = kl divergence 0.796 0.292 -0.030

These results suggest that the challenges of out-of-domain ranking are not easily addressed through
standard hyperparameter adjustments. It indicates a need for more advanced strategies beyond
conventional tuning to improve the model’s performance in out-of-domain ranking.

We proceed to benchmark all 80 biological language models (BLMs) reported in 24 papers using a
linear probing approach. The results are presented separately for protein, DNA, and RNA BLMs in
Table 9, Table 10, and Table 11, respectively. Across all modalities, most BLMs perform poorly on
out-of-domain ranking, with results barely surpassing those of random guess ranking.

This poor performance stands in stark contrast to the outcomes observed in in-domain ranking, where
nearly all BLMs achieve results consistent with expectations, as shown in Table 3, Table 4, and
Table 5. These results confirm that the embeddings generated by BLMs are meaningful and effective
in in-domain tasks, demonstrating no apparent issues related to the curse of dimensionality or loss of
information during the embedding process.

The disparity between in-domain ranking and out-of-domain ranking performance suggests that the
challenges faced by BLMs in out-of-domain ranking are not due to the embeddings themselves but
are likely attributed to the difficulty of generalizing to out-of-domain data. While the embeddings
remain useful within the context of in-domain ranking tasks, their transferability and robustness
across varying experimental conditions in out-of-domain ranking are limited. This emphasizes the
need for more advanced strategies to enhance the generalization ability of BLMs when faced with
out-of-domain ranking tasks.

This underscores the significance of developing more robust approaches to improve the general-
izability of BLMs. Given that the embeddings are effective for in-domain tasks but struggle with
out-of-domain scenarios, it becomes crucial to explore new strategies beyond traditional training and
fine-tuning. Potential directions include leveraging multimodal data, incorporating external biological
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Table 9: Protein BLMs fail to solve the out-of-domain ranking using linear probing.

Model
@2 @10 @100

nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

ESM2-8M 0.811 0.744 -0.023 0.815 0.310 0.061 0.856 0.053 0.014
ESM2-35M 0.810 0.743 -0.028 0.803 0.298 -0.005 0.858 0.055 0.060
ESM2-150M 0.811 0.744 -0.024 0.808 0.293 0.023 0.856 0.057 0.028
ESM2-650M 0.814 0.747 -0.010 0.802 0.293 -0.004 0.845 0.049 0.016
ESM2-3B 0.815 0.750 -0.001 0.808 0.308 0.027 0.838 0.037 -0.018
ESM2-15B 0.815 0.749 -0.002 0.801 0.300 0.000 0.834 0.064 -0.071
ESM3 0.819 0.755 0.018 0.802 0.298 -0.004 0.864 0.054 0.069
SaProt-650M-AF2 0.813 0.747 -0.011 0.797 0.284 -0.036 0.853 0.055 0.060
SaProt-650M-PDB 0.817 0.752 0.006 0.802 0.294 -0.009 0.836 0.063 -0.046
SaProt-35M-AF2 0.817 0.751 0.006 0.812 0.306 0.046 0.845 0.057 -0.029
SaProt-35M-AF2-Seq 0.821 0.757 0.029 0.802 0.297 -0.016 0.854 0.079 0.025
LucaOne 0.823 0.761 0.044 0.798 0.291 -0.021 0.846 0.069 0.007
RosettaFold-STATE 0.812 0.746 -0.017 0.801 0.282 -0.018 0.837 0.044 -0.055
RosettaFold-MSA 0.811 0.745 -0.022 0.800 0.285 -0.022 0.844 0.077 0.001
ProstT5 0.817 0.752 0.006 0.804 0.289 -0.004 0.843 0.041 -0.038
ProstT5-fp16 0.816 0.750 0.002 0.801 0.300 -0.006 0.852 0.043 0.012
Prot-T5-XL-U50 0.815 0.749 -0.003 0.807 0.307 0.019 0.852 0.053 0.040
Prot-T5-XL-Half 0.810 0.742 -0.031 0.803 0.287 -0.010 0.855 0.038 0.008
Chai1 0.814 0.748 -0.008 0.802 0.290 -0.008 0.857 0.055 0.062
Chai1-ESM 0.808 0.740 -0.042 0.803 0.296 -0.008 0.842 0.033 -0.050
Prot-Bert 0.819 0.755 0.021 0.817 0.304 0.059 0.843 0.047 -0.024
Prot-ss3 0.813 0.747 -0.012 0.804 0.290 0.000 0.840 0.047 -0.035
Prot-Membrane 0.822 0.758 0.033 0.805 0.298 -0.001 0.853 0.067 0.035
Prot-Localization 0.807 0.738 -0.048 0.802 0.296 -0.005 0.841 0.050 -0.033
Prot-T5-XXL-U50 0.816 0.751 0.003 0.799 0.305 -0.020 0.857 0.062 0.039
Prot-Generator 0.818 0.754 0.015 0.804 0.301 0.003 0.849 0.073 0.013
Prot-Discriminator 0.816 0.750 0.000 0.801 0.290 -0.090 0.851 0.051 -0.005
Prot-T5-XL-BFD 0.815 0.750 0.000 0.799 0.297 -0.016 0.844 0.069 -0.012
Prot-Bert-BFD 0.814 0.748 -0.010 0.803 0.291 -0.001 0.837 0.039 -0.044
Prot-T5-XXL-BFD 0.813 0.746 -0.015 0.808 0.299 0.024 0.841 0.049 -0.025
Prot-Xlnet 0.813 0.747 -0.012 0.803 0.292 0.004 0.839 0.054 0.003
Prot-Albert 0.812 0.745 -0.020 0.796 0.288 -0.037 0.838 0.044 -0.036

knowledge to better inform model predictions, or applying advanced domain adaptation techniques
specifically tailored to biological contexts.

Moreover, improving model architecture and pre-training processes may also play a role in enhancing
the ability of BLMs to generalize. For example, introducing mechanisms to better capture contextual
dependencies across sequences or developing models that can dynamically adapt to new types of
biological data could mitigate the current performance gaps. These improvements could ultimately
address the limitations seen in out-of-domain ranking and facilitate more accurate predictions in real-
world applications where models frequently encounter data that differs from the training distribution.

In summary, while current BLMs perform well on in-domain ranking tasks, their poor performance
on out-of-domain tasks points to a pressing need for methodological advances that enable consistent
generalization across varying biological experiments. This remains a critical step toward fully
realizing the potential of BLMs in supporting accurate and practical biological research.
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Table 10: DNA BLMs fail to solve the out-of-domain ranking using linear probing.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

EVO-8k 0.809 0.741 -0.036 0.799 0.286 -0.022 0.831 0.043 -0.079
EVO-131k 0.809 0.741 -0.037 0.802 0.293 -0.016 0.833 0.054 -0.080
LucaOne 0.816 0.750 0.001 0.808 0.289 0.006 0.839 0.055 0.013
Chai1 0.820 0.756 0.025 0.802 0.292 -0.015 0.851 0.063 0.009
NT-2-50M 0.812 0.746 -0.017 0.802 0.291 -0.019 0.837 0.035 -0.025
NT-2-100M 0.818 0.753 0.011 0.800 0.290 -0.024 0.857 0.070 0.052
NT-2-250M 0.818 0.753 0.013 0.805 0.288 0.004 0.849 0.037 0.007
NT-2-500M 0.816 0.751 0.005 0.804 0.289 -0.013 0.843 0.047 -0.044
NT-500M-human 0.812 0.745 -0.021 0.806 0.291 0.005 0.829 0.051 -0.108
NT-500M-1000G 0.816 0.751 0.004 0.804 0.295 0.001 0.841 0.059 -0.025
NT-2B5-1000G 0.815 0.749 -0.003 0.805 0.301 0.005 0.856 0.034 0.046
NT-2B5 0.820 0.757 0.027 0.803 0.297 -0.008 0.840 0.026 -0.033
AgroNT 0.815 0.749 -0.003 0.815 0.298 0.038 0.830 0.056 -0.083
GenSLMs-2.5B 0.810 0.743 -0.029 0.810 0.300 0.027 0.857 0.043 0.066
GenSLMs-250M 0.812 0.746 -0.018 0.799 0.289 -0.028 0.853 0.049 0.020
GenSLMs-25M 0.819 0.755 0.020 0.807 0.298 0.007 0.841 0.050 0.002
DNABERT-2 0.813 0.747 -0.015 0.802 0.285 -0.024 0.863 0.062 0.072
DNABERT-S 0.812 0.745 -0.019 0.801 0.288 -0.026 0.851 0.043 0.036
DNABERT1-3mer 0.818 0.753 0.014 0.801 0.289 -0.023 0.851 0.041 0.039
DNABERT1-4mer 0.815 0.749 -0.002 0.804 0.288 -0.007 0.840 0.043 -0.026
DNABERT1-5mer 0.818 0.753 0.011 0.806 0.297 0.007 0.850 0.062 -0.001
DNABERT1-6mer 0.811 0.744 -0.025 0.809 0.296 0.019 0.843 0.060 -0.049
HyenaDNA-T 0.816 0.751 0.004 0.808 0.294 0.006 0.828 0.046 -0.124
HyenaDNA-T-d128 0.817 0.753 0.011 0.800 0.286 -0.044 0.845 0.039 -0.024
HyenaDNA-T-d256 0.816 0.750 0.002 0.803 0.286 -0.007 0.851 0.038 0.029
HyenaDNA-S 0.817 0.752 0.006 0.816 0.292 0.047 0.857 0.076 0.027
HyenaDNA-M-160k 0.817 0.752 0.010 0.800 0.282 -0.023 0.850 0.042 -0.003
HyenaDNA-M-450k 0.819 0.755 0.021 0.803 0.284 -0.027 0.844 0.060 -0.052
HyenaDNA-L 0.814 0.748 -0.008 0.804 0.288 -0.019 0.861 0.045 0.061

Table 11: RNA BLMs fail to solve the out-of-domain ranking using linear probing.

Model @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

mRNA-FM 0.814 0.748 -0.006 0.809 0.291 0.015 0.847 0.045 0.003
RNA-FM 0.813 0.747 -0.013 0.814 0.303 0.045 0.852 0.037 0.020
RNA-MSM 0.821 0.757 0.029 0.811 0.299 0.021 0.844 0.060 0.007
RNA-Ernie 0.815 0.750 -0.001 0.803 0.298 -0.007 0.837 0.056 -0.039
RiNALMo 0.817 0.751 0.006 0.807 0.291 0.017 0.832 0.046 -0.037
ERNIE-RNA 0.816 0.750 0.001 0.803 0.293 -0.010 0.853 0.065 0.050
ERNIE-RNA.ss 0.817 0.751 0.006 0.807 0.296 0.007 0.864 0.076 0.070
Chai1 0.814 0.748 -0.006 0.809 0.293 0.018 0.853 0.075 0.044
OmniGenome-418M 0.817 0.752 0.009 0.799 0.287 -0.037 0.840 0.042 -0.017
OmniGenome-186M 0.819 0.755 0.019 0.810 0.297 0.017 0.842 0.088 -0.036
OmniGenome-52M 0.814 0.749 -0.006 0.812 0.296 0.036 0.835 0.076 -0.040
3UTRBERT-6mer 0.812 0.745 -0.019 0.811 0.293 0.029 0.849 0.074 0.025
3UTRBERT-5mer 0.819 0.755 0.020 0.811 0.293 0.026 0.842 0.044 0.028
3UTRBERT-4mer 0.820 0.756 0.024 0.800 0.285 -0.029 0.850 0.055 0.017
3UTRBERT-3mer 0.815 0.750 0.000 0.809 0.299 0.299 0.842 0.045 -0.056
SpliceBERT 0.814 0.748 -0.008 0.802 0.298 -0.011 0.856 0.049 0.035
SpliceBERT-H.510nt 0.814 0.748 -0.008 0.805 0.297 0.004 0.839 0.045 -0.077
SpliceBERT.510nt 0.817 0.752 0.007 0.801 0.294 -0.015 0.847 0.065 -0.005
CaLM 0.817 0.752 0.009 0.800 0.285 -0.031 0.840 0.080 -0.056
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Table 12: BLMs struggle to solve out-of-domain ranking using linear probing and fine-tuning.
The table shows the result of @100 track with a batch size of 4×100 sequences. Although fine-tuning
can help a little, most BLMs cannot solve the out-of-domain ranking well with a similar performance
of random initialization.

Modality Model
Random Initialization Linear Probing Fine-tuning
nDCG↑ SP↑ nDCG↑ SP↑ nDCG↑ SP↑

Protein
ESM2-650M 0.847 0.017 0.845 0.016 0.869 0.114
ESM2-150M 0.851 0.010 0.846 0.007 0.859 0.051

DNA
DNABERT-1-6mer 0.845 -0.057 0.843 -0.049 0.846 0.009
HyenaDNA-T-d256 0.854 0.018 0.851 0.029 0.860 0.068

RNA
RNAErnie 0.841 0.007 0.837 -0.039 0.844 -0.003
3UTRBERT-6mer 0.842 -0.042 0.849 0.025 0.845 0.007

We conduct fine-tuning experiments in Table 12, training the BLM backbones and their ranking
heads to ensure that performance limitations are not solely due to linear probing. We fine-tune the
top models from in-domain ranking across each modality, testing different learning rates. Table 12
presents the fine-tuning results at the best learning rate. Although fine-tuning provides improvements
over the random init, most BLMs do not show substantial performance gains. This indicates that
when BLMs face out-of-domain ranking tasks in our benchmark, i.e., predicting the outcomes of the
next round of protein evolution based on results from the current round, they are almost incapable.
This reflects the considerable challenge posed by our benchmark in out-of-domain ranking tasks with
existing BLMs. Such challenges align with the logic of actual biological experiments and represent
real difficulties that need resolution in practical applications.

We have also studied the performance by data precision in Table 13, which is one of the common
tasks for studying language model performance. In the task of out-of-domain ranking, even using
half the accuracy does not cause the model to crash on our benchmark.

Table 13: Evaluation on diverse data precisions using linear probing (out-of-domain ranking
task). The top, middle, and bottom blocks represent the protein, DNA, and RNA modalities respec-
tively. “P” represents the precision.

Model P @2 @10 @100
nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑ nDCG↑ mRR↑ SP↑

ESM2-650M F32 0.814 0.747 -0.010 0.802 0.293 -0.004 0.845 0.049 0.016
F16 0.817 0.752 0.011 0.803 0.291 0.002 0.841 0.045 -0.010

ESM3 F32 0.819 0.755 0.018 0.802 0.298 -0.004 0.864 0.054 0.069
F16 0.815 0.749 -0.001 0.804 0.295 -0.001 0.849 0.070 -0.013

LucaOne F32 0.823 0.761 0.044 0.798 0.291 -0.021 0.846 0.069 0.007
F16 0.816 0.750 0.005 0.812 0.294 0.042 0.836 0.050 -0.008

HyenaDNA-L F32 0.814 0.748 -0.008 0.804 0.288 -0.019 0.861 0.045 0.061
F16 0.814 0.747 -0.008 0.794 0.289 -0.055 0.857 0.048 0.065

EVO-131k F32 0.809 0.741 -0.037 0.802 0.293 -0.016 0.833 0.054 -0.080
F16 0.813 0.744 -0.012 0.808 0.297 0.026 0.846 0.048 0.013

LucaOne† F32 0.816 0.750 0.001 0.808 0.289 0.006 0.839 0.055 0.013
F16 0.816 0.747 0.003 0.810 0.300 0.025 0.839 0.058 -0.006

SpliceBERT F32 0.814 0.748 -0.008 0.802 0.298 -0.011 0.856 0.049 0.035
F16 0.818 0.752 0.013 0.812 0.289 0.024 0.845 0.048 -0.039

3UTRBERT-6mer F32 0.812 0.745 -0.019 0.811 0.293 0.029 0.849 0.074 0.025
F16 0.820 0.755 0.022 0.803 0.280 -0.013 0.863 0.040 0.032

OmniGenome-52M F32 0.814 0.749 -0.006 0.812 0.296 0.036 0.835 0.076 -0.040
F16 0.814 0.748 -0.007 0.805 0.298 0.007 0.855 0.060 0.059
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