Improving Equation Set Problems with Label Augmentation

Anonymous ACL submission

Abstract

Math word problems solving has received con-
siderable attention from many NLP researchers.
Inspired by the encoder-decoder structure, they
created a series of neural network models to
solve arithmetic word problems and equation
set problems. However, these encoder-decoder
models used the ground truth as the only gen-
eration target, resulting in shallow heuristics
to generate expressions. In this paper, we pro-
pose a simple and effective label augmenta-
tion method for equation set problems. Specifi-
cally, we transform the ground truth into several
equivalent labels by normalization rules, and
these new labels will be used as additional gen-
eration targets for model training. Experimen-
tal results on the English dataset DRAW 1K and
Chinese dataset HMWP show that the label aug-
mentation method has at most 4.5% improve-
ment over the state-of-the-art (SoTA) models.

1 Introduction

Math Word Problems (MWP) solving is a popu-
lar NLP task, which requires a solver to provide a
solvable expression towards a mathematical ques-
tion by understanding the semantics and logic of
its narrative description (Zhang et al., 2020a). Ac-
cording to the form of expressions, MWP can be
divided into arithmetic word problems with one-
unknown variable and equation set problems where
one/multiple-unknown variables are included in the
expression (Qin et al., 2020). Table 1 shows two
examples of equation set problems.

To solve MWP with deep learning, many re-
searchers (Wang et al., 2017; Xie and Sun, 2019;
Zhang et al., 2020b) applied the encoder-decoder
structure. They used recurrent neural networks or
pre-trained language models to encode the prob-
lem texts and generated expressions by sequence-
based decoders or tree-based decoders. Although
these neural network models achieved promising
results for arithmetic word problems, this train-
ing paradigm that directly takes ground truth as

Problem: A number added to 6 is equal to
30 less than four times the num-
ber. What is the number?

Equation: x4+ 6=4x — 30

New Label: 2= (6+30)+(4—1)

Answer: 12

Problem: What is the number of chickens
and rabbits in a cage, with 20
heads on the top, and 50 legs on
the bottom?

Equation: zty =20

2z 4+ 4y =50
New Label: x=(4%20—50) = (4—2)
y=(50—-2x%20)+ (4—2)
Answer: (15,5)

Table 1: The examples of equation set problems.

the only generation target has significant pitfalls.
Some work (Patel et al., 2021; Kumar et al., 2021)
provided the evidence that these methods rely on
shallow heuristics to generate expressions, which
leads to the failure of generalization.

To address the above issue, recent studies (Liang
and Zhang, 2021; Shen et al., 2021; Huang et al.,
2021; Li et al., 2021; Qin et al., 2021) adopted a
multi-task framework to increase the difficulty of
model training. Unlike they focused on design-
ing auxiliary tasks on arithmetic word problems,
we propose a label augmentation method for equa-
tion set problems in this paper. Specifically, we
transform the ground truth into several equivalent
labels by some normalization rules, and these aug-
mented labels will be used as additional generation
targets for model training. The motivation of our
approach comes from two aspects: (1) Mathemati-
cal expressions have various forms naturally since
the existence of commutative laws; (2) For equa-
tion set problems, there are different solutions from

Ry R R, Ry R, Rs Rg¢ R, Ry

y v

LA T A A D R N N A B

Albert

I e e B e
------ 20 heads on the top, and 50 legs -+ -+

(P: word tokens)

Normalization Rules:

x+y=20 2x +4y =50

2x +4y =50 x+y =20

Ground truth Rule 1

y+x=20 y+x=20

2y +4x =50 y*4+xx2=50
Rule 2 Rule 3

x+(B0-2x)+4=20 [x=(4%20-50)+(4—-2)
2%x(20—y)+4y=50 (y=(0(0-2x20)+(4-2)
Rule 4 Rule 5

Output Operator

VAR 4+ = * * dr = END

,,,,,,,,,,,,,,, Ry R, 2 4 R, Rg Output Operand 1

Y Y Y
- Transformer Decoder 1
| | I |

i i
L Transformer Decoder 2
| | I I I

Ri—N, R, Ry Rs N
EA:I Y A

Output Operand 2

Iy 4 4

VAR e = ¥ o + — Input Operator

Ry R, 2 4 R, R
R, Ny Ry R Ry N
E: Ground Truth
Ry R R, Ry R, Rs R¢ R, Ry R
VAR

Input Operand 1

Input Operand 2

Ry
VAR « - 1=-01=1=1:1- N
4Ry A Ry Ry, 2 N, 4 Rg
N, N, 2 R, Rs Ny R, 2 R
A A A A Y A Y Y

VAR VAR * - — = = * = =
4 R, 4 Ry R, 2 N
N N 2 R, Rs Ny, R, 2

E*. Equivalent Label (Rule 5)

Figure 1: The framework of our model, which follows the encoder-2decoders architecture. One decoder aims to
generate original labels and another one aims to fit the nature of augmented labels.

the ground truth. For example, we can obtain new
solutions for the two problems in Table 1.

Hence, we summarize five normalization rules
to produce these equivalent labels, which are: (1)
equation swapping; (2) variable substitution; (3)
commutative law; (4) new solution 1; (5) new solu-
tion 2. These equivalent labels produce varying
degrees of difference from ground truth (differ-
ence: Rule 1<2<3<4<5). To facilitate the encoder-
decoder structure adapt to the augmented labels,
we replace the traditional single decoder with two
decoders in parallel, where one aims to generate
original labels and another one aims to fit the nature
of augmented labels.

The main contributions of this paper are:

* We propose a label augmentation method for
equation set problems, using five normaliza-
tion rules to generate equivalent labels. The
method is applicable to any existing neural
network models for equation set problems.

* We carefully compare the difference and per-
formance improvements of these five rules.
Experimental results show that the larger the
difference with ground truth, the more signifi-
cant the performance improvement.

2 Methodology

In this section, we give a detailed description of the
five normalization rules and the model architecture.

2.1 Normalization Rules

An equation set problem (P, E) consists of a prob-
lem text P and an equation expression E. Different
from previous studies on establishing models to
learn the mapping P — E, our goal is to learn the
mapping P — (E, E*), where E* is generated by
some normalization rules that can be summarized
as follows (If £* cannot be obtained from some
normalization rules, E* = E):

Rule 1: Equation swapping. This rule swaps
the order of multiple equations. For example, we
obtain £* : (2x + 4y = 50,2 + y = 20) from
E : (z+y = 20,2z +4y = 50), which shows that
the order of equations does not affect the answer.

Rule 2: Variable substitution. This rule sub-
stitutes the unknown variables. For example, we
obtain E* : (y+x = 20,2y + 4z = 50), which in-
dicates that the naming of unknown variables does
not affect the answer.

Rule 3: Commutative law. This rule swaps the
left and right sides of an expression if the operators
are ‘x’ and ‘+’. For example, we obtain E* : (y +
x = 20,y * 4 + x * 2 = 50), which shows that the
‘x’ and ‘4 operators satisfy the commutative law.

Rule 4: New solution 1. This rule produces
a new solution to the problem. Specifically, the
expression of z is obtained from the first equation
and substituted into the second equation; the ex-
pression of y is obtained from the second equation
and substituted into the first equation. For exam-

ple, we obtain the expression z = 20 — y from the
first equation x + y = 20. After substituting into
the second equation, we obtain the new equation
2%(20—y)+4y = 50. Similarly, we can get the new
equation = + (50 — 2z) <-4 = 20. Thus, we obtain
E*: (x+(50—2x)+4 =20,2% (20— y) + 4y =
50), which indicates that there is a new solution
different from the ground truth.

Rule 5: New solution 2. This rule produces
another new solution to the problem. We solve
the equations directly to obtain the expressions for
each unknown variable. For example, we obtain
E*:(x=(4%20-50)+(4—2),y = (50 — 2%
20) = (4 — 2)), which shows that there is another
new solution different from the ground truth.

As we can see, these rules produce an increasing
difference with ground truth. Then an equation set
problem (P,) is transformed into (P, £/, E*).

2.2 Model Architecture

Our proposed label augmentation method is appli-
cable to any existing neural network models. Since
EPT model (Kim et al., 2020) has achieved the best
performance on the equation set problems so far,
we implement the label augmentation method on
the model. EPT model also follows the encoder-
decoder structure, where the encoder is the pre-
trained language model Albert (Lan et al., 2020)
and the decoder is the Transformer with the pointer
network (Vinyals et al., 2015). Additionally, the
equation E is transformed into a series of 3-tuples
(f,a1,az2) in EPT model, where f is an operator
and a; is an operand. The decoder generates these
3-tuples in the sequence manner. Given an equation
set problem (P, E, E*), our model architecture is
described as follows:

X = Encoder(P) (1)
S1 = Decoder; (X)) ()
Sy = Decoders (X)) 3)
L1 = —logPr(E|Sy) 4)
Lo = —logPr(E*|Ss) 3)
L= (L1+Ls)/2 (6)

where L£; denotes the loss function of the i-th de-
coder. Pr is the cross-entropy loss function with
the label smoothing approach, which sums up the
loss of operators and operands in 3-tuples.

In the predicting stage, we perform beam
searches for the two decoders respectively. Then
we select the one with a higher score as the final
result based on the beam score.

3 Datasets

We evaluate the performance of models on the En-
glish dataset DRAWI1K and the Chinese dataset
HMWP. DRAWI1K (Upadhyay et al., 2016) con-
tains 1,000 equation set problems, including 255
one-unknown-variable problems and 745 two-
unknown-variable problems. HMWP (Qin et al.,
2020) contains 5,470 problems, including 3,856
one-unknown-variable problems and 1,614 two-
unknown-variable problems. For DRAW1K, we
use the public training, development and test set.
For HMWP, we split the training, development and
test set at rate 3:1:1. The statistical information of
datasets is shown in Table 2. At last, we employ
the answer accuracy as the metric for measuring
performance. In other words, the result is correct if
the generated equations match the correct answer
without considering the order of the answer.

Dataset ~ #Train #Dev #Test AvgPL AvgEL
DRAWIK 600 200 200 35.34 14.16
HMWP 3282 1,094 1,094 61.99 13.21

Table 2: The statistical information of datasets, where
Avg PL and Avg EL indicate the average problem length
and average equation length respectively.

4 Experiments

4.1 Baselines

We compare our model with some state-of-the-art
methods, including: DNS (Wang et al., 2017) di-
rectly generated equations with a sequence-based
decoder, SAU (Qin et al., 2020) transformed equa-
tions into the tree structure and generated equations
with a tree-based decoder, DAG (Cao et al., 2021)
generated 3-tuples with a directed acyclic graph
and EPT (Kim et al., 2020).

4.2 Implementation Details

The hyper-parameters we used are the same as EPT,
including: 500 epochs, 2,048 batch sizes in terms
of text or equation tokens, and 2 gradient accumula-
tion. Since the learning rate and the warm-up epoch
are decided by grid search, their values are listed
in the Appendix. We use LAMB (You et al., 2019)
optimizer with 51 = 0.9, 32 = 0.999,¢ = 1078,
To facilitate the replication of experiments by re-
searchers, we set the random seed to 1. At last,
we perform the beam search with beam size 3. All
experiments are implemented in pytorch 1.9.0 and
run on Linux with NVIDIA Tesla V100.

Model

DRAW1IK HMWP

DNS 36.8%* 32.7*
SAU 39.2% 43.7*
DAG 44 4% -

EPT-B 52.5 54.1
EPT-L 57.5 58.5
EPT-B(1decoder) + (1) 44.0 51.6
EPT-B(1decoder) + (5) 46.5 49.2

Model DRAW1IK HMWP
EPT-B(2decoders) + (1) 51.5 54.5
EPT-B(2decoders) + (2) 55.0 57.4
EPT-B(2decoders) + (3) 54.5 57.3
EPT-B(2decoders) + (4) 55.0 56.2
EPT-B(2decoders) + (5) 56.5 56.3
EPT-L(2decoders) + (4) 62.0 60.3
EPT-L(2decoders) + (5) 60.5 60.7

Table 3: Results on DRAWIK and HMWP, where B and L represent the Albert-base and Albert-large models
respectively. “*’ denotes the accuracy via 5-fold cross-validation, which is reported by the paper (Lan et al., 2021).
‘ldecoder’ means that we use 1 decoder to train the ground truth and the equivalent labels produced by normalization
rules. We rerun the EPT model, and the results may differ from the original paper.

zo L4 10 LI - 10 - .,
® o L]
RN i 38t
08 NS “' 08 S ® 08 ® & eq®
“® S e o o . o0
ot % “
06 L) 0.6 06 e ®
o
L .'<
0s] ° :0' '.‘- 0.4 04 % " .. %
*
° S8t Iy . N .
o2 N '.' L3 se 0.2 .o :":.O 0.2 L ' © ..
* :. ..;E.. * ~.~(Oo J..'
ese e eso’ e °
0.0 0.0 o 0.0 @ "%,
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
EPT-B Rule 4 Rule 5
° 1 _ x+y=N; ° Nox + N;y = Ny * N3 ° x+y=N,; Nix + N,y = N
PR x—y =N, Xty =N, x=y="No x4y =No

Figure 2: T-SNE visualization of the problem representation on DRAW1K.

4.3 Experimental Results

Table 3 depicts the results on two datasets, and we
can observe the following phenomena:

(1) The effect of Rule 1 is barely improved and
may be regressive. This is because Rule 1 is not
applicable to one-unknown-variable problems and
too simple for two-unknown-variable equations.

(2) Rule 2 and Rule 3 have similar improvements.
For example, x 4+ y = 20 is transformed into the
same equation through Rule 2 and Rule 3, so Rule
2 and Rule 3 are similar in some cases.

(3) The improvements of Rule 4 and Rule 5 are
obvious on DRAW 1K, but they are not good on
HMWP. This is because HMWP contains 900 one-
unknown-variable nonlinear problems, which can-
not be transformed by Rule 4 and Rule 5. This part
of the data causes inconsistencies in the form of
labels, resulting in performance degradation.

(4) The framework of two decoders is more suit-
able for the training of these equivalent labels.
Since there are differences between the ground
truth and augmented labels, using a single decoder
confuses the training objective of the model. Even

Rule 1 with the least difference has a significant
performance degradation.

We obtain the problem representation by using
the first-word embedding of problem text, and per-
forming the T-SNE visualization (Rauber et al.,
2016) in Figure 2. It can be seen that EPT-B does
not distinguish these two parts well due to the sim-
ilar forms of blue and purple ground truth. After
training the equivalent labels produced by Rule 4
and Rule 5, there is some degree of distinction be-
tween the blue and purple labels, which indicates
that the model can better establish the relationship
between problem texts and equation expressions.

5 Conclusion

In this paper, we proposed a label augmentation
method for equation set problems, summarizing 5
normalization rules to produce equivalent labels.
To take advantage of these augmented labels, we
replaced a single decoder with two decoders. Ex-
perimental results on both English and Chinese
datasets show that our proposal has at most 4.5%
improvement and better problem representation.

References

Yixuan Cao, Feng Hong, Hongwei Li, and Ping Luo.
2021. A bottom-up DAG structure extraction model
for math word problems. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, pages 39-46.

Shifeng Huang, Jiawei Wang, Jiao Xu, Da Cao, and
Ming Yang. 2021. Recall and learn: A memory-
augmented solver for math word problems. arXiv
preprint abs/2109.13112.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and Gah-
gene Gweon. 2020. Point to the expression: Solving
algebraic word problems using the expression-pointer
transformer model. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3768-3779.

Vivek Kumar, Rishabh Maheshwary, and Vikram
Pudi. 2021. Adversarial examples for evaluat-

ing math word problem solvers. arXiv preprint
abs/2109.05925.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2021. Mwptoolkit: An open-source
framework for deep learning-based math word prob-
lem solvers. arXiv preprint abs/2109.00799.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Interna-
tional Conference on Learning Representations.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2021. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
arXiv preprint abs/2110.08464.

Zhenwen Liang and Xiangliang Zhang. 2021. Solving
math word problems with teacher supervision. In
Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, pages 3522-3528.

Qianying Liu, Wenyu Guan, Sujian Li, Fei Cheng,
Daisuke Kawahara, and Sadao Kurohashi. 2020.
Reverse operation based data augmentation for
solving math word problems. arXiv preprint
abs/2010.01556.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 5870-5881.

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang,
and Liang Lin. 2020. Semantically-aligned univer-
sal tree-structured solver for math word problems.
In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3780-3789.

Paulo E. Rauber, Alexandre X. Falcio, and Alexandru C.
Telea. 2016. Visualizing time-dependent data using
dynamic t-sne. In /8th Eurographics Conference on
Visualization, EuroVis 2016 - Short Papers, Gronin-
gen, The Netherlands, June 6-10, 2016, pages 73-77.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. arXiv preprint abs/2109.03034.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit and
implicit supervision jointly for algebra word prob-
lems. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 297-306.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems

2015, pages 2692-2700.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845-854.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint abs/1910.03771.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven tree-
structured neural model for math word problems. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 5299—
5305.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James
Demmel, and Cho-Jui Hsieh. 2019. Reducing BERT
pre-training time from 3 days to 76 minutes. arXiv
preprint abs/1904.00962.

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian
Dai, and Heng Tao Shen. 2020a. The gap of semantic
parsing: A survey on automatic math word problem
solvers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(9):2287-2305.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020b. Graph-
to-tree learning for solving math word problems. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3928—
3937.

https://ojs.aaai.org/index.php/AAAI/article/view/16075
https://ojs.aaai.org/index.php/AAAI/article/view/16075
https://ojs.aaai.org/index.php/AAAI/article/view/16075
https://arxiv.org/abs/2109.13112
https://arxiv.org/abs/2109.13112
https://arxiv.org/abs/2109.13112
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://arxiv.org/abs/2109.05925
https://arxiv.org/abs/2109.05925
https://arxiv.org/abs/2109.05925
https://arxiv.org/abs/2109.00799
https://arxiv.org/abs/2109.00799
https://arxiv.org/abs/2109.00799
https://arxiv.org/abs/2109.00799
https://arxiv.org/abs/2109.00799
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://doi.org/10.24963/ijcai.2021/485
https://doi.org/10.24963/ijcai.2021/485
https://doi.org/10.24963/ijcai.2021/485
https://arxiv.org/abs/2010.01556
https://arxiv.org/abs/2010.01556
https://arxiv.org/abs/2010.01556
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.18653/v1/2020.emnlp-main.309
https://doi.org/10.2312/eurovisshort.20161164
https://doi.org/10.2312/eurovisshort.20161164
https://doi.org/10.2312/eurovisshort.20161164
https://arxiv.org/abs/2109.03034
https://arxiv.org/abs/2109.03034
https://arxiv.org/abs/2109.03034
https://arxiv.org/abs/2109.03034
https://arxiv.org/abs/2109.03034
https://doi.org/10.18653/v1/d16-1029
https://doi.org/10.18653/v1/d16-1029
https://doi.org/10.18653/v1/d16-1029
https://doi.org/10.18653/v1/d16-1029
https://doi.org/10.18653/v1/d16-1029
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.18653/v1/d17-1088
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
https://doi.org/10.24963/ijcai.2019/736
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1904.00962
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.1109/TPAMI.2019.2914054
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362
https://doi.org/10.18653/v1/2020.acl-main.362

A Hyper-parameters

Model ‘ Pre-trained Language Model
DRAWIK dataset

EPT-B | Albert-base-v2

EPT-L | Albert-large-v2

HMWP dataset

EPT-B | voidful/albert_chinese_base
EPT-L | voidful/albert_chinese_large

Table 4: The pre-trained language models used for EPT
and our model.

Model | Learning Rate | Warm-up
DRAWIK dataset

EPT-B 0.00176 12.5
EPT-L 0.00176 25
HMWP dataset

EPT-B 0.0025 12.5
EPT-L 0.0025 25

Table 5: The best hyper-parameters for EPT and our
model on DRAW 1K and HMWP.

Table 4 shows the pre-trained language models
used for EPT and our model, which can be down-
loaded from the Huggingface’s transformers
library (Wolf et al., 2019).

Table 5 depicts the best learning rate and warm-
up epoch for EPT and our model.

B Math word problems

Arithmetic Word Problems

Dataset Problems | Avg PL | Avg EL
MAWPS 2,373 31.01 6.20
Math23K* | 23,161 27.99 5.55
Ape210K* | 210,488 | 43.05 7.74
Equation Set Problems

Dataset | Problems | Avg PL | Avg EL

Alg514 514 41.40 13.08
DRAWIK 1,000 35.34 14.16
HMWP* 5,470 61.99 13.21

Arithmetic Word Problem

Problem: Three less than 4 times a number
is 325. What is the number?

Numbers: 3(“Three’), 4, 325

Expression: (325 +3) ~ 4

Answer: 82

Equation Set Problem

Problem: A number added to 6 is equal to
30 less than four times the num-
ber. What is the number?

Numbers: 6, 30, 4(‘four’)

Equation: x4+ 6 =4x — 30

Answer: 12

Table 6: The examples of arithmetic word problems and
equation set problems.

Table 7: The statistical information of MWP datasets,
where “*’ represents the Chinese dataset.

Math word problems can be divided into arith-
metic word problems and equation set problems
based on the form of the expressions. Table 6 and
Table 7 show the examples and relevant datasets of
arithmetic word problems and equation set prob-
lems. As shown in Table 7, the average problem
length and equation length of equation set problems
are usually longer than those of arithmetic word
problems, which indicates that solving equation set
problems is a more difficult task than arithmetic
word problems.

C Data processing in EPT

In this section, we describe how EPT transforms
an equation E into a series of 3-tuples and the
vocabulary of the output.

Input | Output 3-tuple token

position | index f a1 as
0 - BEGIN
1 Ry VAR
2 Ry VAR
3 Ry + Ry Ri
4 R3 = Ry Ny
5 Ry * 2 Ry
6 Rs * 4 R
7 R + R, Rs
8 Ry = Rg Ny
- Ry END

Table 8: The equations x + y = 20,2z 4+ 4y = 50
processing in EPT, where IV; denotes the number values
in the problem text.

Table 8 depicts the equation processing of the
EPT, where BEGIN represents starting an equation,
VAR represents generating a variable, and END rep-
resents ending an equation. R; denotes the i-th

10 4 10 o ®eo
. P
° . s, o8
08 e », 0ol 05008
...o 2%
06 . ‘% 06
L)
.
A
ol % % y
.
.
° -
o2 o os’soteo = .
I .
o%e S
00 . 00 oo
00 02 04 06 o8 10 00 02
EPT-B
10 N 10
.
o
Soo o $
"s:i S o
08 e 0%, 081 o o s
oo ® o So
o B
0.6 ' 0.6
04 s 04
.
.o,
02 'es:O. ;'..o 02
e e Ao
.o .‘:.
00 W 00
0.0 0.2 04 0.6 08 10 0.0 0.2
Rule 3

Rule 4

10 .
L
o g%%e
]
5 - fle
° o
%o g0 &
tale e] o .
P
L]
04 % 3
I3] ° S of .
o . . e
(Y . : 3
of :':- 02 ,".:.‘ 0 LA
i *" o o g
.
00
06) 10 00 02 04 06 08 10
Rule 1 Rule 2
10 5 .
e ®_° o .
A1
0s] .?.o.]
[] . l"-
06 o*
0p %
L]
04 % ° . . %
L
off o o0 % o ® o
@ (X e °
e &£ Y
o 0.0 L g
0.6 08 10 0.0 0.2 0.4 0.6 0.8 10
Rule 5

Figure 3: More results of T-SNE visualization on DRAWI1K.

tuple and [V; indicates the ¢-th number value appear-
ing in the problem text, e.g., { Ny : 20, Ny : 50}.

The output of EPT is a 3-tuple (f,a1,a2) at
each step, where the vocabulary of the operator
fis {+, —,*,+, A\, =}, and the vocabulary of the
operand a; comes from: the numbers provided in
the problem text (e.g., 20,50), constants (e.g., 7, 1)
and the prior 3-tuple (e.g., Rp).

D T-SNE visualization

Figure 3 shows more results of T-SNE visualization.
Compared to problem representations learned by
EPT, problem representations after training equiv-
alent labels are more preferred to be clustered to-
gether if they have the same ground truth.

E Related Work

E.1 Equation set problems solving

As with solving arithmetic word problems, many
researchers (Qin et al., 2020; Cao et al., 2021; Kim
et al., 2020) still followed the encoder-decoder
structure to generate equation expressions. Qin
et al. (2020) proposed a new operator ‘;’ to convert
multiple expression trees into a general tree and
generated equation(s) with a tree-based decoder.
Some work (Cao et al., 2021; Kim et al., 2020)
transformed the equations into a set of 3-tuples,
generating these 3-tuples from bottom to top with
a directed acyclic graph (Cao et al., 2021) or from
left to right with a transformer decoder (Kim et al.,
2020). Similar to the challenge of arithmetic word
problems, these neural network models that use the

ground truth as the only generation target do not
have sufficient generalization performance.

E.2 Data augmentation/multi-task learning

To improve the generalization performance of the
model, recent studies (Liu et al., 2020; Shen et al.,
2021; Huang et al., 2021; Li et al., 2021; Qin
et al., 2021) adopted data augmentation or multi-
task learning framework to increase the difficulty
of model training. Liu et al. (2020) swapped the
descriptions of conditions and questions in the
problem texts to obtain new arithmetic word prob-
lems. Liang and Zhang (2021) designed a teacher
module to supervise the conformity between the
problem representation and the ground truth. Shen
et al. (2021) selected the correct expression with
the highest ranking score from candidate expres-
sions by a ranker module. Huang et al. (2021) first
retrieved top-k similar problems for each problem,
and then jointly trained the unsolved problems and
each retrieved problem. Li et al. (2021) sought the
most similar problem and easily confusing problem
for each unsolved problem, enhancing the prob-
lem representation by contrastive learning. Qin
et al. (2021) designed a series of auxiliary tasks, in-
cluding number prediction task, commonsense con-
stant prediction task, program consistency checker
and duality exploiting task. Unlike these studies
focused on designing auxiliary tasks on arithmetic
word problems, we propose a label augmentation
method for equation set problems, which is appli-
cable to any existing neural network models for
equation set problems.

