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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) stands out as a prominent method
for image representation learning. Various architectures, from vision transform-
ers (ViTs) to convolutional networks (ResNets) have been trained with CLIP to
serve as general solutions to diverse vision tasks. This paper explores the dif-
ferences across various CLIP-trained vision backbones. Despite using the same
data and training objective, we find that these architectures have notably different
representations, different classification performances across datasets, and different
robustness properties to certain types of image perturbations. Our findings indicate
a remarkable possible synergy across backbones by leveraging their respective
strengths. In principle, classification accuracy could be improved by over 40 per-
cent with an informed selection of the optimal backbone per test example. Using
this insight, we develop a straightforward yet powerful approach to adaptively
ensemble multiple backbones. The approach uses as few as one labeled example
per class to tune the adaptive combination of backbones. On a large collection of
datasets, the method achieves a remarkable increase in accuracy of up to 39.1%
over the best single backbone, well beyond traditional ensembles.

1 INTRODUCTION

Large pre-trained models are transforming machine learning, computer vision (Radford et al., 2021;
He et al., 2022; Kirillov et al., 2023; Liu et al., 2023), and natural language processing (Devlin
et al., 2018; Brown et al., 2020; Touvron et al., 2023). These models are typically trained with
self-supervised objectives, eschewing the need for manual annotations and enabling the use of very
large datasets (Jia et al., 2021; Schuhmann et al., 2022).

Contrastive Language–Image Pre-training (CLIP) (Radford et al., 2021) is one such approach that
enables various downstream applications involving vision and language. CLIP learns to align text
and image representations when training a pair of vision and language encoders, which can be
implemented with various architectures. These encoders are then used in downstream applications
to obtain representations of images and text, whose similarity can be simply evaluated with a dot
product. This enables e.g. zero-shot classification (Zhai et al., 2022; Li et al., 2022a; Jia et al., 2021)
and cross-modal retrieval (Li et al., 2020a;b; Yu et al., 2022).

Despite extensive prior work on CLIP, there is still a gap in comparing the representations from
different vision backbones trained with this paradigm. Existing work has compared backbones for
their generalization capabilities (Goldblum et al., 2023; Li et al., 2022a; Zhang et al., 2021; Gao
et al., 2021), finding that larger architectures generally perform better. This paper contributes to this
area with an empirical study that compares CLIP-trained backbones. We present new observations
on how performance and robustness (e.g. invariance to image transformations) vary substantially
across architectures. Within the same backbone family (e.g. different ViTs), different models present
different patterns of performance across datasets (Figure 4). The relation with model scale is also
more complicated than suggested in prior work (Figure 5).
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Figure 1: We propose a method to improve CLIP’s effectiveness for image classification by combining
the strengths of different backbones. (Left) For a given test image, the logits from different backbones
are combined with a temperature scaling that weights their contribution to the final prediction. The
scaling is implemented in the Neural Logit Controller (NLC, a small MLP) that is learned from as
little as one labeled example per class. (Right) To reduce the computational load, our method can be
combined with the Cascade framework (Wang et al., 2022a).
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Figure 2: (Y axis) Relative improvement of
NLC over best backbone vs. (X axis) predic-
tions diversity 1. NLC always improves over the
best backbone. Moreover, the clear correlation
shows that higher diversity in predictions tends
to result in greater improvements with NLC.
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Figure 3: Average accuracy across 21 datasets
for zero-shot ResNets and ViTs backbones, NLC
Ensemble, and Cascade using 2 to 9 backbones,
plotted against the Average GFLOPs. Demon-
strates that ensembles can surpass the best zero-
shot backbone with fewer GFLOPs.

Our empirical findings suggest that CLIP’s ef-
fectiveness for image classification could be im-
proved by combining the strengths of different
backbones. We thus present an ensemble method
that combines backbones adaptively to each test
example, using a temperature scaling that weights
each backbone’s contribution to the final predic-
tion condition on the input image (see Figure 1).

A naive combination of backbones with traditional
ensembling techniques (Lakshminarayanan et al.,
2017; Dietterich, 2000) (i.e. averaging the outputs)
does not consistently enhance generalization per-
formance. These approaches focus on prediction
agreements rather than leveraging diversity. In
contrast, our method uses a temperature scaling
based on the idea of calibrating each backbone’s
confidence. This intuition is further supported by
the “modality gap” and variation in performance
observed in prior work when adjusting CLIP’s log-
its (Shi et al., 2023). We compare our approach to
more advanced ensembles, such as SuperLearner
Cheng Ju and van der Laan (2018), which also
combines the logits of multiple models by learning
temperature scaling. However, unlike our method,
SuperLearner does not adaptively adjust these tem-
peratures based on the input features, implying
that SuperLearner cannot exploit the diversity of
predictions (Tab. C.1.)

Our proposed method, named the Neural Logit
Controller (NLC), uses a few labeled examples
(as little as one per class) to tune the combi-
nation of backbones. Hence, we benchmark it
against the state-of-the-art methods in a few-shot
setting (Zhang et al., 2021; Radford et al., 2021;
Zhou et al., 2022; Gao et al., 2021). NLC shows
remarkable performance and consistently outper-
forms other approaches. Furthermore, we show
that NLC complements existing methods like Tip-

1The diversity of predictions is measured as: 1 − #samples correctly predicted by all backbones
#samples correctly predicted by any backbone .
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Adapter (Zhang et al., 2021). Combining it with NLC in its original experimental framework yields
improvements in accuracy of over 15%.

Finally, in-depth experiments reveal a clear correlation between NLC’s improvement over the best
backbone and the diversity of correct predictions in each dataset (see Figure 2). It achieves over
120% of relative improvement when the diversity of predictions is close to one, and never degrades
the performance of the best backbone. In terms of efficiency, NLC outperforms the best backbone by
combining only the top-four most efficient backbones, while using approximately 300 fewer GFLOPs
(see Figure 3). We also show how to use the Cascade framework (Wang et al., 2022a; Varshney
and Baral, 2022) with NLC to enhance performance while maintaining computational requirements
within the bounds of the original backbones.

Our contributions are summarized as follows.
• We perform extensive experiments across 21 datasets that reveal diverse predictions across CLIP

backbones and distinct robustness properties to image transformations.
• We evaluate the complementarity of backbones by measuring the potential improvement in

classification accuracy (up to 43.5%) of an optimal oracle selection of backbone per test example.
• To leverage this complementarity, we propose an adaptive ensembling method (NLC) that uses

temperature scaling and requires a single labeled example per class. It improves accuracy over the
best backbone by 9.1% on average, surpassing previous ensembling frameworks.

• We demonstrate significant advantages in computational efficiency. Combining the top four most
efficient backbones enables NLC to outperform the best backbone with ∼300 fewer GFLOPs.
Integrating NLC with the Cascade approach (Wang et al., 2022a) maintains computational
efficiency.

• We demonstrate that NLC consistently outperforms state-of-the-art few-shot methods. Moreover,
integrating NLC with Tip-Adapter (Zhang et al., 2021) gives the latter a performance boost of
over 15%.

2 INVESTIGATING DIFFERENCES ACROSS VISION BACKBONES
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Figure 4: Zero-shot classification accuracy of
various CLIP models on 21 datasets, and of
the upper-bound “ORACLE” combination of
ResNets (RN), ViTs, and all backbones.

CLIP for zero-shot image classification. CLIP
(Radford et al., 2021) is a general technique to
train a pair of vision and text encoders ϕl and ϕv

on paired image/text data. The method uses a self-
supervised objective to align the encoded represen-
tations of matching images and text descriptions.
Any image and text can then be mapped to a unified
semantic space. This enables zero-shot image clas-
sification by computing a compatibility score be-
tween an image and a class description (“prompt”)
as score(x, l) = ϕv(x)

⊤ϕl(l). We follow previous
work (Menon and Vondrick, 2023) for the generat-
ing of prompts e.g. an image of {label},
which is a {concept}. Subsequently, we
calculate the compatibility score between the im-
age feature ϕv(x) and the prompt representations
ϕl(y), where y represents a label within the class
set. The prompt with the highest similarity is then
chosen as the label for the given image.

2.1 COMPLEMENTARITY OF DIFFERENT
BACKBONES

The vision encoder or “backbone” trained with CLIP can be implemented using various architectures.
We want to identify whether different backbones have distinctive behaviours. We analyze the output
of 9 of them in a zero-shot classification setting on 21 standard benchmark datasets (see Section 4 for
details). We propose two approaches to assess the differences in their zero-shot predictions and their
possible complementary behaviour. First, we define an ORACLE prediction that combines the output
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Figure 5: Linear Venn diagrams showing the overlap of test images from ImageNet-1k correctly
classified by different backbones (rows). Each column represents a subset of images correctly
classified by a specific group of backbones (group size in column header). Row/column sums indicate
the number of correct predictions per backbone/subset. We observe that (1) different backbones agree
on a large part of the data. (2) They also make additional correct predictions on different subsets.
(3) Accuracy usually grows with architectures size, but even within a same family (ViTs, ResNets),
different models show different patterns of (in)correct predictions.
of the 9 models on a per-image basis, using a correct prediction if any of the models is correct, any
other otherwise. This simulates a scenario where an informed choice of the optimal backbone could
be made for each test image to obtain the highest classification accuracy. Second, we use overlap
diagrams to visualize the patterns of (in)correct predictions across backbones and their different
strengths on different subsets of images.

Figure 4 and Table B.1 summarize the performance of the different backbones. Note that they are
pre-trained using the exact same dataset and objectives, as provided in the OpenClip project (Ilharco
et al., 2021). Our results show that backbones from different families (ViTs vs. ResNets) show
significant differences while controlling for model size (number of parameters). For example, ViT-B-
32 outperforms ResNet-50x4 in the CIFAR10 and CIFAR100 benchmarks. However, this trend is not
consistent across all datasets, e.g. on IMGNET-1K. Additionally, the results indicate that backbones
with more parameters do not always outperform smaller ones.

We then assess the ORACLE predictions using backbones from the same family (ORACLE RN for
ResNets, ORACLE ViT for ViTs, and ORACLE All for a combination of all backbones). The ORACLE
All obviously outperforms the best individual backbone in every case. For instance, on EUROSAT,
CLEVR, CUB, DTD, CIFAR100, and CARS, the ORACLE All shows improvements of 43.5%, 36.0%,
25.1%, 21.8%, 16.6% and 16.0%, respectively. The large magnitude of these improvements
highlights the complementarity of backbones. In other words, the correctly-classified data is
not simply growing as one considers larger and better models. Instead, different backbones
perform well on different subsets of the data. This insight is the key motivation for the ensemble
method we propose in Section 3. We also found that similar findings have been made in domains
other than ours Roth et al. (2024); Zhong et al. (2021); Ramé et al. (2022).

We visualize in Figure 5 the overlap between different subsets of IMGNET-1K correctly predicted
by different backbones. We observe comparable accuracy between the largest ViT (ViT-L-14-336,
correct predictions) and ResNet (RN50x64) with 38, 285 vs. 36, 963 correct predictions. However,
there are significant differences within each family: for example, among ResNets, only 22, 358
images are correctly classified by all ResNets models, out of the 42, 426 ones correctly classified by
any ResNet.1

We further observe that every model has unique strengths by examining the performance of the
oracle models. Specifically, ORACLE RN, ORACLE ViT, and ORACLE All increase the number of
correct predictions to 42, 426, 42, 276, and 44, 506 out of 50, 000. Each backbone exhibits correct
predictions unique to itself. In the ORACLE RN, RN50, RN101, RN50x4, RN50x16, and RN50x64
contribute 566, 455, 518, 782, and 1, 745 exclusive predictions, respectively. In the ORACLE ViT,
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B-32, B-16, L-14, and L-14-336 present 903, 904, 543, and 818 unique predictions, respectively.
Finally, when all backbones are used, ResNet contributes 2, 230 exclusive predictions, and ViT
contributes 2, 080. It is important to note that correct predictions of any given model are not simply a
subset of those by the best model in its family.

2.2 OTHER SOURCES OF DIVERSITY
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Figure 6: Diversity of predictions of
(1) different Backbones with same pre-
trained dataset, (2) same backbone with
different pre-trained Datasets, and (3)
same backbone and same pre-trained
dataset in two different Epochs. Results
show complementarity is higher when
we combine different backbones.

RESIZE

FLIP

GRAYSCALE

COLOR
JITTER

GAUSSIAN
BLUR

−1

−2

−3

−4

−5

−6

−7

−8

−9

RN50
RN50x4
RN50x16
RN50x64
RN101

ViT-B-32
ViT-B-16
ViT-L-14
ViT-L-14-336

Figure 7: Impact on test classifica-
tion accuracy of image transformations.
Smaller values (closer to center) mean
higher robustness, suggesting models are
particularly robust to specific transforma-
tions.

To better understand the effects of backbone complemen-
tarity, and contrast these effects against the role of vari-
ables that are known to drive performance in ensembles
such random parameter initialization and learning via
stochastic gradient descent, we propose to evaluate the
diversity of correct predictions when combining multi-
ple backbones, which as seen in our experiments above
(Figure 2) strongly correlates with ensemble performance
gains.

Concretely, we isolate the effects of three variables on
prediction diversity: (1) backbone architecture, (2) pre-
training dataset, and (3) number of training steps. For (1),
we evaluate the complementarity of ViT-L-14, ViT-B-32,
and ViT-B-16 backbones using the same dataset. For (2),
we analyze each ViT’s performance using different pre-
training datasets (LAION-400M vs. OpenCLIP). For (3),
we consider ViTs pretrained on LAION-400M using the
checkpoints at two different epochs (31 and 32).

Since, to the best of our knowledge, there are no publicly
released CLIP models that differ only on their initializa-
tion, studies on this variable would, in principle, require us
to train CLIP backbones from scratch, which is extremely
compute-intensive.

Our diversity metric considers the aggregate of test ex-
amples correctly classified and it is the ratio between the
instances correctly classified by all backbones versus the
instances correctly classified by any backbone 1. It can be
thought of as (1 - IoU), where IoU is the "intersection over
union" of n sets of correctly predicted samples, where n
is the number of methods considered. If every sample in
this aggregate is correctly classified by all backbones (i.e.
they all agree while being correct), diversity=0. Other-
wise, if every sample can only be correctly classified by
a single backbone, diversity=1. This allows us to evaluate
the complementarity of models.

Figure 6 (Tab. I.2) demonstrates that combining multiple
backbones achieves higher average diversity than using
the same backbone across different datasets or nearby
solutions in the loss landscape. This indicates that training stochasticity and pretraining dataset
are not the primary factors. Instead, the most meaningful complementarity comes from diverse
backbones, as they excel on different data subsets, as confirmed by the ORACLE results in Table I.1.

2.3 ROBUSTNESS TO IMAGE TRANSFORMATIONS

To explore qualitative differences in behaviour of different backbones, we selected a subset of each
benchmark’s test set and applied specific image transformations (resize, flip, grayscale,
color jitter, and Gaussian blur). We then evaluate the zero-shot classification perfor-
mance of each backbone on these corrupted images. Figure 7 shows that ResNet 50 and ViT-B-16
are the most resilient to flip, RN50x64 to resize, and RN50x16 to grayscale. ViT-L-14 and
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L-14-336 are the most robust to color jitter and Gaussian blur. These findings suggest
that the backbones’ ability to deal with out-of-distribution images varies widely. Certain models
prove particularly robust to specific transformations.

3 PROPOSED ENSEMBLING METHOD

The previous section showed that different backbones have different strengths and perform well on
different types of data. We now use this insight to improve classification performance by combining
multiple CLIP backbones.

Combining models by temperature scaling. Our approach is technically inspired by prior work
on network calibration, which we apply to an ensemble of models. Specifically, our technique can
be seen as a variation of Platt scaling (Platt et al., 1999). This classical method uses the logits of a
model as features for a logistic regression, which is trained on the validation set to produce calibrated
probabilities. More precisely, given logit scores zi for an example i, Platt scaling learns two scalars
a and b and produces calibrated probabilities as q̂i = σ(azi + b). The parameters a and b can be
optimized using the negative log likelihood (NLL) loss over the validation set, with the model weights
being frozen during this process.

A common use of Platt scaling is known as temperature scaling (Guo et al., 2017). In this approach,
a single scalar parameter t > 0 is used for all classes of a given model. The new, calibrated confidence
prediction is given by q̂i = maxk softmax(zi/t)(k), where t is called the temperature, zi are the
logits for example i returned by the uncalibrated model. Usually, t is optimized with respect to the
NLL on the validation set aiming to reduce the overconfidence of the model on its predictions and
to produce more reliable predictions, but because the parameter t does not change the maximum of
the softmax function, the class prediction ŷi remains unchanged, meaning that the performance of a
given model remains the same.

Learning temperature coefficients. In our method, we aim to jointly optimize a set of temperature
parameters tb with b ∈ [1, . . . , B] for a set of B backbones. The aim is to combine their predictions
by adjusting each backbone’s confidence depending on the confidence of the others, and the input
example. We learn the temperatures tb that weigh the logit zb

i for a backbone b and example x using
the cross-entropy loss, and then we combine the logits via a weighted sum.

Concretely, we train a one-layer MLP (our Neural Logit Controller) to predict the set of temperatures
that best calibrate the backbone mixture. The MLP takes as input the concatenated representations
obtained by passing the images through the encoder ϕv of each backbone b ∈ B. As depicted in
Figure 1, The MLP directly produces a vector of temperatures t ∈ RB and is trained on a holdout set
for the training set of each target dataset using the cross-entropy loss between final predictions and
ground truth labels.

4 EXPERIMENTS

Backbones. We consider the original selection of backbones described by Radford et al. (2021).
This includes the ResNets (He et al., 2016) RN50, RN50x4, RN50x16, RN50x64 and RN101, and
the ViTs (Dosovitskiy et al., 2021) B-16, B-32, L-14 and L-14-336. All models are obtained through
the open-source project OpenCLIP (Ilharco et al., 2021).

Datasets. We use a selection of 21 popular image classification datasets: CALTECH101 (Li et al.,
2022b), CARS (Krause et al., 2013), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al.,
2009), CLEVR (Johnson et al., 2017), CUB (Wah et al., 2011), DTD (Cimpoi et al., 2014), EUROSAT

(Helber et al., 2018), FGVC (Maji et al., 2013), FLOWERS (Nilsback and Zisserman, 2008), FOOD

(Bossard et al., 2014), GTSRB (Houben et al., 2013), IMGNET-1K (Deng et al., 2009) MNIST (Deng,
2012), PCAM (Veeling et al., 2018), PETS (Parkhi et al., 2012), RenderedSST2 (Socher et al., 2013),
RESISC45 (Cheng et al., 2017), STL10 (Coates et al., 2011) and SUN397 (Xiao et al., 2010). They
include diverse images of nature, animals, places, medical scans, satellite images, and man-made
objects. The evaluation metric is simply the accuracy of each dataset’s test split. The aggregated
performance is the average accuracy across all datasets weighted equally.
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Figure 8: Comparison of the top-performing single backbone (SINGLE-BEST) with NLC and other
ensemble strategies on top of zero-shot CLIP backbones. In the table, Mean, Max and Min ∆
summarize the difference in performance across datasets with respect to the SINGLE-BEST backbone.

Baselines. Our experiments consider several ensembling baselines. Non-parametric approaches:
• Logit averaging (LOG-AVG) simply takes the average of the logits (scores) of the models.
• Voting (VOTE T-1) uses a majority vote. Each model casts a vote for its max-scored class. The

final prediction is the class with the highest number of votes. Compared to LOG-AVG, this does
not use the soft score values and the uncertainty reflected therein.

Parametric approaches:
• Calibrated logit averaging (C-LOG-AVG) first calibrates each model independently using tem-

perature scaling. They are then combined by simply averaging their logits.
• Super Learner (SL) (Cheng Ju and van der Laan, 2018) a flexible ensemble learning framework

that optimally combines predictions from multiple base learners. In contrast to our method,
SuperLearner learns temperature scaling factors without considering the input. Thus, finding the
best scaling for the total validation set.

• Mixture of experts (MOE) is a popular method to improve performance by combining specialized
submodels of experts (Chen et al., 2022; Lepikhin et al., 2020; Rau, 2019; Zoph et al., 2022), each
one of which focuses on a specific input region. A gating network determines which expert is
relevant for a given input. We use the Sparse MoE implementation (Zoph et al., 2022) by Rau
(2019), where the MoE layer’s input is the concatenation of vision features xb from ϕb. We use
standard hyperparameters: 9 experts trained for classification with cross-entropy loss with Adam
(Kingma and Ba, 2014) and a learning rate of 2e−5 for 300 epochs.

See Appendix C a discussion of additional baselines. The appendix also contains additional results
on the combination of backbones and how they perform under distribution shifts on the IMGNET-1K

dataset (Section E). Finally, Section H presents dataset-specific results including overlap diagrams, an
analysis of possible model combinations using NLC and our ORACLE, as well as the dataset-specific
learned temperature values.

4.1 COMPARISON OF BACKBONE-ENSEMBLING METHODS

In this section, we evaluate the proposed NLC approach along with various non-parametric and
parametric ensembling techniques. The non-parametric ones are “static” while the parametric ones
use the training split of each target dataset to adjust the ensemble adaptively. The following results
will show the importance of this adaptive setting to leverage the backbones’ respective strengths, and
the superiority of our method over baseline parametric techniques.

Figure 8 and Table C.1 show the performance of each technique. Among non-parametric baselines,
LOG-AVG fails to enhance overall performance beyond the best backbone. One notable exception
is the COUNTRY dataset where LOG-AVG shows a substantial improvement over the best backbone.
Overall, though, simple score averaging does not seem to exploit the complementarity of the back-
bones, with an improvement in accuracy of only +1.3%. When the backbones are calibrated with
C-LOG-AVG, performance improves compared to the non-calibrated version, across all datasets
except GTSRB, MNIST, RESISC45, and SUN397. Vote T-1 is mostly ineffective and does not signif-
icantly improve over the best backbone. Among parametric methods, the proposed NLC shows
the most substantial improvement, up to +39.1% on the EUROSAT dataset. On average, we obtain a
commendable improvement of +9.1% over the SINGLE-BEST backbone across all datasets.
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Figure 9: Comparison of the top-performing single backbone (SINGLE-BEST) with NLC and
ensemble strategies on top of CLIP backbones linear classifier, where Mean, Max and Min ∆
summarize the difference in performance across datasets with respect to the SINGLE-BEST.

4.2 INVESTIGATING BENEFITS BEYOND DATASET-SPECIFIC LINEAR CLASSIFIERS

We now design an additional experiment to investigate the benefits of the proposed NLC. A standard
approach to adapt CLIP is to train a dataset-specific linear classifier on frozen visual features. In this
section, we first train such linear classifiers, using each backbone’s frozen features and each dataset’s
training split. Whereas NLC normally acts on raw CLIP scores, we now train it to act on the logits
from these classifiers instead. Since the linear classifiers already are strong dataset-specific models,
one might expect that only small additional improvements are possible. Yet, the following results
will show that the NLC obtains further performance gains thanks to the instance-level adaptation. In
contrast to alternative approaches, it also never reduces the performance compared to the best single
linear classifier.

Setup. We follow the setup of Li et al. (2022a). We initialize the weights of the linear classifiers
using language weights, which was shown to be more stable than a random initialization. The output
of each backbone ϕb is L2-normalized before being passed to each linear classifier, which is trained
using 90% of the target dataset’s training split. The remaining 10% are used to train NLC.

Table 1: Accuracy (%) in a few-shot setting

Few-shot 1 2 4 8 16

Linear-probe CLIP Radford et al. (2021) 22.2 31.9 41.2 49.5 56.1
CoOP Zhou et al. (2022) 47.6 50.9 56.2 59.9 63.0
CLIP-Adapter Gao et al. (2021) 61.2 61.5 61.8 62.7 63.6
Tip-Adapter Zhang et al. (2021) 60.7 61.0 61.0 61.5 62.0
Tip-Adapter-F Zhang et al. (2021) 61.3 61.7 62.5 64.0 65.5

NLC 78.2 78.1 78.2 78.3 78.4

Results. Figure 9 and Table D.2
present the results combining linear
classifiers with both non-parametric
and parametric approaches. Similar to
Section 4.1, the proposed NLC con-
sistently improves performance across
all datasets, with an average improve-
ment of +1.6% over the SINGLE-
BEST linear classifier. As expected,
the improvement is reduced compared to the original NLC since some of the gains are now realised
by the dataset-specific linear classifier. Yet Table D.1 clearly shows that additional gains can be made
over the linear classifiers, i.e. that there remains an exploitable complementarity across backbones.
By examining the ORACLE performance in this setting, we can see that the potential benefits of com-
bining multiple backbones remain. Interestingly, the MOE approach does not reach the performance
level of the best backbone on several datasets. It shows a degradation sometimes down to −20.9%.
This suggests that MoEs may struggle to partition the input space effectively into distinct clusters,
specific to certain experts, potentially limiting its functionality.

4.3 COMPARISON WITH FEW-SHOT ADAPTER METHODS

We now examine the performance of the proposed NLC in a few-shot setting. We also show that it
complements existing few-shot adapter methods and improves their accuracy across various datasets.

We compare our method against Tip-Adapter, Tip-Adapter-F (Zhang et al., 2021), few-shot Linear-
probe CLIP (Radford et al., 2021), CoOP (Zhou et al., 2022), and CLIP-Adapter (Gao et al., 2021).
Linear-probe CLIP fine-tunes a linear classifier on a few-shot training set on the frozen CLIP
backbones. CoOP (Zhou et al., 2022) generates different prompt designs to make prompts learnable.
CLIP-Adapter (Gao et al., 2021) enhances few-shot classification by introducing a feature adapter
on CLIP’s visual and textual encoders. Tip-Adapter (Zhang et al., 2021) achieves comparable
performance to CLIP-Adapter without requiring training, using a key-value cache model from the
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Figure 10: Peformance of TiP-Adapter applied to different zero-shot CLIP backbones, and the
combination of these with NLC, showing how our method provides complementary benefits.
few-shot training set. Tip-Adapter-F can further enhance performance by fine-tuning the cache.
As shown in Table 1, our NLC shows an outstanding performance over compared methods and
consistently surpasses other few-shot methods by learning how to combine multiple backbones,
which is a complementary approach to any of these adapters. In the appendix, Table F.2 shows that
current few-shot adapter methods also have performance differences with various backbones, and
still, our NLC surpasses the best backbone reported by these existing methods.
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Figure 11: Distribution of max-
normalized temperature values
learned by our NLC method on the
CLEVR dataset.

Finally, we integrate Tip-Adapter (Zhang et al., 2021) with our
NLC and conduct experiments on EUROSAT, FGVC, DTD, and
PETS. Initially, we apply Tip-Adapter and Tip-Adapter-F inde-
pendently on each backbone, following the protocol from Zhang
et al. (2021) with 1, 2, 4, 8, and 16 shots. Subsequently, we
employ our ensembling mechanism to fuse the adapted back-
bones. To train NLC, we follow their setting and use the same
validation split as used by Tip-Adapter to linearly combine their
logits with CLIP.

See Figure 10 and Tables F.3–F.6 for a comparison of the perfor-
mance of Tip-Adapter over different zero-shot CLIP backbones,
and the combination of all these Tip-Adapter versions with
NLC. Across the four evaluated datasets, NLC improves over
each version of Tip-Adapter in the few-shot setting. Notably,
NLC improves the performance of the best Tip-Adapter back-
bone (L-14-336) of up to 10% for EUROSAT using 16 shots.
Moreover, when we compare NLC and SL in the Tip-Adapter settting, NLC shows better perfor-
mance, Table F.3–F.6.

4.4 EXAMINING THE LEARNED TEMPERATURE VALUES

We visualise the learned temperature values to understand how the NLC method assigns weights
to different backbones, revealing its strategy for leveraging the strengths of diverse architectures.
Figure 11 shows the learned temperature values for NLC on the CLEVR dataset (see Section H for
other datasets). By examining the learned temperatures, we can gain insight into the contribution
of each backbone. We note that the backbone with the largest overall weight is not consistently the
deepest one, such as ResNet-101. The uniform distribution of learned temperatures across backbones
indicates that NLC effectively utilizes the strengths of multiple backbones, resulting in a more
balanced and accurate labeling process, complementing our analysis in Figure 2. These findings
highlight that NLC benefits from the diversity in model predictions, reinforcing the advantage of
combining various backbones.

5 RELATED WORK

Foundation models in computer vision. The trend in computer vision over the past decade has been
to train larger and larger models on increasingly diverse tasks and increasingly larger datasets (Gadre
et al., 2023; Schuhmann et al., 2022). Scale and generality have proved to be key enablers to the
performance and robustness of these models (Fang et al., 2022; Gan et al., 2022; Mayilvahanan et al.,
2023; Santurkar et al., 2022; Tu et al., 2024). Various methods have been proposed to pre-train such
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models (He et al., 2022; Radford et al., 2021; Yu et al., 2022). CLIP (Radford et al., 2021) is a
notable one, specifically designed to exploit noisy image-text pairs scraped from the internet. CLIP’s
significance lies in its scalability and its ability to generate meaningful alignments with prompts,
facilitating zero-shot classification gao2021clip,zhang2021tip,li2022elevater. CLIP’s popularity is
due to its scalability and ability to handle diverse text prompts that enable a variety of downstream
applications (Gao et al., 2021; Zhang et al., 2021; Li et al., 2022a). Various versions of CLIP
have been trained on different datasets and vision backbones such as ResNets (He et al., 2016) and
ViTs (Dosovitskiy et al., 2021).

Comparing vision backbones. Goldblum et al. (2023) recently conducted a comprehensive compar-
ison of pretrained backbones across various tasks including image classification, object detection,
segmentation, and image retrieval. In comparison, this paper presents complementary observations of
the strengths of different backbones on different datasets and types of data. Moreover, we leverage
these findings with a novel ensembling approach this complementarity of different backbones. Other
works investigating differences across vision architectures include (Angarano et al., 2022; Pinto et al.,
2022; 2021; Wang et al., 2022b) and others specific to CNNs (Abello et al., 2021; Hermann et al.,
2020) and ViTs (Naseer et al., 2021). Finally, we find that there are works analysing the diversity
of models for knowledge distillation Roth et al. (2024), complementarity on models trained don
different subset of data Ramé et al. (2022) and Zhong et al. (2021) exploring the diversity on LLMs.

Model ensembling. Combining multiple machine learning models is a classical approach for
improving predictive performance. Simply averaging the outputs of several models is a simple,
effective technique (Bauer and Kohavi, 1999; Breiman, 1996; Dietterich, 2000; Lakshminarayanan
et al., 2017) with studies dating back more than three decades ago. The approach has also been
applied to deep neural networks (deep ensembles (Lakshminarayanan et al., 2017)), which has shown
benefits in various domains including higher accuracy under distribution shift (Ovadia et al., 2019;
Teney et al., 2018). The diversity of the combined models (in terms of uncorrelated errors) has also
been shown to be critical to these improvements (Hao et al., 2024; Wortsman et al., 2022). The closest
to our work is the SuperLearner framework (Cheng Ju and van der Laan, 2018), which similarly
investigates multiple classical ensembles and introduces a new ensemble that learns temperature
scaling. However, our study not only evaluates the performance of various classical ensembles
but also explores the complementarity of CLIP backbones across 21 datasets. Furthermore, unlike
SuperLearner, our method adapts its temperature scaling factors based on the input, which plays a
crucial role in ensembling CLIP backbones.

6 CONCLUSIONS

This paper presents an analysis of vision backbones in the CLIP framework, focusing on the task of
image classification. Unlike prior studies that span various downstream tasks (e.g. Goldblum et al.
(2023)) our emphasis lies in identifying the unique strengths of various backbones. Our experiments
revealed a distinctive complementarity across architectures and an avenue for enhancing CLIP’s
performance by synergistic combination. We proposed an ensemble approach that reweights the
logits from each backbone condition on the input data to yield more accurate predictions in image
classification across a variety of datasets.

Limitations. First, our evaluation focused mostly on image classification, even though CLIP can
be used for a variety of downstream tasks. Although we test our method on out-of-distribution Sec.
E and also obtain the upper bound performance on Image-Text retrieval Sec. K, more work needs
to be done on how to combine the representations. Second, our approach relies on a late fusion
of backbones by adaptively adjusting their logits. Alternative approaches that leverage the same
initial motivation use knowledge distillation, which requires training the student backbone again Roth
et al. (2024). Third, although we employed the Cascade method (Wang et al., 2022a) to reduce the
computations, our method still needs to pass a test image multiple times through vision encoders.
This adds complexity and computational overhead, which can be important if a large number of
backbones are considered. A possible solution would involve fusing backbones at the training stage
to require only a single forward pass at test time.

Future work. We could emulate the behavior of a given backbone by learning their representations
using the main branch’s early layers. Other efficient methods could also be developed to combine
predictions from multiple backbones to enhance the scalability of the idea.
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A REPRODUCIBILITY

The one-layer MLP is trained with ADAM optimizer with a learning rate of 2e-4. We use a weight
decay of 0.01. It receives as input the concatenation of the features, the hidden layer has a width of 128
and its outcome is the temperature values for the used backbones. All the backbones used in the paper
are pre-trained using the same dataset called openai and objectives from the OpenAI Fundation
https://github.com/mlfoundations/open_clip. In the Cascade Wang et al. (2022a),
we use the probability as the confident measurement with a threshold of 0.9. When the method is
confident with a probability bigger than 0.9 we produce a final prediction, otherwise, we add the next
backbone. All our experiments are done in one NViDIA GeForce RTX 4090 GPU, in a small server
with 64 GB of RAM and 32 CPU cores.

B ORACLE PERFORMANCE

Table B.1 presents the results depicted in Figure 4 from the main paper. It includes the number of
parameters and GFLOPs/Image for each backbone, the performance of zero-shot CLIP (OpenAI) on
the selected datasets, and the performance of the proposed ORACLE method.

We observe that backbones with a similar number of parameters from different families can show
significant differences in performance. For instance, ViT-B-32 outperforms ResNet-50x4 in the
CIFAR10 and CIFAR100 benchmarks. However, this trend is not consistent across all datasets, as
illustrated by the results on IMGNET-1K. Additionally, a higher number of parameters does not always
correlate with better performance across different backbone families.

Notably, the ORACLE method, which leverages all possible backbones, shows substantial improve-
ments on several datasets: 43.5% on EUROSAT, 36.0% on CLEVR, 25.1% on CUB, 21.8% on DTD,
16.6% on CIFAR100, and 16.0% on CARS. This clearly demonstrates the complementarity of each
zero-shot CLIP backbone. In Table B.2, we present the results of the artificial image variations shown
in Figure 7. In this experiment, we selected a subset of each test set from the benchmarks and applied
specific artificial image variations -i.e., Resize, Flip, Grayscale, Color Jitter, and Gaussian Blur- to
evaluate the zero-shot classification performance on these “corrupted” images for each backbone.

The results indicate that ResNet-50 and ViT-B-16 are the most resilient to the Flip transformation,
RN50x64 shows the highest resilience to Resize, and RN50x16 performs best for Grayscale. ViT-L-14
and L-14-336 exhibit the most robustness against Color Jitter and Gaussian Blur transformations.
These findings suggest that each backbone has a unique ability to handle specific types of image
variations.

C ADDITIONAL BASELINES

To complete the experiments and establish a comprehensive baseline compared to other approaches,
we introduce two non-parametric and one parametric more ensemble methods to our benchmarks:

Table B.1: Zero-shot accuracy performance comparison of CLIP backbones on 21 datasets, showcas-
ing the number of parameters and GFLOPs per image for each backbone. Additionally, explore the
performance of our empirical upper-bound prediction, denoted as ‘ORACLE’, representing the ideal
combination of ResNet (RN), ViT, and All backbones.

N
um

Pa
ra

m
et

er
s

G
FL

O
Ps

/
Im

ag
e

C
A

LT
E

C
H

10
1

C
A

R
S

C
IF

A
R

10

C
IF

A
R

10
0

C
L

E
V

R

C
O

U
N

T
R

Y
21

1

C
U

B

D
T

D

E
U

R
O

S
A

T

F
G

V
C

F
L

O
W

E
R

S

F
O

O
D

G
T

S
R

B

IM
G

N
E

T-
1K

M
N

IS
T

P
C

A
M

P
E

T
S

S
S

T
2

R
E

S
IS

C
45

S
T

L
10

S
U

N
39

7

C
L

IP
-R

es
N

et 50 102.0M 18.2 77.9 54.2 71.5 40.3 21.6 15.4 46.6 41.2 28.2 17.1 66.1 77.9 35.1 59.8 49.1 63.9 85.8 56.6 44.0 94.2 58.6
101 119.7M 25.5 81.8 61.1 80.8 47.6 24.4 16.9 49.6 43.7 26.4 18.6 65.2 81.9 37.5 62.3 46.0 58.1 86.9 63.9 54.5 96.8 57.2
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E RN 90.2 91.3 96.5 76.8 56.2 41.2 82.5 73.5 81.9 52.3 86.0 96.1 65.2 84.9 90.2 87.0 98.1 95.3 82.3 99.3 82.7

ViT 91.9 89.9 98.5 87.1 34.4 44.0 78.9 67.2 72.0 51.9 85.7 96.6 67.0 84.6 85.6 95.4 97.5 92.3 78.7 99.7 80.6
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Table B.2: Impact of artificial alterations of the input image on each backbone in terms of delta
accuracy concerning the original performance

RN ViT
50 50x4 50x16 50x64 101 B-32 B-16 L-14 L-14-336

Resize -3.81 -3.47 -1.90 -1.25 -4.05 -4.41 -2.43 -2.82 -2.41
Flip 0.12 -0.36 -0.36 -0.55 -0.67 -0.22 -0.12 -0.80 -1.01

Grayscale -6.36 -7.37 -5.98 -7.01 -7.52 -8.94 -8.70 -7.73 -6.99
Color Jitter -2.71 -3.00 -2.19 -2.93 -2.64 -3.52 -2.53 -1.67 -1.73

Gaussian Blur -5.12 -3.72 -1.96 -2.06 -4.49 -3.17 -3.83 -3.21 -1.80

Confidence (CONF): This method utilizes the Shannon entropy to assess the confidence of each
backbone in making a prediction. The backbone with the highest confidence for a given prediction is
selected as the source of the final prediction.

Voting (VOTE T-1 and VOTE T-3) : Voting combines different classifiers to predict the class
label. In the VOTE T-1 approach, we consider the top-1 prediction from each backbone, and the final
prediction is determined by the label with the highest number of votes. In cases where multiple labels
receive the same number of votes, we select the one with the highest probability. Additionally, we
explore the VOTE T-3 method, which seeks consensus among the backbones by considering the three
most likely predictions from each backbone. These predictions are weighted based on their position
within the top-3 list.

Genetic Algorithm (GAC). To showcase the importance of adaptively adjusting the logits, we use a
genetic algorithm to find the optimal temperatures for combining the backbones. These temperatures
are fixed after training, ensuring they remain constant regardless of the input.

Calibrated confidence (C-CONF) For this approach, we first calibrate the probabilities of each
backbone independently using temperature scaling. Then follow the procedure above and utilize the
Shannon entropy of each backbone to select the one with the highest confidence

Table C.1 presents the baselines’ results in the combination of zero-shot CLIP backbones. In non-
parametric baselines, consistently with the presented in the main paper, leveraging the confidence of
each backbone in its predictions consistently fails to enhance the overall performance beyond that of
the best backbone. The lack of calibrated probabilities in the CONF contributes to overconfidence in
some backbones, resulting in performance degradation when combined. Calibrating the confidence
(C-CONF) leads to improvements, although the performance still falls short of matching the best
backbone, except for DTD, CALTECH101, EUROSAT and CARS. This trend persists in the LOG-
AVG approach, where averaging performance across backbones does not effectively exploit their
complementarity between prediction, yielding an average delta accuracy of 0.1%. Notably, the
LOG-AVG approach shows substantial improvement for the CUB dataset compared to the best
backbone. When the backbones are calibrated C-LOG-AVG, the LOG-AVG approach enhances its
performances across all datasets except GTSRB, MNIST, RESISC45, and SUN397 when compared
to the non-calibrated version. Intriguingly, conventional ensemble techniques such as Vote T-1 and
Vote T-3 prove ineffective in providing a significant boost to prediction accuracy beyond that of the
best backbone.

Table C.1: Our results on ensembling the zero-shot predictions of CLIP backbones, which we group
intro non-parametric and parametric techniques, and also compare to the best-performing single
backbone (SINGLE-BEST). Mean, Max and Min ∆ summarize the difference in performance when
we compare it against the SINGLE-BEST backbone across datasets.
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CONF 83.2 67.6 82.5 54.4 21.6 24.4 57.1 50.2 35.7 23.4 70.7 85.4 40.8 65.2 66.5 58.8 88.5 59.2 54.2 98.3 63.1 -8.9 -21.4 -1.1
VOTE T-1 86.3 79.7 94.3 74.6 22.7 30.7 68.1 58.0 48.2 34.1 78.4 92.5 53.9 76.1 70.0 62.7 93.9 71.7 67.3 98.8 70.0 -0.3 -9.0 5.1
VOTE T-3 86.4 81.2 94.9 77.0 22.5 32.7 69.3 59.4 50.7 35.0 78.9 93.0 55.9 76.8 74.0 - 94.1 - 68.1 98.8 70.4 0.9 -4.9 6.3
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SL 87.6 82.3 96.1 78.2 29.0 36.0 70.8 59.6 53.5 36.8 80.4 94.2 54.7 78.3 84.1 71.0 95.2 73.3 73.4 99.5 71.9 3.3 0.1 8.8

Ours 91.1 84.1 96.7 79.6 54.4 36.1 73.6 63.2 87.1 38.2 82.1 94.3 70.5 78.8 93.9 84.9 95.4 77.3 78.3 99.5 74.2 9.3 0.1 39.1
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Table D.1: Linear classifier accuracy across multiple datasets and employing different backbones,
showcasing the performance improvement achieved by the linear classifier compared to the zero-shot
version. Also, the combination of ORACLE of linear classifiers. The final three columns present the
delta statistics with respect to the zero-shot version of each backbone. In the case of ORACLE, the
delta with respect to the best linear probing.
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50 93.8 77.5 88.5 68.8 61.3 17.9 65.6 69.0 95.0 39.9 90.9 81.7 84.5 70.3 97.4 78.3 85.5 71.3 89.0 97.1 74.9 23.5 -0.3 66.8
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Table D.2: Our results on combining the LinearProbe CLIP predictions with different backbones,
which we group into non-parametric and parametric techniques. Mean, Max and Min ∆ summarize
the difference in performance across datasets.
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GAC 98.1 92.3 98.2 88.6 73.3 40.7 88.3 82.0 51.9 65.3 98.6 95.2 94.3 84.8 99.2 82.6 95.1 81.1 96.3 99.8 71.6 -1.4 -45.2 4.8
MOE 96.5 90.5 97.6 87.1 89.6 41.2 84.8 72.7 96.9 43.0 96.1 94.9 93.4 93.4 98.8 82.3 93.4 79.1 94.5 98.8 85.0 0.2 -20.9 20.8
SL 98.3 91.9 98.4 88.8 74.3 40.8 87.7 81.0 98.1 65.5 98.7 95.3 94.3 84.8 99.3 83.6 95.0 81.9 96.4 99.8 85.3 1.6 0.0 5.4

NLC 98.3 91.8 98.3 88.8 77.0 40.8 87.2 79.4 97.8 66.4 98.6 95.4 94.4 84.7 99.3 83.4 95.0 80.9 96.3 99.8 85.9 1.6 0.0 8.1

In employing parametric methods, we utilize the entire training set of the target datasets. Our
proposed approach NLC demonstrates a noteworthy capability to enhance the performance of the
best backbone, achieving a substantial improvement of up to 39.1% in the case of the EUROSAT dataset.
On average, our method exhibits a commendable improvement of 9.3% over the SINGLE-BEST
backbone’s performance across the evaluated datasets.

D NLC USING LINEAR CLASSIFIERS OF CLIP BACKBONES

The results of adapting CLIP using a linear classifier are shown in Table D.1. RN50 demonstrates the
most significant improvement, averaging an impressive 23.5% increase across all datasets, surpassing
even ViT-B-32. However, RN50 still falls short of outperforming other backbones overall. ViT-L-14
and ViT-L-14-336 continue to be the top performers across all datasets, even after linear probing.

A notable observation is the superior performance of the ORACLE of linear probes compared
to any individual backbone, highlighting the potential benefits of combining multiple backbones.
Although the performance gap between the ORACLE and the best linear probe is consistently observed
across datasets, it is less pronounced than in the zero-shot scenario, indicating a smaller margin for
improvement.

Table E.1: Detailed ImageNet robustness performance. IN is used to abbreviate for ImageNet

IN IN-V2 IN-A IN-R IN-Sketch

Best Backbone 76.6 70.3 77.6 89.0 60.9
NNC (Train on IN) 78.8 72.4 75.6 89.3 61.8
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Table F.1: Classification accuracy of models un-
der few-shot settings.

Few-shot 1 2 4 8 16

Linear-probe CLIP Radford et al. (2021) 22.2 31.9 41.2 49.5 56.1
CoOPZhou et al. (2022) 47.6 50.9 56.2 59.9 63.0
CLIP-AdapterGao et al. (2021) 61.2 61.5 61.8 62.7 63.6
Tip-AdapterZhang et al. (2021) 60.7 61.0 61.0 61.5 62.0
Tip-Adapter-FZhang et al. (2021) 61.3 61.7 62.5 64.0 65.5

NLC 78.2 78.1 78.2 78.3 78.4

Table F.2: Classification accuracy of models
on various vision backbones using 16-shots.

ResNet ViT
Models 50 101 50x16 B-32 B-16

Zero-shot CLIP Radford et al. (2021) 60.3 62.5 70.9 63.8 68.7
CoOPZhou et al. (2022) 47.6 50.9 56.2 59.9 63.0
CoOP 63.0 66.6 - 66.9 71.9
CLIP-AdapterGao et al. (2021) 63.6 65.4 - 66.2 71.1
Tip-AdapterZhang et al. (2021) 62.0 64.8 73.0 65.6 70.8
Tip-Adapter-FZhang et al. (2021) 65.5 68.6 75.8 68.7 73.7

NLC 78.4

E ROBUSTNESS UNDER DISTRIBUTION SHIFT OF IMGNET-1K

To assess how well the combination of backbones performs under varying conditions, we test its
robustness using natural distribution shifts in the ImageNet dataset. We evaluate its performance on
four datasets representing different distribution shifts: ImageNet-V2 Recht et al. (2019), ImageNet
Adversarial Hendrycks et al. (2021b), ImageNet Rendition Hendrycks et al. (2021a) and ImageNet
Sketch Wang et al. (2009). Specifically, we employ a NLC trained on the ZeroShot CLIP backbones
using the original IMGNET-1K data Deng et al. (2009). This allows us to determine whether the
learned combination of backbones can maintain its performance across these distribution shift datasets.
In Table E.1, we observe that the learned combination of backbones, denoted as NLC, enhances
performance in 3 out of 4 selected benchmarks, with improvements ranging from 0.3% to 2.1%.
However, in the case of ImageNet Adversarial, the performance of the combination of backbones
appears to suffer, possibly due to a more complex decision boundary.

F THE COMBINATION OF NLC WITH TIP-ADAPTER

We integrate the Tip-Adapter Zhang et al. (2021) with our NLC ensembling mechanism and conduct
experiments on EUROSAT, FGVC, DTD, and PETS datasets. Initially, we apply Tip-Adapter and
Tip-Adapter-F independently on each backbone, following their protocol with 1, 2, 4, 8, and 16 shots.
Subsequently, we employ our ensembling mechanism to fuse the adapted backbones. For training
NLC, we utilize the validation set used by Tip-Adapter to combine their logits with CLIP linearly.

In Table F.1 and F.2, we compare the performance of different few-shot adapters of CLIP on the
ImageNet dataset. It shows that current few-shot adapter methods also have performance differences
with various backbones; still, our NLC surpassed the best backbone reported by their method.

Table F.3, F.4, F.5, and F.6 show the zero-shot performance of the CLIP used by Tip-Adapter. It also
shows the Tip-Adapter and Tip-Adapter-F performance on each backbone and when we combine all
the Tip-Adapter versions and backbones with NLC. Across the four datasets used for this experiment,
NLC improve the performance of each version of Tip-Adapter. Notably, NLC for EUROSAT obtained
an improvement of up to 15% with respect to the best Tip-Adapter backbone (L-14-336) using 1 shot.
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Table F.3: Tip-Adapter and Tip-Adapter-F fused
with our NLC and applied to EUROSAT dataset

ZeroShot

ResNet ViT

50 50x4 50x16 50x64 101 B-32 B-16 L-14 L-14-336
37.5 32.0 40.3 49.4 32.5 45.2 47.6 58.1 63.5

TiP-Adapter

Shots
Model 1 2 4 8 16

R
es

N
et

50 55.5 60.8 68.1 66.3 70.3
50x4 53.0 56.8 67.0 68.0 71.7
50x16 54.5 61.0 62.7 65.1 71.4
50x64 65.1 66.5 70.5 73.5 73.9
101 47.9 49.7 60.6 64.7 67.6

V
iT

B-32 54.1 61.7 68.2 70.6 69.8
B-16 66.9 68.8 75.1 72.9 78.1
L-14 73.0 71.1 78.4 79.2 82.4
L-14-336 73.5 72.9 75.7 79.2 80.4

With SL 77.8 81.5 85.6 86.4 85.4
With NLC 88.4 86.8 89.7 90.1 90.7

TiP-Adapter-F

Shots
Model 1 2 4 8 16

R
es

N
et

50 60.7 64.4 73.3 77.7 84.9
50x4 59.5 61.9 76.2 81.9 84.9
50x16 61.4 68.7 75.9 80.8 83.7
50x64 71.2 69.7 78.7 81.4 86.6
101 62.7 57.7 75.4 78.8 83.6

V
iT

B-32 59.4 70.1 76.5 79.9 84.9
B-16 66.6 71.0 79.1 83.8 88.9
L-14 74.9 75.0 86.1 86.4 90.6
L-14-336 72.5 76.4 86.1 85.3 91.0

With SL 84.5 86.7 89.9 89.0 93.1
With NLC 89.7 88.3 91.4 91.1 93.8

Table F.4: Tip-Adapter and Tip-Adapter-F fused
with our NLC and applied to FGVC dataset

ZeroShot

ResNet ViT

50 50x4 50x16 50x64 101 B-32 B-16 L-14 L-14-336
17.2 21.4 27.0 30.2 18.1 19.3 24.8 32.6 33.4

TiP-Adapter

Shots
Model 1 2 4 8 16

R
es

N
et

50 19.0 21.4 22.5 25.9 29.6
50x4 24.1 27.8 29.3 31.5 37.8
50x16 29.0 32.4 35.7 38.5 42.6
50x64 35.0 38.5 41.0 44.8 49.9
101 20.4 22.9 24.8 28.3 32.1

V
iT

B-32 21.6 23.9 23.7 27.2 31.6
B-16 28.0 31.1 32.3 36.7 39.6
L-14 35.6 41.7 44.9 48.9 52.3
L-14-336 37.7 43.6 46.5 50.0 53.8

With SL 39.1 44.2 47.7 51.2 54.8
With NLC 40.9 44.5 47.9 51.5 55.0

TiP-Adapter-F

Shots
Model 1 2 4 8 16

R
es

N
et

50 20.5 22.9 26.5 30.4 35.5
50x4 26.3 29.1 32.8 36.8 42.2
50x16 31.2 36.9 38.3 43.6 49.4
50x64 37.0 40.8 45.0 49.8 54.8
101 21.7 24.0 26.9 32.0 38.0

V
iT

B-32 22.7 25.3 27.5 32.9 36.9
B-16 30.2 34.1 36.1 40.9 44.6
L-14 38.6 44.1 48.5 51.9 57.4
L-14-336 40.9 45.2 49.6 52.7 59.0

With SL 46.7 49.1 53.4 57.4 62.4
With NLC 46.8 49.2 53.6 57.5 62.6
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Table F.5: Tip-Adapter and Tip-Adapter-F fused
with our NLC and applied to DTD dataset

ZeroShot

ResNet ViT

50 50x4 50x16 50x64 101 B-32 B-16 L-14 L-14-336
42.1 50.8 50.3 48.4 38.4 43.7 44.6 53.1 54.0

TiP-Adapter

Shots
Model 1 2 4 8 16

R
es

N
et

50 46.3 49.9 54.3 58.5 61.3
50x4 52.5 56.3 59.8 62.4 65.8
50x16 56.9 59.5 61.5 65.3 67.6
50x64 55.6 61.5 63.2 67.3 70.0
101 48.2 51.5 56.6 60.2 63.6

V
iT

B-32 49.3 51.9 55.3 59.4 63.2
B-16 51.5 52.6 58.6 62.8 67.0
L-14 59.6 61.6 64.8 69.7 71.3
L-14-336 59.3 61.8 64.5 69.5 72.6

With SL 58.7 64.1 65.5 70.3 71.5
With NLC 63.7 66.1 68.4 71.6 73.0

TiP-Adapter-F

Shots
Model 1 2 4 8 16

R
es

N
et

50 48.8 53.5 56.6 61.9 66.5
50x4 53.7 57.2 61.6 65.7 70.6
50x16 58.8 59.2 63.1 67.4 73.5
50x64 59.0 61.8 66.6 69.9 76.0
101 47.5 50.7 58.3 64.8 68.8

V
iT

B-32 50.9 55.3 60.4 63.8 68.9
B-16 52.7 56.0 61.0 67.6 71.0
L-14 60.4 60.7 67.1 71.6 75.8
L-14-336 58.9 60.9 67.1 72.4 75.7

With SL 62.2 67.3 71.4 74.8 78.8
With NLC 67.2 68.7 73.3 75.4 79.1

Table F.6: Tip-Adapter and Tip-Adapter-F fused
with our NLC and applied to PETS dataset

ZeroShot

ResNet ViT

50 50x4 50x16 50x64 101 B-32 B-16 L-14 L-14-336
85.8 88.9 90.1 93.7 86.9 87.4 89.1 93.6 93.8

TiP-Adapter

Shots
Model 1 2 4 8 16

R
es

N
et

50 86.2 87.2 86.0 86.7 88.8
50x4 88.7 89.2 89.1 88.9 90.8
50x16 90.5 90.8 91.4 91.7 90.9
50x64 93.7 93.3 93.8 93.8 94.1
101 86.8 86.6 86.9 87.3 88.1

V
iT

B-32 87.1 88.0 87.6 87.9 88.1
B-16 89.3 90.6 90.7 90.7 91.7
L-14 93.8 93.5 94.1 94.2 94.5
L-14-336 93.8 93.8 94.0 93.7 94.0

With SL 93.8 93.6 94.3 94.4 94.5
With NLC 94.5 94.2 94.9 95.0 95.3

TiP-Adapter-F

Shots
Model 1 2 4 8 16

R
es

N
et

50 86.6 86.8 87.2 87.5 89.5
50x4 89.7 89.5 90.7 90.7 91.8
50x16 92.8 92.0 92.9 92.9 92.9
50x64 94.2 94.1 94.2 94.1 94.3
101 87.6 88.4 88.7 88.7 90.5

V
iT

B-32 88.2 89.0 88.9 89.6 90.7
B-16 90.9 91.3 92.0 92.3 92.8
L-14 94.2 94.1 94.6 94.3 95.1
L-14-336 94.3 94.3 94.8 94.1 95.0

With SL 94.5 94.6 95.2 95.2 95.1
With NLC 95.2 95.0 95.3 95.2 95.5
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Table G.1: Ablation of NLC performance when changing the number of samples used to train.
We use NLC(n) to denote NLC with n samples per class. and showcase the improvement in
performance compared with SINGLE-BEST backbone in a zero-shot setting.
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SINGLE-BEST 86.6 79.4 95.6 75.8 24.4 34.5 63.0 56.4 48.0 33.2 79.1 93.1 52.4 76.6 78.9 63.9 93.8 71.0 64.6 99.4 67.7

NNC(1) 87.3 82.3 93.6 78.0 25.1 36.0 71.0 59.3 55.0 37.1 79.4 93.6 54.8 77.6 83.3 62.5 94.3 73.8 70.0 98.9 71.1 2.2 -2.0 8.0
NNC(2) 87.3 81.4 93.0 78.2 25.1 33.2 70.0 59.9 52.3 37.2 79.5 93.5 55.3 77.4 84.4 62.5 94.5 73.1 70.2 98.9 71.1 1.9 -2.6 7.0
NNC(4) 87.1 81.3 95.3 75.9 26.9 35.4 70.2 59.9 54.0 35.9 78.2 93.1 55.2 78.1 81.6 62.7 94.5 72.7 68.8 99.1 71.2 1.9 -1.3 7.2
NNC(8) 87.1 81.6 95.6 76.2 26.9 36.1 70.3 58.1 54.0 37.0 80.3 93.1 54.9 78.3 82.5 67.0 94.2 72.4 68.9 99.5 71.2 2.3 0.0 7.3
NNC(16) 87.1 82.8 95.8 77.2 27.0 36.2 71.3 60.4 53.5 37.0 80.4 93.5 55.2 78.4 83.3 69.6 94.2 73.6 69.6 99.4 72.2 2.9 0.0 8.3
NNC(32) 87.3 82.9 96.0 78.2 27.2 36.1 71.2 60.4 51.6 37.2 80.4 94.2 55.1 78.1 85.3 75.5 94.4 74.1 70.1 99.4 72.4 3.3 0.0 11.6

G TRAINING NLC UNDER LIMITED SAMPLES

In our exploration of the effectiveness of the NLC approach, we extend our analysis to a scenario
where we limit the samples to combine the zero-shot CLIPs. This experiment allows us to assess
the adaptability and performance of our proposed method under limited training data conditions.
Table G.1 presents the performance of NLC by means of a limited number of samples. Although the
performance of NLC overall improves when it has more data available to combine the backbones, in
most cases, just using one sample NLC(1) per class is enough to improve its performance. Notably,
there is a stop in performance degradation when we use more than 8 samples NLC(8) in all the
benchmarks.

Moreover, we run five different seeds to train NLC on the different few-shots settings. Results show
that the standard deviation of our obtained performance is stable and low across all of our studied
datasets, suggesting that our approach is not sensitive to the effects of different samples. It varies
with the number of samples used with a mean standard deviation of 0.62 when we used 1 shot and
0.48 when we used 32 shots.

H LEARNED TEMPERATURE VALUES

Figure H.1 and H.2 present the distribution of the temperature values using a box plot for the NLC
method, normalized by their maximum value. Notably, there is a dominance in the temperature values
for the best backbones in each family, i.e., RN50x64 and ViT-L-14 or ViT-L-14-336. Particularly
prominent in STL10, PETS, DTD, FGVCand FLOWERS, making these backbones especially relevant
for NLC. Interestingly, it is observed that the most weighted backbone within the ResNet family is
not consistently ResNet-101, despite its deeper architecture. This observation is evident in datasets
such as PETS, CUB, FGVC and SUN397, where the mean value of the temperature corresponding to
ResNet-50 surpasses that of ResNet-101.

Furthermore, the distribution of the temperature values across backbones for datasets such as CLEVR,
EUROSAT, and GTSRB is more uniform compared to other datasets. This suggests that the NLC
method is effectively leveraging the strengths of each backbone to arrive at accurate labels for each
sample, resulting in a more balanced distribution of weights across different backbones, complement-
ing our analysis on Fig. 2.

I DIVERSITY AND ORACLE PERFORMANCE OF DIFFERENT COMBINATIONS

Table I.1 shows the Oracle performance by combinaning different options of diversity. Table I.2
present the diversity of different source of complementarity.

J CASCADING AND ENSEMBLE

Figure J.3 shows the performance of multiple ensemble and cascading methods of 2 to 9 back-
bones, notice that NLC obtains the best performance, and when we add cascade it maintains the
computational requirements

22



Published as a conference paper at ICLR 2025

(a) CALTECH
RN

50

RN
50

x4

RN
50

x1
6

RN
50

x6
4

RN
10

1

Vi
T-B

-3
2

Vi
T-B

-1
6

Vi
T-

L-
14

Vi
T-

L-
14

-3
36

0.0

0.2

0.4

0.6

0.8

1.0
(b) CARS

RN
50

RN
50

x4

RN
50

x1
6

RN
50

x6
4

RN
10

1

Vi
T-B

-3
2

Vi
T-B

-1
6

Vi
T-

L-
14

Vi
T-

L-
14

-3
36

0.0

0.2

0.4

0.6

0.8

1.0
(c) CIFAR10
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(d) CIFAR100
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(f) COUNTRY211
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(g) CUB
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(h) DTD
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(i) EUROSAT
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(j) FGVC
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(k) FLOWERS
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Figure H.1: Alpha values for each dataset using NLC
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(a) GTSRB
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(b) MNIST
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(c) IMGNET-1K
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(d) PCAM
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(e) PETS
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Figure H.2: Alpha values for each dataset using NLC
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Table I.1: ORACLE performance by combining: 1) ViT backbones pretrained with same datasets. 2)
Same ViT backbone trained on different datasets 3) Same ViT backbone trained on same dataset but
two different epochs.
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Table I.2: Diversity of combining: 1) ViT backbones pretrained with same datasets. 2) Same ViT
backbone trained on different datasets 3) Same ViT backbone trained on same dataset but two
different epochs.
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K IMAGE-TEXT RETRIEVAL

We present additional image and text retrieval experiments in Table K.3 that hint at the potential
benefits of combining multiple backbones of CLIP. We evaluated the complementarity of CLIP
backbones on Flickr30k and MSCOCO. We measured the upper-bound improvement of an "oracle
selection" of backbones as described in Section 2. Table K.3 shows patterns of complementarity
across backbones comparable to those in the classification setting. On Flick30k, the upper bound
shows possible improvements of 20 percentage points on both text and image retrieval. On MSCOCO,
>25pp.
Table K.3: Zero-shot retrieval performance of CLIP backbones on the Flickr30k and MSCOCO
benchmark and the performance of our empirical upper-bound, denoted as ORACLE, representing the
ideal combination of ResNet (RN), ViT, and All backbones

Text Retrieval Image Retrieval
Flickr30k MSCOCO Flickr30k MSCOCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

50 80.4 96.1 98.1 48.1 73.9 83.0 59.2 85.9 91.6 28.3 53.0 64.1
50x4 84.8 96.6 98.9 52.1 76.6 84.5 64.6 87.3 92.7 32.5 56.7 67.1
50x16 86.2 97.8 99.5 55.3 78.2 86.3 67.4 88.9 93.6 35.2 59.5 69.6
50x64 88.3 98.4 99.6 57.8 80.6 87.7 71.4 91.6 95.5 34.7 60.0 70.0

ResNet

101 83.8 96.5 98.3 49.8 74.4 82.7 62.5 85.7 91.3 30.2 54.2 65.3

B-32 82.2 95.1 97.5 50.0 75.0 83.2 61.4 86.0 91.7 30.4 54.8 66.1
B-16 85.1 97.3 98.9 51.8 76.8 84.3 65.2 87.8 92.8 32.7 57.8 68.3
L-14 87.0 98.4 99.8 56.1 79.6 86.9 67.8 89.8 94.3 35.3 59.6 70.1ViT

L-14-336 88.1 98.2 99.6 57.5 80.4 87.6 71.5 91.8 95.5 36.1 60.7 70.8

ORACLE ResNet 97.9 99.9 100.0 77.7 93.0 96.3 86.6 96.8 98.4 54.7 76.9 84.9
ORACLE ViT 96.3 99.5 100.0 73.0 90.4 94.6 84.3 96.1 97.9 50.9 74.1 82.5
ORACLE All 98.8 100.0 100.0 83.3 95.3 97.5 90.3 97.8 98.8 61.9 82.1 88.9
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Figure J.3: Average accuracy across 21 datasets for zero-shot ResNets and ViTs backbones, LOG-
AVG Ensemble, VOTE T-1 Ensemble, C-LOG-AVG Ensemble, NLC Ensemble, and NLC Cascade
using 2 to 9 backbones, plotted against the Average GFLOPs. Demonstrates that our NLC ensembles
can surpass the best zero-shot backbone, and the NLC cascade can also surpass the best zero-shot
backbone with fewer GFLOPs. Moreover, our method surpasses the standard ensembling techniques.
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L OVERLAP DIAGRAMS FOR OTHER DATASETS.

In this section, we present the linear Venn Diagrams for each of the other datasets used in the
experiment section CALTECH (Figure L.4), CARS (Figure L.5), CUB (Figure L.10), CIFAR10 (Figure
L.6), CIFAR100 (Figure L.7), CLEVR (Figure L.8), COUNTRY211 (Figure L.9), CUB (Figure L.10),
DTD (Figure L.11), EUROSAT(Figure L.12), FGVC (Figure L.13), FLOWERS (Figure L.14), FOOD

(Figure L.15), GTSRB (Figure L.16), MNIST (Figure L.17), PCAM (Figure L.18), PETS (Figure L.19),
RenderedSST2 (Figure L.20), RESISC45 (Figure L.21), STL10 (Figure L.22), and SUN397 (Figure
L.23). We can see that in each dataset, the CLIP backbones present possible complementarities that
could be exploited.

M POSSIBLE COMBINATIONS

Tables M.4, M.5, M.6, M.7, M.8, M.9, M.10, and M.11 present the results of possible combinations
of backbones using the non-parametric and parametric approaches proposed in the paper. Notably,
the performance of NLC consistently emerges as the best across various backbone combinations and
datasets when compared to other methods.

Notably, instances exist where the combination of specific backbones yields a more substantial
performance boost than utilizing all backbones together. For instance, in the PETS dataset, combining
ResNet 50, 101, and ViT-B-32 results in a delta improvement of 2.37%, surpassing the 0.99%
improvement achieved by using the five backbones selected for this experiment. This phenomenon
is consistent across datasets with different backbone combinations. In CARS, there is a boost of
5.71% when combining ResNet-101 and ViT-B-32, compared to the 2.55% boost when using all
five different backbones. While the best delta improvement among backbones may not necessarily
come from combining all backbones, the best overall accuracy is consistently obtained when using
the combination of all backbones.
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Figure L.4: CALTECH101 Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.5: Overlap diagrams for the CARS dataset with the correct prediction of each backbone. The
Top part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.6: CIFAR10 Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.7: CIFAR100 Venn diagrams with the correct prediction of each backbone. The Top part of
the Venn diagram shows the number of backbones that are predicting correctly a set of images. Each
column represents a set of image instances that are predicted correctly by some group of backbones.
Each row in the diagram shows in colour the backbone that correctly predicts a certain set of image
instances, in grey when the backbone is not correctly predicting those instances. The bottom part of
the Venn diagram shows the number of images in a certain set. The right part is the total amount of
correctly predicted images per backbone.
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Figure L.8: CLEVER Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.9: COUNTRY211 Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.10: CUB Overlap diagrams with the correct prediction of each backbone. The Top part of the
Overlap diagram shows the number of backbones that are predicting correctly a set of images. Each
column represents a set of image instances that are predicted correctly by some group of backbones.
Each row in the diagram shows in colour the backbone that correctly predicts a certain set of image
instances, in grey when the backbone is not correctly predicting those instances. The bottom part of
the Overlap diagram shows the number of images in a certain set. The right part is the total amount
of correctly predicted images per backbone.
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Figure L.11: DTD Overlap diagrams with the correct prediction of each backbone. The Top part of the
Overlap diagram shows the number of backbones that are predicting correctly a set of images. Each
column represents a set of image instances that are predicted correctly by some group of backbones.
Each row in the diagram shows in colour the backbone that correctly predicts a certain set of image
instances, in grey when the backbone is not correctly predicting those instances. The bottom part of
the Overlap diagram shows the number of images in a certain set. The right part is the total amount
of correctly predicted images per backbone.
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Figure L.12: EUROSAT Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.13: FGVC Overlap diagrams with the correct prediction of each backbone. The Top part of
the Overlap diagram shows the number of backbones that are predicting correctly a set of images.
Each column represents a set of image instances that are predicted correctly by some group of
backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.14: FLOWERS Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.15: FOOD Overlap diagrams with the correct prediction of each backbone. The Top part of
the Overlap diagram shows the number of backbones that are predicting correctly a set of images.
Each column represents a set of image instances that are predicted correctly by some group of
backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.16: GTSRB Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.17: MNIST Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.18: PCAM Overlap diagrams with the correct prediction of each backbone. The Top part of
the Overlap diagram shows the number of backbones that are predicting correctly a set of images.
Each column represents a set of image instances that are predicted correctly by some group of
backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.19: PETS Overlap diagrams with the correct prediction of each backbone. The Top part of the
Overlap diagram shows the number of backbones that are predicting correctly a set of images. Each
column represents a set of image instances that are predicted correctly by some group of backbones.
Each row in the diagram shows in colour the backbone that correctly predicts a certain set of image
instances, in grey when the backbone is not correctly predicting those instances. The bottom part of
the Overlap diagram shows the number of images in a certain set. The right part is the total amount
of correctly predicted images per backbone.
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Figure L.20: RENDERSST2 Overlap diagrams with the correct prediction of each backbone. The
Top part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.21: RESISC45 Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.22: STL10 Overlap diagrams with the correct prediction of each backbone. The Top part of
the Overlap diagram shows the number of backbones that are predicting correctly a set of images.
Each column represents a set of image instances that are predicted correctly by some group of
backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Figure L.23: SUN397 Overlap diagrams with the correct prediction of each backbone. The Top
part of the Overlap diagram shows the number of backbones that are predicting correctly a set of
images. Each column represents a set of image instances that are predicted correctly by some group
of backbones. Each row in the diagram shows in colour the backbone that correctly predicts a certain
set of image instances, in grey when the backbone is not correctly predicting those instances. The
bottom part of the Overlap diagram shows the number of images in a certain set. The right part is the
total amount of correctly predicted images per backbone.
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Table M.4: Our results on PETS dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

PETS
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 85.80 −0.00
! 86.86 −0.00

! 87.46 −0.00
! 89.07 −0.00

! 93.59 −0.00

! ! 86.86 87.84 0.98 87.90 1.04 88.20 1.34 88.03 1.17 87.93 1.06 87.84 0.98 87.14 0.27 88.09 1.23 91.88 5.01

! ! 87.46 88.50 1.04 89.02 1.55 85.25 -2.21 89.40 1.94 87.98 0.52 89.21 1.74 89.48 2.02 89.45 1.99 92.64 5.18

! ! 89.07 89.83 0.76 89.92 0.84 89.67 0.6 89.83 0.76 89.48 0.41 89.72 0.65 89.86 0.79 90.27 1.2 92.89 3.82

! ! 93.59 94.03 0.44 94.00 0.41 94.00 0.41 93.81 0.22 93.73 0.14 93.98 0.38 93.73 0.14 94.19 0.6 96.18 2.59

! ! 87.46 88.72 1.25 88.99 1.53 85.91 -1.55 89.07 1.61 88.55 1.09 89.07 1.61 89.10 1.64 89.04 1.58 93.00 5.53

! ! 89.07 90.00 0.93 90.11 1.04 89.75 0.68 89.89 0.82 89.81 0.74 90.11 1.04 89.45 0.38 90.30 1.23 93.13 4.06

! ! 93.59 93.32 -0.27 93.32 -0.27 93.13 -0.46 93.24 -0.35 93.27 -0.33 93.43 -0.16 93.70 0.11 93.70 0.11 96.51 2.92

! ! 89.07 89.86 0.79 90.16 1.09 87.35 -1.72 90.41 1.34 89.45 0.38 90.38 1.31 90.27 1.2 90.30 1.23 93.35 4.28

! ! 93.59 93.79 0.19 93.76 0.16 93.00 -0.6 93.38 -0.22 93.00 -0.6 93.73 0.14 93.89 0.3 93.87 0.27 95.99 2.4

! ! 93.59 93.98 0.38 93.95 0.35 93.92 0.33 94.06 0.46 93.84 0.25 93.98 0.38 93.73 0.14 93.92 0.33 96.18 2.59

! ! ! 87.46 88.85 1.39 89.29 1.83 84.93 -2.53 89.72 2.26 88.42 0.95 89.45 1.99 89.48 2.02 89.83 2.37 94.69 7.22

! ! ! 89.07 89.29 0.22 89.81 0.74 90.02 0.95 90.11 1.04 89.86 0.79 90.08 1.01 90.11 1.04 90.38 1.31 94.74 5.67

! ! ! 93.59 91.58 -2.02 92.97 -0.63 93.43 -0.16 93.19 -0.41 93.30 -0.3 92.86 -0.74 93.70 0.11 94.06 0.46 97.36 3.76

! ! ! 89.07 90.16 1.09 90.46 1.39 86.73 -2.34 90.62 1.55 89.15 0.08 90.46 1.39 90.35 1.28 90.79 1.72 94.79 5.72

! ! ! 93.59 92.50 -1.09 93.08 -0.52 92.86 -0.74 93.02 -0.57 92.86 -0.74 93.19 -0.41 93.32 -0.27 94.25 0.65 97.03 3.43

! ! ! 93.59 92.97 -0.63 93.70 0.11 93.98 0.38 93.87 0.27 93.84 0.25 93.84 0.25 94.19 0.6 94.47 0.87 96.97 3.38

! ! ! 89.07 89.83 0.76 90.16 1.09 86.54 -2.53 90.65 1.58 89.83 0.76 90.41 1.34 90.35 1.28 90.71 1.64 95.12 6.05

! ! ! 93.59 92.20 -1.39 93.02 -0.57 92.56 -1.04 92.75 -0.84 92.70 -0.9 92.94 -0.65 94.00 0.41 93.98 0.38 97.27 3.68

! ! ! 93.59 92.91 -0.68 93.46 -0.14 93.46 -0.14 93.43 -0.16 93.57 -0.03 93.49 -0.11 93.84 0.25 93.92 0.33 97.30 3.71

! ! ! 93.59 92.97 -0.63 93.27 -0.33 92.89 -0.71 93.51 -0.08 93.13 -0.46 93.40 -0.19 94.03 0.44 94.17 0.57 97.03 3.43

! ! ! ! 89.07 90.27 1.2 90.41 1.34 86.21 -2.86 90.57 1.5 89.48 0.41 90.54 1.47 90.35 1.28 90.90 1.83 95.88 6.81

! ! ! ! 93.59 92.20 -1.39 92.80 -0.79 92.10 -1.5 92.91 -0.68 92.64 -0.95 92.80 -0.79 93.16 -0.44 94.17 0.57 97.77 4.17

! ! ! ! 93.59 92.56 -1.04 92.94 -0.65 93.59 −0.0 93.19 -0.41 93.54 -0.05 92.94 -0.65 93.81 0.22 94.52 0.93 97.77 4.17

! ! ! ! 93.59 92.91 -0.68 93.27 -0.33 92.78 -0.82 93.19 -0.41 93.05 -0.55 93.27 -0.33 93.79 0.19 94.33 0.74 97.52 3.92

! ! ! ! 93.59 92.61 -0.98 93.00 -0.6 92.12 -1.47 92.94 -0.65 92.91 -0.68 93.05 -0.55 93.68 0.08 94.03 0.44 97.79 4.2

! ! ! ! ! 93.59 91.63 -1.96 93.00 -0.59 92.26 -1.34 92.86 -0.74 92.89 -0.71 92.94 -0.65 93.30 -0.29 94.58 0.99 98.06 4.47

Mean ∆ -0.05 0.35 -0.77 0.42 0.06 0.40 0.58 0.98 4.31
Max ∆ 1.39 1.83 1.34 2.26 1.09 1.99 2.02 2.37 7.22
Min ∆ -2.02 -0.79 -2.86 -0.84 -0.95 -0.79 -0.44 0.11 2.40
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Table M.5: Our results on CARS dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

CARS
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 54.23 −0.00
! 61.12 −0.00

! 59.73 −0.00
! 64.61 −0.00

! 77.75 −0.00

! ! 61.12 62.41 1.28 62.67 1.54 53.41 -7.71 63.03 1.9 61.81 0.68 62.83 1.7 63.52 2.4 63.59 2.46 71.58 10.46

! ! 59.73 61.30 1.57 62.26 2.52 60.84 1.11 63.39 3.66 61.14 1.41 62.52 2.79 63.41 3.68 63.40 3.67 71.50 11.76

! ! 64.61 65.27 0.66 65.55 0.95 53.94 -10.67 66.01 1.41 64.97 0.36 65.89 1.28 66.55 1.94 66.80 2.19 73.95 9.34

! ! 77.75 77.58 -0.17 77.76 0.01 77.69 -0.06 77.24 -0.51 77.47 -0.29 77.64 -0.11 78.51 0.76 78.57 0.82 83.96 6.21

! ! 61.12 64.42 3.3 64.99 3.87 63.41 2.29 66.89 5.77 63.71 2.59 65.66 4.54 66.86 5.73 66.83 5.71 73.60 12.47

! ! 64.61 67.16 2.55 67.74 3.13 59.28 -5.32 67.99 3.38 66.66 2.05 68.11 3.51 68.03 3.42 68.20 3.59 76.27 11.67

! ! 77.75 77.47 -0.29 77.78 0.02 77.42 -0.34 77.73 -0.02 77.44 -0.31 78.10 0.35 78.92 1.17 79.11 1.36 84.32 6.57

! ! 64.61 66.34 1.73 66.84 2.24 65.41 0.81 67.95 3.35 65.87 1.27 67.26 2.65 68.00 3.4 67.77 3.16 75.48 10.87

! ! 77.75 77.55 -0.2 77.86 0.11 77.55 -0.2 77.42 -0.34 77.52 -0.24 77.80 0.05 78.68 0.93 78.86 1.11 83.88 6.13

! ! 77.75 77.54 -0.21 77.45 -0.3 77.32 -0.44 77.79 0.04 77.18 -0.57 77.63 -0.12 78.88 1.13 78.91 1.16 84.26 6.5

! ! ! 61.12 64.63 3.51 65.23 4.1 57.36 -3.77 66.56 5.43 63.69 2.56 66.01 4.89 66.76 5.63 66.76 5.63 78.86 17.73

! ! ! 64.61 66.34 1.73 67.35 2.75 59.66 -4.95 67.60 3.0 66.65 2.04 67.77 3.16 67.95 3.35 68.20 3.59 80.66 16.06

! ! ! 77.75 73.80 -3.95 76.23 -1.52 76.10 -1.65 76.59 -1.16 77.25 -0.5 76.86 -0.9 79.06 1.31 78.88 1.13 87.49 9.74

! ! ! 64.61 66.24 1.63 67.06 2.45 56.24 -8.37 67.94 3.33 66.07 1.47 67.62 3.01 68.46 3.86 68.29 3.68 80.24 15.63

! ! ! 77.75 75.04 -2.71 77.17 -0.58 77.50 -0.25 76.71 -1.04 77.34 -0.41 77.24 -0.51 78.73 0.98 78.71 0.96 87.15 9.4

! ! ! 77.75 74.53 -3.22 76.28 -1.47 75.90 -1.85 76.76 -0.99 76.97 -0.78 76.94 -0.81 78.40 0.65 79.01 1.26 87.43 9.68

! ! ! 64.61 67.86 3.26 68.95 4.34 60.40 -4.2 69.36 4.75 67.04 2.44 69.12 4.51 69.16 4.55 69.34 4.74 81.37 16.76

! ! ! 77.75 75.04 -2.71 76.96 -0.8 77.17 -0.58 76.88 -0.87 77.18 -0.57 77.14 -0.61 79.24 1.49 79.26 1.5 87.32 9.56

! ! ! 77.75 75.60 -2.15 76.55 -1.21 75.70 -2.05 77.25 -0.5 77.15 -0.6 77.37 -0.39 79.02 1.27 79.06 1.31 87.63 9.87

! ! ! 77.75 75.23 -2.52 76.71 -1.04 77.28 -0.47 77.35 -0.4 77.19 -0.56 77.15 -0.6 78.42 0.67 79.04 1.29 87.39 9.64

! ! ! ! 64.61 67.72 3.11 68.54 3.93 60.59 -4.02 68.77 4.17 66.98 2.38 68.56 3.95 69.06 4.45 69.16 4.55 84.18 19.57

! ! ! ! 77.75 73.81 -3.94 75.87 -1.88 75.97 -1.78 76.04 -1.72 77.08 -0.67 76.43 -1.32 78.56 0.81 79.12 1.37 89.37 11.62

! ! ! ! 77.75 74.69 -3.06 76.06 -1.69 75.66 -2.09 76.41 -1.34 76.93 -0.82 76.47 -1.28 79.07 1.32 79.22 1.47 89.60 11.85

! ! ! ! 77.75 74.51 -3.25 75.95 -1.8 75.90 -1.85 76.57 -1.18 77.01 -0.75 76.05 -1.7 78.83 1.08 79.19 1.44 89.30 11.55

! ! ! ! 77.75 75.28 -2.47 76.48 -1.27 75.54 -2.21 76.61 -1.14 76.99 -0.76 76.91 -0.85 79.07 1.32 79.33 1.58 89.49 11.74

! ! ! ! ! 77.75 73.67 -4.08 75.70 -2.05 75.56 -2.19 75.75 -2.0 76.78 -0.97 75.96 -1.79 78.96 1.21 80.30 2.55 90.85 13.1

Mean ∆ -0.41 0.63 -2.42 1.04 0.40 0.98 2.25 2.43 11.36
Max ∆ 3.51 4.34 2.29 5.77 2.59 4.89 5.73 5.71 19.57
Min ∆ -4.08 -2.05 -10.67 -2.00 -0.97 -1.79 0.65 0.82 6.13
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Table M.6: Our results on CUB dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

CUB
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 46.57 −0.00
! 49.64 −0.00

! 52.99 −0.00
! 55.28 −0.00

! 62.06 −0.00

! ! 49.64 51.28 1.64 52.33 2.69 45.41 -4.23 55.06 5.42 50.72 1.09 53.56 3.92 55.06 5.42 55.13 5.49 61.13 11.49

! ! 52.99 54.92 1.93 55.70 2.71 53.94 0.95 57.77 4.78 53.90 0.91 56.51 3.52 57.68 4.69 57.75 4.76 64.03 11.05

! ! 55.28 56.61 1.33 57.51 2.23 55.82 0.54 59.39 4.11 55.49 0.21 58.44 3.16 59.73 4.45 59.68 4.4 65.52 10.23

! ! 62.06 61.65 -0.41 62.32 0.26 61.72 -0.35 63.96 1.9 61.01 -1.05 62.77 0.71 64.12 2.05 64.26 2.19 70.49 8.42

! ! 52.99 54.94 1.95 55.49 2.5 48.72 -4.26 57.61 4.63 54.04 1.05 56.51 3.52 57.42 4.44 57.58 4.59 63.82 10.84

! ! 55.28 56.56 1.28 57.16 1.88 56.25 0.97 58.78 3.5 56.27 0.98 58.08 2.8 58.80 3.52 59.25 3.97 65.34 10.06

! ! 62.06 62.01 -0.05 62.70 0.64 62.03 -0.03 63.58 1.52 61.67 -0.4 63.24 1.17 63.69 1.62 63.93 1.86 70.31 8.25

! ! 55.28 57.87 2.59 58.58 3.3 51.05 -4.23 60.87 5.59 57.40 2.12 59.63 4.35 60.72 5.44 60.74 5.45 67.10 11.82

! ! 62.06 62.58 0.52 63.29 1.23 62.62 0.55 64.34 2.28 62.32 0.26 64.07 2.0 64.58 2.52 64.50 2.43 71.33 9.27

! ! 62.06 62.63 0.57 63.36 1.29 54.87 -7.2 64.98 2.92 62.29 0.22 63.91 1.85 65.07 3.0 65.00 2.93 71.18 9.11

! ! ! 52.99 56.25 3.26 57.21 4.23 47.93 -5.06 59.32 6.33 54.50 1.52 58.18 5.2 59.60 6.61 59.25 6.27 69.71 16.72

! ! ! 55.28 57.34 2.05 58.42 3.14 53.31 -1.97 60.20 4.92 56.08 0.79 59.42 4.14 60.58 5.3 60.68 5.4 70.90 15.62

! ! ! 62.06 61.25 -0.81 62.81 0.74 59.89 -2.17 64.01 1.95 60.80 -1.26 63.41 1.35 65.08 3.02 65.03 2.97 74.75 12.69

! ! ! 55.28 58.94 3.66 60.11 4.83 51.86 -3.42 61.48 6.2 57.46 2.17 60.99 5.71 61.22 5.94 62.01 6.73 72.64 17.36

! ! ! 62.06 61.96 -0.1 63.88 1.81 62.39 0.33 65.36 3.3 61.60 -0.47 64.36 2.3 65.67 3.61 65.64 3.57 75.85 13.79

! ! ! 62.06 62.67 0.6 64.19 2.12 55.44 -6.63 65.67 3.61 61.72 -0.35 64.96 2.9 66.02 3.95 66.34 4.28 76.04 13.98

! ! ! 55.28 58.97 3.69 59.92 4.64 49.83 -5.45 61.24 5.95 57.73 2.45 60.68 5.4 61.18 5.9 61.65 6.37 71.99 16.71

! ! ! 62.06 62.15 0.09 63.44 1.38 60.25 -1.81 65.00 2.93 61.82 -0.24 63.98 1.92 65.36 3.3 65.31 3.24 75.42 13.36

! ! ! 62.06 62.43 0.36 64.03 1.97 55.47 -6.59 65.33 3.26 62.12 0.05 64.91 2.85 66.24 4.18 66.05 3.99 75.54 13.48

! ! ! 62.06 63.12 1.05 64.46 2.4 54.45 -7.61 65.93 3.87 62.77 0.71 64.79 2.73 66.05 3.99 66.05 3.99 76.60 14.53

! ! ! ! 55.28 59.44 4.16 60.61 5.33 49.57 -5.71 61.81 6.52 57.49 2.21 61.39 6.11 61.96 6.68 62.50 7.21 75.60 20.31

! ! ! ! 62.06 62.00 -0.07 63.62 1.55 59.37 -2.69 64.96 2.9 61.22 -0.85 64.10 2.04 65.38 3.31 65.91 3.85 78.32 16.26

! ! ! ! 62.06 62.98 0.91 64.41 2.35 54.45 -7.61 65.22 3.16 61.49 -0.57 64.65 2.59 66.66 4.59 66.59 4.52 78.58 16.52

! ! ! ! 62.06 63.63 1.57 65.15 3.09 54.73 -7.34 65.96 3.9 62.20 0.14 65.59 3.52 66.21 4.14 66.90 4.83 79.67 17.6

! ! ! ! 62.06 63.19 1.12 64.38 2.31 54.18 -7.89 65.69 3.62 62.29 0.22 65.21 3.14 66.28 4.21 66.57 4.5 79.01 16.95

! ! ! ! ! 62.06 63.32 1.26 64.38 2.31 53.71 -8.35 65.53 3.47 61.79 -0.28 65.01 2.95 66.29 4.23 68.40 6.34 81.20 19.14

Mean ∆ 1.31 2.42 -3.74 3.94 0.45 3.15 4.24 4.47 13.68
Max ∆ 4.16 5.33 0.97 6.52 2.45 6.11 6.68 7.21 20.31
Min ∆ -0.81 0.26 -8.35 1.52 -1.26 0.71 1.62 1.86 8.25
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Table M.7: Our results on DTD dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

DTD
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 41.22 −0.00
! 43.67 −0.00

! 43.99 −0.00
! 45.11 −0.00

! 55.32 −0.00

! ! 43.67 47.13 3.46 47.29 3.62 46.44 2.77 47.71 4.04 45.96 2.29 47.34 3.67 47.61 3.94 47.71 4.04 54.36 10.69

! ! 43.99 44.63 0.64 45.00 1.01 41.22 -2.77 46.01 2.02 43.78 -0.21 45.43 1.44 45.74 1.76 45.90 1.91 51.70 7.71

! ! 45.11 46.86 1.76 47.13 2.02 40.37 -4.73 47.39 2.29 45.85 0.74 47.23 2.13 47.87 2.77 47.39 2.29 53.24 8.14

! ! 55.32 55.64 0.32 56.12 0.8 41.33 -13.99 55.64 0.32 55.05 -0.27 56.22 0.9 55.43 0.11 56.44 1.12 62.23 6.91

! ! 43.99 47.02 3.03 47.34 3.35 41.60 -2.39 48.46 4.47 47.13 3.14 47.93 3.94 47.87 3.88 47.98 3.99 55.11 11.12

! ! 45.11 48.46 3.35 48.94 3.83 48.30 3.19 49.15 4.04 48.35 3.24 48.67 3.56 48.78 3.67 48.78 3.67 55.74 10.64

! ! 55.32 55.21 -0.11 55.59 0.27 43.35 -11.97 55.69 0.37 55.11 -0.21 56.33 1.01 56.76 1.44 56.70 1.38 61.60 6.28

! ! 45.11 46.65 1.54 46.86 1.76 43.24 -1.86 47.71 2.61 45.48 0.37 47.23 2.13 47.07 1.97 47.61 2.5 53.56 8.46

! ! 55.32 55.74 0.43 56.33 1.01 43.56 -11.76 56.22 0.9 55.32 −0.0 56.22 0.9 56.49 1.17 56.70 1.38 62.02 6.7

! ! 55.32 57.02 1.7 57.39 2.07 43.88 -11.44 56.28 0.96 56.60 1.28 56.76 1.44 56.81 1.49 56.86 1.54 62.02 6.7

! ! ! 43.99 47.50 3.51 47.71 3.72 40.37 -3.62 48.99 5.0 46.97 2.98 47.82 3.83 49.26 5.27 49.10 5.11 59.26 15.27

! ! ! 45.11 48.35 3.24 49.41 4.31 44.68 -0.43 49.95 4.84 48.30 3.19 49.95 4.84 50.32 5.21 50.21 5.11 60.59 15.48

! ! ! 55.32 54.26 -1.06 56.22 0.9 41.70 -13.62 55.32 −0.0 54.89 -0.43 56.76 1.44 57.02 1.7 57.18 1.86 65.80 10.48

! ! ! 45.11 46.86 1.76 46.97 1.86 44.95 -0.16 48.19 3.09 45.53 0.43 47.34 2.23 47.77 2.66 48.24 3.14 57.87 12.77

! ! ! 55.32 53.19 -2.13 55.43 0.11 41.86 -13.46 54.73 -0.59 55.11 -0.21 54.73 -0.59 56.06 0.74 56.49 1.17 65.59 10.27

! ! ! 55.32 53.99 -1.33 56.33 1.01 42.87 -12.45 56.01 0.69 55.80 0.48 56.60 1.28 57.34 2.02 57.18 1.86 65.69 10.37

! ! ! 45.11 48.40 3.3 49.68 4.57 41.76 -3.35 49.26 4.15 48.62 3.51 49.68 4.57 49.95 4.84 49.20 4.1 60.32 15.21

! ! ! 55.32 54.47 -0.85 55.69 0.37 44.57 -10.74 55.27 -0.05 55.32 −0.0 56.01 0.69 56.86 1.54 57.18 1.86 65.32 10.0

! ! ! 55.32 54.89 -0.43 56.76 1.44 43.56 -11.76 55.74 0.43 56.22 0.9 56.81 1.49 56.70 1.38 57.77 2.45 65.37 10.05

! ! ! 55.32 54.63 -0.69 56.44 1.12 44.47 -10.85 55.74 0.43 55.74 0.43 56.49 1.17 57.23 1.91 57.07 1.76 65.32 10.0

! ! ! ! 45.11 48.67 3.56 49.52 4.41 43.30 -1.81 49.63 4.52 48.46 3.35 49.79 4.68 50.27 5.16 49.41 4.31 63.19 18.09

! ! ! ! 55.32 54.36 -0.96 55.16 -0.16 42.50 -12.82 54.73 -0.59 55.00 -0.32 54.95 -0.37 56.22 0.9 57.34 2.02 68.03 12.71

! ! ! ! 55.32 54.89 -0.43 56.38 1.06 42.93 -12.39 55.00 -0.32 55.53 0.21 56.81 1.49 57.87 2.55 57.71 2.39 68.14 12.82

! ! ! ! 55.32 53.72 -1.6 55.96 0.64 42.50 -12.82 54.57 -0.74 55.48 0.16 55.48 0.16 56.38 1.06 56.97 1.65 67.71 12.39

! ! ! ! 55.32 54.68 -0.64 56.12 0.8 44.47 -10.85 55.37 0.05 55.96 0.64 56.06 0.74 56.81 1.49 57.50 2.18 67.66 12.34

! ! ! ! ! 55.32 53.72 -1.6 55.69 0.37 42.55 -12.77 54.36 -0.96 55.59 0.27 55.21 -0.11 56.12 0.8 58.94 3.62 69.63 14.31

Mean ∆ 0.76 1.78 -7.65 1.61 1.00 1.87 2.36 2.63 11.00
Max ∆ 3.56 4.57 3.19 5.00 3.51 4.84 5.27 5.11 18.09
Min ∆ -2.13 -0.16 -13.99 -0.96 -0.43 -0.59 0.11 1.12 6.28
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Table M.8: Our results on FGVC dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

FGVC
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 17.07 −0.00
! 18.63 −0.00

! 19.65 −0.00
! 24.39 −0.00

! 31.71 −0.00

! ! 18.63 18.87 0.24 19.02 0.39 18.60 -0.03 19.23 0.6 18.48 -0.15 19.05 0.42 19.59 0.96 19.89 1.26 26.19 7.56

! ! 19.65 20.52 0.87 20.46 0.81 16.62 -3.03 21.36 1.71 19.80 0.15 21.18 1.53 21.00 1.35 22.17 2.52 27.69 8.04

! ! 24.39 24.24 -0.15 24.33 -0.06 17.19 -7.2 24.78 0.39 23.97 -0.42 25.23 0.84 25.65 1.26 25.89 1.5 31.02 6.63

! ! 31.71 31.47 -0.24 31.47 -0.24 31.47 -0.24 31.68 -0.03 31.59 -0.12 32.55 0.84 32.49 0.78 33.57 1.86 37.59 5.88

! ! 19.65 21.00 1.35 21.51 1.86 20.70 1.05 21.69 2.04 20.73 1.08 22.02 2.37 21.21 1.56 22.41 2.76 28.20 8.55

! ! 24.39 23.67 -0.72 23.97 -0.42 23.52 -0.87 23.82 -0.57 23.79 -0.6 24.36 -0.03 24.81 0.42 25.38 0.99 31.92 7.53

! ! 31.71 30.81 -0.9 31.29 -0.42 30.93 -0.78 30.54 -1.17 31.20 -0.51 31.50 -0.21 31.35 -0.36 33.03 1.32 38.31 6.6

! ! 24.39 24.18 -0.21 24.30 -0.09 20.22 -4.17 25.08 0.69 23.76 -0.63 24.84 0.45 25.02 0.63 25.95 1.56 32.73 8.34

! ! 31.71 31.86 0.15 31.68 -0.03 31.59 -0.12 32.04 0.33 31.71 −-0.0 32.79 1.08 32.61 0.9 33.33 1.62 39.57 7.86

! ! 31.71 31.62 -0.09 32.19 0.48 31.95 0.24 32.76 1.05 31.92 0.21 32.88 1.17 33.30 1.59 33.69 1.98 41.25 9.54

! ! ! 19.65 20.79 1.14 21.51 1.86 18.12 -1.53 21.75 2.1 20.52 0.87 21.69 2.04 21.72 2.07 23.49 3.84 33.60 13.95

! ! ! 24.39 22.89 -1.5 23.28 -1.11 17.55 -6.84 23.67 -0.72 23.40 -0.99 24.03 -0.36 24.69 0.3 26.61 2.22 36.57 12.18

! ! ! 31.71 28.80 -2.91 30.00 -1.71 30.87 -0.84 30.21 -1.5 31.14 -0.57 31.53 -0.18 32.58 0.87 34.08 2.37 42.36 10.65

! ! ! 24.39 23.94 -0.45 24.57 0.18 22.53 -1.86 24.81 0.42 23.61 -0.78 24.99 0.6 25.71 1.32 26.76 2.37 37.68 13.29

! ! ! 31.71 30.36 -1.35 31.29 -0.42 30.93 -0.78 32.07 0.36 31.59 -0.12 32.73 1.02 32.25 0.54 34.74 3.03 43.53 11.82

! ! ! 31.71 30.63 -1.08 31.77 0.06 30.27 -1.44 32.40 0.69 31.80 0.09 32.97 1.26 33.06 1.35 34.80 3.09 45.06 13.35

! ! ! 24.39 23.79 -0.6 24.15 -0.24 20.55 -3.84 25.02 0.63 23.40 -0.99 24.72 0.33 25.50 1.11 26.31 1.92 38.10 13.71

! ! ! 31.71 30.24 -1.47 30.90 -0.81 30.90 -0.81 31.62 -0.09 31.20 -0.51 32.07 0.36 31.95 0.24 33.72 2.01 44.01 12.3

! ! ! 31.71 30.75 -0.96 31.62 -0.09 31.23 -0.48 31.77 0.06 31.44 -0.27 32.40 0.69 33.21 1.5 34.23 2.52 45.69 13.98

! ! ! 31.71 31.14 -0.57 31.59 -0.12 31.02 -0.69 32.91 1.2 31.77 0.06 33.39 1.68 33.18 1.47 34.50 2.79 46.56 14.85

! ! ! ! 24.39 23.97 -0.42 23.91 -0.48 22.11 -2.28 24.72 0.33 23.31 -1.08 24.60 0.21 25.50 1.11 27.45 3.06 41.79 17.4

! ! ! ! 31.71 28.65 -3.06 30.63 -1.08 30.45 -1.26 31.20 -0.51 31.14 -0.57 32.04 0.33 32.37 0.66 34.80 3.09 47.04 15.33

! ! ! ! 31.71 29.46 -2.25 30.72 -0.99 29.85 -1.86 31.02 -0.69 31.38 -0.33 32.31 0.6 32.55 0.84 34.92 3.21 48.54 16.83

! ! ! ! 31.71 30.06 -1.65 31.44 -0.27 31.02 -0.69 32.28 0.57 31.65 -0.06 33.21 1.5 33.63 1.92 35.37 3.66 49.38 17.67

! ! ! ! 31.71 29.82 -1.89 31.20 -0.51 30.51 -1.2 32.58 0.87 31.35 -0.36 32.25 0.54 33.33 1.62 34.23 2.52 49.83 18.12

! ! ! ! ! 31.71 28.95 -2.76 30.96 -0.75 30.63 -1.08 31.53 -0.18 31.29 -0.42 31.89 0.18 33.18 1.47 35.88 4.17 52.09 20.37

Mean ∆ -0.83 -0.16 -1.64 0.33 -0.27 0.74 1.06 2.43 12.01
Max ∆ 1.35 1.86 1.05 2.10 1.08 2.37 2.07 4.17 20.37
Min ∆ -3.06 -1.71 -7.20 -1.50 -1.08 -0.36 -0.36 0.99 5.88
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Table M.9: Our results on FOOD dataset for all the possible combinations of combining the zero-shot
predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

FOOD
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 77.91 −0.00
! 81.86 −0.00

! 82.58 −0.00
! 87.91 −0.00

! 92.32 −0.00

! ! 81.86 82.63 0.78 82.90 1.04 82.26 0.4 83.08 1.22 82.47 0.61 83.14 1.29 83.28 1.43 83.27 1.41 87.16 5.3

! ! 82.58 83.83 1.25 84.26 1.68 76.96 -5.62 84.55 1.97 83.60 1.02 84.40 1.82 84.41 1.83 84.68 2.1 88.42 5.84

! ! 87.91 87.56 -0.36 87.62 -0.3 87.49 -0.43 87.58 -0.33 87.52 -0.4 87.80 -0.11 88.13 0.22 88.55 0.64 91.31 3.39

! ! 92.32 91.94 -0.38 92.04 -0.29 91.88 -0.44 91.75 -0.57 91.75 -0.57 91.93 -0.39 92.82 0.49 92.79 0.47 94.52 2.19

! ! 82.58 84.97 2.39 85.31 2.73 84.48 1.9 85.70 3.11 84.62 2.04 85.54 2.96 85.55 2.97 85.69 3.11 89.28 6.69

! ! 87.91 88.17 0.26 88.30 0.38 87.92 0.01 88.40 0.49 87.87 -0.05 88.34 0.43 88.72 0.81 88.68 0.76 91.81 3.9

! ! 92.32 92.25 -0.07 92.34 0.02 92.04 -0.29 92.08 -0.24 91.85 -0.48 92.22 -0.11 92.78 0.45 92.80 0.48 94.81 2.49

! ! 87.91 88.08 0.16 88.18 0.27 82.55 -5.36 88.25 0.33 88.10 0.19 88.31 0.4 88.79 0.88 88.74 0.83 91.54 3.63

! ! 92.32 92.13 -0.2 92.21 -0.12 92.00 -0.33 92.04 -0.28 91.92 -0.4 92.14 -0.19 92.70 0.37 92.73 0.41 94.76 2.44

! ! 92.32 92.58 0.25 92.67 0.34 92.45 0.12 92.57 0.24 92.31 -0.01 92.59 0.27 92.70 0.38 92.88 0.55 94.96 2.64

! ! ! 82.58 84.54 1.96 85.28 2.7 79.64 -2.95 85.59 3.01 84.62 2.04 85.38 2.8 85.82 3.24 85.84 3.26 91.16 8.58

! ! ! 87.91 86.54 -1.37 87.34 -0.57 87.57 -0.34 87.72 -0.19 87.51 -0.4 87.63 -0.28 88.62 0.71 88.73 0.82 92.99 5.07

! ! ! 92.32 88.86 -3.47 90.41 -1.91 91.66 -0.67 90.99 -1.34 91.45 -0.87 90.59 -1.74 92.79 0.47 92.84 0.52 95.47 3.15

! ! ! 87.91 87.45 -0.47 87.98 0.07 80.07 -7.85 87.97 0.06 87.77 -0.15 88.09 0.17 88.84 0.93 88.85 0.94 93.01 5.09

! ! ! 92.32 89.70 -2.63 90.90 -1.43 90.01 -2.32 91.18 -1.15 91.54 -0.79 90.93 -1.39 92.71 0.38 92.83 0.5 95.56 3.23

! ! ! 92.32 91.38 -0.94 92.00 -0.33 92.11 -0.21 91.98 -0.34 91.93 -0.4 92.00 -0.33 92.77 0.44 93.02 0.69 95.77 3.45

! ! ! 87.91 87.78 -0.13 88.18 0.27 83.45 -4.46 88.40 0.48 87.96 0.05 88.32 0.4 89.02 1.1 88.95 1.04 93.36 5.45

! ! ! 92.32 90.17 -2.15 91.20 -1.13 91.75 -0.57 91.50 -0.82 91.54 -0.78 91.28 -1.05 92.90 0.57 92.93 0.61 95.71 3.39

! ! ! 92.32 91.54 -0.78 91.98 -0.34 92.06 -0.26 92.07 -0.25 91.87 -0.45 92.02 -0.3 92.93 0.6 92.97 0.65 95.89 3.56

! ! ! 92.32 91.24 -1.08 91.85 -0.48 90.73 -1.59 92.02 -0.31 92.04 -0.28 91.92 -0.4 92.93 0.61 92.98 0.66 95.79 3.47

! ! ! ! 87.91 87.65 -0.26 87.98 0.07 81.00 -6.91 88.11 0.2 87.66 -0.25 88.10 0.19 89.07 1.16 89.03 1.12 94.01 6.1

! ! ! ! 92.32 89.57 -2.75 90.21 -2.12 90.17 -2.15 90.61 -1.71 91.24 -1.09 90.24 -2.09 92.49 0.17 92.90 0.58 96.10 3.77

! ! ! ! 92.32 91.10 -1.22 91.29 -1.03 91.83 -0.5 91.38 -0.95 91.60 -0.73 91.26 -1.07 92.93 0.61 93.03 0.7 96.26 3.94

! ! ! ! 92.32 90.99 -1.33 91.49 -0.84 89.53 -2.79 91.53 -0.8 91.73 -0.59 91.49 -0.84 92.93 0.6 93.06 0.74 96.25 3.93

! ! ! ! 92.32 91.26 -1.06 91.56 -0.76 90.61 -1.72 91.62 -0.7 91.67 -0.65 91.45 -0.88 92.86 0.54 93.03 0.71 96.35 4.02

! ! ! ! ! 92.32 90.08 -2.25 90.88 -1.45 89.62 -2.7 91.09 -1.24 91.43 -0.9 90.91 -1.41 92.91 0.59 93.07 0.75 96.60 4.27

Mean ∆ -0.61 -0.14 -1.85 0.00 -0.17 -0.07 0.87 0.96 4.19
Max ∆ 2.39 2.73 1.90 3.11 2.04 2.96 3.24 3.26 8.58
Min ∆ -3.47 -2.12 -7.85 -1.71 -1.09 -2.09 0.17 0.41 2.19
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Table M.10: Our results on FLOWERS dataset for all the possible combinations of combining the zero-
shot predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

FLOWERS
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 66.12 −0.00
! 65.20 −0.00

! 66.48 −0.00
! 71.43 −0.00

! 79.05 −0.00

! ! 66.12 68.01 1.89 67.95 1.82 67.36 1.24 68.63 2.5 67.25 1.12 68.43 2.31 68.40 2.28 68.84 2.72 73.83 7.71

! ! 66.48 69.21 2.73 69.77 3.29 68.68 2.2 69.17 2.68 68.76 2.28 69.77 3.29 69.28 2.8 70.00 3.51 75.49 9.01

! ! 71.43 72.45 1.02 72.68 1.25 72.03 0.6 72.48 1.06 71.87 0.44 72.69 1.27 72.42 0.99 73.12 1.69 76.63 5.2

! ! 79.05 78.29 -0.76 78.22 -0.83 79.02 -0.03 77.33 -1.72 78.78 -0.28 78.19 -0.86 78.91 -0.15 79.41 0.36 83.27 4.21

! ! 66.48 68.56 2.08 68.74 2.26 68.35 1.87 68.87 2.39 68.32 1.84 68.71 2.23 68.74 2.26 69.21 2.73 74.39 7.9

! ! 71.43 71.98 0.55 72.32 0.89 71.70 0.28 72.35 0.93 71.41 -0.02 72.37 0.94 73.10 1.68 73.02 1.59 77.35 5.92

! ! 79.05 77.87 -1.19 77.74 -1.32 78.34 -0.72 77.23 -1.82 77.87 -1.19 77.52 -1.53 77.83 -1.22 79.23 0.18 82.62 3.56

! ! 71.43 72.91 1.48 72.69 1.27 65.15 -6.28 72.16 0.73 72.52 1.09 72.69 1.27 71.88 0.46 72.99 1.56 78.29 6.86

! ! 79.05 78.50 -0.55 78.31 -0.75 78.45 -0.6 77.43 -1.63 78.35 -0.7 77.88 -1.17 78.94 -0.11 79.07 0.02 82.86 3.81

! ! 79.05 78.01 -1.04 78.01 -1.04 78.45 -0.6 77.90 -1.15 78.37 -0.68 78.29 -0.76 78.14 -0.91 79.66 0.6 83.36 4.31

! ! ! 66.48 69.38 2.89 69.98 3.5 69.12 2.63 69.57 3.09 69.12 2.63 70.09 3.61 69.64 3.15 70.92 4.44 78.57 12.08

! ! ! 71.43 71.74 0.31 72.27 0.85 71.78 0.36 72.48 1.06 71.49 0.07 72.52 1.09 73.10 1.68 73.82 2.39 79.46 8.03

! ! ! 79.05 74.70 -4.36 76.03 -3.02 78.34 -0.72 75.59 -3.46 77.77 -1.28 75.95 -3.11 78.00 -1.06 79.90 0.85 84.65 5.59

! ! ! 71.43 72.69 1.27 73.20 1.77 66.29 -5.14 72.74 1.32 72.55 1.12 72.92 1.5 72.97 1.54 73.90 2.47 80.34 8.91

! ! ! 79.05 75.87 -3.19 76.89 -2.16 78.48 -0.57 76.34 -2.72 78.32 -0.73 76.74 -2.31 78.83 -0.23 80.08 1.02 84.91 5.85

! ! ! 79.05 76.84 -2.21 77.41 -1.64 78.48 -0.57 77.33 -1.72 78.35 -0.7 77.44 -1.61 78.09 -0.96 80.27 1.22 84.83 5.77

! ! ! 71.43 71.69 0.26 72.55 1.12 66.34 -5.09 72.09 0.67 72.43 1.01 72.82 1.4 71.74 0.31 73.83 2.41 80.94 9.51

! ! ! 79.05 75.15 -3.9 76.39 -2.67 77.92 -1.14 76.19 -2.86 77.67 -1.38 76.45 -2.6 78.53 -0.52 79.44 0.39 84.16 5.11

! ! ! 79.05 76.34 -2.72 77.13 -1.92 78.05 -1.01 77.20 -1.85 77.67 -1.38 77.36 -1.69 78.16 -0.89 80.16 1.11 84.88 5.82

! ! ! 79.05 77.04 -2.02 77.65 -1.4 76.11 -2.94 76.74 -2.31 78.11 -0.94 77.80 -1.25 78.57 -0.49 79.69 0.63 85.01 5.95

! ! ! ! 71.43 72.52 1.09 72.95 1.53 67.02 -4.41 72.60 1.17 72.22 0.8 73.00 1.58 72.61 1.19 74.45 3.02 82.14 10.72

! ! ! ! 79.05 75.22 -3.84 75.69 -3.37 77.92 -1.14 75.18 -3.87 77.59 -1.46 75.52 -3.53 78.63 -0.42 79.80 0.75 85.62 6.57

! ! ! ! 79.05 76.01 -3.04 76.52 -2.54 78.00 -1.06 76.26 -2.8 77.57 -1.48 76.55 -2.5 78.24 -0.81 80.27 1.22 85.67 6.62

! ! ! ! 79.05 76.71 -2.34 77.22 -1.84 76.21 -2.85 76.31 -2.75 78.14 -0.91 77.05 -2.0 78.18 -0.88 80.18 1.12 85.77 6.72

! ! ! ! 79.05 76.81 -2.24 77.09 -1.97 75.80 -3.25 76.22 -2.83 77.69 -1.37 77.10 -1.95 78.19 -0.86 79.93 0.88 85.75 6.7

! ! ! ! ! 79.05 75.70 -3.35 76.28 -2.77 75.85 -3.20 75.54 -3.51 77.60 -1.45 76.25 -2.80 78.16 -0.89 81.10 2.05 86.32 7.27

Mean ∆ -0.81 -0.37 -1.24 -0.75 -0.14 -0.35 0.30 1.57 6.76
Max ∆ 2.89 3.50 2.63 3.09 2.63 3.61 3.15 4.44 12.08
Min ∆ -4.36 -3.37 -6.28 -3.87 -1.48 -3.53 -1.22 0.02 3.56
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Table M.11: Our results on IMGNET-1K dataset for all the possible combinations of combining the zero-
shot predictions of CLIP backbones, which we group intro non-parametric and parametric techniques.
Also, the best-performing single backbone (SINGLE-BEST) and the ORACLE performance. We
present, for each combination of backbones, the improvement , constancy − and deterioration of
accuracy performance for each method when we compare it against the SINGLE-BEST backbone.
Mean, Max, and Min ∆ summarize the difference in performance across methods and backbone
combinations.

IMGNET-1K
ResNet ViT SINGLE-BEST

Non-Parametric Parametric ORACLE
50 101 B-32 B-16 L-14 VOTE T-1 VOTE T-3 CONF LOG-AVG C-CONF C-LOG-AVG GAC NLC

! 59.84 −0.00
! 62.28 −0.00

! 63.35 −0.00
! 68.34 −0.00

! 75.54 −0.00

! ! 62.30 63.76 1.46 64.16 1.86 59.05 -3.25 64.61 2.31 63.22 0.91 64.47 2.17 64.71 2.41 65.14 2.84 70.75 8.45

! ! 63.36 65.00 1.65 65.37 2.01 64.40 1.04 65.78 2.42 64.39 1.03 65.54 2.19 65.86 2.51 66.07 2.71 71.76 8.41

! ! 68.34 68.47 0.12 68.72 0.37 68.15 -0.19 68.89 0.55 68.09 -0.26 68.85 0.51 69.60 1.26 69.86 1.52 74.51 6.17

! ! 75.53 75.13 -0.4 75.27 -0.27 60.23 -15.3 75.09 -0.45 74.51 -1.02 74.97 -0.56 75.97 0.44 76.17 0.64 80.13 4.6

! ! 63.36 66.03 2.67 66.41 3.05 60.29 -3.07 66.99 3.63 65.45 2.09 66.70 3.35 67.00 3.65 67.35 3.99 72.96 9.61

! ! 68.34 69.09 0.75 69.29 0.95 68.54 0.2 69.58 1.24 68.45 0.11 69.40 1.05 69.90 1.56 70.29 1.95 75.15 6.8

! ! 75.53 75.18 -0.35 75.35 -0.18 62.53 -13.0 75.16 -0.38 74.56 -0.97 75.10 -0.44 76.01 0.48 76.39 0.86 80.28 4.75

! ! 68.34 68.90 0.56 69.17 0.82 63.17 -5.18 69.41 1.07 68.48 0.13 69.23 0.89 69.76 1.42 70.04 1.7 74.97 6.63

! ! 75.53 75.37 -0.16 75.40 -0.13 63.53 -12.01 75.19 -0.35 74.79 -0.74 75.20 -0.33 75.98 0.45 76.31 0.78 80.49 4.96

! ! 75.53 75.47 -0.06 75.61 0.08 68.42 -7.12 75.63 0.1 75.04 -0.5 75.50 -0.03 75.98 0.44 76.26 0.73 80.60 5.06

! ! ! 63.36 66.15 2.79 66.76 3.4 60.27 -3.08 67.33 3.97 65.51 2.16 67.08 3.72 67.47 4.11 67.87 4.51 76.39 13.03

! ! ! 68.34 68.22 -0.12 68.94 0.6 66.82 -1.53 69.23 0.89 68.17 -0.18 69.18 0.83 70.11 1.77 70.71 2.37 77.95 9.61

! ! ! 75.53 72.15 -3.38 74.09 -1.45 62.70 -12.83 74.22 -1.31 74.03 -1.5 74.08 -1.45 76.07 0.54 76.42 0.88 82.41 6.87

! ! ! 68.34 68.58 0.24 69.20 0.85 63.72 -4.62 69.45 1.11 68.35 −0.0 69.45 1.11 70.18 1.84 70.60 2.26 78.06 9.72

! ! ! 75.53 72.80 -2.73 74.35 -1.18 63.26 -12.28 74.36 -1.17 74.24 -1.3 74.32 -1.21 76.14 0.61 76.35 0.82 82.61 7.08

! ! ! 75.53 73.95 -1.58 74.93 -0.61 67.33 -8.21 74.98 -0.55 74.58 -0.95 74.90 -0.63 76.16 0.63 76.54 1.01 82.76 7.23

! ! ! 68.34 69.15 0.81 69.73 1.39 62.46 -5.88 70.02 1.68 68.66 0.32 69.95 1.61 70.43 2.09 70.87 2.53 78.58 10.24

! ! ! 75.53 73.32 -2.21 74.61 -0.92 63.05 -12.49 74.63 -0.9 74.27 -1.27 74.58 -0.95 76.10 0.57 76.60 1.07 82.82 7.29

! ! ! 75.53 74.13 -1.4 75.04 -0.49 67.39 -8.14 75.11 -0.42 74.59 -0.94 75.14 -0.39 76.09 0.56 76.73 1.2 82.89 7.35

! ! ! 75.53 74.01 -1.52 74.90 -0.63 68.56 -6.97 75.02 -0.51 74.64 -0.9 74.98 -0.55 76.07 0.54 76.55 1.01 82.91 7.38

! ! ! ! 68.34 69.10 0.75 69.51 1.17 62.51 -5.83 69.66 1.32 68.43 0.08 69.74 1.4 70.52 2.18 71.09 2.75 80.31 11.97

! ! ! ! 75.53 72.37 -3.16 73.71 -1.82 63.11 -12.42 73.67 -1.86 73.94 -1.6 73.62 -1.92 76.12 0.58 76.69 1.16 84.08 8.55

! ! ! ! 75.53 73.47 -2.06 74.46 -1.07 67.47 -8.06 74.46 -1.07 74.21 -1.32 74.41 -1.12 76.10 0.57 76.63 1.09 84.17 8.64

! ! ! ! 75.53 73.54 -1.99 74.40 -1.13 67.54 -7.99 74.39 -1.14 74.32 -1.21 74.39 -1.14 76.14 0.61 76.65 1.11 84.26 8.73

! ! ! ! 75.53 73.78 -1.75 74.64 -0.89 67.46 -8.07 74.58 -0.95 74.32 -1.21 74.59 -0.94 76.19 0.66 76.77 1.23 84.42 8.89

! ! ! ! ! 75.53 72.67 -2.86 73.95 -1.58 67.46 -8.07 73.89 -1.64 74.06 -1.47 73.88 -1.65 76.22 0.69 76.59 1.06 85.29 9.76

Mean ∆ -0.54 0.16 -7.09 0.29 -0.40 0.21 1.28 1.68 7.99
Max ∆ 2.79 3.40 1.04 3.97 2.16 3.72 4.11 4.51 13.03
Min ∆ -3.38 -1.82 -15.30 -1.86 -1.60 -1.92 0.44 0.64 4.60

45


	Introduction
	Investigating Differences Across Vision Backbones
	Complementarity of Different Backbones
	Other sources of diversity
	Robustness to Image Transformations

	Proposed Ensembling Method
	Experiments
	Comparison of Backbone-Ensembling Methods
	Investigating Benefits beyond Dataset-Specific Linear Classifiers
	Comparison with Few-Shot Adapter Methods
	Examining the Learned Temperature Values

	Related Work
	Conclusions
	Reproducibility
	Oracle Performance
	Additional Baselines
	NLC Using Linear classifiers of CLIP Backbones
	Robustness Under Distribution Shift of ImgNet-1k
	The Combination of NLC with Tip-Adapter
	Training NLC Under Limited Samples
	Learned Temperature Values
	Diversity and Oracle Performance of Different Combinations
	Cascading and Ensemble
	Image-Text Retrieval
	Overlap Diagrams For Other Datasets.
	Possible Combinations

