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ABSTRACT

Recent advancements in Text-to-3D generation have yielded remarkable progress,
particularly through methods that rely on Score Distillation Sampling (SDS).
While SDS exhibits the capability to create impressive 3D assets, it is hindered
by its inherent maximum-likelihood-seeking essence, resulting in limited diver-
sity in generation outcomes. In this paper, we discover that the Denoise Diffusion
Implicit Models (DDIM) generation process (i.e. PF-ODE) can be succinctly ex-
pressed using an analogue of SDS loss. One step further, one can see SDS as
a generalized DDIM generation process. Following this insight, we show that
the noise sampling strategy in the noise addition stage significantly restricts the
diversity of generation results. To address this limitation, we present an inno-
vative noise sampling approach and introduce a novel text-to-3D method called
Flow Score Distillation (FSD). Our validation experiments across various text-to-
image Diffusion Models demonstrate that FSD substantially enhances generation
diversity and quality. Project page: https://flowscoredistillation.
github.io/

1 INTRODUCTION

In the realm of 3D content creation, a crucial step within the modern game and media industry
involves crafting intricate 3D assets. Recently, 3D generation has facilitated the creation of 3D assets
with ease. 3D generative models could be trained directly on certain representations (e.g. point
clouds (Achlioptas et al., 2018; Luo & Hu, 2021), voxel (Xie et al., 2018; Smith & Meger, 2017) and
mesh (Zhang et al., 2021)). However, despite the recent efforts of Objaverse (Deitke et al., 2023), 3D
data remains relatively scarce, especially when compared to the abundant 2D image data available
on the internet. This scarcity constrains the generative capabilities of models trained solely on 3D
datasets. Notably, the most prevailing text-to-3D approach is based on Score Distillation Sampling
(SDS), proposed by Dreamfusion (Poole et al., 2022) and SJC (Wang et al., 2023a). SDS effectively
tackles the scarcity of 3D data by leveraging pretrained 2D text-to-image Diffusion Models, without
directly training models on 3D datasets.

SDS is designed to optimize any representations (e.g. Neural Radiance Field (Mildenhall et al.,
2021; Müller et al., 2022; Wang et al., 2021), 3D Gaussian Splatting (Kerbl et al., 2023),
Mesh (Laine et al., 2020; Shen et al., 2021) or even 2D images) that could render 2D images through
probability density distillation (Oord et al., 2018) using the learned score functions from the Dif-
fusion Models. One of the main limitations of current SDS-based methods is that their distillation
objectives will maximize the likelihood of the image rendered from the 3D representations, which
leads to limited diversity. Despite several subsequent efforts (Wang et al., 2024; Zhu & Zhuang,
2023; Liang et al., 2023; Katzir et al., 2023; Huang et al., 2023; Tang et al., 2023; Wang et al.,
2023b; Armandpour et al., 2023) to enhance SDS, the maximum-likelihood-seeking essence of the
method remains unchanged. Notably, ProlificDreamer (Wang et al., 2024) introduces Variational
Score Distillation (VSD) and uses a fine-tuned Diffusion Model to model distribution on particles,
which could alleviate the maximum-likelihood-seeking issues. However, training costs could grow
linearly with the particle number of VSD. ESD (Wang et al., 2023b) points out that single-particle
VSD is equivalent to SDS, which remains rooted in the essence of maximum likelihood seeking.

In this paper, we present a fresh perspective on SDS by viewing it as a generalized DDIM (Song
et al., 2020a) generation process for 3D representations. Specifically, we discovered that the DDIM
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“A DSLR photo of a train engine 
made out of clay”

“A DSLR photo of a robot 
dinosaur”

“A DSLR photo of a peacock on 
a surfboard”

“A 20-sided die made out of glass”

“A 3D model of an old vintage car, photorealistic, 
8K, HD”

“A 3D model of Digital Wristwatch, 
photorealistic, 8K, HD”

“A 3D model of a gun made out of toy bricks”

Figure 1: Generation results of FSD and baseline method SDS. FSD uses pretrained text-to-
image Diffusion Models to generate realistic 3D models from text prompts. We improve the noise
sampling strategy upon SDS and achieve diverse generation results with high quality.

generation process (i.e. PF-ODE (Song et al., 2020b)) can be succinctly expressed using an ana-
logue of SDS loss. Surprisingly, by studying the difference between the analogue of SDS loss and
the original form of SDS loss, we find that the noise sampling strategy during the noise addition stage
appears to be the main cause that drives SDS toward mode-seeking behavior. SDS-based methods
typically use random noise sampled from a Gaussian distribution at each optimization step, follow-
ing the proposal of Dreamfusion (Poole et al., 2022) and SJC (Song et al., 2020b). However, the
variation in sampled noise can lead to varied optimization directions, which may harm the perfor-
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“A 3D model of an adorable 
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Figure 2: Methods overview of FSD. We propose Flow Score Distillation for text-to-3D generation
by lifting a pretrained Diffusion Model. FSD renders an image gθ(c) from the 3D representation
and adds noise ϵ(c) to the rendered image. To compute parameter updates according to Lθ

FSD, FSD
uses a frozen text-to-image Diffusion Model to predict the noise ϵ(c) added on image gθ(c). Similar
to SDS (Poole et al., 2022; Wang et al., 2023a), FSD computes Lθ

FSD by an image reconstruction loss
between the “clean image” x̂c

t = gθ(c) and “ground-truth image” x̂0 predicted by the pretrained
Diffusion Model. FSD further adopts timestep annealing schedule and noise sampling strategy.
Instead of sampling noise from Gaussian distribution at each step of the optimization like SDS,
we generate noise according to the deterministic noise function ϵ(c), which is determined at the
beginning of the optimization.

mance of SDS, as observed by ISM (Liang et al., 2023). As we will show in this work, PF-ODE can
be expressed by an analogue of SDS loss that uses a fixed noise throughout the generation process,
rather than randomly sampled noise, which is different from the original proposal of SDS (Poole
et al., 2022; Wang et al., 2023a). Based on this insight, we propose a novel noise sampling strategy
to align SDS with the DDIM generation process on 3D representations.

This paper aims to overcome the aforementioned diversity challenge of SDS. We will first reveal
an underlying connection between SDS and DDIM on 2D image generation. We will also show
that the noise sampling strategy could be the primary factor that leads to the restricted diversity.
Based on this insight, we will give our interpretation of SDS. From our novel viewpoint on SDS,
we propose a novel approach called Flow Score Distillation (FSD). FSD improves SDS by using a
carefully designed noise sampling strategy. We lift our observations on image generation with FSD
to 3D by proposing a view-dependent noise function ϵ(c). We conduct validation experiments across
various 2D Diffusion Models and demonstrate that FSD can achieve diverse generation outcomes
with high quality while introducing no extra training costs. Finally, we propose a 2 stage coarse to
fine generation pipeline for high quality text-to-3D generation to overcome multi-face problems. We
use pretrained text-to-muiltview-image diffusion model to generate the coarse shape and then refine
the details using pretrained text-to-image diffusion model. The generation results are presented in
Fig. 1. Overall, our contributions can be summarized as follows.

• We provide an in-depth analysis of SDS, an effective method in text-to-3D generation.
Specifically, the DDIM generation process (i.e. PF-ODE) can be succinctly expressed us-
ing an analogue of SDS loss. As a result, we can interpret SDS as a generalized DDIM
generation process on 3D representations where a fixed noise is added.

• Building upon our new insight into SDS, we introduce FSD as a cheap but effective solution
to tackle the diversity challenges arising from the maximum-likelihood-seeking nature of
SDS. We propose a deterministic world-map noise function to generate coarsely aligned
noise in 3D space. By applying a reasonable noise sampling strategy, FSD breaks free
from the mode-seeking nature of SDS-like methods.

• We propose a 2 stage coarse to fine pipeline to tackle multi-face problems. By incorporating
a multiview diffusion model that has rich shape prior in coarse stage and a image diffusion
model that has rich texture prior in refine stage, our methods can generate diverse and high
quality 3D objects.
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2 PRELIMINARIES AND RELATED WORKS

2.1 DIFFUSION MODELS

Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) are a family of
powerful generative models that are trained to gradually transform Gaussian noise to samples from a
target distribution p0. Their generation ability is further enhanced given datasets comprising billions
of image-text pairs (Changpinyo et al., 2021; Schuhmann et al., 2022; Sharma et al., 2018).

Assume the target distribution is p0 and condition y. Diffusion Models define a forward process
{xt}t∈[0,T ] starting from x0 ∼ p0(·|y), such that for any t ∈ [0, T ] the distribution of xt conditioned
on x0 satisfies:

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), x0 ∼ p0(·|y), (1)
where αt, σt ∈ R+ are functions of t, defined by the noise schedule of the Diffusion Model. And
the (noisy) distribution at timestep t is noted as pt.

In practice, a Diffusion Model is a neural network ϵϕ(xt|y, t) parameterized by ϕ and is trained by
minimizing the following score matching objective (Song et al., 2020a;b):

Lϕ
DMs =

1

2
Ex0∼p0(·|y),ϵ,t

[
wt||ϵϕ(xt|y, t)− ϵ||22

]
, (2)

where wt is a weighting function. Song et al. (2020b) proved that:

ϵϕ(xt|y, t) ≈ −σt∇x log pt(xt|y), (3)

if the Diffusion Model ϵϕ is trained to almost optimum. And the term ∇x log pt(xt|y) in the above
equation is also known as the score function.

2.2 DIFFUSION PF-ODE AND DDIM

To generate samples from Diffusion Models, there exist different methods among the Diffusion
Models family. Denoise Diffusion Implicit Models (DDIM) (Song et al., 2020a) designed a de-
terministic method for fast sampling from Diffusion Models. Later works (Salimans & Ho, 2022;
Karras et al., 2022; Lu et al., 2022) showed that the sampling algorithm of DDIM is a first-order dis-
cretization of the Probability Flow Ordinary Differential Equation (PF-ODE) (Song et al., 2020b).

Theoretically, Diffusion PF-ODE yields the same marginal distribution as the forward process of
Diffusion Models (Eq. 1) (Song et al., 2020b). We can write Diffusion PF-ODE (Karras et al., 2022;
Song et al., 2020b) (see detailed derivation in Appx. Sec. F.1) as:

d(xt/αt)

dt
=

d(σt/αt)

dt
(−σt∇x log pt(xt|y)) (4)

=
d(σt/αt)

dt
ϵϕ(xt|y, t), xT ∼ pT (xT |y). (5)

Notably, one can generate a sample x0 in the target distribution p0(x0|y) by following the PF-ODE
trajectory from t = T to t = 0, starting from xT ∼ pT (xT |y) = N (0, I).

2.3 SCORE DISTILLATION SAMPLING

Recently, DreamFusion (Poole et al., 2022) and SJC (Wang et al., 2023a) proposed Score Distilla-
tion Sampling (SDS) to generate 3D models by optimizing a differentiable 3D representation using
priors from text-to-image Diffusion Models. Follow-up works tried to improve upon SDS through
various aspects, e.g. coarse-to-fine training strategy (Lin et al., 2023; Wang et al., 2024; Chen et al.,
2023), disentangled 2D-3D priors (Chen et al., 2023; Ma et al., 2023; Wang et al., 2024) and refined
formulas (Zhu & Zhuang, 2023; Wang et al., 2024; Liang et al., 2023; Tang et al., 2023; Wang et al.,
2023b; Yu et al., 2023; Armandpour et al., 2023). Moreover, due to the lack of comprehensive 3D-
aware knowledge, multi-face Janus problem often arises when using SDS (Poole et al., 2022). To
mitigate this challenge, one can consider replacing the text-to-image Diffusion Models with Diffu-
sion Models designed for object novel view synthesis (Liu et al., 2023b; Long et al., 2023; Liu et al.,
2023c; Weng et al., 2023; Ye et al., 2023) or multi-view Diffusion Models (Shi et al., 2023). Such
an adaptation can alleviate the multi-face Janus problem encountered in 3D generation using SDS.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

SDS is first introduced by DreamFusion (Poole et al., 2022) and SJC (Wang et al., 2023a) to apply
image diffusion priors for 3D generation. SDS can optimize on any representations parameterized by
θ, which can render an image gθ(c), given camera parameter c. Basically, SDS defines a probability
density distillation (Oord et al., 2018) loss, denoted as Lθ

SDS, whose gradient writes as follows:

∇θL
θ
SDS =Ec,t

[
wt

σt

αt
∇θDKL (pt(xt|x0 = gθ(c))||pt(xt|y))

]
(6)

=Eϵ,c,t

[
wt (ϵϕ(xt|y, t)− ϵ)

∂gθ(c)

∂θ

]
, (7)

where ϵϕ is a text-to-image Diffusion Model and y is the generation condition, e.g. text prompts.
SDS needs to go through an optimization process on the 3D representation parameter θ to generate
a single 3D model to generate 3D content.

Even though SDS can produce high-fidelity objects, there has been ongoing debate about the under-
lying theory. Recent works (Shi et al., 2023; Liang et al., 2023) also show that Lθ

SDS is equivalent to
a reconstruction loss:

Lθ
SDS = Eϵ,c,t

[
1

2
wt

αt

σt
||x̂c

t − x̂gt
t ||22

]
, (8)

where x̂c
t = gθ(c) and x̂gt

t =
xt−σtϵϕ(xt|y,t)

αt
is the one-step “estimated ground-truth image” from

Diffusion Models (i.e. sample-prediction), whose gradient is detached. Some other works (Yu et al.,
2023; Katzir et al., 2023; Tang et al., 2023) also tried to explain SDS by analyzing the function of
each component of SDS loss. In this paper, we will provide another interpretation of SDS: it can be
viewed as a generalized DDIM generation process.

Another simple yet effective technique is to apply timestep annealing trick (Huang et al., 2023;
Wang et al., 2024; Zhu & Zhuang, 2023), which can improve generation quality significantly. This
technique is intuitive because reducing added noise during the latter stages of optimization, enabling
models to discern finer details and iteratively improve upon them. Let us denote the time in the SDS
optimization process as τ and the term that was taken expectation in the definition of SDS (Eq. 8)
as Lθ

sds(ϵ, c, t) =
1
2
αt

σt
||x̂c

t − x̂gt
t ||22. We use lowercase letters footnote for Lθ

sds to distinguish it from
Eq. 8. Finally, the SDS optimization process with timestep annealing can be written as:

dθ

dτ
= wtEϵ,c

[
∇θL

θ
sds(ϵ, c, t = t(τ))

]
, (9)

where t(τ) is a monotonically decreasing function of τ .

3 FLOW SCORE DISTILLATION FOR 2D GENERATION

In this section, we only consider generation on 2D using SDS as SDS loss can also be applied to
image representations. In this case, θ = gθ(c) and ∂gθ(c)

∂θ = I . Then Lθ
sds becomes the following

form:
∇θL

θ
sds-2d(ϵ, t) = ϵϕ(xt|y, t)− ϵ. (10)

We will reveal a simple but profound connection between SDS and DDIM and give our interpretation
of SDS in this section.

3.1 SIMPLIFIED FORMULATION OF DIFFUSION PF-ODE

We first reveal that PF-ODE (Eq. 5) can be formulated by an analogue of SDS (Eq. 10) in this
section. We first define

xt = αtx̂
c
t + σtϵ̃, (11)

where ϵ̃ is a constant for each ODE trajectory. Notice that when t = T , the initial condition of the
ODE gives ϵ̃ = 0 · x̂c

t + 1 · ϵ̃ = xT ∼ N (0, I). Intuitively, ϵ̃ can be viewed as the noise added to
x̂c
t, and x̂c

t as the clean image at timestep t. So we will also refer to ϵ̃ as the initial noise apart from
the added noise in this paper. It is noteworthy that the concept of the clean image x̂c

t =
xt−σtϵ̃

αt
is

different from the aforementioned estimated ground-truth image x̂gt
t =

xt−σtϵϕ(xt|y,t)
αt

. By applying
“change-of-variable” trick and change the variable of the Diffusion PF-ODE from xt to x̂c

t, we have:

5
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SDS NFSD VSD FSD (ours) DDIM

Figure 3: Generation results of different methods on image space with the same random seeds.
FSD can generate images that are very similar to images generated by DDIM given the same initial
noise (implied by Prop. 1). However, FSD can also be used for 3D generation, a task for which
DDIM is not suitable. See experiment details in Appx. Sec. E.2.

Proposition 1 (An equivalent form of Diffusion PF-ODE). Diffusion PF-ODE (Eq. 5) can be equiv-
alently formulated by an analogue of SDS loss (Eq. 10):

dx̂c
t

dt
=

d(σt/αt)

dt
[ϵϕ(xt|t, y)− ϵ̃] (12)

= w′
t∇θL

θ
sds-2d(ϵ̃, t), (13)

where xt = αtx̂
c
t + σtϵ̃, θ = x̂c

t and w′
t =

d(σt/αt)
dt is a weighting scalar.

Please refer to Appx. Sec. F.3 for detailed derivation of this proposition. We also visualize the
“change-of-variable” in Appx. Sec. G. Remarkably, in the context of image generation, we observe
that the evolution direction of PF-ODE aligns precisely with the gradient of the SDS loss (Eq. 10)
with fixed noise.

3.2 FLOW SCORE DISTILLATION ON 2D

Even though we found the evolution direction of Diffusion PF-ODE (Eq. 12) is very samilar to
the SDS loss, there exist some notable differences compared to the original definition of SDS loss
(Eq. 6). Specifically, i) the timestep in a DDIM process is monotonically decreasing, aligning with
the timestep annealing technique (Wang et al., 2024; Zhu & Zhuang, 2023; Huang et al., 2023).
But SDS uses randomly sampled timestep. ii) And the change-of-variable trick (Eq. 11) we used
during our simplification process implies we should also add the same noise ϵ̃ throughout the SDS
generation process, to align it with DDIM. In contrast, the original SDS uses random noise.

As we will demonstrate in subsequent sections and through our experiments, the second difference
between DDIM and SDS significantly influences generation diversity. Therefore, we term our ap-
proach that combines timestep annealing and consistent noise sampling strategy throughout the
generation process as Flow Score Distillation (FSD) to differ it from SDS. We visualize image
generation results using several SDS-like methods, FSD and DDIM in Fig. 3 to demonstrate the
differences between SDS-based methods and FSD. We summary the difference between FSD, SDS,
and DDIM when applied to 2D images in the following Tab. 1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

horizontal flip

Figure 4: Impact of initial noise ϵ̃. Experiments show that the local textures of noise added during
FSD optimization are highly correlated with the textures of the final image. We shuffle the patches
of initial noise ϵ̃ used by FSD and observe that the textures of generated images are shuffled in the
same way. This property inspired our design of world-map noise function ϵ(c) for 3D generation
in this work. In this figure, the parts framed by dotted lines of the same color share the same initial
noise ϵ̃ patches.

3.3 ANALYSIS OF THE NOISE SAMPLING STRATEGY

Our empirical investigation reveals that the generation results produced by SDS exhibit an undesir-
able tendency toward over-smoothness and lack of diversity. Remarkably, even with the timestep
annealing technique, this issue persists. This tendency originates from the maximum-likelihood-
seeking nature implied by its definition (Eq. 6) where it models the current distribution using a
Dirichlet function centered at gθ(c). As a result, the generation results of SDS will be centered
around a few modes (Poole et al., 2022), i.e. a few maximum likelihood points on the smoothed dis-
tribution pt. In contrast, not only does FSD yield diverse outcomes, but it can also generate highly
detailed samples. This can be attributed to that FSD is more aligned with a DDIM process, which
can generate samples from exactly the target distribution p0. So we conclude that the noise sampling
strategy can affect the generation diversity greatly.

4 LIFTING FLOW SCORE DISTILLATION TO 3D

As highlighted in Sec. 3.3, we have identified that the noise sampling strategy might contribute to the
decline of the diversity of SDS significantly. Building upon this insight, we follow the discussion
of FSD in Sec. 3.2 and propose to use deterministic noise generation strategy. We can directly
generalize FSD to arbitrary 3D representations gθ(c):

∇θL
θ
FSD =Ec

[
∇θL

θ
sds(ϵ = ϵ(c), c, t = t(τ))

]
(14)

=Ec

[
(ϵϕ(xt|y, t(τ))− ϵ(c))

∂gθ(c)

∂θ

]
, (15)

where xt = αtgθ(c) + σtϵ(c), ϵ(c) is a deterministic noise function generated at the beginning of
the optimization and t(τ) is a monotonically decreasing timestep schedule function to optimization
time τ . Compared with original SDS loss, we do not take expectation on timestep t and noise ϵ since
t is determined by t(τ) and noise function is deterministic. With this deterministicity requirement,
fixed noise is always added to the same camera view, aligning with a DDIM process. We do not
specify the form of the deterministic noise function ϵ(c) in FSD. However, we propose some rules
for designing ϵ(c) based on the actual generation effect in Appx. Sec. I, according to our practical
experiences. We will also introduce the world-map noise function as ϵ(c) for our experiments of 3D
generation with FSD in this paper.

Noise Sampling Optimizer Timestep Schedule

SDS random Adam random
FSD (ours) fixed Adam annealing

DDIM fixed first-order discretization annealing

Table 1: Comparison of different methods for 2D image generation.
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Alternatively, FSD loss can be seen as applying DDIM generation process on 3D representations
through Jacobian of a differentiable renderer. This viewpoint shares some similarities to the interpre-
tation of SDS from SJC (Wang et al., 2023a), who consider SDS as back-propagating the score (Song
et al., 2020b) of Diffusion Models through Jocabian of the renderer. However, our interpretation of-
fers more precise explanation on the relation between SDS and DDIM process (Prop. 1), in contrast
to approximated 3D score function interpretation in SJC. Meanwhile, ϵ(c) is a deterministic noise
function that generates correlated noise between views, which aligns with the prior that the nearby
views are correlated. The design of FSD ensures the optimization directions are consistent, partic-
ularly when similar cs are sampled. As the ϵ(c)s are similar, the generated ground-truth images
should be consistent as well. Notably, recent works (Ge et al., 2023; Qiu et al., 2023; Chang et al.,
2024) on video generation also find using designed video noise prior can improve the capabilities of
Video Diffusion Models.

4.1 DESIGNING ϵ̃.

4.1.1 FAILURE OF A VANILLA DESIGN OF ϵ̃

A vanilla design of ϵ(c) can be ϵ(c) = ϵ, which is a constant function. However, according to
our experiments on text-to-3D generation, such a design can lead to poor geometry of the generated
samples. Typically, holes on the surfaces are observed (see Appx. Sec. B.3). We attribute this effect
to the uneven convergence speed of FSD in 3D space caused by the constant noise function. Our
experiments on 2D show that the local textures of noise added during FSD optimization are highly
correlated with the local textures of the final image (Demonstrated in Fig. 4). And in text-to-3D
generation with FSD, the generated ground-truth images have more consistent textures at the center
point than other points in 3D space, due to the sampling strategy of camera view c. As a result, the
convergence speed at the center point is much higher than at other points, leading to holes on the
surfaces. Flaws are also observed in Video Diffusion Models that adopt fixed noise prior, due to
similar reasons, which is known as the textures sticking problem (Chang et al., 2024).

4.1.2 WORLD-MAP NOISE FUNCTION ϵ̃.

Even through directly apply constant noise could result in degraded geometry, it’s no-trivial to de-
sign a view dependent noise function due to the special property of Gaussian noise. To avoid relating
specific noise textures to specific points in 3D space throughout the generation process but still aug-
ment the consistency of added noise between camera views, we propose world-map noise function
ϵ(c) in this paper (methods visualized in Fig. 2), which aligns noise textures coarsely in 3D space
while avoiding converging too fast at a specific point in 3D space. Furthermore, we show that our
methods can be seen as aligning noise on a sphere in Appx. Sec. I.

Specifically, we first compute a foreground mask M(r) = 1α(r)>α0
for each ray r, where 0 ≤ α(r),

α0 ≤ 1 is the opacity of pixel r. We add the same noise for the background and query a noise patch
from the noise world-map ϵp of size D × H ×W for the foreground. Let us denote the camera
parameters sampled on the sphere as c = (FOV, rcam, θcam, ϕcam). Both ϵb and ϵp are sampled from
N (0, I) at the beginning of the optimization. The world-map noise function ϵ(c) is:

ϵ(c) = (1−M)⊙ ϵb +M ⊙W(W ϕcam
2π ,H θcam

π )(ϵp), (16)

where W(W ϕcam
2π ,H θcam

π )(ϵp) operation refers to the noise patch of size D×Hhidden×Whidden centered

at position (W θcam
2π , H ϕcam

π ) on the noise worldmap ϵp. We visualize this noise map in the accompa-
nying video in project page. We also provide a pseudocode of our algorithm in Appx. Sec. H.

4.2 COARSE TO FINE PIPELINE

SDS like methods usually suffers from multi-face problems. Even though our methods provides
consistent guidance for the same camera view, FSD may still suffer from multi-face problems since
the noise does not provide camera position related information. We tackle this issue by using text-to-
multiview-image diffusion model (Shi et al., 2023) that is trained on 3D dataset (Deitke et al., 2023).
Specifically, we distill MVDream with FSD in the first stage to generate a coarse shape. Even though
the generated shapes are usually free of multi-face problems, the colors of the objects are usually
unnatural. This is mainly because MVDream usually generates multi-view images with unnatural

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ISM

(∼ 40 min)

“A DSLR photo of a football helmet”

FSD (ours)

(∼ 2 h)
VSD

(∼ 1 day)

FSD

(ours)

SDS

“A zoomed out DSLR photo of an origami crane”

Figure 5: Comparisons to baseline on text-to-3D Generaion. Our method can generate diverse 3D
models with realistic and detailed appearances. We compare our method with the baseline including
VSD (ProlificDreamer) (Wang et al., 2024) and ISM (LucidDreamer) (Liang et al., 2023). We set
particle number to 4 for VSD. We use 4 different random seeds for other methods. Our method can
generate high quality and detailed objects in reasonable time.

colors even with DDIM. We propose to further refine the generated shape with FSD distilling Stable
Diffusion in the second stage to refine the color and details.

4.3 COMPARE FSD WITH SDS ON 3D

Apart from timestep annealing trick (Huang et al., 2023; Zhu & Zhuang, 2023; Wang et al., 2024),
FSD is different from SDS in terms of noise sampling strategy as well. In case when the same
camera view cs are sampled, FSD yields consistent one-step estimated ground-truth images since
ϵ(c) is the same. Even when different camera views cs are sampled, the ground-truth images are
still coarsely aligned. In contrast, one can see SDS as using an uncorrelated noise prior ϵ(c) on
c, which always yields ground-truth images that are inconsistent and have notable differences. We
also discuss the relation between our method with recent works (Wu et al., 2024; Gu et al., 2023) in
Appx. Sec. D.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

To control for variables, our quantitative experiments are conducted with the threestudio code-
base (Guo et al., 2023). We apply timestep annealing for all baseline methods. We use official
implementations of baseline methods in qualitative comparison. We use random seeds from 0 to
3 for each prompt by default to demonstrate the diversity of generated samples. Please refer to
Appx. Sec. E.1 for more implementation details.

9
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5.2 EVALUATION ON TEXT-TO-3D GENERATION

5.2.1 QUALITATIVE COMPARISON.

We visualize the experiment results of SDS (Shi et al., 2023; Wang et al., 2023a), VSD (Wang
et al., 2024), ISM (Liang et al., 2023) and our FSD in Fig 5. VSD incorporated LoRA finetuning in
the generation process and replace the random noise term in SDS with prediction from the LoRA
network. ISM Incorporated DDIM inversion noising into their optimization to enhance guidance
consistency. Compared with baseline methods, our FSD can generate diverse and detailed objects
in reasonable time. We also provide additional qualitative comparison in Appx. Sec. A.1.

5.2.2 QUANTITATIVE RESULTS.

3D-FID ↓
SDS (Poole et al., 2022) 88.06
ISM (Liang et al., 2023) 86.00
VSD (Wang et al., 2024) 83.02

FSD (ours) 78.75

Table 2: We compare the generation
quality and diversity in this experiment.

3D-FID We compute the FID score between the rendered
images of the 3D objects and the images generated by
DDIM following VSD (Wang et al., 2024). We collected
5,000 images per prompt from Stable Diffusion for each
of the 10 randomly selected prompts, forming a real im-
age set of 50,000 images in total. Using various score
distillation methods, we generated 3D models with 10
distinct seeds for each method. Each 3D object was ren-
dered from 60 different angles to reduce the variance of
FID metric, producing a fake image set of 6,000 images.
The results are shown in Tab. 2. We provide additional
measurement on diversity in Appx. Sec. C.

5.3 ABLATION STUDY

We provide additional ablation study on our proposed coarse-to-fine pipeline, noise function and
hyper parameters for noise function in Appx. Sec. B.

6 CONCLUSION

In this work, we systematically study the problem of text-to-3D generation. We first review the
theorems of SDS and reveal a simple but profound underlying connection between DDIM and SDS.
Following this insight, we propose FSD to tackle the diversity degradation challenge. By using a
consistent noise sampling schedule that aligns noise coarsely in 3D space, FSD breaks free from the
maximum-likelihood-seeking nature of SDS and could generate diverse results with high quality.
Additional, our methods incorporate a multiview diffusion model that has rich shape prior in coarse
stage and a image diffusion model that has rich texture prior in refine stage, our methods can generate
diverse and high quality 3D objects.

Limitations and future works. Although FSD could improve the diversity and quality of 3D gen-
eration, we found that it is still difficult to generate 3D models as diverse as the images generated
through DDIM generation process. We believe this mainly originates from our direct generalization
from 2D DDIM to 3D. The deterministicity requirement on noise function only make sure the up-
date is aligned with DDIM process when only a single camera view is considered. It can be hard
to guarantee that the DDIM trajectory is followed exactly, especially when the updates from other
camera views are considered. Second, even through our proposed noise function provided more
aligned guidance across camera views, hindered by the special property of Gaussian noise, we only
find a design of worldmap noise map function that only aligns noise on a sphere independent of
object surface. This misalignment could potently hinder the performance of FSD and may not work
for objects with complex geometry. We do not specify the noise function ϵ(c) in the general form
of FSD (Eq. 15), and better designs of ϵ(c) may exist. Third, like other score distillation methods,
our method can still suffer from multi-face problems. Seeking help from multi-view image diffusion
models that are trained on limited amount of 3D data, our 2 stage pipeline can generate shapes with
high success rate. But our 2 stage pipeline may not work for complex prompts due to the limited
ability of the multi-view diffusion model. Lastly, like other score distillation methods, the generation
of our methods may take several hours.
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APPENDIX

A ADDITIONAL RESULTS

A.1 ADDITIONAL COMPARISON WITH BASELINES

VSD

“A zoomed out DSLR photo of a cake in the shape of a train”

FSD (ours)

“An amigurumi bulldozer”

Figure 6: Comparison with VSD. We compare with VSD (Wang et al., 2024). We set particle
number to 4 for VSD, we use 4 random seeds for our FSD.

We show qualitative results in this section, we compare our FSD with VSD (Wang et al., 2024),
ISM (Liang et al., 2023) and SDS (Poole et al., 2022) in this experiment. We use official code
implementation of VSD (Wang et al., 2024), ISM (Liang et al., 2023) in this comparison (Fig. 6
and Fig. 7). For SDS (Poole et al., 2022), we use the code implementation of MVDream (Shi et al.,
2023) (Fig. 8 and Fig. 9). Our methods can generation diverse and high quality results in reasonable
time (∼2 h on A100) compared with 4 particle VSD (∼ 1 day on A100). Our methods can generate
3D objects with higher quality and diversity compared with ISM and SDS.
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ISM

“A DSLR photo of a cat wearing armor, high resolution”

FSD (ours)

“Viking axe, fantasy, weapon, blender, 8k, HDR”

Figure 7: Comparison with VSD. We compare with ISM (Liang et al., 2023). We use 4 random
seeds for comparison.

A.2 IMAGE TO 3D GENERATION

We use zero123-xl (Liu et al., 2023a) in this experiment. By applying our worldmap noising, the
backview of object are more diverse and can form finer details. We visualize the frontview and
generated results with SDS and our FSD in Fig. 10.
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FSD

(ours)

SDS

“A bag of gold coins, 3D model, photorealistic, 8K, HD”

FSD

(ours)

SDS

“A typewriter made out of vegetables”

FSD

(ours)

SDS

“A DSLR photo of a cake covered in colorful frosting with a slice being taken out, 3D model”

seed 0 seed 1 seed 2 seed 3

FSD

(ours)

SDS

“A 3D model of a catgirl with long hair, cat ears, and a mischievous smile in an anime style”

Figure 8: Comparison with SDS. We compare with SDS (Poole et al., 2022). We use 4 random
seeds for comparison.

A.3 ADDITIONAL 2D EXPERIMENTS ON NOISE PRIOR

We provided additional generation results of FSD on 2D image space with shuffled or flipped initial
noise in 11. The patches framed with the same color in the same row share the same initial noise
patches ϵ̃.
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FSD

(ours)

SDS

“A brightly colored mushroom growing on a log”

FSD

(ours)

SDS

“A 3D model of an ardorable cottage with a thatched roof, photorealistic, 8K, HD”

FSD

(ours)

SDS

“A highly detailed 3D model of sand castle”

seed 0 seed 1 seed 2 seed 3

FSD

(ours)

SDS

“A 3D model of a baby dragon drinking boba”

Figure 9: Comparison with SDS. We compare with SDS (Poole et al., 2022). We use 4 random
seeds for comparison.
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FSD

(ours)

SDS

Input Front-view

Figure 10: Image to 3D Generation. We use Zero123-xl in this experiment. We compare our
methods FSD with SDS. Our method can generate diverse backview of the object.

Figure 11: Impact of initial noise ϵ̃. We provide additional 2D experiment results generated by
FSD show the impact of the initial noise ϵ̃. The patches framed with the same color in the same row
share the same initial noise patches.

B ADDITIONAL ABLATIONS

B.1 ABLATION ON PROPOSED PIPELINE

We propose to use a 2 stage pipeline to generate 3D objects with FSD. We use text-to-multiview-
image diffusion model MVDream in the first stage to generate coarse shape to avoid multi-face
problems. We use text-to-image diffusion model Stable Diffusion to refine the generated colors and
details in the second stage. We visualize the results in Fig. 12.
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(a) MVDream (Shi et al., 2023)

(b) +Woldmap Noising

(c) +Stable Diffusion Refinement (stage 2)

Figure 12: Ablation on our proposed pipline. (a) MVDream applies SDS (Poole et al., 2022)
to generate 3D shape, but results are similar with different random seeds. (b) Adding Worldmap
noise make the results more diverse, but due to limited abality of teacher diffusion model, the 3D
objects are lack of details and colors are unnatural. (c) With additional refinement stage with Stable
Diffusion, the objects form more details. The prompt for this figure is “A 3D model of a bulldozer
made out of toy bricks”.

B.2 NOISE INTERPOLATION

1 − 𝛼𝝐0 + 𝛼𝝐1

1 − 𝛼𝝐2 + 𝛼𝝐3

𝛼 = 0 𝛼 = 0.2

Figure 13: Noise interpolation. We show that initial noise can control generation results in this
figure. The two rows correspond to 2 different noise main components ϵ0 and ϵ2. We show the
results of the coarse stage in our pipeline. The prompt for this figure is “A baby dragon drinking
boba”.

Since the initial noise can be viewed as the identity of the generated object, we show that initial
noise can control the generation results in this experiment. Starting from two different initial noise
ϵ0 and ϵ2, the generated results are very different. While gradually blending small amount of new
noise component into the initial noises, the generated results remain mostly unchanged.
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Vanilla Constant Noise Function 𝝐(𝒄) World-map Noise Function 𝝐(𝒄) (proposed)

Figure 14: Compare world-map noise function ϵ(c) with a vanilla design of constant function
ϵ. We visualize the rendered images and depth maps for the two noise methods. The vanilla design
of noise function ϵ can easily lead to holes on the surfaces (framed in red), even when the RGB
images seem plausible. In contrast, no obvious flaws are observed in the results of FSD with the
world-map noise function.

B.3 ABLATION ON NOISE FUNCTION

We also provide an additional comparison between the vanilla constant noise function and the world-
map noise function in Fig. 14. We find the constant noise function may harm the geometry of the
generation results.

B.4 ABLATIONS ON HYPER PARAMETERS

We use a parameter Θ to control the noise world-map’s size (H and W ). H and W are determined
by Θ according to H = Hhidden

π
Θ and W = Whidden

2π
Θ . We visualize the results corresponding to

different Θs in Fig. 15.

C ADDITIONAL QUANTITATIVE RESULTS

We compute several metrics for 3D generation results with SDS (Poole et al., 2022; Wang et al.,
2023a) and FSD. When using stable diffusion (Rombach et al., 2022) as backbone, we use 16
prompts and 4 random seeds for each prompt (Tab. 3). When using MVDream (Shi et al., 2023)
as backbone, we also use 16 prompts and 4 random seeds for each prompt (Tab. 4).

Table 3: stable diffusion (Rombach et al., 2022) as backbone

Method 3D-CLIP (↑) 3D-IS (↑) CROSS-FID (↑)
DDIM Images 33.72± 1.83 1.68± 0.55 -

SDS 32.57± 1.43 1.58± 0.47 106.5± 58.3
FSD (ours) 32.72± 1.56 1.78± 0.49 141.8± 57.9

Table 4: MVDream (Shi et al., 2023) as backbone

Method 3D-CLIP (↑) 3D-IS (↑) CROSS-FID (↑)
DDIM Images 34.64± 2.56 2.02± 0.47 -

SDS 30.93± 3.40 1.77± 0.37 86.6± 33.4
FSD (ours) 30.12± 3.07 2.13± 0.35 174.8± 44.5
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Θ = 120◦ Θ = 180◦ Θ = 240◦ Θ = 300◦ Θ = 360◦

Figure 15: Ablation on other hyperparameters in ϵ(c). We use a parameter Θ to control the size
of noise world map (H and W ) in ϵ(c). When Θ is larger, the “radius r+” (Eq. 29 and Eq. 30) of
the noise world map is smaller and FSD trends to generate smaller 3D models. In practice, we found
FSD is prone to the parameter Θ.

3D-CLIP We compute CLIP score (Hessel et al., 2021; Radford et al., 2021) using ViT-B/32 to
measure the semantic similarity between the renderings of the generated 3D object and the input
text prompt. We sample 24 views for each prompt and each seed when computing CLIP score.

3D-IS We compute IS score (Salimans et al., 2016) to measure both the image quality and diversity.
We first compute the IS scores of sampled views for each prompt and then average the IS scores
across prompts.

CROSS-FID score To directly measure the diversity of generation results, it is natural to measure
the inception distance between different generated samples. We first sample 24 views for each
prompt and each seed. Then we separate the images corresponding to random seeds 0, 1 and 2, 3
into two sets of images. We compute FID (Heusel et al., 2017) of the two sets of images and average
the FID score across prompts. We term this score as CROSS-FID score since it is different from the
standard way of using FID to evaluate GANs (Heusel et al., 2017) and 3D-FID in Sec. 5.2.2.

D DISCUSSIONS

Difference with Consistent3D Recent work Consistent3D (Wu et al., 2024) also applied fixed noise
when conducting SDS-like generation. In Consistent3D, they follow the idea of Consistent Train-
ing (Song et al., 2023) and use the rendered image perturbed with fixed noise to approximate the
starting point of the deterministic flow. In our method, for the same camera view, we also add fixed
noise to the rendered image, but the noised image is used to simulate a variable in the middle of a
PF-ODE trajectory, which is different from Consistent3D. Our FSD loss is also different from the
CDS loss in Consistent3D, even when our view-dependent noise function gives the same noise for
all camera views, implying an essential difference between our method and Consistent3D.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Implementation details on 2D experiments with FSD.

Methods Name SDS NFSD VSD FSD(ours) DDIM

Iteration Num 500 500 500 500 50
CFG 100 7.5 7.5 7.5 7.5
Learning Rate 2e-2 2e-2 2e-2 3e-3 -
Optimizer Adam Adam Adam Adam -
Timestep Annealing linear linear linear linear -

Connection to Signal-ODE Our reformulated ODE (Eq. 12) is equivalent to the Signal-ODE pre-
sented in the concurrent and independent work BOOT (Gu et al., 2023), which aims to distill a
fast image generator. When the diffusion model is changed to sample prediction in Eq. 12, our
reformulated PF-ODE is the same as the Signal-ODE in BOOT. In BOOT, they let the student im-
age generation model predict the clean variables x̂c

t on the ODE trajectory, while our method uses
images rendered from 3D representation θ to model the clean variables x̂c

t on the ODE trajectory.

E IMPLEMENTATION DETAILS

E.1 3D EXPERIMENTS USING FSD

The backbone Diffusion Model for Fig. 1 in the main text is MVDream (Shi et al., 2023). The
configuration for this figure is the same as Fig. 7 in the main text.

We use sqrt-annealing proposed by HiFA (Zhu & Zhuang, 2023) for 3D experiments in this work.
We use the same CFG (Ho & Salimans, 2022) scale for SDS (Shi et al., 2023; Wang et al., 2023a)
and FSD. We follow the default setting of threestudio (Guo et al., 2023) code base for other hyper-
parameters. We reimplemented ISM (Liang et al., 2023) in threestudio with the default parameter
setting in ISM. We use the same number of iterations in 3D experiments. We mainly conduct our ex-
periments using NeRF representation (Müller et al., 2022) since SDS-like methods are not sensitive
to the form of 3D representations.

E.2 2D EXPERIMENTS USING FSD

Here we describe the details of the experiments on 2D images with FSD in the main text. For Fig. 3
in the main text, we show the implementation details in Tab. 5. Below, we provide the loss functions
for convenient reference.

Let denote the prediction of Diffusion Models as ϵty = ϵϕ(xt|y, t) and c the classifier-free-guidance
(CFG) (Ho & Salimans, 2022) scale. Then

∇θL
θ
SDS = Eϵ,c,t

[(
c · (ϵty − ϵt∅) + (ϵt∅ − ϵ)

) ∂gθ(c)
∂θ

]
(17)

is the loss function of SDS (Poole et al., 2022; Wang et al., 2023a), where ∅ is the empty prompt.

∇θL
θ
NFSD = Eϵ,c,t

[(
c · (ϵty − ϵt∅) + (ϵt∅ − ϵtyneg

)
) ∂gθ(c)

∂θ

]
(18)

is the loss function of NFSD (Katzir et al., 2023), where yneg is a text negative prompt.

∇θL
θ
VSD = Eϵ,c,t

[(
c · (ϵty − ϵt∅) + (ϵt∅ − ϵtlora)

) ∂gθ(c)
∂θ

]
(19)

is the loss function of VSD (Wang et al., 2024), where ϵtlora the Diffusion Model fine-tuned by
LoRA (Hu et al., 2021).

∇θL
θ
FSD = Ec,t

[(
c · (ϵty − ϵt∅) + (ϵt∅ − ϵ(c))

) ∂gθ(c)
∂θ

]
(20)
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is the loss function of FSD. Additionally, xt = αtgθ(c) + σtϵ(c) for FSD.

Our re-implementation of LNFSD is slightly different from the original (Katzir et al., 2023) design
of NFSD by ignoring the condition when t < 200, to keep the formulation simple. In this way, we
find ϵtlora used in VSD (Wang et al., 2024) may work in a similar way as ϵtyneg

in NFSD (Katzir et al.,
2023). As a result, single-particle VSD may not be able to generate diverse samples since it is still
mode-seeking, aligning with the observation of ESD (Wang et al., 2023b). But we do not conduct
further investigations which are out of the scope of our work.

F THEORY OF FLOW SCORE DISTILLATION

We will provide some additional preliminaries and proof of Proposition 1 in the main text in this
section.

F.1 DIFFUSION PF-ODE

The Diffusion PF-ODE (Song et al., 2020b) can be written in the following form:

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log pt(xt|y), xT ∼ pT (xT ), (21)

where f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2d logαt

dt σ2
t , according to DPM-solver (Lu et al., 2022). To

get Eq. (5) in the main text, we take the derivative of xt/αt:

d(xt/αt)

dt
=

1

αt

dxt

dt
− xt

α2
t

dαt

dt

=
1

αt

dxt

dt
− xt

αt
f(t)

=− g2(t)

2αt
∇x log pt(xt|y)

=−
dσ2

t

dt − 2d logαt

dt σ2
t

2αt
∇x log pt(xt|y)

=− (
1

αt

dσt

dt
− σt

α2
t

dαt

dt
)σt∇x log pt(xt|y)

=
d(σt/αt)

dt
(−σt∇x log pt(xt|y))

=
d(σt/αt)

dt
ϵϕ(xt|t, y).

(22)

This equation is the scaled version of Diffusion PF-ODE under the notation of Karras et al. (2022).

F.2 DDIM SAMPLING

We derive the DDIM (Song et al., 2020a) sampling algorithm in this section. According to the first
order discretization of Eq. 22:

xt

αt
− xs

αs
= (

σt

αt
− σs

αs
)ϵϕ(xs|s, y), (23)

the sampling algorithm of DDIM (Song et al., 2020a) can be derived as the following equation:

xt = αt(
xs − σsϵϕ(xs|y, s)

αs
) + σtϵϕ(xs|y, s). (24)

F.3 PROOF OF PROPOSITION 1

We present a detailed derivation of Proposition 1 in the main text in this section. We define

xt = αtx̂
c
t + σtϵ̃, (25)
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for the reverse diffusion process and then we can apply change-of-variable on xt. Finally

dx̂c
t

dt
=
dxt−σtϵ̃

αt

dt

=
d(xt/αt)

dt
− d(σt/αt)

dt
ϵ̃

=
d(σt/αt)

dt
(ϵϕ(xt|t, y)− ϵ̃).

We also derive first-order discretization of FSD for 2D generation from Eq. 23:

x̂c
t − x̂o

s = (
σt

αt
− σs

αs
)(ϵϕ(xs|s, y)− ϵ̃), (26)

G VISUALIZE THE CHANGE-OF-VARIABLE

Even though we show FSD can generate similar images When using the same initial noise
in the main text, there are notable differences between the generated images since FSD uses
Adam (Kingma & Ba, 2014) to update parameters while DDIM uses first-order discretization of
Diffusion PF-ODE. We show generation results of FSD that use first-order discretization in Fig. 16.

We also visualize the “change-of-variable” trick we used in the derivation of the main theorem. We
define our new variable: the clean image x̂c

t according to the following equation:

xt = αtx̂
c
t + σtϵ̃. (27)

Notably, there is also another similar but different concept: the one-step estimated ground-truth
image x̂gt

t , defined by:

xt = αtx̂
gt
t + σtϵϕ(xt|y, t). (28)

We visualize the trajectory of xt, x̂c
t and x̂gt

t in the same DDIM generation process in Fig. 17. As
x̂gt
t − x̂c

t =
σt

αt
(ϵ̃−ϵϕ(xt|y, t)) ∝ ∇θL

θ
FSD implies, we can see DDIM as a process that tries to align

clean image with the one-step estimated ground-truth image generated by the Diffusion Model. We
also visualize xt, x̂c

t and x̂gt
t of FSD and SDS in Fig. 18 and Fig. 19, respecitively.

H ALGORITHM FOR FLOW SCORE DISTILLATION

We provide a summarized algorithm for Flow Score Distillation in Algo. 1. Blender factor β is set
to 1 in all our experiments on FSD.

Algorithm 1 Flow Score Distillation
1: Input: Text-to-image Diffusion Model ϵϕ and prompt y. Learning rate η for parameters of the

3D representation. A monotonically decreasing function t(τ). Blending factor β.
2: Compute ϵb ∼ N (0, I) and ϵp ∼ N (0, I).
3: for τ ∈ [0, τend] do
4: Randomly sample camera parameter c.
5: Render image gθ(c) and opacity mask M from 3D representation θ.
6: Randomly sample ϵ ∼ N (0, I).
7: ϵ(c)←

√
β ·

(
(1−M)⊙ ϵb +M ⊙W(W ϕcam

2π ,H θcam
π )(ϵp)

)
+
√
1− β · ϵ.

8: θ ← θ − η · (ϵϕ(xt|y, t)− ϵ(c))∂gθ(c)
∂θ

9: end for
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(a) FSD (first-order discretization) (b) DDIM (Song et al., 2020a)

Figure 16: Generation results of FSD and DDIM. We apply FSD on 2D image generation using
first-order discretization Eq. 26 instead of Adam (Kingma & Ba, 2014). In this case, we find FSD is
the same as DDIM (Song et al., 2020a) except some negligible differences, which may come from
the differences on handling initial conditions.
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(a) noisy image xt

(b) clean image x̂c
t

(c) one-step estimated ground-truth image x̂gt
t

Figure 17: Visualization of xt, x̂c
t and x̂gt

t in DDIM generation process. x̂c
t is different from x̂gt

t .
Moreover, one can see DDIM generation process as aligning x̂c

t with x̂gt
t since x̂gt

t − x̂c
t ∝ ∇θL

θ
FSD

(a) noisy image xt

(b) clean image x̂c
t

(c) one-step estimated ground-truth image x̂gt
t

Figure 18: Visualization of xt, x̂c
t and x̂gt

t in FSD generation process. Compared to DDIM, FSD
uses Adam (Kingma & Ba, 2014) to update parameters. As a result, FSD needs more iterations to
converge (See Tab. 5).

I PRACTICAL DESIGNING RULES FOR ϵ̃

I.1 PRACTICAL DESIGNING RULES

We do not specify the form of ϵ(c) in the general form of FSD in the main text. However, it is
intuitive to align ϵ(c) in 3D space like the noise priors used in Video Diffusion Models (Chang
et al., 2024; Ge et al., 2023; Qiu et al., 2023). We have tried several designs of ϵ(c) and summarized
several design rules for designing ϵ(c) as well as the related potential problems if violating the
design rules for ϵ(c):
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(a) noisy image xt

(b) clean image x̂c
t

(c) one-step estimated ground-truth image x̂gt
t

Figure 19: Visualization of xt, x̂c
t and x̂gt

t in SDS generation process. Compared to FSD, SDS
adds random noise instead of fixed noise. As a result, the estimated GT images vary a lot and SDS
needs a larger learning rate to converge (See Tab. 5).

• The noise associated with each camera view conditioning on camera view should be an
uncorrelated Gaussian noise. i.e. ϵ(c)|c ∼ N (0, I). If not so, the input image may be
out-of-distribution for the pretrained text-to-image Diffusion Models.

• The noise associated with different camera views should be aligned in 3D space. Oth-
erwise, FSD may degrade to the original SDS. This is consistent with the observation of
recent work (Ge et al., 2023) on Video Generation, which showed that the noise maps
corresponding to different video frames are highly correlated.

• The noise should not be only aligned in specific points in the 3D space. This may lead to
broken geometry since the convergence speed in 3D space is not uniform (see analysis on
failure of constant noise function in the main text).

I.2 WORLD-MAP NOISE FUNCTION

We will take a deeper analysis of the property of the world map noise function in the main text. We
will discuss how our proposed design rules are followed.

As noted in the main text, the local texture of the added noise is highly correlated with the generated
images. In 3D spaces, it is natural to identify points, that correspond to similar points on the noise
maps when projected onto the image planes of different camera views c, as the points of high con-
vergence speed. Let us denote those points as p+. For simplicity, we study the p+ that corresponds
to the center points in image space.

For object-centric generation, a common camera view sampling strategy is to sample camera posi-
tions at (rcam, θcam, ϕcam) under spherical coordinate and force the camera to look at the center point.
When we apply a constant noise function as ϵ(c), the center point in 3D space is a p+ point. As
a result, FSD trends to generate geometry with holes. When applying world-map noise function
proposed in main text, p+ is located at (r+, θcam, ϕcam). One can compute that

rθcam
+ ≈

2 tan FOV
2

2 tan FOV
2 +Θ

· rcam (29)

if consider nearby views with slightly different θcam and

rϕcam
+ ≈

2 tan FOV
2

2 tan FOV
2 +Θ · sin θcam

· rcam (30)
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if consider views with slightly different ϕcam. In this way, we align nearby views coarsely. Moreover,
for different camera parameters, r+ is different, avoiding nonuniform convergence speed in 3D
space.

29


	Introduction
	Preliminaries and Related Works
	Diffusion Models
	Diffusion PF-ODE and DDIM
	Score Distillation Sampling

	Flow Score Distillation for 2D Generation
	Simplified Formulation of Diffusion PF-ODE
	Flow Score Distillation on 2D
	Analysis of the Noise Sampling Strategy

	Lifting Flow Score Distillation to 3D
	Designing .
	Failure of a Vanilla Design of 
	World-map Noise Function .

	Coarse to Fine Pipeline
	Compare FSD with SDS on 3D

	Experiments
	Implementation Details
	Evaluation on Text-to-3D Generation
	Qualitative Comparison.
	Quantitative Results.

	Ablation Study

	Conclusion
	Additional Results
	Additional Comparison with Baselines
	Image to 3D Generation
	Additional 2D Experiments on Noise Prior

	Additional Ablations
	Ablation on Proposed Pipeline
	Noise Interpolation
	Ablation on Noise Function
	Ablations on Hyper Parameters

	Additional Quantitative Results
	Discussions
	Implementation Details
	3D Experiments using FSD
	2D Experiments using FSD

	Theory of Flow Score Distillation
	Diffusion PF-ODE
	DDIM Sampling
	Proof of Proposition 1

	Visualize the Change-of-Variable
	Algorithm for Flow Score Distillation
	Practical Designing Rules for 
	Practical Designing Rules
	World-map Noise Function


