
Improving Equation Set Problems with Label Augmentation

Anonymous ACL submission

Abstract
Math word problems solving has received con-001
siderable attention from many NLP researchers.002
Inspired by the encoder-decoder structure, they003
created a series of neural network models to004
solve arithmetic word problems and equation005
set problems. However, these encoder-decoder006
models used the ground truth as the only gen-007
eration target, resulting in shallow heuristics008
to generate expressions. In this paper, we pro-009
pose a simple and effective label augmenta-010
tion method for equation set problems. Specifi-011
cally, we transform the ground truth into several012
equivalent labels by normalization rules, and013
these new labels will be used as additional gen-014
eration targets for model training. Experimen-015
tal results on the English dataset DRAW1K and016
Chinese dataset HMWP show that the label aug-017
mentation method has at most 4.5% improve-018
ment over the state-of-the-art (SoTA) models.019

1 Introduction020

Math Word Problems (MWP) solving is a popu-021

lar NLP task, which requires a solver to provide a022

solvable expression towards a mathematical ques-023

tion by understanding the semantics and logic of024

its narrative description (Zhang et al., 2020a). Ac-025

cording to the form of expressions, MWP can be026

divided into arithmetic word problems with one-027

unknown variable and equation set problems where028

one/multiple-unknown variables are included in the029

expression (Qin et al., 2020). Table 1 shows two030

examples of equation set problems.031

To solve MWP with deep learning, many re-032

searchers (Wang et al., 2017; Xie and Sun, 2019;033

Zhang et al., 2020b) applied the encoder-decoder034

structure. They used recurrent neural networks or035

pre-trained language models to encode the prob-036

lem texts and generated expressions by sequence-037

based decoders or tree-based decoders. Although038

these neural network models achieved promising039

results for arithmetic word problems, this train-040

ing paradigm that directly takes ground truth as041

Problem: A number added to 6 is equal to
30 less than four times the num-
ber. What is the number?

Equation: x+ 6 = 4x− 30

New Label: x = (6 + 30)÷ (4− 1)

Answer: 12

Problem: What is the number of chickens
and rabbits in a cage, with 20
heads on the top, and 50 legs on
the bottom?

Equation:

{
x+ y = 20

2x+ 4y = 50

New Label:

{
x = (4 ∗ 20− 50)÷ (4− 2)

y = (50− 2 ∗ 20)÷ (4− 2)

Answer: (15, 5)

Table 1: The examples of equation set problems.

the only generation target has significant pitfalls. 042

Some work (Patel et al., 2021; Kumar et al., 2021) 043

provided the evidence that these methods rely on 044

shallow heuristics to generate expressions, which 045

leads to the failure of generalization. 046

To address the above issue, recent studies (Liang 047

and Zhang, 2021; Shen et al., 2021; Huang et al., 048

2021; Li et al., 2021; Qin et al., 2021) adopted a 049

multi-task framework to increase the difficulty of 050

model training. Unlike they focused on design- 051

ing auxiliary tasks on arithmetic word problems, 052

we propose a label augmentation method for equa- 053

tion set problems in this paper. Specifically, we 054

transform the ground truth into several equivalent 055

labels by some normalization rules, and these aug- 056

mented labels will be used as additional generation 057

targets for model training. The motivation of our 058

approach comes from two aspects: (1) Mathemati- 059

cal expressions have various forms naturally since 060

the existence of commutative laws; (2) For equa- 061

tion set problems, there are different solutions from 062
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Figure 1: The framework of our model, which follows the encoder-2decoders architecture. One decoder aims to
generate original labels and another one aims to fit the nature of augmented labels.

the ground truth. For example, we can obtain new063

solutions for the two problems in Table 1.064

Hence, we summarize five normalization rules065

to produce these equivalent labels, which are: (1)066

equation swapping; (2) variable substitution; (3)067

commutative law; (4) new solution 1; (5) new solu-068

tion 2. These equivalent labels produce varying069

degrees of difference from ground truth (differ-070

ence: Rule 1<2<3<4<5). To facilitate the encoder-071

decoder structure adapt to the augmented labels,072

we replace the traditional single decoder with two073

decoders in parallel, where one aims to generate074

original labels and another one aims to fit the nature075

of augmented labels.076

The main contributions of this paper are:077

• We propose a label augmentation method for078

equation set problems, using five normaliza-079

tion rules to generate equivalent labels. The080

method is applicable to any existing neural081

network models for equation set problems.082

• We carefully compare the difference and per-083

formance improvements of these five rules.084

Experimental results show that the larger the085

difference with ground truth, the more signifi-086

cant the performance improvement.087

2 Methodology088

In this section, we give a detailed description of the089

five normalization rules and the model architecture.090

2.1 Normalization Rules 091

An equation set problem (P,E) consists of a prob- 092

lem text P and an equation expression E. Different 093

from previous studies on establishing models to 094

learn the mapping P → E, our goal is to learn the 095

mapping P → (E,E∗), where E∗ is generated by 096

some normalization rules that can be summarized 097

as follows (If E∗ cannot be obtained from some 098

normalization rules, E∗ = E): 099

Rule 1: Equation swapping. This rule swaps 100

the order of multiple equations. For example, we 101

obtain E∗ : (2x + 4y = 50, x + y = 20) from 102

E : (x+y = 20, 2x+4y = 50), which shows that 103

the order of equations does not affect the answer. 104

Rule 2: Variable substitution. This rule sub- 105

stitutes the unknown variables. For example, we 106

obtain E∗ : (y+x = 20, 2y+4x = 50), which in- 107

dicates that the naming of unknown variables does 108

not affect the answer. 109

Rule 3: Commutative law. This rule swaps the 110

left and right sides of an expression if the operators 111

are ‘∗’ and ‘+’. For example, we obtain E∗ : (y + 112

x = 20, y ∗ 4 + x ∗ 2 = 50), which shows that the 113

‘∗’ and ‘+’ operators satisfy the commutative law. 114

Rule 4: New solution 1. This rule produces 115

a new solution to the problem. Specifically, the 116

expression of x is obtained from the first equation 117

and substituted into the second equation; the ex- 118

pression of y is obtained from the second equation 119

and substituted into the first equation. For exam- 120
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ple, we obtain the expression x = 20− y from the121

first equation x + y = 20. After substituting into122

the second equation, we obtain the new equation123

2∗(20−y)+4y = 50. Similarly, we can get the new124

equation x+(50− 2x)÷ 4 = 20. Thus, we obtain125

E∗ : (x+(50−2x)÷4 = 20, 2∗ (20−y)+4y =126

50), which indicates that there is a new solution127

different from the ground truth.128

Rule 5: New solution 2. This rule produces129

another new solution to the problem. We solve130

the equations directly to obtain the expressions for131

each unknown variable. For example, we obtain132

E∗ : (x = (4 ∗ 20− 50)÷ (4− 2), y = (50− 2 ∗133

20)÷ (4− 2)), which shows that there is another134

new solution different from the ground truth.135

As we can see, these rules produce an increasing136

difference with ground truth. Then an equation set137

problem (P,E) is transformed into (P,E,E∗).138

2.2 Model Architecture139

Our proposed label augmentation method is appli-140

cable to any existing neural network models. Since141

EPT model (Kim et al., 2020) has achieved the best142

performance on the equation set problems so far,143

we implement the label augmentation method on144

the model. EPT model also follows the encoder-145

decoder structure, where the encoder is the pre-146

trained language model Albert (Lan et al., 2020)147

and the decoder is the Transformer with the pointer148

network (Vinyals et al., 2015). Additionally, the149

equation E is transformed into a series of 3-tuples150

(f, a1, a2) in EPT model, where f is an operator151

and ai is an operand. The decoder generates these152

3-tuples in the sequence manner. Given an equation153

set problem (P,E,E∗), our model architecture is154

described as follows:155

X = Encoder(P ) (1)156

S1 = Decoder1(X) (2)157

S2 = Decoder2(X) (3)158

L1 = − log Pr(E|S1) (4)159

L2 = − log Pr(E∗|S2) (5)160

L = (L1 + L2)/2 (6)161

where Li denotes the loss function of the i-th de-162

coder. Pr is the cross-entropy loss function with163

the label smoothing approach, which sums up the164

loss of operators and operands in 3-tuples.165

In the predicting stage, we perform beam166

searches for the two decoders respectively. Then167

we select the one with a higher score as the final168

result based on the beam score.169

3 Datasets 170

We evaluate the performance of models on the En- 171

glish dataset DRAW1K and the Chinese dataset 172

HMWP. DRAW1K (Upadhyay et al., 2016) con- 173

tains 1,000 equation set problems, including 255 174

one-unknown-variable problems and 745 two- 175

unknown-variable problems. HMWP (Qin et al., 176

2020) contains 5,470 problems, including 3,856 177

one-unknown-variable problems and 1,614 two- 178

unknown-variable problems. For DRAW1K, we 179

use the public training, development and test set. 180

For HMWP, we split the training, development and 181

test set at rate 3:1:1. The statistical information of 182

datasets is shown in Table 2. At last, we employ 183

the answer accuracy as the metric for measuring 184

performance. In other words, the result is correct if 185

the generated equations match the correct answer 186

without considering the order of the answer. 187

Dataset #Train #Dev #Test Avg PL Avg EL

DRAW1K 600 200 200 35.34 14.16
HMWP 3,282 1,094 1,094 61.99 13.21

Table 2: The statistical information of datasets, where
Avg PL and Avg EL indicate the average problem length
and average equation length respectively.

4 Experiments 188

4.1 Baselines 189

We compare our model with some state-of-the-art 190

methods, including: DNS (Wang et al., 2017) di- 191

rectly generated equations with a sequence-based 192

decoder, SAU (Qin et al., 2020) transformed equa- 193

tions into the tree structure and generated equations 194

with a tree-based decoder, DAG (Cao et al., 2021) 195

generated 3-tuples with a directed acyclic graph 196

and EPT (Kim et al., 2020). 197

4.2 Implementation Details 198

The hyper-parameters we used are the same as EPT, 199

including: 500 epochs, 2,048 batch sizes in terms 200

of text or equation tokens, and 2 gradient accumula- 201

tion. Since the learning rate and the warm-up epoch 202

are decided by grid search, their values are listed 203

in the Appendix. We use LAMB (You et al., 2019) 204

optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8. 205

To facilitate the replication of experiments by re- 206

searchers, we set the random seed to 1. At last, 207

we perform the beam search with beam size 3. All 208

experiments are implemented in pytorch 1.9.0 and 209

run on Linux with NVIDIA Tesla V100. 210
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Model DRAW1K HMWP Model DRAW1K HMWP

DNS 36.8* 32.7* EPT-B(2decoders) + 1 51.5 54.5
SAU 39.2* 43.7* EPT-B(2decoders) + 2 55.0 57.4
DAG 44.4* - EPT-B(2decoders) + 3 54.5 57.3
EPT-B 52.5 54.1 EPT-B(2decoders) + 4 55.0 56.2
EPT-L 57.5 58.5 EPT-B(2decoders) + 5 56.5 56.3
EPT-B(1decoder) + 1 44.0 51.6 EPT-L(2decoders) + 4 62.0 60.3
EPT-B(1decoder) + 5 46.5 49.2 EPT-L(2decoders) + 5 60.5 60.7

Table 3: Results on DRAW1K and HMWP, where B and L represent the Albert-base and Albert-large models
respectively. ‘*’ denotes the accuracy via 5-fold cross-validation, which is reported by the paper (Lan et al., 2021).
‘1decoder’ means that we use 1 decoder to train the ground truth and the equivalent labels produced by normalization
rules. We rerun the EPT model, and the results may differ from the original paper.
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Figure 2: T-SNE visualization of the problem representation on DRAW1K.

4.3 Experimental Results211

Table 3 depicts the results on two datasets, and we212

can observe the following phenomena:213

(1) The effect of Rule 1 is barely improved and214

may be regressive. This is because Rule 1 is not215

applicable to one-unknown-variable problems and216

too simple for two-unknown-variable equations.217

(2) Rule 2 and Rule 3 have similar improvements.218

For example, x + y = 20 is transformed into the219

same equation through Rule 2 and Rule 3, so Rule220

2 and Rule 3 are similar in some cases.221

(3) The improvements of Rule 4 and Rule 5 are222

obvious on DRAW1K, but they are not good on223

HMWP. This is because HMWP contains 900 one-224

unknown-variable nonlinear problems, which can-225

not be transformed by Rule 4 and Rule 5. This part226

of the data causes inconsistencies in the form of227

labels, resulting in performance degradation.228

(4) The framework of two decoders is more suit-229

able for the training of these equivalent labels.230

Since there are differences between the ground231

truth and augmented labels, using a single decoder232

confuses the training objective of the model. Even233

Rule 1 with the least difference has a significant 234

performance degradation. 235

We obtain the problem representation by using 236

the first-word embedding of problem text, and per- 237

forming the T-SNE visualization (Rauber et al., 238

2016) in Figure 2. It can be seen that EPT-B does 239

not distinguish these two parts well due to the sim- 240

ilar forms of blue and purple ground truth. After 241

training the equivalent labels produced by Rule 4 242

and Rule 5, there is some degree of distinction be- 243

tween the blue and purple labels, which indicates 244

that the model can better establish the relationship 245

between problem texts and equation expressions. 246

5 Conclusion 247

In this paper, we proposed a label augmentation 248

method for equation set problems, summarizing 5 249

normalization rules to produce equivalent labels. 250

To take advantage of these augmented labels, we 251

replaced a single decoder with two decoders. Ex- 252

perimental results on both English and Chinese 253

datasets show that our proposal has at most 4.5% 254

improvement and better problem representation. 255
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A Hyper-parameters368

Model Pre-trained Language Model
DRAW1K dataset
EPT-B Albert-base-v2
EPT-L Albert-large-v2
HMWP dataset
EPT-B voidful/albert_chinese_base
EPT-L voidful/albert_chinese_large

Table 4: The pre-trained language models used for EPT
and our model.

Model Learning Rate Warm-up
DRAW1K dataset
EPT-B 0.00176 12.5
EPT-L 0.00176 2.5
HMWP dataset
EPT-B 0.0025 12.5
EPT-L 0.0025 2.5

Table 5: The best hyper-parameters for EPT and our
model on DRAW1K and HMWP.

Table 4 shows the pre-trained language models369

used for EPT and our model, which can be down-370

loaded from the Huggingface’s transformers371

library (Wolf et al., 2019).372

Table 5 depicts the best learning rate and warm-373

up epoch for EPT and our model.374

B Math word problems375

Arithmetic Word Problem
Problem: Three less than 4 times a number

is 325. What is the number?
Numbers: 3(‘Three’), 4, 325
Expression: (325 + 3)÷ 4

Answer: 82

Equation Set Problem
Problem: A number added to 6 is equal to

30 less than four times the num-
ber. What is the number?

Numbers: 6, 30, 4(‘four’)
Equation: x+ 6 = 4x− 30

Answer: 12

Table 6: The examples of arithmetic word problems and
equation set problems.

Arithmetic Word Problems
Dataset Problems Avg PL Avg EL

MAWPS 2,373 31.01 6.20
Math23K* 23,161 27.99 5.55
Ape210K* 210,488 43.05 7.74
Equation Set Problems

Dataset Problems Avg PL Avg EL
Alg514 514 41.40 13.08

DRAW1K 1,000 35.34 14.16
HMWP* 5,470 61.99 13.21

Table 7: The statistical information of MWP datasets,
where ‘*’ represents the Chinese dataset.

Math word problems can be divided into arith- 376

metic word problems and equation set problems 377

based on the form of the expressions. Table 6 and 378

Table 7 show the examples and relevant datasets of 379

arithmetic word problems and equation set prob- 380

lems. As shown in Table 7, the average problem 381

length and equation length of equation set problems 382

are usually longer than those of arithmetic word 383

problems, which indicates that solving equation set 384

problems is a more difficult task than arithmetic 385

word problems. 386

C Data processing in EPT 387

In this section, we describe how EPT transforms 388

an equation E into a series of 3-tuples and the 389

vocabulary of the output.

Input Output 3-tuple token
position index f a1 a2

0 - BEGIN
1 R0 VAR
2 R1 VAR
3 R2 + R0 R1

4 R3 = R2 N0

5 R4 ∗ 2 R0

6 R5 ∗ 4 R1

7 R6 + R4 R5

8 R7 = R6 N1

- R8 END

Table 8: The equations x + y = 20, 2x + 4y = 50
processing in EPT, where Ni denotes the number values
in the problem text.

390
Table 8 depicts the equation processing of the 391

EPT, where BEGIN represents starting an equation, 392

VAR represents generating a variable, and END rep- 393

resents ending an equation. Ri denotes the i-th 394
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Rule 3 Rule 4 Rule 5

EPT-B Rule 1 Rule 2

Figure 3: More results of T-SNE visualization on DRAW1K.

tuple and Ni indicates the i-th number value appear-395

ing in the problem text, e.g., {N0 : 20, N1 : 50}.396

The output of EPT is a 3-tuple (f, a1, a2) at397

each step, where the vocabulary of the operator398

f is {+,−, ∗,÷,∧,=}, and the vocabulary of the399

operand ai comes from: the numbers provided in400

the problem text (e.g., 20,50), constants (e.g., π, 1)401

and the prior 3-tuple (e.g., R0).402

D T-SNE visualization403

Figure 3 shows more results of T-SNE visualization.404

Compared to problem representations learned by405

EPT, problem representations after training equiv-406

alent labels are more preferred to be clustered to-407

gether if they have the same ground truth.408

E Related Work409

E.1 Equation set problems solving410

As with solving arithmetic word problems, many411

researchers (Qin et al., 2020; Cao et al., 2021; Kim412

et al., 2020) still followed the encoder-decoder413

structure to generate equation expressions. Qin414

et al. (2020) proposed a new operator ‘;’ to convert415

multiple expression trees into a general tree and416

generated equation(s) with a tree-based decoder.417

Some work (Cao et al., 2021; Kim et al., 2020)418

transformed the equations into a set of 3-tuples,419

generating these 3-tuples from bottom to top with420

a directed acyclic graph (Cao et al., 2021) or from421

left to right with a transformer decoder (Kim et al.,422

2020). Similar to the challenge of arithmetic word423

problems, these neural network models that use the424

ground truth as the only generation target do not 425

have sufficient generalization performance. 426

E.2 Data augmentation/multi-task learning 427

To improve the generalization performance of the 428

model, recent studies (Liu et al., 2020; Shen et al., 429

2021; Huang et al., 2021; Li et al., 2021; Qin 430

et al., 2021) adopted data augmentation or multi- 431

task learning framework to increase the difficulty 432

of model training. Liu et al. (2020) swapped the 433

descriptions of conditions and questions in the 434

problem texts to obtain new arithmetic word prob- 435

lems. Liang and Zhang (2021) designed a teacher 436

module to supervise the conformity between the 437

problem representation and the ground truth. Shen 438

et al. (2021) selected the correct expression with 439

the highest ranking score from candidate expres- 440

sions by a ranker module. Huang et al. (2021) first 441

retrieved top-k similar problems for each problem, 442

and then jointly trained the unsolved problems and 443

each retrieved problem. Li et al. (2021) sought the 444

most similar problem and easily confusing problem 445

for each unsolved problem, enhancing the prob- 446

lem representation by contrastive learning. Qin 447

et al. (2021) designed a series of auxiliary tasks, in- 448

cluding number prediction task, commonsense con- 449

stant prediction task, program consistency checker 450

and duality exploiting task. Unlike these studies 451

focused on designing auxiliary tasks on arithmetic 452

word problems, we propose a label augmentation 453

method for equation set problems, which is appli- 454

cable to any existing neural network models for 455

equation set problems. 456
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